1
|
Marino V, Phromkrasae W, Bertacchi M, Cassini P, Chakrabandhu K, Dell'Orco D, Studer M. Disrupted protein interaction dynamics in a genetic neurodevelopmental disorder revealed by structural bioinformatics and genetic code expansion. Protein Sci 2024; 33:e4953. [PMID: 38511490 PMCID: PMC10955615 DOI: 10.1002/pro.4953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | | | | - Paul Cassini
- University Côte d'Azur, CNRS, Inserm, iBVNiceFrance
| | | | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | |
Collapse
|
2
|
Cruz P, Paredes N, Asela I, Kolimi N, Molina JA, Ramírez-Sarmiento CA, Goutam R, Huang G, Medina E, Sanabria H. Domain tethering impacts dimerization and DNA-mediated allostery in the human transcription factor FoxP1. J Chem Phys 2023; 158:2890482. [PMID: 37184020 DOI: 10.1063/5.0138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Transcription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)-known to form coiled-coil dimers-and a Forkhead (FKH) domain-known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization. We found that domain tethering promotes FoxP1 dimerization but inhibits a FKH domain-swapped structure. Furthermore, our findings indicate that the linker mediates the mutual organization and dynamics of ZIP and FKH domains, forming closed and open states with and without interdomain contacts, thus highlighting the role of the linkers in multidomain proteins. Finally, we found that DNA allosterically promotes structural changes that decrease the dimerization propensity of FoxP1. We postulate that, upon DNA binding, the interdomain linker plays a crucial role in the gene regulatory function of FoxP1.
Collapse
Affiliation(s)
- Perla Cruz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Nicolás Paredes
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Isabel Asela
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 7820436, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 7820436, Chile
| | - Rajen Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Gangton Huang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
3
|
Brennan A, Leech JT, Kad NM, Mason JM. The effect of helix-inducing constraints and downsizing upon a transcription block survival-derived functional cJun antagonist. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101077. [PMID: 36274790 PMCID: PMC9582194 DOI: 10.1016/j.xcrp.2022.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Inhibition of cJun is established as a promising therapeutic approach, particularly in cancer. We recently developed the "transcription block survival" (TBS) screening platform to derive functional peptide antagonists of transcription factor activity by ablating their ability to bind to cognate DNA. Using TBS, we screened a >131,000-member peptide library to select a 63-mer peptide that bound cJun and prevented 12-O-tetradecanoylphorbol-13-acetate response element (TRE) DNA binding. Iterative truncation was next combined with a systematic exploration of side-chain cyclization to derive a minimal active sequence. The resulting dual lactamized sequence was >40% smaller and retained low nM target affinity (equilibrium binding constant [K D ] = 0.2 versus 9.7 nM), with 8 residues at the acidic region required for functional antagonism. However, even modest C-terminal truncation resulted in functional loss. The peptide functionally antagonizes cJun (half-maximal inhibitory concentration [IC50] = 13 versus 45 μM) and is considerably more stable in human serum relative to its non-lactamized counterpart and HingeW.
Collapse
Affiliation(s)
- Andrew Brennan
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - James T. Leech
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Neil M. Kad
- School of Biological Sciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Jody M. Mason
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
4
|
In vitro single molecule and bulk phase studies reveal the AP-1 transcription factor cFos binds to DNA without its partner cJun. J Biol Chem 2022; 298:102229. [PMID: 35787376 PMCID: PMC9364023 DOI: 10.1016/j.jbc.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The AP-1 transcription factor family crucially regulates progression of the cell cycle, as well as playing roles in proliferation, differentiation, and the stress response. The two best described AP-1 family members, cFos and cJun, are known to dimerize to form a functional AP-1 heterodimer that binds to a consensus response element sequence. Although cJun can also homodimerize and bind to DNA, the canonical view is that cFos cannot bind DNA without heterodimerizing with cJun. Here, we show that cFos can actually bind to DNA in the absence of cJun in vitro. Using dual color single molecule imaging of cFos alone, we directly visualize binding to and movement on DNA. Of all these DNA-bound proteins, detailed analysis suggested 30 to 46% were homodimers. Furthermore, we constructed fluorescent protein fusions of cFos and cJun for Förster resonance energy transfer experiments. These constructs indicated complete dimerization of cJun, but although cFos could dimerize, its extent was reduced. Finally, to provide orthogonal confirmation of cFos binding to DNA, we performed bulk-phase circular dichroism experiments that showed clear structural changes in DNA; these were found to be specific to the AP-1 consensus sequence. Taken together, our results clearly show cFos can interact with DNA both as monomers and dimers independently of its archetypal partner, cJun.
Collapse
|
5
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
6
|
Brennan A, Leech JT, Kad NM, Mason JM. Selective antagonism of cJun for cancer therapy. J Exp Clin Cancer Res 2020; 39:184. [PMID: 32917236 PMCID: PMC7488417 DOI: 10.1186/s13046-020-01686-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
The activator protein-1 (AP-1) family of transcription factors modulate a diverse range of cellular signalling pathways into outputs which can be oncogenic or anti-oncogenic. The transcription of relevant genes is controlled by the cellular context, and in particular by the dimeric composition of AP-1. Here, we describe the evidence linking cJun in particular to a range of cancers. This includes correlative studies of protein levels in patient tumour samples and mechanistic understanding of the role of cJun in cancer cell models. This develops an understanding of cJun as a focal point of cancer-altered signalling which has the potential for therapeutic antagonism. Significant work has produced a range of small molecules and peptides which have been summarised here and categorised according to the binding surface they target within the cJun-DNA complex. We highlight the importance of selectively targeting a single AP-1 family member to antagonise known oncogenic function and avoid antagonism of anti-oncogenic function.
Collapse
Affiliation(s)
- Andrew Brennan
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - James T Leech
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
7
|
Bousova K, Barvik I, Herman P, Hofbauerová K, Monincova L, Majer P, Zouharova M, Vetyskova V, Postulkova K, Vondrasek J. Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N- and C-Termini of TRPM4. Int J Mol Sci 2020; 21:E4323. [PMID: 32560560 PMCID: PMC7352223 DOI: 10.3390/ijms21124323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022] Open
Abstract
Molecular determinants of the binding of various endogenous modulators to transient receptor potential (TRP) channels are crucial for the understanding of necessary cellular pathways, as well as new paths for rational drug designs. The aim of this study was to characterise interactions between the TRP cation channel subfamily melastatin member 4 (TRPM4) and endogenous intracellular modulators-calcium-binding proteins (calmodulin (CaM) and S100A1) and phosphatidylinositol 4, 5-bisphosphate (PIP2). We have found binding epitopes at the N- and C-termini of TRPM4 shared by CaM, S100A1 and PIP2. The binding affinities of short peptides representing the binding epitopes of N- and C-termini were measured by means of fluorescence anisotropy (FA). The importance of representative basic amino acids and their combinations from both peptides for the binding of endogenous TRPM4 modulators was proved using point alanine-scanning mutagenesis. In silico protein-protein docking of both peptides to CaM and S100A1 and extensive molecular dynamics (MD) simulations enabled the description of key stabilising interactions at the atomic level. Recently solved cryo-Electron Microscopy (EM) structures made it possible to put our findings into the context of the entire TRPM4 channel and to deduce how the binding of these endogenous modulators could allosterically affect the gating of TRPM4. Moreover, both identified binding epitopes seem to be ideally positioned to mediate the involvement of TRPM4 in higher-order hetero-multimeric complexes with important physiological functions.
Collapse
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
| | - Ivan Barvik
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic; (I.B.); (P.H.); (K.H.)
| | - Petr Herman
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic; (I.B.); (P.H.); (K.H.)
| | - Kateřina Hofbauerová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic; (I.B.); (P.H.); (K.H.)
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
| | - Monika Zouharova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
- Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Veronika Vetyskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
| | - Klara Postulkova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic; (L.M.); (P.M.); (M.Z.); (V.V.); (K.P.); (J.V.)
| |
Collapse
|
8
|
Yin Z, Venkannagari H, Lynch H, Aglyamova G, Bhandari M, Machius M, Nestler EJ, Robison AJ, Rudenko G. Self-assembly of the bZIP transcription factor ΔFosB. Curr Res Struct Biol 2019; 2:1-13. [PMID: 32542236 PMCID: PMC7295165 DOI: 10.1016/j.crstbi.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
ΔFosB is a highly stable transcription factor that accumulates in specific brain regions upon chronic exposure to drugs of abuse, stress, or seizures, and mediates lasting behavioral responses. ΔFosB reportedly heterodimerizes with JunD forming a canonical bZIP leucine zipper coiled coil that clamps onto DNA. However, the striking accumulation of ΔFosB protein in brain upon chronic insult has brought its molecular status into question. Here, we demonstrate through a series of crystal structures that the ΔFosB bZIP domain self-assembles into stable oligomeric assemblies that defy the canonical arrangement. The ΔFosB bZIP domain also self-assembles in solution, and in neuron-like Neuro 2a cells it is trapped into molecular arrangements that are consistent with our structures. Our data suggest that, as ΔFosB accumulates in brain in response to chronic insult, it forms non-canonical assemblies. These species may be at the root of ΔFosB's striking protein stability, and its unique transcriptional and behavioral consequences.
Collapse
Affiliation(s)
- Zhou Yin
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Harikanth Venkannagari
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haley Lynch
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Galina Aglyamova
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mukund Bhandari
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: Local switch or remote command? Biochim Biophys Acta Rev Cancer 2019; 1872:11-23. [PMID: 31034924 DOI: 10.1016/j.bbcan.2019.04.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The ubiquitous family of AP-1 dimeric transcription complexes is involved in virtually all cellular and physiological functions. It is paramount for cells to reprogram gene expression in response to cues of many sorts and is involved in many tumorigenic processes. How AP-1 controls gene transcription has largely remained elusive till recently. The advent of the "omics" technologies permitting genome-wide studies of transcription factors has however changed and improved our view of AP-1 mechanistical actions. If these studies confirm that AP-1 can sometimes act as a local transcriptional switch operating in the vicinity of transcription start sites (TSS), they strikingly indicate that AP-1 principally operates as a remote command binding to distal enhancers, placing chromatin architecture dynamics at the heart of its transcriptional actions. They also unveil novel constraints operating on AP-1, as well as novel mechanisms used to regulate gene expression via transcription-pioneering-, chromatin-remodeling- and chromatin accessibility maintenance effects.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Emilie Evanno
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Isabelle Jariel-Encontre
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Sharma R, Demény M, Ambrus V, Király SB, Kurtán T, Gatti-Lafranconi P, Fuxreiter M. Specific and Fuzzy Interactions Cooperate in Modulating Protein Half-Life. J Mol Biol 2019; 431:1700-1707. [PMID: 30790629 DOI: 10.1016/j.jmb.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 02/03/2019] [Indexed: 11/29/2022]
Abstract
Protein degradation is critical for maintaining cellular homeostasis. The 20S proteasome is selective for unfolded, extended polypeptide chains without ubiquitin tags. Sequestration of such segments by protein partners, however, may provide a regulatory mechanism. Here we used the AP-1 complex to study how c-Fos turnover is controlled by interactions with c-Jun. We show that heterodimerization with c-Jun increases c-Fos half-life. Mutations affecting specific contact sites (L165V, L172V) or charge separation (E175D, E189D, K190R) with c-Jun both modulate c-Fos turnover, proportionally to their impact on binding affinity. The fuzzy tail beyond the structured b-HLH/ZIP domain (~165 residues) also contributes to the stabilization of the AP-1 complex, removal of which decreases c-Fos half-life. Thus, protein turnover by 20S proteasome is fine-tuned by both specific and fuzzy interactions, consistently with the previously proposed "nanny" model.
Collapse
Affiliation(s)
- Rashmi Sharma
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Máté Demény
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | | | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | | | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
11
|
Liu L, Wang Y, Li Y, Guo P, Liu C, Li Z, Wang F, Zhao P, Xia Q, He H. Insights into the repression of fibroin modulator binding protein-1 on the transcription of fibroin H-chain during molting in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:39-49. [PMID: 30543984 DOI: 10.1016/j.ibmb.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Fibroin modulator binding protein-1 (FMBP-1) is a novel DNA-binding protein containing a conserved score and three amino acid peptide repeat (STPR) domain. The roles of factors containing STPR domain are less known. Although multiple transcription factors are involved in the transcriptional regulation of silk protein genes during the development of silkworm, the mechanism of transcriptional repression of silk protein genes during molting remains unclear. Here, we found that FMBP-1 expression was contrary to that of fibroin heavy chain (fib-H) during the fourth molting period of Bombyx mori. FMBP-1 repressed fib-H promoter activity by directly binding to the -130 element in the fib-H promoter region. We also identified two proteins, Bmsage and Bmdimm, that interacted with FMBP-1 in the posterior silk gland of silkworm larvae, and further verified these interactions by far western blotting and microscale thermophoresis in vitro, as well as co-immunoprecipitation and bimolecular fluorescence complementation at the cellular level. The luciferase reporter assay showed that the interaction between FMBP-1 and Bmdimm antagonized the activation of Bmdimm on fib-H transcription, but did not affect FMBP-1-mediated transcriptional repression on fib-H gene. Therefore, we proposed the following mechanism of fib-H transcriptional repression by FMBP-1 during the molting of silkworm larvae: 1) FMBP-1 directly binds to the -130 element in the fib-H promoter to repress fib-H transcription; 2) FMBP-1 interacts with Bmdimm to antagonize the activation of Bmdimm on fib-H transcription. Our findings promote a better understanding of fib-H transcriptional regulation and provide novel insights into the transcriptional repression of fib-H by FMBP-1 and basic helix-loop-helix factors Bmdimm during the molting of silkworm larvae. Our study also provides valuable information regarding the biological function of factors containing STPR domain.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
12
|
Hsu A, Ferrage F, Palmer AG. Analysis of NMR Spin-Relaxation Data Using an Inverse Gaussian Distribution Function. Biophys J 2018; 115:2301-2309. [PMID: 30503534 DOI: 10.1016/j.bpj.2018.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023] Open
Abstract
Spin relaxation in solution-state NMR spectroscopy is a powerful approach to explore the conformational dynamics of biological macromolecules. Probability distribution functions for overall or internal correlation times have been used previously to model spectral density functions central to spin-relaxation theory. Applications to biological macromolecules rely on transverse relaxation rate constants, and when studying nanosecond timescale motions, sampling at ultralow frequencies is often necessary. Consequently, appropriate distribution functions necessitate spectral density functions that are accurate and convergent as frequencies approach zero. In this work, the inverse Gaussian probability distribution function is derived from general properties of spectral density functions at low and high frequencies for macromolecules in solution, using the principle of maximal entropy. This normalized distribution function is first used to calculate the correlation function, followed by the spectral density function. The resulting model-free spectral density functions are finite at a frequency of zero and can be used to describe distributions of either overall or internal correlation times using the model-free ansatz. To validate the approach, 15N spin-relaxation data for the bZip transcription factor domain of the Saccharomyces cerevisiae protein GCN4, in the absence of cognate DNA, were analyzed using the inverse Gaussian probability distribution for intramolecular correlation times. The results extend previous models for the conformational dynamics of the intrinsically disordered, DNA-binding region of the bZip transcription factor domain.
Collapse
Affiliation(s)
- Andrew Hsu
- Department of Chemistry, Columbia University, New York, New York
| | - Fabien Ferrage
- Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York.
| |
Collapse
|
13
|
Vancraenenbroeck R, Hofmann H. Occupancies in the DNA-Binding Pathways of Intrinsically Disordered Helix-Loop-Helix Leucine-Zipper Proteins. J Phys Chem B 2018; 122:11460-11467. [DOI: 10.1021/acs.jpcb.8b07351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Renee Vancraenenbroeck
- Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel
| | - Hagen Hofmann
- Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel
| |
Collapse
|
14
|
Takakado A, Nakasone Y, Terazima M. Sequential DNA Binding and Dimerization Processes of the Photosensory Protein EL222. Biochemistry 2018; 57:1603-1610. [DOI: 10.1021/acs.biochem.7b01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akira Takakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Bousova K, Herman P, Vecer J, Bednarova L, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J. Shared CaM‐ and S100A1‐binding epitopes in the distal
TRPM
4 N terminus. FEBS J 2017; 285:599-613. [DOI: 10.1111/febs.14362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Jaroslav Vecer
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Jan Teisinger
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
16
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
17
|
Developing integrated PBPK/PD coupled mechanistic pathway model (miRNA-BDNF): An approach towards system toxicology. Toxicol Lett 2017; 280:79-91. [DOI: 10.1016/j.toxlet.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
|
18
|
Thermodynamic and Kinetic Analyses of Iron Response Element (IRE)-mRNA Binding to Iron Regulatory Protein, IRP1. Sci Rep 2017; 7:8532. [PMID: 28819260 PMCID: PMC5561112 DOI: 10.1038/s41598-017-09093-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/21/2017] [Indexed: 11/08/2022] Open
Abstract
Comparison of kinetic and thermodynamic properties of IRP1 (iron regulatory protein1) binding to FRT (ferritin) and ACO2 (aconitase2) IRE-RNAs, with or without Mn2+, revealed differences specific to each IRE-RNA. Conserved among animal mRNAs, IRE-RNA structures are noncoding and bind Fe2+ to regulate biosynthesis rates of the encoded, iron homeostatic proteins. IRP1 protein binds IRE-RNA, inhibiting mRNA activity; Fe2+ decreases IRE-mRNA/IRP1 binding, increasing encoded protein synthesis. Here, we observed heat, 5 °C to 30 °C, increased IRP1 binding to IRE-RNA 4-fold (FRT IRE-RNA) or 3-fold (ACO2 IRE-RNA), which was enthalpy driven and entropy favorable. Mn2+ (50 µM, 25 °C) increased IRE-RNA/IRP1 binding (Kd) 12-fold (FRT IRE-RNA) or 6-fold (ACO2 IRE-RNA); enthalpic contributions decreased ~61% (FRT) or ~32% (ACO2), and entropic contributions increased ~39% (FRT) or ~68% (ACO2). IRE-RNA/IRP1 binding changed activation energies: FRT IRE-RNA 47.0 ± 2.5 kJ/mol, ACO2 IRE-RNA 35.0 ± 2.0 kJ/mol. Mn2+ (50 µM) decreased the activation energy of RNA-IRP1 binding for both IRE-RNAs. The observations suggest decreased RNA hydrogen bonding and changed RNA conformation upon IRP1 binding and illustrate how small, conserved, sequence differences among IRE-mRNAs selectively influence thermodynamic and kinetic selectivity of the protein/RNA interactions.
Collapse
|
19
|
Inamoto I, Chen G, Shin JA. The DNA target determines the dimerization partner selected by bHLHZ-like hybrid proteins AhRJun and ArntFos. MOLECULAR BIOSYSTEMS 2017; 13:476-488. [DOI: 10.1039/c6mb00795c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular basis of protein–partner selection and DNA binding of the basic helix–loop–helix (bHLH) and basic region-leucine zipper (bZIP) superfamilies of dimeric transcription factors is fundamental toward understanding gene regulation.
Collapse
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| | - Gang Chen
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| | - Jumi A. Shin
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| |
Collapse
|
20
|
Jirku M, Lansky Z, Bednarova L, Sulc M, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J, Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem Cell Biol 2016; 78:186-193. [PMID: 27435061 DOI: 10.1016/j.biocel.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin-1 channel (TRPM1) is an important mediator of calcium influx into the cell that is expressed in melanoma and ON-bipolar cells. Similar to other members of the TRP channel family, the intracellular N- and C- terminal domains of TRPM1 are expected to play important roles in the modulation of TRPM1 receptor function. Among the most commonly occurring modulators of TRP channels are the cytoplasmically expressed calcium binding proteins calmodulin and S100 calcium-binding protein A1 (S100A1), but the interaction of TRPM1 with S100A1 has not been described yet. Here, using a combination of biophysical and bioinformatics methods, we have determined that the N-terminal L242-E344 region of TRPM1 is a S100A1 binding domain. We show that formation of the TRPM1/S100A1 complex is calcium-dependent. Moreover, our structural model of the complex explained data obtained from fluorescence spectroscopy measurements revealing that the complex formation is facilitated through interactions of clusters positively charged (K271A, R273A, R274A) and hydrophobic (L263A, V270A, L276A) residues at the N-terminus of TRPM1. Taken together, our data suggest a molecular mechanism for the potential regulation of TRPM1 by S100A1.
Collapse
Affiliation(s)
- Michaela Jirku
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jan Teisinger
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Kristyna Bousova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
21
|
Isakova A, Berset Y, Hatzimanikatis V, Deplancke B. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models. J Biol Chem 2016; 291:10293-306. [PMID: 26912662 PMCID: PMC4858977 DOI: 10.1074/jbc.m115.691154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers.
Collapse
Affiliation(s)
- Alina Isakova
- From the Institute of Bioengineering, Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Yves Berset
- From the Institute of Bioengineering, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Bart Deplancke
- From the Institute of Bioengineering, Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Ojima-Kato T, Fukui K, Yamamoto H, Hashimura D, Miyake S, Hirakawa Y, Yamasaki T, Kojima T, Nakano H. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems. Protein Eng Des Sel 2016; 29:149-57. [PMID: 26902097 DOI: 10.1093/protein/gzw001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
A small antibody fragment, fragment of antigen binding (Fab), is favorable for various immunological assays. However, production efficiency of active Fab in microorganisms depends considerably on the clones. In this study, leucine zipper-peptide pairs that dimerize in parallel (ACID-p1 (LZA)/BASE-p1 (LZB) or c-Jun/c-Fos) were fused to the C-terminus of heavy chain (Hc, VH-CH1) and light chain (Lc, VL-CL), respectively, to accelerate the association of Hc and Lc to form Fab in Escherichia coli in vivo and in vitro expression systems. The leucine zipper-fused Fab named 'Zipbody' was constructed using anti-E. coli O157 monoclonal antibody obtained from mouse hybridoma and produced in both in vitro and in vivo expression systems in an active form, whereas Fab without the leucine zipper fusion was not. Similarly, Zipbody of rabbit monoclonal antibody produced in in vitro expression showed significant activity. The purified, mouse Zipbody produced in the E. coli strain Shuffle T7 Express had specificity toward the antigen; in bio-layer interferometry analysis, the KD value was measured to be 1.5-2.0 × 10(-8) M. These results indicate that leucine zipper fusion to Fab C-termini markedly enhances active Fab formation in E. coli.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan Knowledge Hub Aichi, Aichi Science and Technology Foundation, Yakusa-cho, Toyota 470-0356, Japan
| | - Kansuke Fukui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroaki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Hashimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shiro Miyake
- Advanced Scientific Technology and Management Research Institute of Kyoto, Chudoji Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Yuki Hirakawa
- Advanced Scientific Technology and Management Research Institute of Kyoto, Chudoji Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Tomomi Yamasaki
- Advanced Scientific Technology and Management Research Institute of Kyoto, Chudoji Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Gill ML, Byrd RA, Palmer AG. Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Phys Chem Chem Phys 2016; 18:5839-49. [PMID: 26661739 PMCID: PMC4894059 DOI: 10.1039/c5cp06197k] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) are known to play important roles in regulatory and signaling pathways. A critical aspect of these functions is the ability of IDP/IDRs to form highly specific complexes with target molecules. However, elucidation of the contributions of conformational dynamics to function has been limited by challenges associated with structural heterogeneity of IDP/IDRs. Using NMR spin relaxation parameters ((15)N R1, (15)N R2, and {(1)H}-(15)N heteronuclear NOE) collected at four static magnetic fields ranging from 14.1 to 21.1 T, we have analyzed the backbone dynamics of the basic leucine-zipper (bZip) domain of the Saccharomyces cerevisiae transcription factor GCN4, whose DNA binding domain is intrinsically disordered in the absence of DNA substrate. We demonstrate that the extended model-free analysis can be applied to proteins with IDRs such as apo GCN4 and that these results significantly extend previous NMR studies of GCN4 dynamics performed using a single static magnetic field of 11.74 T [Bracken, et al., J. Mol. Biol., 1999, 285, 2133-2146] and correlate well with molecular dynamics simulations [Robustelli, et al., J. Chem. Theory Comput., 2013, 9, 5190-5200]. In contrast to the earlier work, data at multiple static fields allows the time scales of internal dynamics of GCN4 to be reliably quantified. Large amplitude dynamic fluctuations in the DNA-binding region have correlation times (τs ≈ 1.4-2.5 ns) consistent with a two-step mechanism in which partially ordered bZip conformations of GCN4 form initial encounter complexes with DNA and then rapidly rearrange to the high affinity state with fully formed basic region recognition helices.
Collapse
Affiliation(s)
- Michelle L Gill
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. and Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - R Andrew Byrd
- Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Massilamany C, Krishnan B, Reddy J. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol 2015; 82:399-408. [PMID: 26207337 PMCID: PMC4610346 DOI: 10.1111/sji.12344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations.
Collapse
Affiliation(s)
- C Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - B Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
25
|
Veitia RA, Birchler JA. Models of buffering of dosage imbalances in protein complexes. Biol Direct 2015; 10:42. [PMID: 26275824 PMCID: PMC4537584 DOI: 10.1186/s13062-015-0063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Stoichiometric imbalances in macromolecular complexes can lead to altered function. Such imbalances stem from under- or over-expression of a subunit of a complex consequent to a deletion, duplication or regulatory mutation of an allele encoding the relevant protein. In some cases, the phenotypic perturbations induced by such alterations can be subtle or be lacking because nonlinearities in the process of protein complex assembly can provide some degree of buffering. Results We explore with biochemical models of increasing plausibility how buffering can be elicited. Specifically, we analyze the formation of a dimer AB and show that there are particular sets of parameters so that decreasing/increasing the input amount of either A or B translates into a non proportional (buffered) change of AB. The buffer effect also appears in higher-order structures provided that there are intermediate subcomplexes in the assembly process. Conclusions We highlight the importance of protein degradation and/or conformational inactivation for buffering to appear. The models sketched here have experimental support but can be further tested with existing biological resources. Reviewers This article was reviewed by Eugene Koonin, Berend Snel and Csaba Pal.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, 15 rue Hélène Brion, 75013, Paris, France. .,Université Paris Diderot, Paris, France.
| | - James A Birchler
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA.
| |
Collapse
|
26
|
Jones KA, Li DJ, Hui E, Sellmyer MA, Prescher JA. Visualizing cell proximity with genetically encoded bioluminescent reporters. ACS Chem Biol 2015; 10:933-8. [PMID: 25643167 DOI: 10.1021/cb5007773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions underlie diverse physiological processes ranging from immune function to cell migration. Dysregulated cellular crosstalk also potentiates numerous pathologies, including infections and metastases. Despite their ubiquity in organismal biology, cell-cell interactions are difficult to examine in tissues and whole animals without invasive procedures. Here, we report a strategy to noninvasively image cell proximity using engineered bioluminescent probes. These tools comprise "split" fragments of Gaussia luciferase (Gluc) fused to the leucine zipper domains of Fos and Jun. When cells secreting the fragments draw near one another, Fos and Jun drive the assembly of functional, light-emitting Gluc. Photon production thus provides a readout on the distance between two cell types. We used the split fragments to visualize cell-cell interactions over time in vitro and in macroscopic models of cell migration. Further application of these tools in live organisms will refine our understanding of cell contacts relevant to basic biology and disease.
Collapse
Affiliation(s)
| | | | | | - Mark A. Sellmyer
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
27
|
Pernuš A, Langowski J. Imaging Fos-Jun transcription factor mobility and interaction in live cells by single plane illumination-fluorescence cross correlation spectroscopy. PLoS One 2015; 10:e0123070. [PMID: 25875593 PMCID: PMC4397054 DOI: 10.1371/journal.pone.0123070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
We collected mobility and interaction maps of c-Fos-eGFP and c-Jun-mRFP1 transcription factors within living cell nuclei. c-Fos dimerizes with c-Jun to form the transcription activator protein-1 (AP-1) which binds to the specific recognition site. To monitor this process, we used fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS), which provides diffusion coefficient and protein-protein interaction data in the whole image plane simultaneously, instead of just one point on conventional confocal FCS. We find a strong correlation between diffusional mobility and interaction: regions of strong interaction show slow mobility. Controls containing either an eGFP-mRFP dimer, separately expressing eGFP and mRPF, or c-Fos-eGFP and c-Jun-mRFP1 mutants lacking dimerization and DNA-binding domains, showed no such correlation. These results extend our earlier findings from confocal FCCS to include spatial information.
Collapse
Affiliation(s)
- Agata Pernuš
- Division Biophysics of Macromolecules, DKFZ, Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, DKFZ, Heidelberg, Germany
| |
Collapse
|
28
|
Liang G, Li J, Sun B, Li S, Lü L, Wang Y, Chen B, Xiao Z. Deep sequencing reveals complex mechanisms of microRNA deregulation in colorectal cancer. Int J Oncol 2014; 45:603-10. [PMID: 24889194 DOI: 10.3892/ijo.2014.2474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/09/2014] [Indexed: 11/06/2022] Open
Abstract
Deregulated microRNAs (miRNAs) have been reported to be of functional relevance for tumor biology. In this study, we analyzed the small RNA transcriptomes of 10 paired colorectal cancer samples using SOLiD next-generation sequencing, and generated a total of >15141000 reads. miRNA expression profiles obtained by SOLiD sequencing correlated well with quantitative PCR results. The results showed that the expression of 36 miRNAs was significantly different between the two groups of samples. Additionally, we explored the global miRNA-mRNA interactions using a statistical model. In-depth analysis reveals a diagram of extensive post-transcriptional miRNA regulations. Signaling pathways associated with the miRNA altered expression signature were identified using gene enrichment analysis. The results suggest that these microRNAs, in the aggregate, regulate signaling pathways, such as MAPK, Wnt and p53 pathways in cancer, which are known to be involved in the transformation of colorectal cancer. This evidence demonstrates that miRNAs can cooperatively regulate a given pathway and play a subtle role by regulating their target genes.
Collapse
Affiliation(s)
- Gaofeng Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Junsheng Li
- Department of Hematology and Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, P.R. China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Shuchun Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Lanxin Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Yuanyuan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, P.R. China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
29
|
Banerjee B, Goss DJ. Eukaryotic initiation factor (eIF) 4F binding to barley yellow dwarf virus (BYDV) 3'-untranslated region correlates with translation efficiency. J Biol Chem 2013; 289:4286-94. [PMID: 24379412 DOI: 10.1074/jbc.m113.530329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley yellow dwarf virus (BYDV) employs a cap-independent mechanism of translation initiation that is mediated by a structural BYDV translation element (BTE) located in the 3'-UTR of its mRNA. eIF4F bound the BTE and a translationally inactive mutant with high affinity, thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5 to 164% compared with WT were studied. Using fluorescence anisotropy to obtain quantitative data, we show 1) the equilibrium binding affinity (complex stability) correlated well with translation efficiency, whereas the "on" rate of binding did not; 2) other unidentified proteins or small molecules in wheat germ extract prevented eIF4F binding to mutant BTE but not WT BTE; 3) BTE mutant-eIF4F interactions were found to be both enthalpically and entropically favorable with an enthalpic contribution of 52-90% to ΔG° at 25 °C, suggesting that hydrogen bonding contributes to stability; and 4) in contrast to cap-dependent and tobacco etch virus internal ribosome entry site interaction with eIF4F, poly(A)-binding protein did not increase eIF4F binding. Further, the eIF4F bound to the 3' BTE with higher affinity than for either m(7)G cap or tobacco etch virus internal ribosome entry site, suggesting that the 3' BTE may play a role in sequestering host cell initiation factors and possibly regulating the switch from replication to translation.
Collapse
Affiliation(s)
- Bidisha Banerjee
- From the Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10065
| | | |
Collapse
|
30
|
Khazanov N, Marcovitz A, Levy Y. Asymmetric DNA-search dynamics by symmetric dimeric proteins. Biochemistry 2013; 52:5335-44. [PMID: 23866074 DOI: 10.1021/bi400357m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We focus on dimeric DNA-binding proteins from two well-studied families: orthodox type II restriction endonucleases (REs) and transcription factors (TFs). Interactions of the protein's recognition sites with the DNA and, particularly, the contribution of each of the monomers to one-dimensional (1D) sliding along nonspecific DNA were studied using computational tools. Coarse-grained molecular dynamics simulations of DNA scanning by various TFs and REs provide insights into how the symmetry of a homodimer can be broken while they nonspecifically interact with DNA. The characteristics of protein sliding along DNA, such as the average sliding length, partitioning between 1D and 3D search, and the one-dimensional diffusion coefficient D1, strongly depend on the salt concentration, which in turn affects the probability of the two monomers adopting a cooperative symmetric sliding mechanism. Indeed, we demonstrate that maximal DNA search efficiency is achieved when the protein adopts an asymmetric search mode in which one monomer slides while its partner hops. We find that proteins classified as TFs have a higher affinity for the DNA, longer sliding lengths, and an increased probability of symmetric sliding in comparison with REs. Moreover, TFs can perform their biological function over a much wider range of salt concentrations than REs. Our results demonstrate that the different biological functions of DNA-binding proteins are related to the different nonspecific DNA search mechanisms they adopt.
Collapse
Affiliation(s)
- Netaly Khazanov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
31
|
Reinke AW, Baek J, Ashenberg O, Keating AE. Networks of bZIP protein-protein interactions diversified over a billion years of evolution. Science 2013; 340:730-4. [PMID: 23661758 DOI: 10.1126/science.1233465] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differences in biomolecular sequence and function underlie dramatic ranges of appearance and behavior among species. We studied the basic region-leucine zipper (bZIP) transcription factors and quantified bZIP dimerization networks for five metazoan and two single-cell species, measuring interactions in vitro for 2891 protein pairs. Metazoans have a higher proportion of heteromeric bZIP interactions and more network complexity than the single-cell species. The metazoan bZIP interactomes have broadly similar structures, but there has been extensive rewiring of connections compared to the last common ancestor, and each species network is highly distinct. Many metazoan bZIP orthologs and paralogs have strikingly different interaction specificities, and some differences arise from minor sequence changes. Our data show that a shifting landscape of biochemical functions related to signaling and gene expression contributes to species diversity.
Collapse
Affiliation(s)
- Aaron W Reinke
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
32
|
Mie M, Naoki T, Uchida K, Kobatake E. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells. Analyst 2013; 137:4760-5. [PMID: 22910969 DOI: 10.1039/c2an35762c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A split SNAP-tag protein complementation assay was developed for visualization of protein-protein interactions in living cells. Split SNAP-tagμs, fragments of divided SNAP-tag between amino acid residues 91 and 92, were fused to proteins that can interact with each other. After incubation with a fluorescent SNAP-tag substrate, cells that expressed split SNAP-tag fusion proteins generated fluorescent signals when these proteins interacted. Moreover, by combination with the split CLIP-tag (SNAP-tag mutant), simultaneous labeling was achieved. This split SNAP-tag labeling method should be a useful tool for visualization of protein-protein interaction processes.
Collapse
Affiliation(s)
- Masayasu Mie
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
33
|
Chan IS, Al-Sarraj T, Shahravan SH, Fedorova AV, Shin JA. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site. Biochemistry 2012; 51:6632-43. [PMID: 22856882 DOI: 10.1021/bi300718f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-LR comprises two 4 bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explore how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP-DNA interactions at a number of full-sites that contain 5H-LR versus either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo.
Collapse
Affiliation(s)
- I-San Chan
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | |
Collapse
|
34
|
Nikolaev Y, Pervushin K. Structural basis of RNA binding by leucine zipper GCN4. Protein Sci 2012; 21:667-76. [PMID: 22374868 PMCID: PMC3403464 DOI: 10.1002/pro.2051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 02/19/2012] [Indexed: 11/06/2022]
Abstract
Recently, we showed that leucine zipper (LZ) motifs of basic leucine zipper (bZIP) transcription factors GCN4 and c-Jun are capable of catalyzing degradation of RNA (Nikolaev et al., PLoS ONE 2010; 5:e10765). This observation is intriguing given the tight regulation of RNA turnover control and the antiquity of bZIP transcription factors. To support further mechanistic studies, herein, we elucidated RNA binding interface of the GCN4 leucine zipper motif from yeast. Solution NMR experiments showed that the LZ-RNA interaction interface is located in the first two heptads of LZ moiety, and that only the dimeric (coiled coil) LZ conformation is capable of binding RNA. Site-directed mutagenesis of the LZ-GCN4 RNA binding interface showed that substrate binding is facilitated by lysine and arginine side chains, and that at least one nucleophilic residue is located in proximity to the RNA phosphate backbone. Further studies in the context of full-length bZIP factors are envisaged to address the biological relevance of LZ RNase activity.
Collapse
Affiliation(s)
- Yaroslav Nikolaev
- Biozentrum of University Basel, Klingelbergstrasse 70CH-4056 Basel, Switzerland
- *Correspondence to: Konstantin Pervushin, School of Biological Sciences, Nanyang Technological University, Singapore. E-mail: or Yaroslav Nikolaev, E-mail:
| | - Konstantin Pervushin
- Biozentrum of University Basel, Klingelbergstrasse 70CH-4056 Basel, Switzerland
- School of Biological Sciences, Nanyang Technological UniversitySingapore 637551, Singapore
- *Correspondence to: Konstantin Pervushin, School of Biological Sciences, Nanyang Technological University, Singapore. E-mail: or Yaroslav Nikolaev, E-mail:
| |
Collapse
|
35
|
Thompson KE, Bashor CJ, Lim WA, Keating AE. SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth Biol 2012; 1:118-29. [PMID: 22558529 PMCID: PMC3339576 DOI: 10.1021/sb200015u] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Indexed: 12/20/2022]
Abstract
![]()
The synthetic biology toolkit contains a growing number
of parts
for regulating transcription and translation, but very few that can
be used to control protein association. Here we report characterization
of 22 previously published heterospecific synthetic coiled-coil peptides
called SYNZIPs. We present biophysical analysis of the oligomerization
states, helix orientations, and affinities of 27 SYNZIP pairs. SYNZIP
pairs were also tested for interaction in two cell-based assays. In
a yeast two-hybrid screen, >85% of 253 comparable interactions
were
consistent with prior in vitro measurements made
using coiled-coil microarrays. In a yeast-signaling assay controlled
by coiled-coil mediated scaffolding, 12 SYNZIP pairs were successfully
used to down-regulate the expression of a reporter gene following
treatment with α-factor. Characterization of these interaction
modules dramatically increases the number of available protein interaction
parts for synthetic biology and should facilitate a wide range of
molecular engineering applications. Summary characteristics of 27
SYNZIP peptide pairs are reported in specification sheets available
in the Supporting Information and at the SYNZIP Web site [http://keatingweb.mit.edu/SYNZIP/].
Collapse
Affiliation(s)
- Kenneth Evan Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | | | | | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
36
|
Geisel N, Gerland U. Physical limits on cooperative protein-DNA binding and the kinetics of combinatorial transcription regulation. Biophys J 2012; 101:1569-79. [PMID: 21961582 DOI: 10.1016/j.bpj.2011.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022] Open
Abstract
Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. Although studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quantitative characteristics of protein-DNA interactions, no such principles are known for the cooperative interactions between DNA-binding proteins. We consider a simple theoretical model for two interacting transcription factor (TF) species, searching for and binding to two adjacent target sites hidden in the genomic background. We study the kinetic competition of a dimer search pathway and a monomer search pathway, as well as the steady-state regulation function mediated by the two TFs over a broad range of TF-TF interaction strengths. Using a transcriptional AND-logic as exemplary functional context, we identify the functionally desirable regime for the interaction. We find that both weak and very strong TF-TF interactions are favorable, albeit with different characteristics. However, there is also an unfavorable regime of intermediate interactions where the genetic response is prohibitively slow.
Collapse
Affiliation(s)
- Nico Geisel
- Departament de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
37
|
Chen G, De Jong AT, Shin JA. Forced homodimerization of the c-Fos leucine zipper in designed bHLHZ-like hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos. MOLECULAR BIOSYSTEMS 2012; 8:1286-96. [DOI: 10.1039/c2mb05354c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J Mol Biol 2011; 416:287-99. [PMID: 22226835 DOI: 10.1016/j.jmb.2011.12.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023]
Abstract
Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs).
Collapse
|
39
|
Li S, Wang H, Qi Y, Tu J, Bai Y, Tian T, Huang N, Wang Y, Xiong F, Lu Z, Xiao Z. Assessment of nanomaterial cytotoxicity with SOLiD sequencing-based microRNA expression profiling. Biomaterials 2011; 32:9021-30. [DOI: 10.1016/j.biomaterials.2011.08.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
40
|
Duband-Goulet I, Woerner S, Gasparini S, Attanda W, Kondé E, Tellier-Lebègue C, Craescu CT, Gombault A, Roussel P, Vadrot N, Vicart P, Ostlund C, Worman HJ, Zinn-Justin S, Buendia B. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins. Exp Cell Res 2011; 317:2800-13. [PMID: 21993218 DOI: 10.1016/j.yexcr.2011.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 11/26/2022]
Abstract
Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (∆607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.
Collapse
Affiliation(s)
- Isabelle Duband-Goulet
- Laboratoire du Stress et Pathologies du Cytosquelette, Université Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sengel C, Gavarini S, Sharma N, Ozelius LJ, Bragg DC. Dimerization of the DYT6 dystonia protein, THAP1, requires residues within the coiled-coil domain. J Neurochem 2011; 118:1087-100. [PMID: 21752024 DOI: 10.1111/j.1471-4159.2011.07386.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thanatos-associated [THAP] domain-containing apoptosis-associated protein 1 (THAP1) is a DNA-binding protein that has been recently associated with DYT6 dystonia, a hereditary movement disorder involving sustained, involuntary muscle contractions. A large number of dystonia-related mutations have been identified in THAP1 in diverse patient populations worldwide. Previous reports have suggested that THAP1 oligomerizes with itself via a C-terminal coiled-coil domain, raising the possibility that DYT6 mutations in this region might affect this interaction. In this study, we examined the ability of wild-type THAP1 to bind itself and the effects on this interaction of the following disease mutations: C54Y, F81L, ΔF132, T142A, I149T, Q154fs180X, and A166T. The results confirmed that wild-type THAP1 associated with itself and most of the DYT6 mutants tested, except for the Q154fs180X variant, which loses most of the coiled-coil domain because of a frameshift at position 154. However, deletion of C-terminal residues after position 166 produced a truncated variant of THAP1 that was able to bind the wild-type protein. The interaction of THAP1 with itself therefore required residues within a 13-amino acid region (aa 154-166) of the coiled-coil domain. Further inspection of this sequence revealed elements highly consistent with previous descriptions of leucine zippers, which serve as dimerization domains in other transcription factor families. Based on this similarity, a structural model was generated to predict how hydrophobic residues in this region may mediate dimerization. These observations offer additional insight into the role of the coiled-coil domain in THAP1, which may facilitate future analyses of DYT6 mutations in this region.
Collapse
Affiliation(s)
- Cem Sengel
- Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
42
|
Song H, Yuan Z, Zhang J, Zhou T. Molecular level dynamics of genetic oscillator--the effect of protein-protein interaction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:77. [PMID: 21822815 DOI: 10.1140/epje/i2011-11077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
Uncovering how interactions of a set of molecular components influence the system's dynamic behavior is important for understanding intracellular processes and elucidating design principles, but unfortunately, there are limited efforts for studying this issue. Here, we study the effect of distinct post-translational dynamics controlled by protein dimerization on oscillations in the repressilator. For this, we propose three biologically motivated model scenarios of the repressilator with monomer or dimer being the active form of repressor, and with protein-protein interactions. It is found that the dimer dissociation constant can tune oscillatory regions, frequency and amplitude. Introducing a modified linear noise approximation to evaluate fluctuations of amplitude and period in the oscillatory systems, we show that different dimerization leads to a different effect on period and amplitude in reducing noise. The manipulation of the circuit's biochemical properties provides a practical strategy for designing a robust and tunable oscillator.
Collapse
Affiliation(s)
- H Song
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
43
|
Seldeen KL, Deegan BJ, Bhat V, Mikles DC, McDonald CB, Farooq A. Energetic coupling along an allosteric communication channel drives the binding of Jun-Fos heterodimeric transcription factor to DNA. FEBS J 2011; 278:2090-104. [PMID: 21496208 DOI: 10.1111/j.1742-4658.2011.08124.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although allostery plays a central role in driving protein-DNA interactions, the physical basis of such cooperative behavior remains poorly understood. In the present study, using isothermal titration calorimetry in conjunction with site-directed mutagenesis, we provide evidence that an intricate network of energetically-coupled residues within the basic regions of the Jun-Fos heterodimeric transcription factor accounts for its allosteric binding to DNA. Remarkably, energetic coupling is prevalent in residues that are both close in space, as well as residues distant in space, implicating the role of both short- and long-range cooperative interactions in driving the assembly of this key protein-DNA interaction. Unexpectedly, many of the energetically-coupled residues involved in orchestrating such a cooperative network of interactions are poorly conserved across other members of the basic zipper family, emphasizing the importance of basic residues in dictating the specificity of basic zipper-DNA interactions. Collectively, our thermodynamic analysis maps an allosteric communication channel driving a key protein-DNA interaction central to cellular functions in health and disease.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
44
|
Pazos E, Jiménez-Balsa A, Mascareñas JL, Vázquez ME. Sensing coiled-coil proteins through conformational modulation of energy transfer processes – selective detection of the oncogenic transcription factor c-Jun. Chem Sci 2011. [DOI: 10.1039/c1sc00108f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Yumak H, Khan MA, Goss DJ. Poly(A) tail affects equilibrium and thermodynamic behavior of tobacco etch virus mRNA with translation initiation factors eIF4F, eIF4B and PABP. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:653-8. [PMID: 20723624 DOI: 10.1016/j.bbagrm.2010.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/19/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
We have investigated the effects of poly(A)-tail on binding of eIF4F, eIF4B and PABP with tobacco etch virus (TEV) IRES RNA. The fluorescence anisotropy data showed that the addition of poly(A)(20) increases the binding affinity of eIF4F·4B and eIF4F·PABP complexes to IRES RNA ~2- and 4-fold, respectively. However, the binding affinity of eIF4F with PK1 was enhanced ~11-fold with the addition of PABP, eIF4B, and poly(A)(20) together. Whereas, poly(A)(20) alone increases the binding affinity of eIF4F·4B·PABP with PK1 RNA about 3-fold, showing an additive effect rather than the large increase in affinity as shown for cap binding. Thermodynamic data showed that PK1 RNA binding to protein complexes in the presence of poly(A)(20) was enthalpy-driven and entropy-favorable. Poly(A)(20) decreased the entropic contribution 75% for binding of PK1 RNA to eIF4F·4B·PABP as compared to eIF4F alone, suggesting reduced hydrophobic interactions for complex formation and an overall conformational change. Overall, these results demonstrate the first direct effect of poly(A) on the equilibrium and thermodynamics of eIF4F and eIF4F·4B·PABP with IRES-RNA.
Collapse
Affiliation(s)
- Hasan Yumak
- Department of Chemistry and Biochemistry, City University of New York, New York, NY, USA
| | | | | |
Collapse
|
46
|
Ben-Tabou de-Leon S. Perturbation analysis analyzed--athematical modeling of intact and perturbed gene regulatory circuits for animal development. Dev Biol 2010; 344:1110-8. [PMID: 20599898 DOI: 10.1016/j.ydbio.2010.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/29/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
Abstract
Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development.
Collapse
|
47
|
Ecevit O, Khan MA, Goss DJ. Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, Max, and Mad with cognate DNA. Biochemistry 2010; 49:2627-35. [PMID: 20170194 PMCID: PMC2852888 DOI: 10.1021/bi901913a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myc, Mad, and Max proteins belong to the basic helix-loop-helix leucine zipper family of transcription factors. They bind to a specific hexanucleotide element of DNA, the E-box (CACGTG). To be biologically active, Myc and Mad require dimerization with Max. For the route of complex assembly of these dimers, there are two proposed pathways. In the monomer pathway, two monomers bind DNA sequentially and assemble their dimerization interface while bound to DNA. In the dimer pathway, two monomers form a dimer first prior to association with DNA. The monomer pathway is kinetically favored. In this report, stopped-flow polarization was utilized to determine the rates and temperature dependence of all of the individual steps for both assembly pathways. Myc.Max dimerization had a rate constant approximately 5- and approximately 2-fold higher than those of Max.Max and Mad.Max dimerization, respectively. The protein dimerization rates as well as the dimer-DNA rates were found to be independent of concentration, suggesting conformational changes were rate-limiting. The Arrhenius activation energies for the dimerization of Myc, Mad, and Max with Max were 20.4 +/- 0.8, 29 +/- 0.6, and 40 +/- 0.2 kJ/mol, respectively. Further, rate constants for Max.Max homodimer DNA binding are significantly higher than for Myc.Max and Mad.Max heterodimers binding to DNA. Monomer-DNA binding showed a faster rate than dimer-DNA binding. These studies show the rate-limiting step for the dimer pathway is the formation of protein dimers, and this reaction is slower than formation of protein dimers on the DNA interface, kinetically favoring the monomer pathway.
Collapse
Affiliation(s)
- Ozgur Ecevit
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| | - Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| | - Dixie J Goss
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| |
Collapse
|
48
|
Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:419-36. [PMID: 19400638 DOI: 10.1146/annurev-phyto-080508-081936] [Citation(s) in RCA: 605] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonads are bacterial plant pathogens that cause diseases on many plant species, including important crops. Key to pathogenicity of most Xanthomonas pathovars is a Hrp-type III secretion (T3S) system that translocates effector proteins into plant cells. Within the eukaryotic cell, the effectors are thought to perform a variety of tasks to support bacterial virulence, proliferation, and dissemination. We are only beginning to understand the host targets of different effectors. The largest effector family found in Xanthomonas spp. is the AvrBs3/PthA or TAL (transcription activator-like) family. TAL effectors act as transcriptional activators in the plant cell nucleus. Specificity of TAL effectors is determined by a novel modular DNA-binding domain. Here, we describe the discovery of TAL effectors and their structure, activity, and host targets.
Collapse
Affiliation(s)
- Jens Boch
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | | |
Collapse
|
49
|
Wang X, Li Y, Xu X, Wang YH. Toward a system-level understanding of microRNA pathway via mathematical modeling. Biosystems 2009; 100:31-8. [PMID: 20005918 DOI: 10.1016/j.biosystems.2009.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 12/21/2022]
Abstract
The microRNA (miRNA) pathway plays multiple roles in regulating mechanisms controlling both physiological and pathological processes such as the cell proliferation and cancers. But little is known about the dynamic properties, key rate-limiting steps as well as the stochastic noise in this pathway. Presently, a system-theoretic approach was presented to analyze and quantitative modeling of a generic miRNA pathway, which can be implemented deterministically and stochastically. Our results show that the inferred dynamic properties obtained from the mathematical models of the miRNA pathway are well consistent with previous experimental observations. By sensitivity analysis, the key steps in this pathway were found to be the miRNA gene transcription, RISC decay and mRNA formation. In addition, the results of quantified noise strength along the pathway demonstrate that the pathway can reduce the ingress noise and reveal the noise robustness property. Our findings also present testable hypothesis for experimental biologists to further investigate miRNA's increasing functional roles in regulating various cellular processes.
Collapse
Affiliation(s)
- Xia Wang
- Center of Bioinformatics, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | |
Collapse
|
50
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|