1
|
Murshed M, Al-Quraishy S, Qasem MA. Evaluation of the Anticoccidial Activity of Sheep Bile against Eimeria stiedae Oocysts and Sporozoites of Rabbits: An In Vitro Study. Vet Sci 2022; 9:vetsci9120658. [PMID: 36548819 PMCID: PMC9785314 DOI: 10.3390/vetsci9120658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Coccidiosis is one of the most common infectious diseases that causes digestive problems in rabbits, leading to global economic losses. This study was conducted to evaluate the effects of bile obtained from sheep gallbladder on the sporulation and morphology of Eimeria stiedae oocysts and sporozoites affecting rabbit liver cells and to determine the best concentration for sporulation inhibition. Sporulation inhibition per milliliter was measured in samples exposed to five concentrations of sheep bile (SB) in a 2.5% potassium dichromate solution: 12.5%, 25%, 50%, 75%, and 100% concentrations for oocysticidal activity and 125, 250, 500, 750, and 1000 μg/mL concentrations for antisporozoidal activity. A bioassay was performed to assess the in vitro anticoccidial activity of sheep bile against E. stiedae oocysts and sporozoite sporulation. In this assay, six-well plates with 5 mL of bile containing 1000 oocysts showed unsporulated oocysticidal activity after 48, 72, and 96 h and antisporozoidal activity after 12 and 24 h. A chemical assay was performed via infrared spectroscopy to investigate the presence of several anticipated active chemical compounds in sheep bile. Sheep bile was able to inhibit E. stiedae oocysts at 100% and 75% concentrations by about 91% and 81%, respectively. In addition, SB had the highest inhibition of E. stiedae sporozoite viability (92%) at a concentration of 1000 μg/mL and had the lowest inhibition of 8% at a concentration of 125 μg/mL. An increase in the incubation time and a higher dose generally increased the inhibition rate. The results showed that sheep gallbladder bile is effective due to its inhibitory potential and effect on the coccidian oocyst sporulation of E. stiedae. Further studies are needed to determine the precise active chemicals present in SB and their modes of action and application in vivo.
Collapse
|
2
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Wang HH, Li T, Portincasa P, Ford DA, Neuschwander-Tetri BA, Tso P, Wang DQH. New insights into the role of Lith genes in the formation of cholesterol-supersaturated bile. LIVER RESEARCH 2017; 1:42-53. [PMID: 34367715 PMCID: PMC8341472 DOI: 10.1016/j.livres.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cholesterol gallstone formation represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. Lithogenic bile is mainly caused by persistent hepatic hypersecretion of biliary cholesterol and sustained cholesterol-supersaturated bile is an essential prerequisite for the precipitation of solid cholesterol monohydrate crystals and the formation of cholesterol gallstones. The metabolic determinants of the supply of hepatic cholesterol molecules that are recruited for biliary secretion are dependent upon the input-output balance of cholesterol and its catabolism in the liver. The sources of cholesterol for hepatic secretion into bile have been extensively investigated; however, to what extent each cholesterol source contributes to hepatic secretion is still unclear both under normal physiological conditions and in the lithogenic state. Although it has been long known that biliary lithogenicity is initiated by hepatic cholesterol hypersecretion, the genetic mechanisms that cause supersaturated bile have not been defined yet. Identification of the Lith genes that determine hepatic cholesterol hypersecretion should provide novel insights into the primary genetic and pathophysiological defects for gallstone formation. In this review article, we focus mainly on the pathogenesis of the formation of supersaturated bile and gallstones from the viewpoint of genetics and pathophysiology. A better understanding of the molecular genetics and pathophysiology of the formation of cholesterol-supersaturated bile will undoubtedly facilitate the development of novel, effective, and noninvasive therapies for patients with gallstones, which would reduce the morbidity, mortality, and costs of health care associated with gallstones, a very prevalent liver disease worldwide.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”Medical School, Bari, Italy
| | - David A. Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brent A. Neuschwander-Tetri
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Q.-H. Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
|
5
|
Kim HJ, Kim JS, Joo MK, Lee BJ, Kim JH, Yeon JE, Park JJ, Byun KS, Bak YT. Hepatolithiasis and intrahepatic cholangiocarcinoma: A review. World J Gastroenterol 2015; 21:13418-13431. [PMID: 26730152 PMCID: PMC4690170 DOI: 10.3748/wjg.v21.i48.13418] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023] Open
Abstract
Although the incidence of hepatolithiasis is decreasing as the pattern of gallstone disease changes in Asia, the prevalence of hepatolithiasis is persistently high, especially in Far Eastern countries. Hepatolithiasis is an established risk factor for cholangiocarcinoma (CCA), and chronic proliferative inflammation may be involved in biliary carcinogenesis and in inducing the upregulation of cell-proliferating factors. With the use of advanced imaging modalities, there has been much improvement in the management of hepatolithiasis and the diagnosis of hepatolithiasis-associated CCA (HL-CCA). However, there are many problems in managing the strictures in hepatolithiasis and differentiating them from infiltrating types of CCA. Surgical resection is recommended in cases of single lobe hepatolithiasis with atrophy, uncontrolled stricture, symptom duration of more than 10 years, and long history of biliary-enteric anastomosis. Even after resection, patients should be followed with caution for development of HL-CCA, because HL-CCA is an independent prognostic factor for survival. It is not yet clear whether hepatic resection can reduce the occurrence of subsequent HL-CCA. Furthermore, there are no consistent findings regarding prediction of subsequent HL-CCA in patients with hepatolithiasis. In the management of hepatolithiasis, important factors are the reduction of recurrence of cholangitis and suspicion of unrecognized HL-CCA.
Collapse
|
6
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
7
|
Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol 2013; 19:7341-7360. [PMID: 24259965 PMCID: PMC3831216 DOI: 10.3748/wjg.v19.i42.7341] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/17/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract.
Collapse
|
8
|
|
9
|
Thioesterase superfamily member 2 (Them2)/acyl-CoA thioesterase 13 (Acot13): a homotetrameric hotdog fold thioesterase with selectivity for long-chain fatty acyl-CoAs. Biochem J 2009; 421:311-22. [PMID: 19405909 DOI: 10.1042/bj20090039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Them2 (thioesterase superfamily member 2) is a 140-amino-acid protein of unknown biological function that comprises a single hotdog fold thioesterase domain. On the basis of its putative association with mitochondria, accentuated expression in oxidative tissues and interaction with StarD2 (also known as phosphatidylcholine-transfer protein, PC-TP), a regulator of fatty acid metabolism, we explored whether Them2 functions as a physiologically relevant fatty acyl-CoA thioesterase. In solution, Them2 formed a stable homotetramer, which denatured in a single transition at 59.3 degrees C. Them2 exhibited thioesterase activity for medium- and long-chain acyl-CoAs, with Km values that decreased exponentially as a function of increasing acyl chain length. Steady-state kinetic parameters for Them2 were characteristic of long-chain mammalian acyl-CoA thioesterases, with minimal values of Km and maximal values of kcat/Km observed for myristoyl-CoA and palmitoyl-CoA. For these acyl-CoAs, substrate inhibition was observed when concentrations approached their critical micellar concentrations. The acyl-CoA thioesterase activity of Them2 was optimized at physiological temperature, ionic strength and pH. For both myristoyl-CoA and palmitoyl-CoA, the addition of StarD2 increased the kcat of Them2. Enzymatic activity was decreased by the addition of phosphatidic acid/phosphatidylcholine small unilamellar vesicles. Them2 expression, which was most pronounced in mouse heart, was associated with mitochondria and was induced by activation of PPARalpha (peroxisome-proliferator-activated receptor alpha). We conclude that, under biological conditions, Them2 probably functions as a homotetrameric long-chain acyl-CoA thioesterase. Accordingly, Them2 has been designated as the 13th member of the mammalian acyl-CoA thioesterase family, Acot13.
Collapse
|
10
|
Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening. Anal Biochem 2008; 383:85-92. [PMID: 18762160 DOI: 10.1016/j.ab.2008.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/21/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.
Collapse
|
11
|
Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:654-62. [PMID: 17499021 PMCID: PMC2743068 DOI: 10.1016/j.bbalip.2007.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 03/31/2007] [Accepted: 04/03/2007] [Indexed: 11/29/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a highly specific soluble lipid binding protein that transfers phosphatidylcholine between membranes in vitro. PC-TP is a member of the steroidogenic acute regulatory protein-related transfer (START) domain superfamily. Although its biochemical properties and structure are well characterized, the functions of PC-TP in vivo remain incompletely understood. Studies of mice with homozygous disruption of the Pctp gene have largely refuted the hypothesis that this protein participates in the hepatocellular selection and transport of biliary phospholipids, in the production of lung surfactant, in leukotriene biosynthesis and in cellular phosphatidylcholine metabolism. Nevertheless, Pctp(-/-) mice exhibit interesting defects in lipid homeostasis, the understanding of which should elucidate the biological functions of PC-TP.
Collapse
Affiliation(s)
- Keishi Kanno
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michele K. Wu
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Erez F. Scapa
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Steven L. Roderick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David E. Cohen
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Boston, MA 02115, USA
- Correspondence should be addressed to this author at: Department of Medicine, Gastroenterology Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115. Phone: (617) 525-7846; Fax: (617) 264-6368;
| |
Collapse
|
12
|
Wu MK, Hyogo H, Yadav SK, Novikoff PM, Cohen DE. Impaired response of biliary lipid secretion to a lithogenic diet in phosphatidylcholine transfer protein-deficient mice. J Lipid Res 2005; 46:422-31. [PMID: 15576839 DOI: 10.1194/jlr.m400387-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a cytosolic lipid transfer protein that is highly expressed in liver and catalyzes intermembrane transfer of phosphatidylcholines in vitro. To explore a role for PC-TP in the hepatocellular trafficking of biliary phosphatidylcholines, we characterized biliary lipid secretion using Pctp(-/-) and wild-type littermate control mice with C57BL/6J and FVB/NJ genetic backgrounds, which express PC-TP at relatively high and low levels in liver, respectively. Eight-week-old male Pctp(-/-) and wild-type mice were fed a chow diet or a lithogenic diet, which served to upregulate biliary lipid secretion. In chow-fed mice, the absence of PC-TP did not reduce biliary phospholipid secretion or alter the phospholipid composition of biles. However, the responses in secretion of biliary phospholipids, cholesterol, and bile salts to the lithogenic diet were impaired in Pctp(-/-) mice from both genetic backgrounds. Alterations in biliary lipid secretion could not be attributed to transcriptional regulation of the expression of canalicular membrane lipid transporters, but possibly to a defect in their trafficking to the canalicular membrane. These findings support a role for PC-TP in the response of biliary lipid secretion to a lithogenic diet, but not specifically in the hepatocellular transport and secretion of phosphatidylcholines.
Collapse
Affiliation(s)
- Michele K Wu
- Department of Biochemistry, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
13
|
Olayioye MA, Hoffmann P, Pomorski T, Armes J, Simpson RJ, Kemp BE, Lindeman GJ, Visvader JE. The phosphoprotein StarD10 is overexpressed in breast cancer and cooperates with ErbB receptors in cellular transformation. Cancer Res 2004; 64:3538-44. [PMID: 15150109 DOI: 10.1158/0008-5472.can-03-3731] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have identified that StarD10, a member of the START protein family, is overexpressed in both mouse and human breast tumors. StarD10 was initially discovered on the basis of its cross-reactivity with a phosphoserine-specific antibody in mammary tumors from Neu/ErbB2 transgenic mice and subsequently isolated from SKBR3 human breast carcinoma cells using a multistep biochemical purification strategy. We have shown that StarD10 is capable of binding lipids. StarD10 was found to be overexpressed in 35% of primary breast carcinomas and 64% of human breast cancer cell lines, correlating with their ErbB2/Her2 status. Coexpression of StarD10 with ErbB1/epidermal growth factor receptor in murine fibroblasts enhanced anchorage-independent growth in soft agar, providing evidence for functional cooperation between StarD10 and ErbB receptor signaling. Taken together, these data suggest that overexpression of this lipid-binding protein contributes to breast oncogenesis.
Collapse
Affiliation(s)
- Monilola A Olayioye
- The Walter and Eliza Hall Institute of Medical Research and Bone Marrow Research Laboratories, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shoda J, Inada Y, Tsuji A, Kusama H, Ueda T, Ikegami T, Suzuki H, Sugiyama Y, Cohen DE, Tanaka N. Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4. J Lipid Res 2004; 45:1813-25. [PMID: 15258199 DOI: 10.1194/jlr.m400132-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibrates, including bezafibrate (BF), upregulate the expression of ATP binding cassette protein B4 (ABCB4) through gene transcription in mice. To determine the effects of BF on the expression levels of ABCB4 and on the stimulation of biliary phosphatidylcholine (PC) transport in human HepG2 hepatoblastoma cells, mRNA and protein levels as well as subcellular localization were investigated in the cells treated with BF. The canalicular accumulation of a fluorescent PC was assessed by confocal laser scanning microscopy. Treatment with 300 micromol/l BF for 24 h increased levels of ABCB4 mRNA but not protein by up to 151%. BF caused redistribution of ABCB4 into pseudocanaliculi formed between cells. In association with this redistribution, BF accelerated the accumulation of fluorescent PC in bile canaliculi (up to 163% of that in nontreated cells). Suppression of peroxisome proliferator-activated receptor alpha (PPARalpha) expression by either a small interfering RNA duplex or morpholino antisense oligonucleotide attenuated the BF-induced redistribution of ABCB4. These findings suggest that BF may enhance the capacity of human hepatocytes to direct PC into bile canaliculi via PPARalpha-mediated redistribution of ABCB4 to the canalicular membrane. This provides a rationale for the use of BF to improve cholestasis and/or cholangitis that is attributable to hypofunction of ABCB4.
Collapse
Affiliation(s)
- Junichi Shoda
- Department of Gastroenterology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pereira SP, Bain IM, Kumar D, Dowling RH. Bile composition in inflammatory bowel disease: ileal disease and colectomy, but not colitis, induce lithogenic bile. Aliment Pharmacol Ther 2003; 17:923-33. [PMID: 12656695 DOI: 10.1046/j.1365-2036.2003.01529.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammatory bowel disease is a risk factor for gall-bladder stones, but there is controversy about the composition of these stones and whether such patients develop lithogenic bile. METHODS In 54 gallstone-free inflammatory bowel disease patients and 13 non-inflammatory bowel disease patients with cholesterol-rich gallstones, we measured the biliary cholesterol saturation indices, nucleation times and bilirubin concentrations, and determined the bile acid composition and molecular species of phosphatidylcholine, in gall-bladder bile. RESULTS Patients with Crohn's colitis or ulcerative colitis had less saturated bile (mean cholesterol saturation index, 0.9) and longer nucleation times (median, 21 days) than those with ileal Crohn's disease (1.5; 14 days) or those who had undergone colectomy (1.6; 5 days). In patients with ileal Crohn's disease, the mean biliary bilirubin concentration was two- to three-fold higher than that in the other groups, and was associated with a decrease in the percentage of biliary deoxycholate and an increase in the percentage of ursodeoxycholate, compared with disease controls, but phosphatidylcholine species were similar. CONCLUSIONS Patients with small bowel Crohn's disease, or who have undergone colonic resection, have supersaturated bile and an increased risk of cholesterol gallstone formation. In patients with ileal disease, the presence of high biliary bilirubin concentrations and low percentage of deoxycholic acid may also favour the formation of mixed, pigment-rich, gallstones.
Collapse
Affiliation(s)
- S P Pereira
- Gastroenterology Unit, Guy's Hospital Campus, GKT School of Medicine, London, UK.
| | | | | | | |
Collapse
|
16
|
Zamora R, Vodovotz Y, Aulak KS, Kim PKM, Kane JM, Alarcon L, Stuehr DJ, Billiar TR. A DNA microarray study of nitric oxide-induced genes in mouse hepatocytes: implications for hepatic heme oxygenase-1 expression in ischemia/reperfusion. Nitric Oxide 2002; 7:165-86. [PMID: 12381414 DOI: 10.1016/s1089-8603(02)00104-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) can modulate numerous genes directly; however, some genes may be modulated only in the presence of the inflammatory stimuli that increase the expression of the inducible nitric oxide synthase (iNOS). One method by which to examine changes in NO-mediated gene expression is to carry out a gene array analysis on NO-nai;ve cells. Herein, we report a gene array analysis on mRNA from iNOS-null (iNOS(-/-)) mouse hepatocytes harvested from mice exposed to NO by infection with an adenovirus expressing human iNOS (Ad-iNOS). Of the 6500 genes on this array, only approximately 200 were modulated either up or down by the increased iNOS activity according to our criteria for significance. Several clearly defined families of genes were modulated, including genes coding for proinflammatory transcription factors, cytokines, cytokine receptors, proteins associated with cell proliferation and cellular energetics, as well as proteins involved in apoptosis. Our results suggest that iNOS has a generally anti-inflammatory and anti-apoptotic role in hepatocytes but also acts to suppress proliferation and protein synthesis. The expression of iNOS results in increased expression of stress-related proteins, including heme oxygenase-1 (HO-1). We used HO-1 to confirm that a significant change identified by an analysis could be demonstrated as significant in cells and tissues. The elevation of HO-1 was confirmed at the protein level in hepatocytes in vitro. Furthermore, iNOS(-/-) mice experienced greatly increased liver injury subsequent to intestinal ischemia/reperfusion injury, associated with an inability to upregulate HO-1. This is the first study to address the global gene changes induced by iNOS in any cell type, and the findings presented herein may have clinical relevance for conditions such as septic or hemorrhagic shock in which hepatocytes, NO, and HO-1 play a crucial role.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Bile salts are the major organic solutes in bile and undergo extensive enterohepatic circulation. Hepatocellular bile salt uptake is mediated predominantly by the Na(+)-taurocholate cotransport proteins Ntcp (rodents) and NTCP (humans) and by the Na(+)-independent organic anion-transporting polypeptides Oatp1, Oatp2, and Oatp4 (rodents) and OATP-C (humans). After diffusion (bound by intracellular bile salt-binding proteins) to the canalicular membrane, monoanionic bile salts are secreted into bile canaliculi by the bile salt export pump Bsep (rodents) or BSEP (humans). Both belong to the ATP-binding cassette (ABC) transporter superfamily. Dianionic conjugated bile salts are secreted into bile by the multidrug-resistance-associated proteins Mrp2/MRP2. In bile ductules, a minor portion of protonated bile acids and monomeric bile salts are reabsorbed by non-ionic diffusion and the apical sodium-dependent bile salt transporter Asbt/ASBT, transported back into the periductular capillary plexus by Mrp3/MRP3 [and/or a truncated form of Asbt (tAsbt)], and subjected to cholehepatic shunting. The major portion of biliary bile salts is aggregated into mixed micelles and transported into the intestine, where they are reabsorbed by apical Oatp3, the apical sodium-dependent bile salt transporter (ASBT), cytosolic intestinal bile acid-binding protein (IBABP), and basolateral Mrp3/MRP3 and tAsbt. Transcriptional and posttranscriptional regulation of these enterohepatic bile salt transporters is closely related to the regulation of lipid and cholesterol homeostasis. Furthermore, defective expression and function of bile salt transporters have been recognized as important causes for various cholestatic liver diseases.
Collapse
Affiliation(s)
- Peter J Meier
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zurich, 8091 Switzerland.
| | | |
Collapse
|
18
|
de Brouwer APM, Westerman J, Kleinnijenhuis A, Bevers LE, Roelofsen B, Wirtz KWA. Clofibrate-induced relocation of phosphatidylcholine transfer protein to mitochondria in endothelial cells. Exp Cell Res 2002; 274:100-11. [PMID: 11855861 DOI: 10.1006/excr.2001.5460] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphatidylcholine transfer protein (PC-TP) is a specific transporter of phosphatidylcholine (PC) between membranes. To get more insight into its physiological function, we have studied the localization of PC-TP by microinjection of fluorescently labeled PC-TP in foetal bovine heart endothelial (FBHE) cells and by expression of an enhanced yellow fluorescent protein-PC-TP fusion protein in FBHE cells, human umbilical vein endothelial cells, and HepG2 cells. Analysis by confocal laser scanning microscopy showed that PC-TP was evenly distributed throughout the cytosol with an apparently elevated level in nuclei. By measuring the fluorescence recovery after bleaching it was established that PC-TP is highly mobile throughout the cell, with its transport into the nucleus being hindered by the nuclear envelope. Given the proposed function of PC-TP in lipid metabolism, we have tested a number of compounds (phorbol ester, bombesin, A23187, thrombin, dibutyryl cyclic AMP, oleate, clofibrate, platelet-derived growth factor, epidermal growth factor, and hydrogen peroxide) for their ability to affect intracellular PC-TP distribution. Only clofibrate (100 microM) was found to have an effect, with PC-TP moving to mitochondria within 5 min of stimulation. This relocation did not occur with PC-TP(S110A), lacking the putative protein kinase C (PKC)-dependent phosphorylation site, and was restricted to the primary endothelial cells. Relocation did not occur in HepG2 cells, possibly due to the fact that clofibrate does not induce PKC activation in these cells.
Collapse
Affiliation(s)
- A P M de Brouwer
- Department of Biochemistry of Lipids, Institute of Biomembranes, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Wüstner D, Mukherjee S, Maxfield FR, Müller P, Herrmann A. Vesicular and nonvesicular transport of phosphatidylcholine in polarized HepG2 cells. Traffic 2001; 2:277-96. [PMID: 11285138 DOI: 10.1034/j.1600-0854.2001.9o135.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the transport and canalicular enrichment of fluorescent phosphatidylcholine (PC) in HepG2 cells using the fluorescent analogs of PC C6-NBD-PC and beta-BODIPY-PC. Fluorescent PC was efficiently transported to the biliary canaliculus (BC) and became enriched on the lumenal side of the canalicular membrane as shown for C6-NBD-PC. Some fluorescent PC was transported in vesicles to a subapical compartment (SAC) or apical recycling compartment (ARC) in polarized HepG2 cells as shown by colocalization with fluorescent sphingomyelin (C6-NBD-SM) and fluorescent transferrin, respectively. Extensive trafficking of vesicles containing fluorescent PC between the basolateral domain, the SAC/ARC and the BC as well as endocytosis of PC analogs from the canalicular membrane were found. Evidence for nonvesicular transport included enrichment of the PC-analog beta-BODIPY-PC in the BC (t1/2 = 3.54 min) prior to its accumulation in the SAC/ARC (t1/2 = 18.5 min) at 37 degrees C. Transport of fluorescent PC to the canalicular membrane also continued after disruption of the actin or microtubule cytoskeleton and at 2 degrees C. These results indicate that: (i) a nonvesicular transport pathway significantly contributes to the canalicular enrichment of PC in hepatocytic cells, and (ii) vesicular transport of fluorescent PC occurs from both membrane domains via the SAC/ARC.
Collapse
Affiliation(s)
- D Wüstner
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, Invalidenstr. 43, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Moschetta A, vanBerge-Henegouwen GP, Portincasa P, Renooij WL, Groen AK, van Erpecum KJ. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J Hepatol 2001; 34:492-9. [PMID: 11394647 DOI: 10.1016/s0168-8278(00)00046-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND/AIMS The hepatocyte canalicular membrane outer leaflet contains both phosphatidylcholine (PC) and sphingomyelin (SM). Normally, PC is the exclusive phospholipid in bile. We examined effects of bile salt hydrophobicity on cytotoxicity and on differential SM and PC distribution between detergent-resistant aggregated vesicles (model for detergent-resistant canalicular membrane) and mixed micelles or small unilamellar vesicles (representing lipid phases in bile). METHODS Aggregated vesicles were obtained by ultracentrifugation of cholesterol-supersaturated model systems containing SM, PC and various bile salts, micelles by ultrafiltration and unilamellar vesicles by dialysis of the supernatant. Erythrocyte hemolysis and lactate dehydrogenase release from CaCo-2 cells upon incubation with various micelles were quantified. RESULTS Preferential SM distribution and lipid solubilization in aggregated vesicles increased in rank order taurodeoxycholate < taurocholate < tauroursodeoxycholate < taurohyodeoxycholate, with reciprocal PC enrichment in micelles and small unilamellar vesicles. Including small amounts of PC within taurohyodeoxycholate micelles increased cytotoxicity with more erythrocyte hemolysis and LDH release from CaCo-2 cells upon incubation, but decreased cytotoxicity in case of tauroursodeoxycholate micelles. CONCLUSIONS Hydrophilic but not hydrophobic bile salts preserve integrity of pathophysiologically relevant phosphatidylcholine plus sphingomyelin-containing bilayers. Enhanced biliary phospholipid secretion during taurohyodeoxycholate but not during tauroursodeoxycholate therapy (Hepatology 25 (1997) 1306) may relate to different interactions of these bile salts with phospholipids.
Collapse
Affiliation(s)
- A Moschetta
- Department of Gastroenterology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Hyogo H, Tazuma S, Kajiyama G. Biliary excretory function is regulated by canalicular membrane fluidity associated with phospholipid fatty acyl chains in the bilayer: implications for the pathophysiology of cholestasis. J Gastroenterol Hepatol 2000; 15:887-94. [PMID: 11022829 DOI: 10.1046/j.1440-1746.2000.02221.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Bile canalicular membrane fluidity is modulated by phospholipid molecular species within membrane lipid bilayers. Thus, organellar membrane lipid composition is a determinant of canalicular function. In this study, the effect of phalloidin-induced cholestasis on bile lipid composition and liver subcellular membrane fraction composition in rats was examined to clarify the relationship between cholestasis and hepatic lipid metabolism. METHODS AND RESULTS Each rat received one phalloidin dose (400 microg/kg, i.v.). After the bile was collected, liver microsomes and canalicular membranes were analysed. The bile flow rate decreased by 50% 3.5 h after phalloidin administration. Although the bile acid output remained almost the same, the phospholipid and cholesterol output were significantly decreased (by 40.3+/-5.97% and 76.9+/-5.56%, respectively). Thus, the cholesterol:phospholipid (C:P) ratio in bile was significantly decreased by 80.4+/-10.1%. Phalloidin administration also increased the saturated: unsaturated fatty acid ratio (S:U) in bile for phosphatidylcholine by 25.5+/-3.2%. In the canalicular membrane, the C:P and S:U ratios for phosphatidylcholine were increased (24.8+/-4.2% and 34.4+/-6.9%, respectively), while the S:U for sphingomyelin was decreased by 61.0+/-6.2%. In microsomes, the C:P was decreased by 41.0+/-6.0%, but the S:U for both phosphatidylcholine and sphingomyelin were unaffected. Canalicular membrane fluidity, assayed by 1,6-diphenyl-1,3,5-hexatriene fluorescence depolarization, decreased significantly. Therefore, increased secretion of hydrophobic phosphatidylcholine into bile was associated with more hydrophobic canalicular membrane phosphatidylcholine, while sphingomyelin in the canalicular membrane was less hydrophobic. CONCLUSIONS These results indicate that phalloidin uncouples secretion of cholesterol and phospholipids, which causes a redistribution of fatty acyl chain species among canalicular membrane phospholipids that alters membrane fluidity. These changes may be a homeostatic response mediated by the phospholipid translocator in the canalicular membrane, although direct evidence for this is unavailable.
Collapse
Affiliation(s)
- H Hyogo
- First Department of Internal Medicine, Hiroshima University School of Medicine, Japan
| | | | | |
Collapse
|
22
|
Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:128-44. [PMID: 10856718 DOI: 10.1016/s1388-1981(00)00053-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since it was found that the P-glycoproteins encoded by the MDR3 (MDR2) gene in humans and the Mdr2 gene in mice are primarily phosphatidylcholine translocators, there has been increasing interest in the possibility that other ATP binding cassette (ABC) transporters are involved in lipid transport. The evidence reviewed here shows that the MDR1 P-glycoprotein and the multidrug resistance (-associated) transporter 1 (MRP1) are able to transport lipid analogues, but probably not major natural membrane lipids. Both transporters can transport a wide range of hydrophobic drugs and may see lipid analogues as just another drug. The MDR3 gene probably arose in evolution from a drug-transporting P-glycoprotein gene. Recent work has shown that the phosphatidylcholine translocator has retained significant drug transport activity and that this transport is inhibited by inhibitors of drug-transporting P-glycoproteins. Whether the phosphatidylcholine translocator also functions as a transporter of some drugs in vivo remains to be seen. Three other ABC transporters were recently shown to be involved in lipid transport: ABCR, also called Rim protein, was shown to be defective in Stargardt's macular dystrophy; this protein probably transports a complex of retinaldehyde and phosphatidylethanolamine in the retina of the eye. ABC1 was shown to be essential for the exit of cholesterol from cells and is probably a cholesterol transporter. A third example, the ABC transporter involved in the import of long-chain fatty acids into peroxisomes, is discussed in the chapter by Hettema and Tabak in this volume.
Collapse
Affiliation(s)
- P Borst
- Division of Molecular Biology and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam.
| | | | | |
Collapse
|
23
|
Rogers DP, Bankaitis VA. Phospholipid transfer proteins and physiological functions. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:35-81. [PMID: 10761115 DOI: 10.1016/s0074-7696(00)97002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Issues of how cells generate and maintain unique lipid compositions in distinct intracellular membrane systems remain the subject of much study. A ubiquitous class of soluble proteins capable of transporting phospholipid monomers from membrane to membrane across an aqueous milieu has been thought to define part of the mechanism by which lipids are sorted in cells. Progress in the study of these phospholipid transfer proteins (PLTPs) raises questions regarding their physiological functions in cells and the mechanisms by which these proteins execute them. It is now clear that across the eukaryotic kingdom, members of this protein family exert essential roles in the regulation of phospholipid metabolism and central aspects of phospholipid-mediated signaling. Indeed, it is now known that dysfunction of specific PLTPs defines the basis of inherited diseases in mammals, and this list is expected to grow. Phospholipid transfer proteins, their biochemical properties, and the emerging clues regarding their physiological functions are reviewed.
Collapse
Affiliation(s)
- D P Rogers
- Department of Cell Biology, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
24
|
Verma A, Ahmed HA, Davis T, Jazrawi RP, Northfield TC. Demonstration and partial characterisation of phospholipid methyltransferase activity in bile canalicular membrane from hamster liver. J Hepatol 1999; 31:852-9. [PMID: 10580582 DOI: 10.1016/s0168-8278(99)80286-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Methylation of phosphatidylethanolamine to phosphatidylcholine predominantly takes place in mitochondrial-associated membrane and the endoplasmic reticulum of the liver. The transport of the phospholipids from endoplasmic reticulum to the bile canalicular membrane is via vesicular and protein transporters. In the bile canalicular membrane a flippase enzyme helps to transport phosphatidylcholine specifically to the biliary leaflet. The phosphatidylcholine then enters the bile where it accounts for about 95% of the phospholipids. We postulated that the increased proportion of phosphatidylcholine in the bile canalicular membrane and the bile compared to the transport vesicles may be due to a methyltransferase activity in the bile canalicular membrane which, using s-adenosyl methionine as the substrate, converts phosphatidylethanolamine on the cytoplasmic leaflet to phosphatidylcholine, which is transported to the biliary leaflet. The aim of our study was to demonstrate and partially characterise methyltransferase activity in the bile canalicular membrane. METHODS Organelles were obtained from hamster liver by homogenisation and separation by sucrose gradient ultracentrifugation. These, along with phosphatidylethanolamine, were incubated with radiolabelled s-adenosyl methionine. Phospholipids were separated by thin-layer chromatography and radioactivity was counted by scintigraphy. RESULTS We demonstrated methyltransferase activity (nmol of SAMe converted/mg of protein/h at 37 degrees C) in the bile canalicular membrane of 0.442 (SEM 0.077, n=8), which is more than twice that found in the microsomes at 0.195 (SEM 0.013, n=8). The Km and pH optimum for the methyltransferase in the bile canalicular membrane and the microsomes were similar (Km 25 and 28 microM, respectively, pH 9.9 for both). The Vmax was different at 0.358 and 0.168 nmol of SAMe converted/mg of protein/h for the bile canalicular membrane and the microsomes, respectively. CONCLUSION The presence of the methyltransferase activity in the bile canalicular membrane may be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- A Verma
- Division of Gastroenterology, Endocrinology & Metabolism, St. George's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|
25
|
Cohen DE, Green RM, Wu MK, Beier DR. Cloning, tissue-specific expression, gene structure and chromosomal localization of human phosphatidylcholine transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:265-70. [PMID: 10542325 DOI: 10.1016/s0167-4781(99)00163-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a cytosolic protein that catalyzes intermembrane transfer of phosphatidylcholines in vitro. We have cloned a cDNA encoding the human ortholog of PC-TP and have determined its tissue-specific expression as well as genomic organization. Radiation hybrid mapping localized the human gene, PCTP, to chromosome 17q21-22 and PCR-based single strand conformation polymorphism analysis of an interspecific backcross assigned mouse Pctp to the region of syntenic conservation on chromosome 11.
Collapse
Affiliation(s)
- D E Cohen
- Departments of Medicine and Biochemistry, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
26
|
van Helvoort A, de Brouwer A, Ottenhoff R, Brouwers JF, Wijnholds J, Beijnen JH, Rijneveld A, van der Poll T, van der Valk MA, Majoor D, Voorhout W, Wirtz KW, Elferink RP, Borst P. Mice without phosphatidylcholine transfer protein have no defects in the secretion of phosphatidylcholine into bile or into lung airspaces. Proc Natl Acad Sci U S A 1999; 96:11501-6. [PMID: 10500206 PMCID: PMC18063 DOI: 10.1073/pnas.96.20.11501] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylcholine transfer protein (Pc-tp) is a highly specific carrier of phosphatidylcholine (PC) without known function. Proposed functions include the supply of PC required for secretion into bile or lung air space (surfactant) and the facilitation of enzymatic reactions involving PC synthesis or breakdown. To test these functions, we generated knock-out mice unable to make Pc-tp. Remarkably, these mice are normal and have no defect in any of the postulated Pc-tp functions analyzed. The lipid content and composition of the bile, as well as lung surfactant secretion and composition, of Pc-tp (-/-) mice, is normal. The lack of a Pc-tp contribution to biliary lipid secretion is in agreement with our finding that Pc-tp is down-regulated in adult mouse liver: whereas Pc-tp is abundant in the liver of mouse pups, Pc-tp levels decrease > 10-fold around 2 wk after birth, when bile formation starts. In adult mice, Pc-tp levels are high only in epididymis, testis, kidney, and bone marrow-derived mast cells. Absence of Pc-tp in bone marrow-derived mast cells does not affect their lipid composition or PC synthesis and degradation. We discuss how PC might reach the canalicular membrane of the hepatocyte for secretion into the bile, if not by Pc-tp.
Collapse
Affiliation(s)
- A van Helvoort
- Division of Molecular Biology, Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bile is the route for elimination of cholesterol from the body. Recent studies have begun to elucidate hepatocellular, molecular and physical-chemical mechanisms whereby bile salts stimulate biliary secretion of cholesterol together with phospholipids, which are enriched (up to 95%) in phosphatidylcholines. Active translocation of bile salts and phosphatidylcholines across the hepatocyte's canalicular plasma membrane provides the driving force for biliary lipid secretion. This facilitates physical-chemical interactions between detergent-like bile salt molecules and the ectoplasmic leaflet of the canalicular membrane, which result in biliary secretion of cholesterol and phosphatidylcholines as vesicles. Within the hepatocyte, separate molecular pathways function to resupply bile salts, phosphatidylcholines and cholesterol to the canalicular membrane for ongoing biliary lipid secretion.
Collapse
Affiliation(s)
- D E Cohen
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
28
|
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a cytosolic lipid transfer protein that promotes intermembrane transfer of phosphatidylcholines but no other phospholipids. Although its physiological function remains unknown, phosphatidylcholine transfer protein is enriched in liver and evidence from model systems suggests a role in hepatocellular selection and transport of biliary phospholipids. To facilitate in vivo studies, a cDNA encoding rat PC-TP was cloned by library screening and 5'-rapid amplification of cDNA ends. Genomic cloning demonstrated the rat Pctp gene spans 10. 8kb and is comprised of six exons. The putative transcription initiation site was identified 50bp upstream of the translation initiation site. Nucleotide sequence analysis of the 5'-flanking region revealed a CAAT- but no TATA-box. Transient transfection of a series of 5'-deleted Pctp-promoter-firefly luciferase constructs into Reuber H35 rat hepatoma cells, which express Pctp mRNA, and Gunn rat fibroblasts, which do not, suggest that cis-acting elements in a 637bp promoter region contribute to enhanced expression of PC-TP in liver.
Collapse
Affiliation(s)
- M K Wu
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
29
|
Adachi Y, Kaito M, Gabazza EC. Conjugated bilirubin decreases the biliary excretion of phospholipids. J Gastroenterol Hepatol 1999; 14:513-4. [PMID: 10385056 DOI: 10.1046/j.1440-1746.1999.01922.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
30
|
Carrella M, Feldman D, Cogoi S, Csillaghy A, Weinhold PA. Enhancement of mdr2 gene transcription mediates the biliary transfer of phosphatidylcholine supplied by an increased biosynthesis in the pravastatin-treated rat. Hepatology 1999; 29:1825-32. [PMID: 10347126 DOI: 10.1002/hep.510290620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
An increase of biliary lipid secretion is known to occur in the rat under sustained administration of statin-type 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase inhibitors. The present study has addressed critical mechanisms of hepatic lipid synthesis and phosphatidylcholine (PC) biliary transport in the rat fed with a 0.075% pravastatin diet for 3 weeks. After treatment, biliary secretion of PC and cholesterol increased to 233% and 249% of controls, while that of bile salts was unchanged. Activity of cytidylyltransferase (CT), a major regulatory enzyme in the CDP-choline pathway of PC synthesis, was raised in both microsomal and cytosolic fractions (226% and 150% of controls), and there was an increase to 187% in the mass of active enzyme as determined by Western blot of microsomal protein using an antibody specific to CT. Cytosolic activity of choline kinase, another enzyme of the CDP-choline pathway, also increased to 175% of controls. In addition, there was an over eightfold increase in the HMG CoA reductase activity and mRNA. Thus, an increased PC and cholesterol synthetic supply to hepatocytes appeared as a basic mechanism for the biliary hypersecretion of these lipids. Notwithstanding the increased synthesis, hepatic PC content was unchanged, suggesting an enhanced transfer of this lipid into bile. Indeed, there was a sevenfold increase of multidrug resistance gene 2 (mdr2) gene mRNA coding for a main PC canalicular translocase. Thus, hypersecretion of biliary PC in the model studied can be explained by an up-regulation of mdr2 gene transcription and its P-glycoprotein product mediating the biliary transfer of PC supplied by an increased biosynthesis.
Collapse
Affiliation(s)
- M Carrella
- Cattedra di Gastroenterologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Udine, Italy
| | | | | | | | | |
Collapse
|
31
|
Abstract
Gallstones form when the tenuous balance of solubility of biliary lipids tips in favor of precipitation of cholesterol, unconjugated bilirubin, or bacterial degradation products of biliary lipids. For cholesterol gallstones, metabolic alterations in hepatic cholesterol secretion combine with changes in gallbladder motility and intestinal bacterial degradation of bile salts to destabilize cholesterol carriers in bile and produce cholesterol crystals. For black pigment gallstones, changes in heme metabolism or bilirubin absorption lead to increased bilirubin concentrations and precipitation of calcium bilirubinate. In contrast, mechanical obstruction of the biliary tract is the major factor leading to bacterial degradation and precipitation of biliary lipids in brown pigment stones. Further understanding of the physical and metabolic factors of cholesterol and black pigment formation is likely to provide interventions to interrupt the earliest stages of gallstone formation.
Collapse
Affiliation(s)
- J M Donovan
- Gastroenterology Division, Brockton/West Roxbury VA Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Abstract
Biliary lipid secretion is an important physiological event; not only for the disposal of cholesterol from the body, but also for the protection of cells lining the biliary tree against bile salts. Insight into the (patho)physiological role of biliary lipid secretion has been recently expanded through the study of a generation of mice with a disruption of the Mdr2 gene, who do not secrete lipids into bile. Mdr2 P-glycoprotein translocates phospholipids across the hepatocanalicular membrane. These animals suffer from progressive liver disease caused by the toxic detergent action of bile salts. Very recently, it has become clear that an analogous inherited human liver disease exists, which is caused by the absence of biliary lipid secretion. Patients with this disease, Progressive Familial Intrahepatic Cholestasis (PFIC) type 3, have a mutation in the MDR3 gene, which is the human homologue of the murine Mdr2 gene.
Collapse
Affiliation(s)
- R P Elferink
- Department of Gastrointestinal and Liver Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
33
|
Submicellar bile salts stimulate phosphatidylcholine transfer activity of sterol carrier protein 2. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32496-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
LaMorte WW, Booker ML, Kay S. Determinants of the selection of phosphatidylcholine molecular species for secretion into bile in the rat. Hepatology 1998; 28:631-7. [PMID: 9731551 DOI: 10.1002/hep.510280305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Certain phosphatidylcholine (PC) molecular species appear to be secreted into bile preferentially, but the mechanism for this selection remains obscure. We used multivariate analysis to examine the relationship between PC structure and the odds of secretion for individual PC species secreted into bile. PC was isolated from Folch extracts of bile and liver from rats, and individual molecular species of PC were quantified with reverse-phase high-performance liquid chromatography (HPLC). The odds of secretion for a given PC species were quantified as the ratio of its mole% in bile/mole% in liver. Regression analysis indicated that the odds of secretion were significantly related to length of both the sn-1 and sn-2 acyl chains (P < .0001 for both) and to relative hydrophobicity as determined by reverse-phase HPLC (P < .0001). In addition, the relationship between odds of secretion and sn-1 chain length was best described by a parabolic function. Considered together, these characteristics accounted for 88% of the observed differences in odds of secretion. This relationship between PC structure and odds of secretion was strikingly similar to the relationship between PC structure and affinity for bovine PC transfer protein. When multivariate models were used to predict both the odds of secretion and the affinity for PC transfer protein for a set of biologically plausible PC species, there was a linear relationship between the two. The likelihood of a given PC species being secreted into bile can be related to the structural characteristics of the acyl chains without having to postulate the existence of a special pool of PC destined for biliary secretion. Second, the structural characteristics that dictate selection of PC species for secretion into bile are similar to those that determine binding affinity for PC transfer protein, suggesting that the likelihood of a PC being secreted into bile is, in fact, closely related to its binding affinity for PC transfer protein (PC-TP).
Collapse
Affiliation(s)
- W W LaMorte
- Department of Surgery, Boston University Medical Center, MA, USA
| | | | | |
Collapse
|
35
|
Feng L, Cohen DE. Baculovirus-mediated expression of recombinant rat phosphatidylcholine transfer protein. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32174-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Deyrup-Olsen I, Luchtel DL. Secretion of mucous granules and other membrane-bound structures: a look beyond exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 183:95-141. [PMID: 9666566 DOI: 10.1016/s0074-7696(08)60143-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The substances that animals secrete at epithelial surfaces include not only small molecules and ions delivered by exocytosis, but also a wide variety of materials in membrane-bound form. The latter include mucous granules of pulmonate molluscs, milk fat globules, and products of apocrine and holocrine secretion. Contents include hydrophobic entities (e.g., lipids, hydrocarbons), protective substances (e.g., mucus), and potentially injurious substances (e.g., digestive enzymes, toxins). In some cases vesicles or granules perform significant functions through enzymatic or other properties of the membrane itself (e.g., mammalian prostasome). Much work is still needed to elucidate the ways in which cells release membrane-bound products and how these products are deployed. The current concentration of research effort on exocytosis as a secretory modus should not divert attention from the remarkable versatility of epithelial cells that are capable of utilizing a variety of ways besides exocytosis to transfer materials and information to the external environment.
Collapse
Affiliation(s)
- I Deyrup-Olsen
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
37
|
Fuchs M, Carey MC, Cohen DE. Evidence for an ATP-independent long-chain phosphatidylcholine translocator in hepatocyte membranes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G1312-9. [PMID: 9435556 DOI: 10.1152/ajpgi.1997.273.6.g1312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transport of phosphatidylcholine (PC) molecules across canalicular plasma membranes of the liver is essential for their secretion into bile. To test for evidence of protein-mediated translocation of natural long-chain PCs, we investigated whether hepatocyte membrane subfractions reconstituted into proteoliposomes promoted transmembrane translocation of radiolabeled PCs. Translocation of PC molecules in proteoliposomes was measured by an assay that employed multilamellar acceptor vesicles and the specific PC transfer protein purified from liver. As inferred from the percentage of radiolabel removed from proteoliposomes, facilitated PC translocation occurred in microsomes and canalicular and basolateral plasma membranes from rat liver but not in erythrocyte ghosts, microsomes, homogenates of COS and H35 cells, or Xenopus laevis oocytes. Heat denaturation in the presence of 2-mercaptoethanol and Pronase digestion of solubilized membrane proteins inhibited translocation. In contrast to the mdr2 gene product (Mdr2), which promotes ATP-dependent, verapamil-inhibitable PC translocation, ATP did not enhance and verapamil failed to block PC translocation. These data support the possibility that an ATP-independent PC translocator, possibly distinct from Mdr2, may be present in hepatocyte canalicular plasma membranes.
Collapse
Affiliation(s)
- M Fuchs
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Miura H, Tazuma S, Yamashita G, Hatsushika S, Kajiyama G. Effect of cholestasis induced by organic anion on the lipid composition of hepatic membrane subfractions and bile in rats. J Gastroenterol Hepatol 1997; 12:734-9. [PMID: 9430038 DOI: 10.1111/j.1440-1746.1997.tb00361.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several organic anions inhibit the secretion of cholesterol and phospholipid into bile without affecting total bile acid secretion (uncoupling). The uncoupling induced by sulphobromophthalein (BSP) alters the fatty acid composition of biliary lecithin. The purpose of this study was to investigate the relationship between the lipid composition of bile and of liver subcellular membrane fractions during BSP-induced uncoupling. After depletion of the bile salt pool, rats fitted with a bile duct cannulus were infused with sodium taurocholate given either alone or with BSP. Bile was collected and liver microsomes and canalicular membranes were isolated for analysis of lipid composition. In bile, uncoupling increased the cholesterol/phospholipid ratio (C/P ratio) and the saturated/unsaturated fatty acid ratio (S/U ratio) in phosphatidylcholine. The C/P ratio was increased in the canalicular membrane, but the membrane phosphatidylcholine S/U ratio was decreased during uncoupling. In microsomes, the S/U ratio of membrane phosphatidylcholine was slightly increased, but the C/P ratio was unaffected during uncoupling. These results support the hypothesis that an increased secretion of hydrophobic phosphatidylcholine species from the canalicular membrane into bile reduces the proportion of hydrophobic phosphatidylcholine species in the canalicular membrane during uncoupling. The decreased contribution of hydrophobic phosphatidylcholine species may ameliorate the decrease in membrane fluidity resulting from the accumulation of cholesterol in the canalicular membrane and stimulate the synthesis of hydrophobic phosphatidylcholine species in the microsomes.
Collapse
Affiliation(s)
- H Miura
- First Department of Internal Medicine, Hiroshima University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
39
|
Hirano N, Tazuma S, Kajiyama G. Transcytotic vesicle fusion with canalicular membranes is modulated by phospholipid species: implications for biliary lipid secretion. J Gastroenterol Hepatol 1997; 12:534-9. [PMID: 9257247 DOI: 10.1111/j.1440-1746.1997.tb00480.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phospholipid species modulate bile metastability and the subselection of such species for biliary secretion occurs at the canalicular membrane. In this study, the role of phospholipid head groups and hydrophobic indices in transcytotic vesicle fusion with the canalicular membrane inner leaflet was investigated using rat canalicular membrane vesicles (CMV) and liposomes. The CMV were purified from Sprague-Dawley rat liver, and small unilamellar vesicles (SUV) of phosphatidylserine (PS), phosphatidylcholine (PC) and mixtures of PS/PC (1:1, 2:1 and 4:1) were labelled with 8 mol% of octadecyl rhodamine B chloride (R18). The PC species used in this study were egg yolk PC (EYPC), soybean PC (SBPC), dipalmitoyl PC (DPPC) and dilinoleoyl PC (DLPC). Fusion of SUV with CMV was initiated by the addition of a millimolar concentration of Ca2+ and the degree of fusion was estimated by the increase of R18 fluorescence. Ca(2+)-dependent fusion of SUV consisting of PS, and PS/PC (4:1) with CMV was observed (PS > PS/PC; 4:1), whereas no detectable fusion was evident between CMV and SUV of PC alone or PS/PC (1:1 or 2:1). The rank order of fusibility between CMV and SUV of PS/PC (4:1) containing various PC species was PS/DLPC > PS/SBPC > PS/EYPC > PS/DPPC. The hydrophobic index of PC as determined by high performance liquid chromatography (HPLC) was related closely to liposome fusibility (r = -0.88). These results suggest that transcytotic vesicle fusion with the canalicular membrane inner leaflet is regulated by the phospholipid hydrophobicity of the vesicles.
Collapse
Affiliation(s)
- N Hirano
- First Department of Internal Medicine, Hiroshima University School of Medicine, Japan
| | | | | |
Collapse
|
40
|
Distribution of mixtures of bile salt taurine conjugates between lecithin-cholesterol vesicles and aqueous media: an empirical model. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37203-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
van Erpecum KJ, Carey MC. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1345:269-82. [PMID: 9150247 DOI: 10.1016/s0005-2760(97)00002-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bile salts enhance secretion of cholesterol into bile and its subsequent solubilization with phosphatidylcholine in mixed micelles. Sphingomyelin, a major structural lipid of the hepatocyte canalicular membrane, and disaturated phosphatidylcholines are known to impede nucleation of solid cholesterol crystals in supersaturated model systems. To understand these effects physico-chemically, we compared the influence of bile salts on interactions of cholesterol with natural sphingomyelins, as well as with dipalmitoyl and egg yolk phosphatidylcholines using various in vitro systems. Submicellar bile salts enhanced significantly bidirectional transfer of dehydroergosterol (a fluorescent cholesterol analog) between sphingomyelin and egg yolk phosphatidylcholine vesicles in the rank order taurocholate < tauroursodeoxycholate < taurodeoxycholate. Quasielastic light scattering of serially diluted sphingomyelin-taurocholate mixtures (1:1 molar ratio, 3 g/dl) revealed metastable temperature-dependent transitions between globular micelles, rod-shaped micelles and vesicles, suggesting that phase transitions under these experimental conditions were metastable only at temperatures below 37 degrees C. Ternary phase diagrams of all sphingomyelins and dipalmitoyl phosphatidylcholine with cholesterol and taurocholate (37 degrees C, 3 g/dl, 0.15 M NaCl) were identical. Compared to systems containing egg yolk phosphatidylcholine, the 1-phase micellar zone and 2- and 3-phase solid cholesterol crystal-containing zones were reduced markedly while the 2-phase zone with stable cholesterol-sphingomyelin liquid crystals was greatly expanded. Our results suggest that the high affinity of cholesterol for sphingomyelin is lost in the presence of bile salts. Our findings may be relevant to secretion of cholesterol into bile and to its inability to crystallize in the hepatocyte canalicular lumen or its surrounding membranes.
Collapse
Affiliation(s)
- K J van Erpecum
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
42
|
Frijters CM, Ottenhoff R, van Wijland MJ, van Nieuwkerk CM, Groen AK, Oude Elferink RP. Regulation of mdr2 P-glycoprotein expression by bile salts. Biochem J 1997; 321 ( Pt 2):389-95. [PMID: 9020871 PMCID: PMC1218081 DOI: 10.1042/bj3210389] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The phosphatidyl translocating activity of the mdr2 P-glycoprotein (Pgp) in the canalicular membrane of the mouse hepatocyte is a rate-controlling step in the biliary secretion of phospholipid. Since bile salts also regulate the secretion of biliary lipids, we investigated the influence of the type of bile salt in the circulation on mdr2 Pgp expression and activity. Male mice were led a purified diet to which either 0.1% (w/w) cholate or 0.5% (w/w) ursodeoxycholate was added. This led to a near-complete replacement of the endogenous bile salt pool (mainly tauromuricholate) by taurocholate or tauroursodeoxycholate respectively. The phospholipid secretion capacity was then determined by infusion of increasing amounts of tauroursodeoxycholate. Cholate feeding resulted in a 55% increase in maximal phospholipid secretion compared with that in mice on the control diet. Northern blotting revealed that cholate feeding increased mdr2 Pgp mRNA levels by 42%. Feeding with ursodeoxycholate did not influence the maximum rate of phospholipid output or the mdr2 mRNA content. Female mice had a higher basal mdr2 Pgp mRNA level than male mice, and this was also correlated with a higher phospholipid secretion capacity. This could be explained by the 4-fold higher basal cholate content in the bile of female compared with male mice. Our results suggest that the type of bile salts in the circulation influences the expression of the mdr2 gene.
Collapse
Affiliation(s)
- C M Frijters
- Department of Gastrointestinal and Liver Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Intracellular traffic and plasma membrane secretion of small organic solutes involved in hepatocellular bile formation. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/s0305-0491(96)00181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Puglielli L, Rigotti A, Amigo L, Nuñez L, Greco AV, Santos MJ, Nervi F. Modulation of intrahepatic cholesterol trafficking: evidence by in vivo antisense treatment for the involvement of sterol carrier protein-2 in newly synthesized cholesterol transport into rat bile. Biochem J 1996; 317 ( Pt 3):681-7. [PMID: 8760350 PMCID: PMC1217540 DOI: 10.1042/bj3170681] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biliary cholesterol represents one of the two major excretory pathways for sterol elimination from the body and plays a central role in cholesterol gallstone formation. Biliary cholesterol originates from a precursor pool of preformed and newly synthesized free cholesterol. Although it has been suggested that newly synthesized and preformed biliary cholesterol are secreted by independent pathways, the specific cellular and molecular mechanisms are unknown. We used male Wistar rats to study the time-course of the appearance of newly synthesized cholesterol, phosphatidylcholine and protein into bile. The specific role of sterol carrier protein-2 (SCP-2) in the transport of newly synthesized biliary cholesterol was evaluated by an in vivo antisense oligonucleotide approach. In contrast to [14C]phosphatidylcholine and [35S]proteins, the time-course of [14C]cholesterol appearance into bile was rapid, and microtubule- and Golgi-independent. In vivo SCP-2 antisense treatment reduced and delayed the appearance of biliary [14C]cholesterol. Furthermore, hepatic SCP-2 expression increased more than 3-fold over control values in rats that had been treated with diosgenin to increase biliary secretion of newly synthesized cholesterol. These results suggest that SCP-2 is necessary for the rapid transport of newly synthesized cholesterol into bile and that hepatocytes can induce SCP-2 expression according to the rate of biliary secretion of newly synthesized cholesterol.
Collapse
Affiliation(s)
- L Puglielli
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
45
|
Geijtenbeek TB, Smith AJ, Borst P, Wirtz KW. cDNA cloning and tissue-specific expression of the phosphatidylcholine transfer protein gene. Biochem J 1996; 316 ( Pt 1):49-55. [PMID: 8645232 PMCID: PMC1217349 DOI: 10.1042/bj3160049] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have isolated a cDNA containing the complete coding sequence of bovine liver phosphatidylcholine transfer protein (PC-TP). The deduced amino acid sequence consists of 213 amino acid residues and is, except for a lysine instead of an arginine at position 167, identical to the sequence determined by Edman degradation [Akeroyd, Moonen, Westerman, Puyk and Wirtz (1981) Eur. J. Biochem. 114, 385-391]. A cDNA encoding amino acid residues 41-214 of mouse lung PC-TP was also isolated. The predicted amino acid sequence was 90% similar (81% identical) to the corresponding sequence of bovine liver PC-TP, demonstrating that PC-TP is conserved among mammalian species. By Southern blot analysis, evidence was obtained for the presence of a single bovine PC-TP-encoding gene. The expression of the PC-TP gene was determined during mouse embryonic development and in adult mouse tissues using an RNase protection assay. PC-TP RNA was present in embryos at all stages of development as early as the embryonic stem cell, suggesting a role for PC-TP in cell growth and differentiation. Towards the end of embryonic development, just before term, high levels of PC-TP RNA were found in the liver. This level was even higher 7 days post-term. In addition to adult liver, high levels of PC-TP RNA were also found in kidney and testis. The prominent presence of PC-TP in developing and adult liver is compatible with its proposed role in bile formation.
Collapse
Affiliation(s)
- T B Geijtenbeek
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
46
|
ATP-dependent phosphatidylcholine translocation in rat liver canalicular plasma membrane vesicles. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42021-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Oude Elferink RP, Ottenhoff R, van Wijland M, Frijters CM, van Nieuwkerk C, Groen AK. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42016-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Cohen DE, Leonard MR. Immobilized artificial membrane chromatography: a rapid and accurate HPLC method for predicting bile salt-membrane interactions. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39209-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39199-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Ahmed H, Jazrawi R, Goggin P, Dormandy J, Northfield TC. Intrahepatic biliary cholesterol and phospholipid transport in humans: effect of obesity and cholesterol cholelithiasis. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41092-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|