1
|
Wang C, Zhang X, Mao H, Xian Y, Rao Y. Development of a Genetically Encoded Sensor for Arginine. ACS Sens 2025; 10:1260-1269. [PMID: 39837760 DOI: 10.1021/acssensors.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The amino acid l-arginine (Arg) plays important roles in multiple metabolic and physiological processes, and changes in its concentration have been implicated in pathological processes. While it is important to measure Arg levels in biological systems directly and in real-time, existing Arg sensors respond to l-ornithine or l-lysine. Here we report ArgS1, a new Arg sensor. It showed a concentration-dependent increase in the ratio Ex488/405 for Arg with an apparent affinity of ∼64 μM and with a dynamic range (ΔR/R0) of 3. ArgS1 responds to Arg in both the cytoplasm and the subcellular organelles. ArgS1 monitored Arg levels in MDA-MB-231 cells, a breast cancer cell line deficient in a key enzyme for Arg synthesis (arginino-succinate synthetase1, ASS1) and amenable to Arg depletion therapy. We found that Arg levels in MDA-MB-231 cells decreased after depletion of extracellular Arg with a concomitant decline in cell viability. When ASS1 was overexpressed in the cells, Arg levels increased and cell viability was also enhanced. Thus, ArgS1 is an effective tool for real-time monitoring of Arg in human cells over a dynamic range of physiological and pathological relevance.
Collapse
Affiliation(s)
- Chun Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Xiaoxue Zhang
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Haoyu Mao
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Laboratory of Neurochemical Biology, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences and Peking University, Beijing 100871, China
| | - Yi Xian
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Laboratory of Neurochemical Biology, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences and Peking University, Beijing 100871, China
| | - Yi Rao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Laboratory of Neurochemical Biology, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences and Peking University, Beijing 100871, China
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing), Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Eisenbrand G, Buettner A, Diel P, Epe B, Först P, Grune T, Haller D, Heinz V, Hellwig M, Humpf HU, Jäger H, Kulling S, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Spranger J, Steinberg P, Vieths S, Wätjen W, Hengstler JG. Commentary of the SKLM to the EFSA opinion on risk assessment of N-nitrosamines in food. Arch Toxicol 2024; 98:1573-1580. [PMID: 38573336 PMCID: PMC11106120 DOI: 10.1007/s00204-024-03726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.
Collapse
Affiliation(s)
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg, 55128, Mainz, Germany
| | - Petra Först
- Food Process Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Tillman Grune
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Volker Heinz
- DIL German Institute of Food Technology, Professor-von-Klitzing-Strasse 7, 49610, Quakenbrück, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technical University Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Henry Jäger
- University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, 1180, Vienna, Austria
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Marcel Leist
- Division for In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78464, Constance, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Strasse 38-40, 1090, Vienna, Austria
| | - Ute Nöthlings
- Institute for Nutrition Research and Food Science, Rheinische Friedrich-Wilhelms-University Bonn, Fiedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-Und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
3
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
4
|
Singh G, Varshney V, Goyal A, Ali N, Iqbal M, Kaur I, Vargas-De-La-Cruz C, Behl T. Chrysin restores the cardioprotective effect of ischemic preconditioning in diabetes-challenged rat heart. Heliyon 2023; 9:e22052. [PMID: 38027733 PMCID: PMC10663930 DOI: 10.1016/j.heliyon.2023.e22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ischemic preconditioning (IPC) is the utmost capable design to achieve protection over ischemia-reperfusion injury (I/R), but this phenomenon gets attenuated during various pathological conditions like diabetes. Chrysin exhibits cardioprotection in various experiments however, its therapeutic potential on IPC-mediated cardioprotection via PI3K-Akt-eNOS pathway in streptozotocin (STZ) triggered diabetes-challenged rat heart is yet to be assessed. For that reason, the experiment has been planned to investigate chrysin's effect on the cardioprotective action of IPC involving the PI3K-Akt-eNOS cascade in rat hearts challenged to diabetes. Methods The project was accomplished through means of absorbance studies for biochemical parameters, infarct size measurement (TTC stain) and coronary flow. Results The findings of the present study revealed that STZ drastically augmented the serum glucose level and the chrysin significantly reversed the IPC-stimulated increased coronary flow, nitrite release, and reduced LDH (lactate dehydrogenase), CK-MB (creatine kinase) activities as well as infarct size in diabetes-induced rat heart. Furthermore, chrysin also reversed the IPC-induced reduction in oxidative stress in an isolated Langendorff's perfused diabetic rat heart. Moreover, four episodes of preconditioning by either PI3K or eNOS inhibitor in chrysin-pretreated diabetic rat hearts significantly abolished the protective effect of chrysin. Conclusion Consequently, these observations suggested that chrysin increases the therapeutic efficiency of IPC in mitigating I/R injury via PI3K-Akt-eNOS signalling in diabetes-challenged rat hearts. Hence, chrysin could be a potential alternative option to IPC in diabetic rat hearts.
Collapse
Affiliation(s)
- Geetanjali Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vibhav Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ishnoor Kaur
- College of Medical, Veterinary and Life Sciences, University of Glassgow, Scotland, United Kingdom
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| |
Collapse
|
5
|
Bryan NS, Molnar J, Somberg J. The Efficacy of Nitric Oxide-Generating Lozenges on Outcome in Newly Diagnosed COVID-19 Patients of African American and Hispanic Origin. Am J Med 2023; 136:1035-1040.e11. [PMID: 37356641 PMCID: PMC10290177 DOI: 10.1016/j.amjmed.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The study was initiated in 2020 to test the efficacy of a nitric oxide-generating lozenge (NOL) in outpatients with newly diagnosed COVID-19 to mitigate disease severity. The study enrolled high-risk patients, African American and Latino. METHODS This was a randomized, double-blinded, prospective, placebo-controlled trial. The primary endpoint was hospitalization, intensive care unit admission, intubation, dialysis, and death. The secondary endpoints were time to symptom resolution and the effect on oxygen saturation. Patients ages 50-85 years with recent COVID-19 diagnosis with at least one risk factor were recruited. Patients were randomized to either active treatment or placebo using block randomization. Blood pressure and oxygen saturation (SpO2) was measured prior to and after the first dose and each morning thereafter. RESULTS A total of 840 patients was planned, half in each of the lozenge and placebo groups. An interim review of data was prespecified. Of 524 patients, the composite endpoint occurred in 6 patients, 3 (1.1%) in each group. The time to symptom resolution was 1 day shorter on active treatment (8.7 ± 6.6 vs 9.8 ± 6.8 days) (P = .3). There was no change in SpO2 on placebo (0.0 ± 2.0%) and no significant change on treatment (0.14 ± 0.9%), P = .3. All events occurred in the first year (2020). CONCLUSIONS This study did not find a benefit of NOL therapy in COVID-19 patients and was terminated for futility. NOL treatment did not reduce mortality, hospitalization, intubation, or a reduction in symptoms duration. The study did find the NO lozenges were well tolerated in high-risk patients, without reported side effects.
Collapse
Affiliation(s)
| | - Janos Molnar
- American Institute Therapeutics, Lake Bluff, Ill
| | - John Somberg
- American Institute Therapeutics, Lake Bluff, Ill; Rush University, Chicago, Ill.
| |
Collapse
|
6
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
7
|
Yang S, Zhao M, Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1080310. [PMID: 36865559 PMCID: PMC9974150 DOI: 10.3389/fimmu.2023.1080310] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
The macrophage is an essential part of the innate immune system and also serves as the bridge between innate immunity and adaptive immune response. As the initiator and executor of the adaptive immune response, macrophage plays an important role in various physiological processes such as immune tolerance, fibrosis, inflammatory response, angiogenesis and phagocytosis of apoptotic cells. Consequently, macrophage dysfunction is a vital cause of the occurrence and development of autoimmune diseases. In this review, we mainly discuss the functions of macrophages in autoimmune diseases, especially in systemic lupus erythematosus (SLE), rheumatic arthritis (RA), systemic sclerosis (SSc) and type 1 diabetes (T1D), providing references for the treatment and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
8
|
Barandov A, Ghosh S, Jasanoff A. Probing nitric oxide signaling using molecular MRI. Free Radic Biol Med 2022; 191:241-248. [PMID: 36084790 PMCID: PMC10204116 DOI: 10.1016/j.freeradbiomed.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Collapse
Affiliation(s)
- Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Lacroix PG, Malfant I, Labra-Vázquez P, Fárfan N, Ramos-Ortiz G. Two-photon absorption-based delivery of nitric oxide from ruthenium nitrosyl complexes. Dalton Trans 2022; 51:14833-14841. [PMID: 36169419 DOI: 10.1039/d2dt02553a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the discovery of the numerous physiological roles exhibited by nitric oxide (NO), ruthenium nitrosyl (RuNO) complexes have been regarded as one of the most promising NO donors, stable, well tolerated by the body and capable of releasing NO locally and quantitatively, under light irradiation. This release can be achieved by two-photon absorption (TPA) processes, which allow the irradiation to be performed in the near infrared domain, where light has its maximum depth of penetration in biological tissues. This review provides a short introduction on the biological properties of NO, on RuNO complexes with photo-releasing capabilities, and on the origin of TPA properties in molecules. Then, the RuNO complexes with TPA capabilities are thoroughly discussed either as monometallic or polymetallic species.
Collapse
Affiliation(s)
- Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | - Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France. .,Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Norberto Fárfan
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica (CIO), A.P. 1-948, 37000 León, Gto, Mexico
| |
Collapse
|
10
|
Wei Z, Oh J, Flavell RA, Crawford JM. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature 2022; 609:348-353. [PMID: 35978195 PMCID: PMC9813773 DOI: 10.1038/s41586-022-05111-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/14/2022] [Indexed: 01/11/2023]
Abstract
The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Joonseok Oh
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Jason M Crawford
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
12
|
Lee SJ, Kim JE, Choi YJ, Jin YJ, Roh YJ, Seol AY, Song HJ, Park SH, Uddin MS, Lee SW, Hwang DY. Antioxidative Role of Hygrophila erecta (Brum. F.) Hochr. on UV-Induced Photoaging of Dermal Fibroblasts and Melanoma Cells. Antioxidants (Basel) 2022; 11:antiox11071317. [PMID: 35883808 PMCID: PMC9311957 DOI: 10.3390/antiox11071317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Antioxidants are an important strategy for treating photoaging because excessive reactive oxygen species (ROS) are produced during UV irradiation. The therapeutic effects of methanol extracts of Hygrophila erecta (Brum. F.) Hochr. (MEH) against UV-induced photoaging were examined by monitoring the changes in the antioxidant defense system, apoptosis, extracellular matrix (ECM) modulation, inflammatory response, and melanin synthesis in normal human dermal fibroblast (NHDF) cells and melanoma B16F1 cells. Four bioactive compounds, including 4-methoxycinnamic acid, 4-methoxybenzoic acid, methyl linoleate, and asterriquinone C-1, were detected in MEH, while the DPPH free radical scavenging activity was IC50 = 7.6769 µg/mL. UV-induced an increase in the intracellular ROS generation, NO concentration, SOD activity and expression, and Nrf2 expression were prevented with the MEH treatment. Significant decreases in the number of apoptotic cells, the ratio of Bax/Bcl-2, and cleaved Cas-3/Cas-3 were observed in MEH-treated NHDF cells. The MEH treatment induced the significant prevention of ECM disruption and suppressed the COX-2-induced iNOS mediated pathway, expression of inflammatory cytokines, and inflammasome activation. Finally, the expression of the melanin synthesis-involved genes and tyrosinase activity decreased significantly in the α-melanocyte-stimulating hormone (MSH)-stimulated B16F1 cells after the MEH treatment. MEH may have an antioxidative role against UV-induced photoaging by suppressing ROS-induced cellular damage.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - A Yun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh;
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
- Longevity & Wellbeing Research Center and Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
- Correspondence: ; Tel.: +82-10-7227-9769
| |
Collapse
|
13
|
Eisenbrand G, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Guth S, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling S, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Vieths S, Wätjen W, Steinberg P. Salivary nitrate/nitrite and acetaldehyde in humans: potential combination effects in the upper gastrointestinal tract and possible consequences for the in vivo formation of N-nitroso compounds-a hypothesis. Arch Toxicol 2022; 96:1905-1914. [PMID: 35504979 DOI: 10.1007/s00204-022-03296-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.
Collapse
Affiliation(s)
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805, Krefeld, Germany
| | | | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Karl-Heinz Engel
- Chair of General Food Technology, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Barbara Engeli
- Risk Assessment Division, Federal Food Safety and Veterinary Office (FSVO), Schwarzenburgstrasse 155, 3003, Bern, Switzerland
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Dirk Haller
- ZIEL, Institute for Food and Health, Technical University of Munich, 85354, Freising, Germany.,Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Michael Hellwig
- Institute of Food Chemistry, Technical University of Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Straße 3, 76187, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, Berlin, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Box 657, 78457, Konstanz, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Richard Stadler
- Institute of Food Safety and Analytic Sciences, Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne 26, Switzerland
| | - Stefan Vieths
- Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Pablo Steinberg
- Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
14
|
Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, Nils H, Christine K, Angela M, Gloria P, Daniel R, Natalie T, Gerhard E. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 2022; 96:1297-1352. [PMID: 35249149 PMCID: PMC9013691 DOI: 10.1007/s00204-022-03242-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The "totality" of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds, N-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arand Michael
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | | - Hartwig Andrea
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Hinrichsen Nils
- Food Oils and Fats Research, ADM Hamburg AG, Research, Seehafenstraße 24, 21079, Hamburg, Germany
| | - Kalisch Christine
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Mally Angela
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Pellegrino Gloria
- Scientific Affairs and Research, Luigi Lavazza SpA, Strada Settimo, 410, 10156, Turin, Italy
| | - Ribera Daniel
- Regulatory and Scientific Affairs EMEA, Cargill R&D, Havenstraat 84, 1800, Vivoorde, Belgium
| | - Thatcher Natalie
- Food Safety, Mondelez International, Bournville Lane, Birmingham, B30 2LU, UK
| | - Eisenbrand Gerhard
- Department of Toxicology and Food Chemistry, University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| |
Collapse
|
15
|
Effect of Photo-Mediated Ultrasound Therapy on Nitric Oxide and Prostacyclin from Endothelial Cells. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35983461 PMCID: PMC9384428 DOI: 10.3390/app12052617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have investigated the effect of photo-mediated ultrasound therapy (PUT) on the treatment of neovascularization. This study explores the impact of PUT on the release of the vasoactive agents nitric oxide (NO) and prostacyclin (PGI2) from the endothelial cells in an in vitro blood vessel model. In this study, an in vitro vessel model containing RF/6A chorioretinal endothelial cells was used. The vessels were treated with ultrasound-only (0.5, 1.0, 1.5 and 2.0 MPa peak negative pressure at 0.5 MHz with 10% duty cycle), laser-only (5, 10, 15 and 20 mJ/cm2 at 532 nm with a pulse width of 5 ns), and synchronized laser and ultrasound (PUT) treatments. Passive cavitation detection was used to determine the cavitation activities during treatment. The levels of NO and PGI2 generally increased when the applied ultrasound pressure and laser fluence were low. The increases in NO and PGI2 levels were significantly reduced by 37.2% and 42.7%, respectively, from 0.5 to 1.5 MPa when only ultrasound was applied. The increase in NO was significantly reduced by 89.5% from 5 to 20 mJ/cm2, when only the laser was used. In the PUT group, for 10 mJ/cm2 laser fluence, the release of NO decreased by 76.8% from 0.1 to 1 MPa ultrasound pressure. For 0.5 MPa ultrasound pressure in the PUT group, the release of PGI2 started to decrease by 144% from 15 to 20 mJ/cm2 laser fluence. The decreases in NO and PGI2 levels coincided with the increased cavitation activities in each group. In conclusion, PUT can induce a significant reduction in the release of NO and PGI2 in comparison with ultrasound-only and laser-only treatments.
Collapse
|
16
|
Maltz RM, Marte-Ortiz P, Rajasekera TA, Loman BR, Gur TL, Bailey MT. Stressor-Induced Increases in Circulating, but Not Colonic, Cytokines Are Related to Anxiety-like Behavior and Hippocampal Inflammation in a Murine Colitis Model. Int J Mol Sci 2022; 23:ijms23042000. [PMID: 35216112 PMCID: PMC8877477 DOI: 10.3390/ijms23042000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Stressor exposure increases colonic inflammation. Because inflammation leads to anxiety-like behavior, we tested whether stressor exposure in mice recovering from dextran-sulfate-sodium (DSS)-induced colitis enhances anxiety-like behavior. Mice received 2% DSS for five consecutive days prior to being exposed to a social-disruption (SDR) stressor (or being left undisturbed). After stressor exposure, their behavior was tested and colitis was assessed via histopathology and via inflammatory-cytokine measurement in the serum and colon. Cytokine and chemokine mRNA levels in the colon, mesenteric lymph nodes (MLNs), hippocampus, and amygdala were measured with RT-PCR. SDR increased anxiety-like behaviors, which correlated with serum and hippocampal IL-17A. The stressor also reduced IL-1β, CCL2, and iNOS in the colonic tissue, but increased iNOS, IFNγ, IL-17A, and TNFα in the MLNs. A network analysis indicated that reductions in colonic iNOS were related to elevated MLN iNOS and IFNγ. These inflammatory markers were related to serum and hippocampal IL-17A and associated with anxiety-like behavior. Our data suggest that iNOS may protect against extra-colonic inflammation, and when suppressed during stress it is associated with elevated MLN IFNγ, which may coordinate gut-to-brain inflammation. Our data point to hippocampal IL-17A as a key correlate of anxiety-like behavior.
Collapse
Affiliation(s)
- Ross M. Maltz
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA;
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: ; Tel.: +1-614-722-5116; Fax: +1-614-722-2979
| | - Pedro Marte-Ortiz
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
| | - Therese A. Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brett R. Loman
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
| | - Tamar L. Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael T. Bailey
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA;
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
| |
Collapse
|
17
|
Vishwakarma VK, Upadhyay PK, Gupta JK, Srivasata RK, Ansari TM. Ceiling effect of Postconditioning and Atrial Natriuretic Peptide in Cardioprotection against Ischemia Reperfusion Injury in Ovariectomized rat hearts. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Kumar V, Goyal A, Gupta JK. Role of ACE and ACE-2 in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Mazumdar R, Mondal B, Saha S, Samanta B, Mondal B. Reaction of a {Co(NO)} 8 complex with superoxide: Formation of a six coordinated [Co II(NO)(O 2-)] species followed by peroxynitrite intermediate. J Inorg Biochem 2021; 228:111698. [PMID: 34999424 DOI: 10.1016/j.jinorgbio.2021.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
A nitrosyl complex of cobalt(II) porphyrinate, [Co(F20TPP2-)(NO)], (F20TPPH2 = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin) having {Co(NO)}8 configuration was synthesized and characterized by means of spectroscopic and structural analyses. Single crystal X-ray structure of the complex revealed the square pyramidal geometry around the cobalt center with a bent nitrosyl group. It reacts with superoxide (O2-) ion in CH2Cl2 at -40 °C to result in the corresponding nitrite (NO2-) complex. Involvement of a cobalt(II)-peroxynitrite intermediate is proposed in the course of the reaction. Moreover, spectroscopic studies suggested the formation of a transient six-coordinated [CoII(NO)(O2-)] species.
Collapse
Affiliation(s)
- Rakesh Mazumdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Baishakhi Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Shankhadeep Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Bapan Samanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
20
|
Burov ON, Kletskii ME, Kurbatov SV, Lisovin AV, Fedik NS. Mechanisms of nitric oxide generation in living systems. Nitric Oxide 2021; 118:1-16. [PMID: 34688861 DOI: 10.1016/j.niox.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022]
Abstract
In modern chemical and biochemical studies, special attention is paid to molecular systems capable of generating nitric oxide (NO), which is one of the most important signalling molecules in the body and can trigger a whole cascade of reactions. Despite the importance of this molecule, the mechanisms of its formation in living organisms remain a subject of debate. This review combines the most important methods of releasing NO from endogenous and exogenous sources. The history of endogenous NO donors dates back more than 150 years, since the synthesis of nitroglycerin, which remains the standard vasodilator today, even though it is known that it and many other similar compounds lead to the development of a nitrate tolerance. Particular awareness is devoted to the mechanisms of NO formation without the participation of enzymes, since these methods are most important for creating exogenous sources of NO as drugs. The study of NO formation methods is centred on both the creation of new NO donors and understanding the mechanisms of tolerance to them.
Collapse
Affiliation(s)
- Oleg N Burov
- Department of Chemistry, Southern Federal University, 7, Zorge St., Rostov-on-Don, 344090, Russia.
| | - Mikhail E Kletskii
- Department of Chemistry, Southern Federal University, 7, Zorge St., Rostov-on-Don, 344090, Russia
| | - Sergey V Kurbatov
- Department of Chemistry, Southern Federal University, 7, Zorge St., Rostov-on-Don, 344090, Russia
| | - Anton V Lisovin
- Department of Chemistry, Southern Federal University, 7, Zorge St., Rostov-on-Don, 344090, Russia
| | - Nikita S Fedik
- Department of Chemistry, Southern Federal University, 7, Zorge St., Rostov-on-Don, 344090, Russia
| |
Collapse
|
21
|
Zhang M, Fang Z, Zhang H, Cui M, Wang M, Liu K. Reversing tumor immunosuppressive microenvironment via targeting codelivery of CpG ODNs/PD-L1 peptide antagonists to enhance the immune checkpoint blockade-based anti-tumor effect. Eur J Pharm Sci 2021; 168:106044. [PMID: 34666183 DOI: 10.1016/j.ejps.2021.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
In order to reverse tumor immunosuppressive microenvironment and improve antitumor immune effect based on immune checkpoint blocking, a mannose-modified liposome-based CpG ODNs and PD-L1 antagonistic peptides (P) co-delivery system (HA/M-Lipo CpG-P) was constructed, in which hyaluronic acid (HA) coating was supposed to improve the systemic circulation stability and thereby promote its accumulation in tumor tissues. When the HA/M-Lipo CpG-P complexes enter the tumor tissues, HA will be hydrolyzed under the action of hyaluronidase, exposing P peptides. Then, P peptides linked by octapeptides that can be cleaved by matrix metalloproteinases (MMPs) are released into tumor tissues under the action of MMPs, exerting a blocking effect in the PD-1/PD-L1 pathway. The M-Lipo CpG complexes can recognize macrophage surface mannose receptors through its surface modified mannose molecules, and promote the intracellular delivery of CpG ODNs, thereby activating macrophages. The results showed that HA/M-Lipo CpG-P complexes successfully reversed M2-type macrophages in tumor microenvironment (TME) to M1, thereby activating anti-tumor related immune cells and inhibiting tumor growth. Moreover, the HA/M-Lipo CpG-P complexes showed a better tumor inhibitory effect than the HA/M-Lipo CpG or the HA/M-Lipo-P (monotherapy) treatment groups. Overall, HA/M-Lipo CpG-P complexes provide a promising co-delivery strategy for targeting tumors to improve the antitumor effect based on immune checkpoint blockade.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Haitao Zhang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingfu Wang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China; School of biological sciences, University Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kehai Liu
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China.
| |
Collapse
|
22
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
23
|
Diterpenoids Isolated from Podocarpus macrophyllus Inhibited the Inflammatory Mediators in LPS-Induced HT-29 and RAW 264.7 Cells. Molecules 2021; 26:molecules26144326. [PMID: 34299601 PMCID: PMC8307039 DOI: 10.3390/molecules26144326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023] Open
Abstract
Species of Podocarpus are used traditionally in their native areas for the treatment of fevers, asthma, coughs, cholera, chest pain, arthritis, rheumatism, and sexually transmitted diseases. To identify natural products having efficacy against inflammatory bowel disease (IBD), we identified a new, 16-hydroxy-4β-carboxy-O-β-D-glucopyranosyl-19-nor-totarol (4) together with three known diterpenoids from P. macrophyllus. Furthermore, all the extracts, fractions, and isolates 1–4 were investigated for their anti-inflammatory effects by assessing the expression on nitric oxide (NO) production and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 and HT-29 cells. Among them, nagilactone B (2) exhibited a potent anti-inflammatory effect against NO production on RAW 264.7 cells; therefore, nagilactone B was further assessed for anti-inflammatory activity. Western blot analysis revealed that nagilactone B significantly decreased the expression of LPS-stimulated protein, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and phosphorylated extracellular regulated kinase (pERK)1/2. In addition, nagilactone B downregulated tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 levels in LPS-induced macrophages and colonic epithelial cells. To our best knowledge, this is the first report on the inhibitory effect of nagilactone B (pure state) and rakanmakilactone G against NO production in LPS-stimulated RAW 264.7 cells. Thus, diterpenoids isolated from P. macrophyllus could be employed as potential therapeutic phytochemicals for IBD.
Collapse
|
24
|
Exploring the role of Aquaporins (AQPs) in LPS induced systemic inflammation and the ameliorative effect of Garcinia in male Wistar rat. Inflammopharmacology 2021; 29:801-823. [PMID: 34106384 DOI: 10.1007/s10787-021-00832-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
The Aquaporins (AQPs) could prove to be striking targets of inflammation. The aim of this study was to study the involvement of AQPs and explore the anti-inflammatory activity of Garcinia extract in LPS induced acute systemic inflammation in Wistar rats. Adult male Wistar rats (n = 6) were pretreated with Garcinia orally twice for 7 days, followed by a single intraperitoneal dose (5.5 mg/kgbw) of LPS. Serum ALT, AST, ALP, Creatinine, Urea and BUN, nitric oxide, prostaglandin, cytokine and chemokine levels were measured. LC-MS analysis of Garcinia was performed to identify the phytoconstituents present. The iNOS and COX enzyme activity were determined in the target tissues. qPCR analysis of inos, cox-2 and aqps was performed. Relative protein expression of AQPs was studied by Western blot analysis. Molecular docking studies were performed to study the interaction of garcinol and hydroxycitric acid, the two important phytoconstituents of Garcinia with AQP. The qPCR analysis showed tissue-specific up-regulation of aqp1, aqp3, aqp4 and aqp8 in LPS induced rats. Garcinia extract treatment effectively lowered the mRNA expression of these AQPs. Garcinia extract significantly inhibited the LPS-induced NO, prostaglandin, cytokine and chemokine production in serum and also decreased tissue-specific transcript level of inos and cox-2, thus suggesting the anti-inflammatory role of Garcinia. Also, docking studies revealed interactions of garcinol and hydroxycitric acid with AQP1, 3, 4 and 8. Therefore, the present study suggests the possible involvement of AQP1, 3, 4 and 8 in inflammation and the efficacy of Garcinia extract as an anti-inflammatory agent. Therefore, AQPs can act as prognostic markers of inflammation and can be targeted with Garcinia extract.
Collapse
|
25
|
Marletta MA. Revisiting Nitric Oxide Signaling: Where Was It, and Where Is It Going? Biochemistry 2021; 60:3491-3496. [PMID: 34096266 DOI: 10.1021/acs.biochem.1c00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitric oxide (NO) has long been known to be an intermediate in bacterial pathways of denitrification. Only in the middle to late 1980s was it found to play a central role in a much broader biological context. For example, it is now well established that NO acts as a signaling agent in metazoans, including humans, yet NO is toxic and very reactive under biological conditions. How is the biology in which NO plays a role controlled? How is NO used and the inherent toxicity avoided? Looking back at the initial discovery time, to the present, and on to the future provides many answers to questions such as those listed above.
Collapse
Affiliation(s)
- Michael A Marletta
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, California 94720-3220, United States
| |
Collapse
|
26
|
Coimbra DF, Cintra CH, Lourenço LCL, Parreira RLT, Orenha RP, Caramori GF. Are DFT Methods Able to Predict Reduction Potentials of Ruthenium Nitrosyl Complexes Accurately? J Phys Chem A 2020; 124:6186-6192. [DOI: 10.1021/acs.jpca.0c03718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel F. Coimbra
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040−900, Brazil
| | - Claudia H. Cintra
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Luiz C. L. Lourenço
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Renato P. Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Giovanni F. Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040−900, Brazil
| |
Collapse
|
27
|
Abstract
Experiments in culture systems where one cell type is provided with abundant nutrients and oxygen have been used to inform much of our understanding of cancer metabolism. However, many differences have been observed between the metabolism of tumors and the metabolism of cancer cells grown in monoculture. These differences reflect, at least in part, the presence of nonmalignant cells in the tumor microenvironment and the interactions between those cells and cancer cells. However, less is known about how the metabolism of various tumor stromal cell types differs from that of cancer cells, and how this difference might inform therapeutic targeting of metabolic pathways. Emerging data have identified both cooperative and competitive relationships between different cell types in a tumor, and this review examines how four abundant stromal cell types in the tumor microenvironment, fibroblasts, T cells, macrophages, and endothelial cells, contribute to the metabolism of tumors.
Collapse
Affiliation(s)
- Allison N. Lau
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
28
|
Zhao H, Raines LN, Huang SCC. Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells 2020; 9:cells9030562. [PMID: 32121028 PMCID: PMC7140477 DOI: 10.3390/cells9030562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune activation is now understood to be fundamentally linked to intrinsic and/or extrinsic metabolic processes which are essential for immune cells to survive, proliferate, and perform their effector functions. Moreover, disruption or dysregulation of these pathways can result in detrimental outcomes and underly a number of pathologies in both communicable and non-communicable diseases. In this review, we discuss how the metabolism of carbohydrates and amino acids in particular can modulate innate immunity and how perturbations in these pathways can result in failure of these immune cells to properly function or induce unfavorable phenotypes.
Collapse
Affiliation(s)
- Haoxin Zhao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
| | - Lydia N. Raines
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-3909
| |
Collapse
|
29
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020; 59:3881-3885. [DOI: 10.1002/anie.201913458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
30
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
31
|
Lancaster JR. Historical origins of the discovery of mammalian nitric oxide (nitrogen monoxide) production/physiology/pathophysiology. Biochem Pharmacol 2020; 176:113793. [PMID: 31923387 DOI: 10.1016/j.bcp.2020.113793] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
The award of the 1998 Nobel Prize in Physiology or Medicine to Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad "for their discoveries concerning nitric oxide as a signaling molecule in the cardiovascular system" highlighted the discovery of NO in mammals. This breakthrough also coincided with the discoveries of the role of NO as a cytotoxic effector in the immune system and as an intercellular neurotransmitter in the nervous system. This brief overview describes the chronological development of this trilinear convergence in 1986-1988, including background chemistry and history of human/nitrogen oxide interactions in general.
Collapse
Affiliation(s)
- Jack R Lancaster
- Department of Pharmacology & Chemical Biology University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
32
|
Fischer A, Lüersen K, Schultheiß G, de Pascual-Teresa S, Mereu A, Ipharraguerre IR, Rimbach G. Supplementation with nitrate only modestly affects lipid and glucose metabolism in genetic and dietary-induced murine models of obesity. J Clin Biochem Nutr 2019; 66:24-35. [PMID: 32001953 PMCID: PMC6983433 DOI: 10.3164/jcbn.19-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023] Open
Abstract
To gain a better understanding of how nitrate may affect carbohydrate and lipid metabolism, female wild-type mice were fed a high-fat, high-fructose diet supplemented with either 0, 400, or 800 mg nitrate/kg diet for 28 days. Additionally, obese female db/db mice were fed a 5% fat diet supplemented with the same levels and source of nitrate. Nitrate decreased the sodium-dependent uptake of glucose by ileal mucosa in wild-type mice. Moreover, nitrate significantly decreased triglyceride content and mRNA expression levels of Pparγ in liver and Glut4 in skeletal muscle. Oral glucose tolerance as well as plasma cholesterol, triglyceride, insulin, leptin, glucose and the activity of ALT did not significantly differ between experimental groups but was higher in db/db mice than in wild-type mice. Nitrate changed liver fatty acid composition and mRNA levels of Fads only slightly. Further hepatic genes encoding proteins involved in lipid and carbohydrate metabolism were not significantly different between the three groups. Biomarkers of inflammation and autophagy in the liver were not affected by the different dietary treatments. Overall, the present data suggest that short-term dietary supplementation with inorganic nitrate has only modest effects on carbohydrate and lipid metabolism in genetic and dietary-induced mouse models of obesity.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerhard Schultheiß
- Animal Welfare Officer, University of Kiel, Hermann-Rodewald-Strasse 12, 24118 Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Alessandro Mereu
- Yara Iberian, C/ Infanta Mercedes 31 - 2nd floor, 28020 Madrid, Spain
| | - Ignacio R Ipharraguerre
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| |
Collapse
|
33
|
Esmaeeli S, Hoseinirad SM, Rajabian M, Taheri AR, Berenji F, Hashemy SI. Evaluation of the oxidant-antioxidant balance, isoprostane and quantitative CRP in patients with cutaneous leishmaniasis. Microb Pathog 2019; 137:103738. [PMID: 31513893 DOI: 10.1016/j.micpath.2019.103738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 09/08/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Cutaneous leishmaniasis is a dermal disease caused by several species of the genus Leishmania. It is an endemic disease with 1.2 million new cases occurring annually and mostly in developing countries. Oxidative stress is a condition of an imbalance in oxidant/antioxidant which may play a role in many different pathologic conditions. For the first time in this study, we introduced isoprostane as a reliable index for oxidative stress in patients suffering from leishmaniasis. We also investigated the possible relation between quantitative CRP and this disease. METHOD AND MATERIAL We collected 5 ml blood of 30 patients in addition to the same sample of the control healthy group. After applying appropriate methods, the plasma and serum specimens were extracted in order to conduct oxidant-antioxidant balance and CRP tests in serum as well as measuring isoprostane factor in plasma. STATISTICAL ANALYSIS We used T-student, ANOVA as well as linear regression to analyze the gathered data with a 0.05 confidence interval in SPSS environment. RESULTS The results showed a significant difference between the two groups in terms of the oxidant-antioxidant balance. Also, isoprostane and quantitative CRP levels were substantially higher in patients. There was no significant relationship between the mentioned factors and wound size and number. CONCLUSION Leishmania Amastigotes plays an important role in disturbing the oxidant-antioxidant balance resulting in inflammation and stress in patients. Furthermore, isoprostane was confirmed as a reliable index for evaluating oxidative stress in patients.
Collapse
Affiliation(s)
- Sara Esmaeeli
- Department of Clinical Biochemistry, Faculty of Medicine,d Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Hoseinirad
- Department of Clinical Biochemistry, Faculty of Medicine,d Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rajabian
- Department of Biochemistry, Payame-Noor University, Mashhad, Iran
| | - Ahmad Reza Taheri
- Department of Dermatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Berenji
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine,d Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Thompson MD, Cooney RV. The Potential Physiological Role of γ-Tocopherol in Human Health: A Qualitative Review. Nutr Cancer 2019; 72:808-825. [DOI: 10.1080/01635581.2019.1653472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mika D. Thompson
- Office of Public Health Studies, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| | - Robert V. Cooney
- Office of Public Health Studies, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| |
Collapse
|
35
|
Ghaedrahmat Z, Vosoughi M, Tahmasebi Birgani Y, Neisi A, Goudarzi G, Takdastan A. Prediction of O 3 in the respiratory system of children using the artificial neural network model and with selection of input based on gamma test, Ahvaz, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10941-10950. [PMID: 30783934 DOI: 10.1007/s11356-019-04389-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
In recent years, concerns over the issue of air pollution have increased as one of the significant environmental and health problems. Air pollutants can be toxic or harmful to the life of plants, animals, and humans. Contrast to primary pollutants, ozone is a secondary pollutant that is produced by the reaction between primary precursors in the atmosphere. The average of air pollutant data was compiled for the purpose of analyzing their correlation with the pulmonary function of students and the FENO biomarker from the air pollutants of the Environmental Protection Agency. According to the average of 3 days, the concentration of ozone in the (S3) region was higher than the other regions, and this level was significantly different from the ANOVA test (p < 0.05). The results of artificial neural network modeling for three particular combinations in the cold season, two hidden layers with 9 and 12 neurons, with R2 = 0.859 and in the warm season, layer with 13 neurons, with R2 = 0.74, showed the best performance.
Collapse
Affiliation(s)
- Zeinab Ghaedrahmat
- Department of Environmental Health Engineering, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Vosoughi
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yaser Tahmasebi Birgani
- Department of Environmental Health Engineering, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Abdolkazem Neisi
- Department of Environmental Health Engineering, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Department of Environmental Health Engineering, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Li CX, Zhang Y, Dong X, Zhang L, Liu MD, Li B, Zhang MK, Feng J, Zhang XZ. Artificially Reprogrammed Macrophages as Tumor-Tropic Immunosuppression-Resistant Biologics to Realize Therapeutics Production and Immune Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807211. [PMID: 30803083 DOI: 10.1002/adma.201807211] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/17/2019] [Indexed: 05/24/2023]
Abstract
To engineer patient-derived cells into therapy-purposed biologics is a promising solution to realize personalized treatments. Without using gene-editing technology, a live cell-typed therapeutic is engineered for tumor treatment by artificially reprogramming macrophages with hyaluronic acid-decorated superparamagnetic iron oxide nanoparticles (HIONs). This nanoparticle-assisted cell-reprogramming strategy demonstrates profound advantages, due to the combined contributions from the biological regulation of HIONs and the intrinsic nature of macrophages. Firstly, the reprogrammed macrophages present a substantial improvement in their innate capabilities, such as more effective tumor targeting and more efficient generation of bioactive components (e.g., reactive oxygen species, bioactive cytokines) to suppress tumor growth. Furthermore, this cell therapeutic exhibits cytostatic/proapoptotic effects specific to cancer cells. Secondly, HIONs enable macrophages more resistant to the intratumoral immunosuppressive environment. Thirdly, the macrophages are endowed with a strong ability to prime in situ protumoral M2 macrophages into antitumor M1 phenotype in a paracrine-like manner. Consequently, a synergistic tumor-inhibition effect is achieved. This study shows that engineering nanomaterial-reprogrammed live cells as therapeutic biologics may be a more preferable option to the commonly used approaches where nanomaterials are administrated to induce bioresponse of certain cells in vivo.
Collapse
Affiliation(s)
- Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xue Dong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Miao-Deng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ming-Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Park EJ, Sang-Ngern M, Chang LC, Pezzuto JM. Physalactone and 4β-Hydroxywithanolide E Isolated from Physalis peruviana Inhibit LPS-Induced Expression of COX-2 and iNOS Accompanied by Abatement of Akt and STAT1. JOURNAL OF NATURAL PRODUCTS 2019; 82:492-499. [PMID: 30649869 DOI: 10.1021/acs.jnatprod.8b00861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In previous studies, withanolides isolated from Physalis peruviana were found to exhibit anti-inflammatory potential by suppressing nitrite production induced by lipopolysaccharide (LPS) treatment. Currently, we selected two of the most potent compounds, 4β-hydroxywithanolide E (1) and physalactone (2), to examine the underlying mechanism of action. With LPS-stimulated RAW 264.7 cells in culture, the compounds inhibited the mRNA and protein expression of iNOS and COX-2. To determine which upstream signaling proteins were involved in these effects, phosphorylation levels of three mitogen-activated protein kinases (MAPKs) including ERK1/2, JNK1/2, and p38, were examined, but found unaffected. Similarly, the degradation of IκBα was not attenuated by the compounds. However, phosphorylation of Akt at the Ser-473 residue was inhibited, as was the phosphorylation of STAT1. Interestingly, the compounds also reduced the protein level of total STAT1, possibly by ubiquitin-dependent protein degradation. In sum, these results indicate the potential of 1 and 2 to mediate anti-inflammatory effects through the unexpected mechanism of inhibiting the transcription of iNOS and COX-2 via Akt- and STAT1-related signaling pathways.
Collapse
Affiliation(s)
- Eun-Jung Park
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , New York 11201 , United States
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
| | - Mayuramas Sang-Ngern
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
- School of Cosmetic Science , Mae Fah Luang University , Tasud, Muang, Chiang Rai , Thailand
| | - Leng Chee Chang
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
| | - John M Pezzuto
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , New York 11201 , United States
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
| |
Collapse
|
38
|
He HY, Henderson AC, Du YL, Ryan KS. Two-Enzyme Pathway Links l-Arginine to Nitric Oxide in N-Nitroso Biosynthesis. J Am Chem Soc 2019; 141:4026-4033. [DOI: 10.1021/jacs.8b13049] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Harmatha J, Buděšínský M, Jurášek M, Zimmermann T, Drašar P, Zídek Z, Kmoníčková E, Vejvodová L. Structural modification of trilobolide for upgrading its immunobiological properties and reducing its cytotoxic action. Fitoterapia 2019; 134:88-95. [PMID: 30731148 DOI: 10.1016/j.fitote.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Juraj Harmatha
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic.
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Michal Jurášek
- University of Chemistry and Technology in Prague, CZ-1660 10 Prague 6, Czech Republic
| | - Tomáš Zimmermann
- University of Chemistry and Technology in Prague, CZ-1660 10 Prague 6, Czech Republic
| | - Pavel Drašar
- University of Chemistry and Technology in Prague, CZ-1660 10 Prague 6, Czech Republic
| | - Zdeněk Zídek
- Institute of Experimental Medicine, The Czech Academy of Sciences, CZ-142 20 Prague 4, Czech Republic
| | - Eva Kmoníčková
- Institute of Experimental Medicine, The Czech Academy of Sciences, CZ-142 20 Prague 4, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Lucie Vejvodová
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, CZ-323 00 Pilsen, Czech Republic
| |
Collapse
|
40
|
Rahman FU, Park DR, Joe Y, Jang KY, Chung HT, Kim UH. Critical Roles of Carbon Monoxide and Nitric Oxide in Ca 2+ Signaling for Insulin Secretion in Pancreatic Islets. Antioxid Redox Signal 2019; 30:560-576. [PMID: 29486595 DOI: 10.1089/ars.2017.7380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations, resulting in insulin secretion from pancreatic β-cells through the sequential production of Ca2+ mobilizing messengers nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR). We previously found that NAADP activates the neuronal type of nitric oxide (NO) synthase (nNOS), the product of which, NO, activates guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP), which, in turn, induces cADPR formation. Our aim was to explore the relationship between Ca2+ signals and gasotransmitters formation in insulin secretion in β-cells upon GLP-1 stimulation. RESULTS We show that NAADP-induced cGMP production by nNOS activation is dependent on carbon monoxide (CO) formation by heme oxygenase-2 (HO-2). Treatment with exogenous NO and CO amplifies cGMP formation, Ca2+ signal strength, and insulin secretion, whereas this signal is impeded when exposed to combined treatment with NO and CO. Furthermore, CO potentiates cGMP formation in a dose-dependent manner, but higher doses of CO inhibited cGMP formation. Our data with regard to zinc protoporphyrin, a HO inhibitor, and HO-2 knockdown, revealed that NO-induced cADPR formation and insulin secretion are dependent on HO-2. Consistent with this observation, the administration of NO or CO donors to type 2 diabetic mice improved glucose tolerance, but the same did not hold true when both were administered concurrently. INNOVATION Our research reveals the role of two gas transmitters, CO and NO, for Ca2+ second messengers formation in pancreatic β-cells. CONCLUSION These results demonstrate that CO, the downstream regulator of NO, plays a role in bridging the gap between the Ca2+ signaling messengers during insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dae-Ryoung Park
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yeonsoo Joe
- 2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Kyu Yun Jang
- 4 Department of Pathology Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hun Taeg Chung
- 3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Uh-Hyun Kim
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,5 Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
41
|
Bezerra B, Silva S, Oliveira A, Silva C, Parente R, Andrade T, Evangelista J, Pinheiro D. Avaliação do estresse e do desempenho de suínos na fase de creche, empregando-se técnicas de enriquecimento ambiental. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O enriquecimento ambiental é uma ferramenta importante dentro dos sistemas de produção, a fim de promover o bem-estar e favorecer a saúde dos animais. Portanto, o objetivo deste trabalho foi avaliar o efeito do enriquecimento ambiental sobre o estresse de suínos na fase de creche. Foram utilizados 32 leitões, alojados em granja experimental, distribuídos em quatro grupos (n= 8): corda, corrente, garrafa PET e controle negativo. Amostras de sangue foram coletadas no início e no final do experimento para contagem de leucócitos circulantes e determinação de antioxidantes não enzimáticos, óxido nítrico, malondialdeído, e de saliva para avaliação do cortisol. Foi aplicado etograma e fez-a ganho médio de peso diário e a conversão alimentar. Os parâmetros avaliados no primeiro dia do experimento não variaram entre os grupos (P>0,05). No último dia do experimento, os valores de neutrófilos e da relação neutrófilo/linfócito foram mais elevados nos leitões do grupo corrente, assim como os valores de cortisol salivar (P<0,05). O ácido úrico apresentou-se mais elevado nos leitões do grupo corrente e o malondialdeído (MDA) nos do grupo garrafa (P< 0,05). Os enriquecimentos ambientais estimularam comportamentos positivos nos leitões, tendo a corda se destacado como o mais atrativo. Por outro lado, a corrente apresentou efeito negativo sobre a fisiologia dos animais, gerando estresse, assim como a garrafa, que induziu a peroxidação lipídica e um menor ganho de peso nos leitões.
Collapse
|
42
|
Grabarczyk DB, Ash PA, Myers WK, Dodd EL, Vincent KA. Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster. Dalton Trans 2019; 48:13960-13970. [DOI: 10.1039/c9dt00924h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron–sulfur clusters are exceptionally tuneable protein cofactors, and as one of their many roles they are involved in biological responses to nitrosative stress.
Collapse
Affiliation(s)
- Daniel B. Grabarczyk
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Philip A. Ash
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - William K. Myers
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Erin L. Dodd
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Kylie A. Vincent
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|
43
|
|
44
|
Sasaki I, Amabilino S, Mallet-Ladeira S, Tassé M, Sournia-Saquet A, Lacroix PG, Malfant I. Further studies on the photoreactivities of ruthenium–nitrosyl complexes with terpyridyl ligands. NEW J CHEM 2019. [DOI: 10.1039/c9nj02398d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of the ruthenium terpyridyl complex to NO gas leads to the ruthenium–NO complex with nitrosation of the ligand.
Collapse
|
45
|
Abdulle AE, van Goor H, Mulder DJ. Hydrogen Sulfide: A Therapeutic Option in Systemic Sclerosis. Int J Mol Sci 2018; 19:E4121. [PMID: 30572591 PMCID: PMC6320961 DOI: 10.3390/ijms19124121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a lethal disease that is characterized by auto-immunity, vascular injury, and progressive fibrosis of multiple organ systems. Despite the fact that the exact etiology of SSc remains unknown, oxidative stress has been associated with a large range of SSc-related complications. In addition to the well-known detrimental properties of reactive oxygen species (ROS), gasotransmitters (e.g., nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S)) are also thought to play an important role in SSc. Accordingly, the diverse physiologic actions of NO and CO and their role in SSc have been previously studied. Recently, multiple studies have also shown the importance of the third gasotransmitter H₂S in both vascular physiology and pathophysiology. Interestingly, homocysteine (which is converted into H₂S through the transsulfuration pathway) is often found to be elevated in SSc patients; suggesting defects in the transsulfuration pathway. Hydrogen sulfide, which is known to have several effects, including a strong antioxidant and vasodilator effect, could potentially play a prominent role in the initiation and progression of vasculopathy. A better understanding of the actions of gasotransmitters, like H₂S, in the development of SSc-related vasculopathy, could help to create early interventions to attenuate the disease course. This paper will review the role of H₂S in vascular (patho-)physiology and potential disturbances in SSc. Moreover, current data from experimental animal studies will be reviewed. Lastly, we will evaluate potential interventional strategies.
Collapse
Affiliation(s)
- Amaal Eman Abdulle
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Douwe J Mulder
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
46
|
Guo Y, Marletta MA. Structural Insight into H‐NOX Gas Sensing and Cognate Signaling Protein Regulation. Chembiochem 2018; 20:7-19. [DOI: 10.1002/cbic.201800478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
| | - Michael A. Marletta
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of Molecular and Cell BiologyUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of ChemistryUniversity of California, Berkeley Berkeley, CA 94720 USA
| |
Collapse
|
47
|
Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide 2018; 77:65-74. [PMID: 29704567 PMCID: PMC6919197 DOI: 10.1016/j.niox.2018.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.
Collapse
Affiliation(s)
- Benjamin G Horst
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Marletta
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
48
|
Bender D, Schwarz G. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Lett 2018; 592:2126-2139. [DOI: 10.1002/1873-3468.13089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Daniel Bender
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
| | - Guenter Schwarz
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne; Germany
| |
Collapse
|
49
|
Zheng DW, Chen Y, Li ZH, Xu L, Li CX, Li B, Fan JX, Cheng SX, Zhang XZ. Optically-controlled bacterial metabolite for cancer therapy. Nat Commun 2018; 9:1680. [PMID: 29700283 PMCID: PMC5920064 DOI: 10.1038/s41467-018-03233-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 01/15/2023] Open
Abstract
Bacteria preferentially accumulating in tumor microenvironments can be utilized as natural vehicles for tumor targeting. However, neither current chemical nor genetic approaches alone can fully satisfy the requirements on both stability and high efficiency. Here, we propose a strategy of "charging" bacteria with a nano-photocatalyst to strengthen their metabolic activities. Carbon nitride (C3N4) is combined with Escherichia coli (E. coli) carrying nitric oxide (NO) generation enzymes for photo-controlled bacterial metabolite therapy (PMT). Under light irradiation, photoelectrons produced by C3N4 can be transferred to E. coli to promote the enzymatic reduction of endogenous NO3- to cytotoxic NO with a 37-fold increase. In a mouse model, C3N4 loaded bacteria are perfectly accumulated throughout the tumor and the PMT treatment results in around 80% inhibition of tumor growth. Thus, synthetic materials-remodeled microorganism may be used to regulate focal microenvironments and increase therapeutic efficiency.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lu Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
50
|
Trivedi NH, Yu JJ, Hung CY, Doelger RP, Navara CS, Armitige LY, Seshu J, Sinai AP, Chambers JP, Guentzel MN, Arulanandam BP. Microbial co-infection alters macrophage polarization, phagosomal escape, and microbial killing. Innate Immun 2018; 24:152-162. [PMID: 29482417 PMCID: PMC6852389 DOI: 10.1177/1753425918760180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrophages are important innate immune cells that respond to microbial insults.
In response to multi-bacterial infection, the macrophage activation state may
change upon exposure to nascent mediators, which results in different bacterial
killing mechanism(s). In this study, we utilized two respiratory bacterial
pathogens, Mycobacterium bovis (Bacillus Calmette
Guẻrin, BCG) and Francisella tularensis live
vaccine strain (LVS) with different phagocyte evasion mechanisms, as model
microbes to assess the influence of initial bacterial infection on the
macrophage response to secondary infection. Non-activated (M0) macrophages or
activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene)
were first infected with BCG for 24–48 h, subsequently challenged with LVS, and
the results of inhibition of LVS replication in the macrophages was assessed.
BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling
pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS.
BCG infection had little effect on LVS escape from phagosomes into the cytosol
in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced
endosomal acidification, as well as inhibiting LVS replication. Pre-infection
with BCG did not induce NO production and thus did not further reduce LVS
replication. This study provides a model for studies of the complexity of
macrophage activation in response to multi-bacterial infection.
Collapse
Affiliation(s)
- Nikita H Trivedi
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Jieh-Juen Yu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Chiung-Yu Hung
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Richard P Doelger
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Christopher S Navara
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | | | - Janakiram Seshu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Anthony P Sinai
- 3 The Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, USA
| | - James P Chambers
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - M Neal Guentzel
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Bernard P Arulanandam
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| |
Collapse
|