1
|
Chu IT, Hutcheson BO, Malsch HR, Pielak GJ. Macromolecular Crowding by Polyethylene Glycol Reduces Protein Breathing. J Phys Chem Lett 2023; 14:2599-2605. [PMID: 36881386 DOI: 10.1021/acs.jpclett.3c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Most efforts to understand macromolecular crowding focus on global (i.e., complete) unfolding, but smaller excursions, often called breathing, promote aggregation, which is associated with several diseases and the bane of pharmaceutical and commercial protein production. We used NMR to assess the effects of ethylene glycol (EG) and polyethylene glycols (PEGs) on the structure and stability of the B1 domain of protein G (GB1). Our data show that EG and PEGs stabilize GB1 differently. EG interacts with GB1 more strongly than PEGs, but neither affects the structure of the folded state. EG and 12000 g/mol PEG stabilize GB1 more than PEGs of intermediate size, but EG and smaller PEGs stabilize GB1 enthalpically while the largest PEG acts entropically. Our key finding is that PEGs turn local unfolding into global unfolding, and meta-analysis of published data supports this conclusion. These efforts provide knowledge that can be applied to improve biological drugs and commercial enzymes.
Collapse
Affiliation(s)
- I-Te Chu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Brent O Hutcheson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Hudson R Malsch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
2
|
Hefni ME, Bergström M, Lennqvist T, Fagerström C, Witthöft CM. Simultaneous quantification of trimethylamine N-oxide, trimethylamine, choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine in clinical and food samples using HILIC-LC-MS. Anal Bioanal Chem 2021; 413:5349-5360. [PMID: 34258650 PMCID: PMC8405501 DOI: 10.1007/s00216-021-03509-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023]
Abstract
Trimethylamine-N-oxide (TMAO), a microbiome-derived metabolite from the metabolism of choline, betaine, and carnitines, is associated to adverse cardiovascular outcomes. A method suitable for routine quantification of TMAO and its precursors (trimethylamine (TMA), choline, betaine, creatinine, and propionyl-, acetyl-, and l-carnitine) in clinical and food samples has been developed based on LC-MS. TMA was successfully derivatized using iodoacetonitrile, and no cross-reactions with TMAO or the other methylamines were detected. Extraction from clinical samples (plasma and urine) was performed after protein precipitation using acetonitrile:methanol. For food samples (meatballs and eggs), water extraction was shown to be sufficient, but acid hydrolysis was required to release bound choline before extraction. Baseline separation of the methylamines was achieved using a neutral HILIC column and a mobile phase consisting of 25 mmol/L ammonium formate in water:ACN (30:70). Quantification was performed by MS using external calibration and isotopic labelled internal standards. The assay proved suitable for both clinical and food samples and was linear from ≈ 0.1 up to 200 μmol/L for all methylamines except for TMA and TMAO, which were linear up to 100 μmol/L. Recoveries were 91–107% in clinical samples and 76–98% in food samples. The interday (n=8, four duplicate analysis) CVs were below 9% for all metabolites in clinical and food samples. The method was applied successfully to determine the methylamine concentrations in plasma and urine from the subjects participating in an intervention trial (n=10) to determine the effect of animal food ingestion on methylamine concentrations.
Collapse
Affiliation(s)
- Mohammed E Hefni
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden.
- Food Industries Department, Faculty of Agriculture, Mansoura University, P.O. Box 46, Mansoura, 35516, Egypt.
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Torbjörn Lennqvist
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Cecilia Fagerström
- Department of Health and Caring Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Cornelia M Witthöft
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| |
Collapse
|
3
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
4
|
The roles and applications of chaotropes and kosmotropes in industrial fermentation processes. World J Microbiol Biotechnol 2020; 36:89. [PMID: 32507915 DOI: 10.1007/s11274-020-02865-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Chaotropicity has long been recognised as a property of some compounds. Chaotropes tend to disrupt non-covalent interactions in biological macromolecules (e.g. proteins and nucleic acids) and supramolecular assemblies (e.g. phospholipid membranes). This results in the destabilisation and unfolding of these macromolecules and assemblies. Unsurprisingly, these compounds are typically harmful to living cells since they act against multiple targets, comprising cellular integrity and function. Kosmotropes are the opposite of chaotropes and these compounds promote the ordering and rigidification of biological macromolecules and assemblies. Since many biological macromolecules have optimum levels of flexibility, kosmotropes can also inhibit their activity and can be harmful to cells. Some products of industrial fermentations, most notably alcohols, are chaotropic. This property can be a limiting factor on rates of production and yields. It has been hypothesised that the addition of kosmotropes may mitigate the chaotropicity of some fermentation products. Some microbes naturally adapt to chaotropic environments by producing kosmotropic compatible solutes. Exploitation of this in industrial fermentations has been hampered by scientific and economic issues. The cost of the kosmotropes and their removal during purification needs to be considered. We lack a complete understanding of the chemistry of chaotropicity and a robust, quantitative framework for estimating overall chaotropicities of mixtures. This makes it difficult to predict the amount of kosmotrope required to neutralise the chaotropicity. This review considers examples of industrial fermentations where chaotropicity is an issue and suggests possible mitigations.
Collapse
|
5
|
Zetterholm SG, Verville GA, Boutwell L, Boland C, Prather JC, Bethea J, Cauley J, Warren KE, Smith SA, Magers DH, Hammer NI. Noncovalent Interactions between Trimethylamine N-Oxide (TMAO), Urea, and Water. J Phys Chem B 2018; 122:8805-8811. [PMID: 30165021 DOI: 10.1021/acs.jpcb.8b04388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) and urea are two important osmolytes with their main significance to the biophysical field being in how they uniquely interact with proteins. Urea is a strong protein destabilizing agent, whereas TMAO is known to counteract urea's deleterious effects. The exact mechanisms by which TMAO stabilizes and urea destabilizes folded proteins continue to be debated in the literature. Although recent evidence has suggested that urea binds directly to amino acid side chains to make protein folding less thermodynamically favored, it has also been suggested that urea acts indirectly to denature proteins by destabilizing the surrounding hydrogen bonding water networks. Here, we elucidate the molecular level mechanism of TMAO's unique ability to counteract urea's destabilizing nature by comparing Raman spectroscopic frequency shifts to the results of electronic structure calculations of microsolvated molecular clusters. Experimental and computational data suggest that the addition of TMAO into an aqueous solution of urea induces blue shifts in urea's H-N-H symmetric bending modes, which is evidence for direct interactions between the two cosolvents.
Collapse
Affiliation(s)
- Sarah G Zetterholm
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Genevieve A Verville
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - Leeann Boutwell
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Christopher Boland
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - John C Prather
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - Jonathan Bethea
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Jordan Cauley
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States.,Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Kayla E Warren
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - Shelley A Smith
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - David H Magers
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| |
Collapse
|
6
|
Shimizu S, Smith PE. How Osmolytes Counteract Pressure Denaturation on a Molecular Scale. Chemphyschem 2017; 18:2243-2249. [PMID: 28678423 PMCID: PMC5626881 DOI: 10.1002/cphc.201700503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/30/2017] [Indexed: 11/08/2022]
Abstract
Life in the deep sea exposes enzymes to high hydrostatic pressure, which decreases their stability. For survival, deep sea organisms tend to accumulate various osmolytes, most notably trimethylamine N-oxide used by fish, to counteract pressure denaturation. However, exactly how these osmolytes work remains unclear. Here, a rigorous statistical thermodynamics approach is used to clarify the mechanism of osmoprotection. It is shown that the weak, nonspecific, and dynamic interactions of water and osmolytes with proteins can be characterized only statistically, and that the competition between protein-osmolyte and protein-water interactions is crucial in determining conformational stability. Osmoprotection is driven by a stronger exclusion of osmolytes from the denatured protein than from the native conformation, and water distribution has no significant effect on these changes at low osmolyte concentrations.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas, 66506-0401, USA
| |
Collapse
|
7
|
Rogne P, Wolf-Watz M. Urea-Dependent Adenylate Kinase Activation following Redistribution of Structural States. Biophys J 2017; 111:1385-1395. [PMID: 27705762 DOI: 10.1016/j.bpj.2016.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/29/2022] Open
Abstract
Proteins are often functionally dependent on conformational changes that allow them to sample structural states that are sparsely populated in the absence of a substrate or binding partner. The distribution of such structural microstates is governed by their relative stability, and the kinetics of their interconversion is governed by the magnitude of associated activation barriers. Here, we have explored the interplay among structure, stability, and function of a selected enzyme, adenylate kinase (Adk), by monitoring changes in its enzymatic activity in response to additions of urea. For this purpose we used a 31P NMR assay that was found useful for heterogeneous sample compositions such as presence of urea. It was found that Adk is activated at low urea concentrations whereas higher urea concentrations unfolds and thereby deactivates the enzyme. From a quantitative analysis of chemical shifts, it was found that urea redistributes preexisting structural microstates, stabilizing a substrate-bound open state at the expense of a substrate-bound closed state. Adk is rate-limited by slow opening of substrate binding domains and the urea-dependent redistribution of structural states is consistent with a model where the increased activity results from an increased rate-constant for domain opening. In addition, we also detected a strong correlation between the catalytic free energy and free energy of substrate (ATP) binding, which is also consistent with the catalytic model for Adk. From a general perspective, it appears that urea can be used to modulate conformational equilibria of folded proteins toward more expanded states for cases where a sizeable difference in solvent-accessible surface area exists between the states involved. This effect complements the action of osmolytes, such as trimethylamine N-oxide, that favor more compact protein states.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
8
|
Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates. Biophys J 2016; 110:1280-90. [PMID: 27028638 DOI: 10.1016/j.bpj.2015.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/08/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022] Open
Abstract
Single-molecule force spectroscopy has emerged as a powerful tool for studying the folding of biological macromolecules. Mechanical manipulation has revealed a wealth of mechanistic information on transient and intermediate states. To date, the majority of state assignment of intermediates has relied on empirical demarcation. However, performing such experiments in the presence of different osmolytes provides an alternative approach that reports on the structural properties of intermediates. Here, we analyze the folding and unfolding of T4 lysozyme with optical tweezers under a chemo-mechanical perturbation by adding osmolytes. We find that two unrelated protective osmolytes, sorbitol and trimethylamine-n-oxide, function by marginally decelerating unfolding rates and specifically modulating early events in the folding process, stabilizing formation of an on-pathway intermediate. The chemo-mechanical perturbation provides access to two independent metrics of the relevant states during folding trajectories, the contour length, and the solvent-accessible surface area. We demonstrate that the dependence of the population of the intermediate in different osmolytes, in conjunction with its measured contour length, provides the ability to discriminate between potential structural models of intermediate states. Our study represents a general strategy that may be employed in the structural modeling of equilibrium intermediate states observed in single-molecule experiments.
Collapse
|
9
|
Wang H, Hosoda K, Ishii T, Arai R, Kohno T, Terawaki SI, Wakamatsu K. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin. J Pept Sci 2016; 22:174-80. [PMID: 26856691 DOI: 10.1002/psc.2855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takeshi Ishii
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Arai
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Toshiyuki Kohno
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shin-Ichi Terawaki
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
10
|
Stojanovski B, Breydo L, Uversky VN, Ferreira GC. Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase. RSC Adv 2016. [DOI: 10.1039/c6ra22533k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tertiary structure, solvation and kinetic properties of the catalytically active aminolevulinate synthase molten globule are modulated by crowders or osmolytes.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Leonid Breydo
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Gloria C. Ferreira
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
11
|
Rahman S, Warepam M, Singh LR, Dar TA. A current perspective on the compensatory effects of urea and methylamine on protein stability and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:129-36. [PMID: 26095775 DOI: 10.1016/j.pbiomolbio.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
Urea is a strong denaturant and inhibits many enzymes but is accumulated intracellularly at very high concentrations (up to 3-4 M) in mammalian kidney and in many marine fishes. It is known that the harmful effects of urea on the macromolecular structure and function is offset by the accumulation of an osmolytic agent called methylamine. Intracellular concentration of urea to methylamines falls in the ratio of 2:1 to 3:2 (molar ratio). At this ratio, the thermodynamic effects of urea and methylamines on protein stability and function are believed to be algebraically additive. The mechanism of urea-methylamine counteraction has been widely investigated on various approaches including, thermodynamic, structural and functional aspects. Recent advances have also revealed atomic level insights of counteraction and various molecular dynamic simulation studies have yielded significant molecular level informations on the interaction between urea and methylamines with proteins. It is worthwhile that urea-methylamine system not only plays pivotal role for the survival and functioning of the renal medullary cells but also is a key osmoregulatory component of the marine elasmobranchs, holocephalans and coelacanths. Therefore, it is important to combine all discoveries and discuss the developments in context to physiology of the mammalian kidney and adaptation of the marine organisms. In this article we have for the first time reviewed all major developments on urea-counteraction systems to date. We have also discussed about other additional urea-counteraction systems discovered so far including urea-NaCl, urea-myoinsoitol and urea-molecular chaperone systems. Insights for the possible future research have also been highlighted.
Collapse
Affiliation(s)
- Safikur Rahman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India.
| |
Collapse
|
12
|
Warepam M, Singh LR. Osmolyte mixtures have different effects than individual osmolytes on protein folding and functional activity. Arch Biochem Biophys 2015; 573:77-83. [PMID: 25817170 DOI: 10.1016/j.abb.2015.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Osmolytes are small organic molecules accumulated by organisms under stress conditions to protect macromolecular structure and function. In the present study, we have investigated the effect of several binary osmolyte mixtures on the protein folding/stability and function of RNase-A. For this, we have measured ΔGD(o) (Gibbs free energy change at 25°C) and specific activity of RNase-A mediated hydrolysis of cytidine 2'-3' cyclic monophosphate in the presence and absence of individual and osmolyte mixtures. It was found that the osmolyte mixtures have different effect on protein stability and function than that of individual osmolytes. Refolding studies of RNase-A in the presence of osmolyte mixtures and individual osmolytes also revealed that osmolyte mixtures have a poor refolding efficiency relative to the individual osmolytes.
Collapse
Affiliation(s)
- Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
13
|
Jha I, Venkatesu P. Endeavour to simplify the frustrated concept of protein-ammonium family ionic liquid interactions. Phys Chem Chem Phys 2015; 17:20466-84. [DOI: 10.1039/c5cp01735a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schematic representation of protein stabilization/destabilization in the presence of ionic liquids.
Collapse
Affiliation(s)
- Indrani Jha
- Department of Chemistry
- University of Delhi
- Delhi – 110007
- India
| | | |
Collapse
|
14
|
Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proc Natl Acad Sci U S A 2014; 111:8476-81. [PMID: 24912147 DOI: 10.1073/pnas.1403224111] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect.
Collapse
|
15
|
Khan S, Bano Z, Singh LR, Hassan MI, Islam A, Ahmad F. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins. PLoS One 2013; 8:e72533. [PMID: 24039776 PMCID: PMC3767660 DOI: 10.1371/journal.pone.0072533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o)) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively.
Collapse
Affiliation(s)
- Sheeza Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Zehra Bano
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Laishram R. Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
Denning EJ, Thirumalai D, MacKerell AD. Protonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure. Biophys Chem 2013; 184:8-16. [PMID: 24012912 DOI: 10.1016/j.bpc.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023]
Abstract
The osmolyte trimethylamine N-oxide (TMAO) stabilizes the tertiary but not the secondary structures of RNA. However, molecular dynamics simulations performed on the PreQ1 riboswitch showed that TMAO destabilizes the tertiary riboswitch structure, leading us to hypothesize that the presence of RNA could result in enhanced population of the protonated form, TMAOP. Constant pH replica exchange simulations showed that a percentage of TMAO is indeed protonated, thus contributing to the stability of the tertiary but not the secondary structure of PreQ1. TMAOP results in an unfavorable dehydration of phosphodiester backbone, which is compensated by electrostatic attraction between TMAOP and the phosphate groups. In addition, TMAOP interacts with specific sites in the tertiary RNA structure, mimicking the behavior of positively charged ions and of the PreQ1 ligand in stabilizing RNA. Finally, we predict that TMAO-induced stabilization of RNA tertiary structures should be strongly pH dependent.
Collapse
Affiliation(s)
- Elizabeth J Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
17
|
Wu D, Minton AP. Quantitative characterization of the compensating effects of trimethylamine-N-oxide and guanidine hydrochloride on the dissociation of human cyanmethmoglobin. J Phys Chem B 2013; 117:9395-9. [PMID: 23863125 PMCID: PMC4327910 DOI: 10.1021/jp4065399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic light scattering was used to measure the extent of dissociation of human cyanmethemoglobin (HbCN) α2β2 tetramers into αβ dimers as a function of HbCN concentration in the presence of varying concentrations of guanidine hydrochloride (GuHCl) and trimethylamine-N-oxide (TMAO). It was found that increasing concentrations of GuHCl enhance the dissociation of HbCN, and that GuHCl-induced dissociation is progressively inhibited with increasing concentrations of TMAO. The effects of both cosolutes upon the free energy of HbCN dissociation are shown to be additive. The effect of TMAO on Hb dissociation is largely attributed to steric volume exclusion but is partially compensated by a small attractive interaction between TMAO and the protein.
Collapse
Affiliation(s)
- Di Wu
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
18
|
Wu D, Minton AP. Compensating effects of urea and trimethylamine-N-oxide on the heteroassociation of α-chymotrypsin and soybean trypsin inhibitor. J Phys Chem B 2013; 117:3554-9. [PMID: 23472887 PMCID: PMC4185429 DOI: 10.1021/jp4006923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An assay for the determination of the equilibrium constant for heteroassociation of α-chymotrypsin and soybean trypsin inhibitor via fluorescence depolarization is described. Results obtained at neutral pH in saline buffer were consistent with prior determinations via sedimentation equilibrium and static light scattering. The dependence of the association equilibrium constant upon the concentrations of urea and trimethylamine-N-oxide (TMAO) added individually and in mixtures was determined at several temperatures. It was found that subdenaturing concentrations of urea decrease the extent of heteroassociation and that added TMAO increases the extent of heteroassociation. The effects of both cosolutes in mixtures upon the equilibrium heteroassociation of α-chymotrypsin and soybean trypsin inhibitor appear to be additive. A thermodynamic analysis of the combined results is presented.
Collapse
Affiliation(s)
- Di Wu
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Allen P. Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding. Proc Natl Acad Sci U S A 2012; 109:15740-5. [PMID: 22961256 DOI: 10.1073/pnas.1204547109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperonin GroEL mediates the folding of protein encapsulated in a GroES-sealed cavity (cage). Recently, a critical role of negative charge clusters on the cage wall in folding acceleration was proposed based on experiments using GroEL single-ring (SR) mutants SR1 and SRKKK2 [Tang YC, et al. (2006) Cell 125:903-914; Chakraborty K, et al. (2010) Cell 142:112-122]. Here, we revisited these experiments and discovered several inconsistencies. (i) SR1 was assumed to bind to GroES stably and to mediate single-round folding in the cage. However, we show that SR1 repeats multiple turnovers of GroES release/binding coupled with ATP hydrolysis. (ii) Although the slow folding observed for a double-mutant of maltose binding protein (DMMBP) by SRKKK2 was attributed to mutations that neutralize negative charges on the cage wall, we found that the majority of DMMBP escape from SRKKK2 and undergo spontaneous folding in the bulk medium. (iii) An osmolyte, trimethylamine N-oxide, was reported to accelerate SRKKK2-mediated folding of DMMBP by mimicking the effect of cage-wall negative charges of WT GroEL and ordering the water structure to promote protein compaction. However, we demonstrate that in-cage folding by SRKKK2 is unaffected by trimethylamine N-oxide. (iv) Although it was reported that SRKKK2 lost the ability to assist the folding of ribulose-1,5-bisphosphate carboxylase/oxygenase, we found that SRKKK2 retains this ability. Our results argue against the role of the negative charges on the cage wall of GroEL in protein folding. Thus, in chaperonin studies, folding kinetics need to be determined from the fraction of the real in-cage folding.
Collapse
|
20
|
Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape. Proc Natl Acad Sci U S A 2012; 109:17826-31. [PMID: 22826265 DOI: 10.1073/pnas.1201802109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.
Collapse
|
21
|
Marshall H, Venkat M, Hti Lar Seng NS, Cahn J, Juers DH. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:69-81. [PMID: 22194335 PMCID: PMC3245723 DOI: 10.1107/s0907444911050360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
Both crystallization and cryoprotection are often bottlenecks for high-resolution X-ray structure determination of macromolecules. Methylamine osmolytes are known stabilizers of protein structure. One such osmolyte, trimethylamine N-oxide (TMAO), has seen occasional use as an additive to improve macromolecular crystal quality and has recently been shown to be an effective cryoprotective agent for low-temperature data collection. Here, TMAO and the related osmolytes sarcosine and betaine are investigated as primary precipitating agents for protein crystal growth. Crystallization experiments were undertaken with 14 proteins. Using TMAO, seven proteins crystallized in a total of 13 crystal forms, including a new tetragonal crystal form of trypsin. The crystals diffracted well, and eight of the 13 crystal forms could be effectively cryocooled as grown with TMAO as an in situ cryoprotective agent. Sarcosine and betaine produced crystals of four and two of the 14 proteins, respectively. In addition to TMAO, sarcosine and betaine were effective post-crystallization cryoprotective agents for two different crystal forms of thermolysin. Precipitation reactions of TMAO with several transition-metal ions (Fe(3+), Co(2+), Cu(2+) and Zn(2+)) did not occur with sarcosine or betaine and were inhibited for TMAO at lower pH. Structures of proteins from TMAO-grown crystals and from crystals soaked in TMAO, sarcosine or betaine were determined, showing osmolyte binding in five of the 12 crystals tested. When an osmolyte was shown to bind, it did so near the protein surface, interacting with water molecules, side chains and backbone atoms, often at crystal contacts.
Collapse
Affiliation(s)
- Haley Marshall
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Murugappan Venkat
- Department of Physics, Whitman College, Walla Walla, Washington, USA
| | - Nang San Hti Lar Seng
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Jackson Cahn
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Douglas H. Juers
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
- Department of Physics, Whitman College, Walla Walla, Washington, USA
| |
Collapse
|
22
|
Tubert P, Laurents DV, Ribó M, Bruix M, Vilanova M, Benito A. Interactions crucial for three-dimensional domain swapping in the HP-RNase variant PM8. Biophys J 2011; 101:459-67. [PMID: 21767499 DOI: 10.1016/j.bpj.2011.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/29/2022] Open
Abstract
The structural determinants that are responsible for the formation of higher order associations of folded proteins remain unknown. We have investigated the role on the dimerization process of different residues of a domain-swapped dimer human pancreatic ribonuclease variant. This variant is a good model to study the dimerization and swapping processes because dimer and monomer forms interconvert, are easily isolated, and only one dimeric species is produced. Thus, simple models for the swapping process can be proposed. The dimerization (dissociation constant) and swapping propensity have been studied using different variants with changes in residues that belong to different putative molecular determinants of dimerization. Using NMR spectroscopy, we show that these mutations do not substantially alter the overall conformation and flexibility, but affect the residue level stability. Overall, the most critical residues for the swapping process are those of one subunit that interact with the hinge loop of another one-subunit residue, stabilizing it in a conformation that favors the interchange. Tyr(25), Gln(101), and Pro(19), with Asn(17), Ser(21), and Ser(23), are found to be the most significant; notably, Glu(103) and Arg(104), which were postulated to form salt bridges that would stabilize the dimer, are not critical for dimerization.
Collapse
Affiliation(s)
- Pere Tubert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Campmany, 69 E-17071 Girona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Miller KH, Marqusee S. Propensity for C-terminal domain swapping correlates with increased regional flexibility in the C-terminus of RNase A. Protein Sci 2011; 20:1735-44. [PMID: 21805524 DOI: 10.1002/pro.708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/07/2022]
Abstract
Domain swapping is a type of oligomerization in which monomeric proteins exchange a structural element, resulting in oligomers whose subunits recapitulate the native, monomeric fold. It has been implicated as a potential mechanism for protein aggregation, which provides a strong impetus to understand the structural determinants and folding mechanisms that trigger domain swapping. Bovine pancreatic ribonuclease A (RNase A) is a well-studied protein known to domain swap under extreme conditions, such as lyophilization from acetic acid. The major domain-swapped dimer form of RNase A exchanges a β-strand at its C-terminus to form a C-terminal domain-swapped dimer. To study the mechanism by which C-terminal swapping occurs, we used a variant of RNase A containing a P114G mutation that readily domain swaps under physiological conditions. Using NMR and hydrogen-deuterium exchange, we find that the P114G variant has decreased protection from hydrogen exchange compared to the wild-type protein near the C-terminal hinge region. Our results suggest that domain swapping occurs via a local high-energy fluctuation at the C-terminus.
Collapse
Affiliation(s)
- Katherine H Miller
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
24
|
Abstract
Protein scientists have long used cosolutes to study protein stability. While denaturants, such as urea, have been employed for a long time, the attention became focused more recently on protein stabilizers, including osmolytes. Here, we provide practical experimental instructions for the use of both stabilizing and denaturing osmolytes with proteins, as well as data evaluation strategies. We focus on protein stability in the presence of cosolutes and their mixtures at constant and variable temperature.
Collapse
Affiliation(s)
- Luis Marcelo F Holthauzen
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | |
Collapse
|
25
|
Zhadin N, Callender R. Effect of osmolytes on protein dynamics in the lactate dehydrogenase-catalyzed reaction. Biochemistry 2011; 50:1582-9. [PMID: 21306147 DOI: 10.1021/bi1018545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.
Collapse
Affiliation(s)
- Nickolay Zhadin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|
26
|
Ercole C, López-Alonso JP, Font J, Ribó M, Vilanova M, Picone D, Laurents DV. Crowding agents and osmolytes provide insight into the formation and dissociation of RNase A oligomers. Arch Biochem Biophys 2011; 506:123-9. [DOI: 10.1016/j.abb.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022]
|
27
|
Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sci 2011; 88:117-25. [DOI: 10.1016/j.lfs.2010.10.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 01/23/2023]
|
28
|
Fernández C, Minton AP. Effect of nonadditive repulsive intermolecular interactions on the light scattering of concentrated protein-osmolyte mixtures. J Phys Chem B 2010; 115:1289-93. [PMID: 21175126 DOI: 10.1021/jp110285b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The static light scattering of three globular proteins, bovine serum albumin, ovalbumin, and ovomucoid, and binary mixtures of each protein and trimethylamine oxide (TMAO) containing between 10 and 70% protein, were measured as a function of total weight per volume concentration up to 100 g/L. The observed dependence of scattering upon concentration may be accounted for quantitatively by an effective hard sphere model incorporating an extension that takes into account the nonadditive nature of the repulsive intermolecular interaction between protein and TMAO.
Collapse
Affiliation(s)
- Cristina Fernández
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
29
|
Lindgren M, Westlund PO. The affect of urea on the kinetics of local unfolding processes in chymotrypsin inhibitor 2. Biophys Chem 2010; 151:46-53. [DOI: 10.1016/j.bpc.2010.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/18/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
30
|
Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, Sikor M, Jiang G, Lamb DC, Hartl FU, Hayer-Hartl M. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 2010; 142:112-22. [PMID: 20603018 DOI: 10.1016/j.cell.2010.05.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/21/2010] [Accepted: 04/23/2010] [Indexed: 11/28/2022]
Abstract
GroEL and GroES form a chaperonin nano-cage for single protein molecules to fold in isolation. The folding properties that render a protein chaperonin dependent are not yet understood. Here, we address this question using a double mutant of the maltose-binding protein DM-MBP as a substrate. Upon spontaneous refolding, DM-MBP populates a kinetically trapped intermediate that is collapsed but structurally disordered. Introducing two long-range disulfide bonds into DM-MBP reduces the entropic folding barrier of this intermediate and strongly accelerates native state formation. Strikingly, steric confinement of the protein in the chaperonin cage mimics the kinetic effect of constraining disulfides on folding, in a manner mediated by negative charge clusters in the cage wall. These findings suggest that chaperonin dependence correlates with the tendency of proteins to populate entropically stabilized folding intermediates. The capacity to rescue proteins from such folding traps may explain the uniquely essential role of chaperonin cages within the cellular chaperone network.
Collapse
Affiliation(s)
- Kausik Chakraborty
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Street TO, Krukenberg KA, Rosgen J, Bolen DW, Agard DA. Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci 2010; 19:57-65. [PMID: 19890989 DOI: 10.1002/pro.282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Osmolytes are small molecules that play a central role in cellular homeostasis and the stress response by maintaining protein thermodynamic stability at controlled levels. The underlying physical chemistry that describes how different osmolytes impact folding free energy is well understood, however little is known about their influence on other crucial aspects of protein behavior, such as native-state conformational changes. Here we investigate this issue with the Hsp90 molecular chaperone, a large dimeric protein that populates a complex conformational equilibrium. Using small angle X-ray scattering we observe dramatic osmolyte-dependent structural changes within the native ensemble. The degree to which different osmolytes affect the Hsp90 conformation strongly correlates with thermodynamic metrics of their influence on stability. This observation suggests that the well-established osmolyte principles that govern stability also apply to large-scale conformational changes, a proposition that is corroborated by structure-based fitting of the scattering data, surface area comparisons and m-value analysis. This approach shows how osmolytes affect a highly cooperative open/closed structural transition between two conformations that differ by a domain-domain interaction. Hsp90 adopts an additional ligand-specific conformation in the presence of ATP and we find that osmolytes do not significantly affect this conformational change. Together, these results extend the scope of osmolytes by suggesting that they can maintain protein conformational heterogeneity at controlled levels using similar underlying principles that allow them to maintain protein stability; however the relative impact of osmolytes on different structural states can vary significantly.
Collapse
Affiliation(s)
- Timothy O Street
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA
| | | | | | | | | |
Collapse
|
32
|
Guo F, Friedman JM. Osmolyte-induced perturbations of hydrogen bonding between hydration layer waters: correlation with protein conformational changes. J Phys Chem B 2009; 113:16632-42. [PMID: 19961206 PMCID: PMC3354986 DOI: 10.1021/jp9072284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gadolinium vibronic sideband luminescence spectroscopy (GVSBLS) is used to probe osmolyte-induced changes in the hydrogen bond strength between first and second shell waters on the surface of free Gd(3+) and Gd(3+) coordinated to EDTA and to structured calcium binding peptides in solution. In parallel, Raman is used to probe the corresponding impact of the same set of osmolytes on hydrogen bonding among waters in the bulk phase. Increasing concentration of added urea is observed to progressively weaken the hydrogen bonding within the hydration layer but has minimal observed impact on bulk water. In contrast, polyols are observed to enhance hydrogen bonding in both the hydration layer and the bulk with the amplitude being polyol dependent with trehalose being more effective than sucrose, glucose, or glycerol. The observed patterns indicate that the size and properties of the osmolyte as well as the local architecture of the specific surface site of hydration impact preferential exclusion effects and local hydrogen bond strength. Correlation of the vibronic spectra with CD measurements on the peptides as a function of added osmolytes shows an increase in secondary structure with added polyols and that the progressive weakening of the hydrogen bonding upon addition of urea first increases water occupancy within the peptide and only subsequently does the peptide unfold. The results support models in which the initial steps in the unfolding process involve osmolyte-induced enhancement of water occupancy within the interior of the protein.
Collapse
Affiliation(s)
- Feng Guo
- Department of Biophysics and Physiology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, U.S.A. 10461
| | - Joel M. Friedman
- Department of Biophysics and Physiology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, U.S.A. 10461
| |
Collapse
|
33
|
|
34
|
Using NMR-Detected Backbone Amide 1H Exchange to Assess Macromolecular Crowding Effects on Globular-Protein Stability. Methods Enzymol 2009; 466:1-18. [DOI: 10.1016/s0076-6879(09)66001-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
35
|
Bernier D, Blake AJ, Woodward S. Improved procedure for the synthesis of enamine N-oxides. J Org Chem 2008; 73:4229-32. [PMID: 18459809 DOI: 10.1021/jo8002166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An improved procedure for the preparation of enamine N-oxides involving aminolysis of epoxides, chlorination, N-oxidation, and dehydrochlorination is described. Although isolated beta-chloroamine N-oxides are prone to rearrangements when isolated, these side reactions can be slowed by the presence of stabilizing organic acids. The scope and limitations of this strategy are discussed.
Collapse
Affiliation(s)
- David Bernier
- School of Chemistry, The University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
36
|
Abstract
The effect of strongly destabilizing mutations, I106A and V108G of Ribonuclease A (RNase A), on its structure and stability has been determined by NMR. The solution structures of these variants are essentially equivalent to RNase A. The exchange rates of the most protected amide protons in RNase A (35 degrees C), the I106A variant (35 degrees C), and the V108G variant (10 degrees C) yield stability values of 9.9, 6.0, and 6.8 kcal/mol, respectively, when analyzed assuming an EX2 exchange mechanism. Thus, the destabilization induced by these mutations is propagated throughout the protein. Simulation of RNase A hydrogen exchange indicates that the most protected protons in RNase A and the V108G variant exchange via the EX2 regime, whereas those of I106A exchange through a mixed EX1 + EX2 process. It is striking that a single point mutation can alter the overall exchange mechanism. Thus, destabilizing mutations joins high temperatures, high pH and the presence of denaturating agents as a factor that induces EX1 exchange in proteins. The calculations also indicate a shift from the EX2 to the EX1 mechanism for less protected groups within the same protein. This should be borne in mind when interpreting exchange data as a measure of local stability in less protected regions.
Collapse
|
37
|
Gulotta M, Qiu L, Desamero R, Rösgen J, Bolen DW, Callender R. Effects of cell volume regulating osmolytes on glycerol 3-phosphate binding to triosephosphate isomerase. Biochemistry 2007; 46:10055-62. [PMID: 17696453 PMCID: PMC2533736 DOI: 10.1021/bi700990d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During cell volume regulation, intracellular concentration changes occur in both inorganic and organic osmolytes in order to balance the extracellular osmotic stress and maintain cell volume homeostasis. Generally, salt and urea increase the Km's of enzymes and trimethylamine N-oxide (TMAO) counteracts these effects by decreasing Km's. The hypothesis to account for these effects is that urea and salt shift the native state ensemble of the enzyme toward conformers that are substrate-binding incompetent (BI), while TMAO shifts the ensemble toward binding competent (BC) species. Km's are often complex assemblies of rate constants involving several elementary steps in catalysis, so to better understand osmolyte effects we have focused on a single elementary event, substrate binding. We test the conformational shift hypothesis by evaluating the effects of salt, urea, and TMAO on the mechanism of binding glycerol 3-phosphate, a substrate analogue, to yeast triosephosphate isomerase. Temperature-jump kinetic measurements promote a mechanism consistent with osmolyte-induced shifts in the [BI]/[BC] ratio of enzyme conformers. Importantly, salt significantly affects the binding constant through its effect on the activity coefficients of substrate, enzyme, and enzyme-substrate complex, and it is likely that TMAO and urea affect activity coefficients as well. Results indicate that the conformational shift hypothesis alone does not account for the effects of osmolytes on Km's.
Collapse
Affiliation(s)
- Miriam Gulotta
- Department of Biochemistry, Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx NY 10461
| | - Linlin Qiu
- Department of Biochemistry, Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx NY 10461
| | - Ruel Desamero
- Department of Chemistry, York College, City University of New York, 94-20 Guy R. Brewer Blvd., Jamaica, NY 11451
| | - Jörg Rösgen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 5.154 Medical Research Building, Galveston, TX 77555-1052
| | - D. Wayne Bolen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 5.154 Medical Research Building, Galveston, TX 77555-1052
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx NY 10461
| |
Collapse
|
38
|
Qiu L, Gulotta M, Callender R. Lactate dehydrogenase undergoes a substantial structural change to bind its substrate. Biophys J 2007; 93:1677-86. [PMID: 17483169 PMCID: PMC1948838 DOI: 10.1529/biophysj.107.109397] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH.substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 +/- 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior.
Collapse
Affiliation(s)
- Linlin Qiu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
39
|
Huang JR, Craggs TD, Christodoulou J, Jackson SE. Stable intermediate states and high energy barriers in the unfolding of GFP. J Mol Biol 2007; 370:356-71. [PMID: 17512539 DOI: 10.1016/j.jmb.2007.04.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 04/05/2007] [Accepted: 04/16/2007] [Indexed: 11/24/2022]
Abstract
We present a study of the denaturation of a truncated, cycle3 variant of green fluorescent protein (GFP). Chemical denaturation is used to unfold the protein, with changes in structure being monitored by the green fluorescence, tyrosine fluorescence and far-UV circular dichroism. The results show that the denaturation behaviour of GFP is complex compared to many small proteins: equilibrium is established only very slowly, over the time course of weeks, suggesting that there are high folding/unfolding energy barriers. Unfolding kinetics confirm that the rates of unfolding at low concentrations of denaturant are very low, consistent with the slow establishment of the equilibrium. In addition, we find that GFP significantly populates an intermediate state under equilibrium conditions, which is compact and stable with respect to the unfolded state (m(IU)=4.6 kcal mol(-1) M(-1) and Delta G(IU)=12.5 kcal mol(-1)). The global and local stability of GFP was probed further by measuring the hydrogen/deuterium (H/D) NMR exchange rates of more than 157 assigned amide protons. Analysis at two different values of pH showed that amide protons within the beta-barrel structure exchange at the EX2 limit, consequently, free energies of exchange could be calculated and compared to those obtained from the denaturation-curve studies providing further support for the three-state model and the existence of a stable intermediate state. Analysis reveals that amide protons in beta-strands 7, 8, 9 and 10 have, on average, higher exchange rates than others in the beta-barrel, suggesting that there is greater flexibility in this region of the protein. Forty or so amide protons were found which do not undergo significant exchange even after several months and these are clustered into a core region encompassing most of the beta-strands, at least at one end of the barrel structure. It is likely that these residues play an important role in stabilizing the structure of the intermediate state. The intermediate state observed in the chemical denaturation studies described here, is similar to that observed at pH 4 in other studies.
Collapse
Affiliation(s)
- Jie-rong Huang
- Chemistry Department, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
40
|
Doan-Nguyen V, Loria JP. The effects of cosolutes on protein dynamics: the reversal of denaturant-induced protein fluctuations by trimethylamine N-oxide. Protein Sci 2006; 16:20-9. [PMID: 17123958 PMCID: PMC2222840 DOI: 10.1110/ps.062393707] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The protein stabilizing effects of the small molecule osmolyte, trimethylamine N-oxide, against chemical denaturant was investigated by NMR spin-relaxation measurements and model-free analysis. In the presence of 0.7 M guanidine hydrochloride increased picosecond-nanosecond dynamics are observed in the protein ribonuclease A. These increased fluctuations occur throughout the protein, but the most significant increases in flexibility occur at positions believed to be the first to unfold. Addition of 0.35 M trimethylamine N-oxide to this destabilized form of ribonuclease results in significant rigidification of the protein backbone as assessed by (1)H-(15)N order parameters. Statistically, these order parameters are the same as those measured in native ribonuclease indicating that TMAO reduces the amplitude of backbone fluctuations in a destabilized protein. These data suggest that TMAO restricts the bond vector motions on the protein energy landscape to resemble those motions that occur in the native protein and points to a relation between stability and dynamics in this enzyme.
Collapse
|
41
|
Salinas RK, Diercks T, Kaptein R, Boelens R. Cooperative α-helix unfolding in a protein-DNA complex from hydrogen-deuterium exchange. Protein Sci 2006; 15:1752-9. [PMID: 16751603 PMCID: PMC2265102 DOI: 10.1110/ps.051938006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We present experimental evidence for a cooperative unfolding transition of an alpha-helix in the lac repressor headpiece bound to a symmetric variant of the lac operator, as inferred from hydrogen-deuterium (H-D) exchange experiments monitored by NMR spectroscopy. In the EX1 limit, observed exchange rates become pH-independent and exclusively sensitive to local structure fluctuations that expose the amide proton HN to exchange. Close to this regime, we measured decay rates of individual backbone HN signals in D2O, and of their mutual HN-HN NOE by time-resolved two-dimensional (2D) NMR experiments. The data revealed correlated exchange at the center of the lac headpiece recognition helix, Val20-Val23, and suggested that the correlation breaks down at Val24, at the C terminus of the helix. A lower degree of correlation was observed for the exchange of Val9 and Ala10 at the center of helix 1, while no correlation was observed for Val38 and Glu39 at the center of helix 3. We conclude that HN exchange in the recognition helix and, to some extent, in helix 1 is a cooperative event involving the unfolding of these helices, whereas the HN exchange in helix 3 is dominated by random local structure fluctuations.
Collapse
Affiliation(s)
- Roberto K Salinas
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
42
|
Meersman F, Smeller L, Heremans K. Protein stability and dynamics in the pressure–temperature plane. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:346-54. [PMID: 16414316 DOI: 10.1016/j.bbapap.2005.11.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/23/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
The pressure-temperature stability diagram of proteins and the underlying assumptions of the elliptical shape of the diagram are discussed. Possible extensions, such as aggregation and fibril formation, are considered. An important experimental observation is the extreme pressure stability of the mature fibrils. Molecular origins of the diagram in terms of models of the partial molar volume of a protein focus on cavities and hydration. Changes in thermal expansivity, compressibility and heat capacity in terms of fluctuations of the enthalpy and volume change of the unfolding should also focus on these parameters. It is argued that the study of water-soluble polymers might further our understanding of the stability diagram. Whereas the role of water in protein behaviour is unquestioned, the role of cavities is less clear.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
43
|
Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. SALINE SYSTEMS 2005; 1:5. [PMID: 16176595 PMCID: PMC1224877 DOI: 10.1186/1746-1448-1-5] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Microorganisms that adapt to moderate and high salt environments use a variety of solutes, organic and inorganic, to counter external osmotic pressure. The organic solutes can be zwitterionic, noncharged, or anionic (along with an inorganic cation such as K(+)). The range of solutes, their diverse biosynthetic pathways, and physical properties of the solutes that effect molecular stability are reviewed.
Collapse
Affiliation(s)
- Mary F Roberts
- Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02465, USA.
| |
Collapse
|
44
|
Haque I, Singh R, Moosavi-Movahedi AA, Ahmad F. Effect of polyol osmolytes on ΔGD, the Gibbs energy of stabilisation of proteins at different pH values. Biophys Chem 2005; 117:1-12. [PMID: 15905020 DOI: 10.1016/j.bpc.2005.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/15/2005] [Accepted: 04/17/2005] [Indexed: 11/29/2022]
Abstract
Thermal denaturation curves of lysozyme and ribonuclease-A were determined by measuring their far-UV circular dichroism (CD) spectra in the presence of different concentrations of five polyols (sorbitol, glycerol, mannitol, xylitol and adonitol) at various pH values in the range 7.0--1.9. The denaturation curve at each polyol concentration and pH was analysed to obtain values of T(m) (midpoint of denaturation) and DeltaH(m) (enthalpy change at T(m)), and these DeltaH(m) and T(m) values obtained at different pH values were used to obtain DeltaC(p) (constant-pressure heat capacity change) at each polyol concentration. Using values of DeltaH(m), T(m) and DeltaC(p) in the Gibbs-Helmholtz equation, DeltaG(D) degrees (Gibbs energy change at 25 degrees C) was determined at a given pH and polyol concentration. Main conclusions of this study are that polyols have no significant effect on DeltaG(D) degrees at pH 7.0, and they stabilise proteins in terms of DeltaG(D) degrees against heat denaturation at lower pH values. Other conclusions of this study are: (i) T(m) at each pH increases with increasing polyol concentration, (ii) DeltaH(m) remains, within experimental error, unperturbed in the presence of polyols, and (iii) DeltaC(p) depends on polyol concentration. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of both proteins in their native and denatured states are not perturbed on the addition of polyols.
Collapse
Affiliation(s)
- Inamul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110 025, India
| | | | | | | |
Collapse
|
45
|
Haque I, Singh R, Ahmad F, Moosavi-Movahedi AA. Testing polyols’ compatibility with Gibbs energy of stabilization of proteins under conditions in which they behave as compatible osmolytes. FEBS Lett 2005; 579:3891-8. [PMID: 15990095 DOI: 10.1016/j.febslet.2005.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/27/2005] [Accepted: 06/03/2005] [Indexed: 11/18/2022]
Abstract
It is generally believed that compatible osmolytes stabilize proteins by shifting the denaturation equilibrium, native state <--> denatured state toward the left. We show here that if osmolytes are compatible with the functional activity of the protein at a given pH and temperature, they should not significantly perturb this denaturation equilibrium under the same experimental conditions. This conclusion was reached from the measurements of the activity parameters (K(m) and k(cat)) and guanidinium chloride-induced denaturations of lysozyme and ribonuclease-A in the presence of five polyols (sorbitol, glycerol, mannitol, xylitol and adonitol) at pH 7.0 and 25 degrees C.
Collapse
Affiliation(s)
- Inamul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | | | | | | |
Collapse
|
46
|
Cioni P, Bramanti E, Strambini GB. Effects of sucrose on the internal dynamics of azurin. Biophys J 2005; 88:4213-22. [PMID: 15792978 PMCID: PMC1305651 DOI: 10.1529/biophysj.105.060517] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 03/14/2005] [Indexed: 11/18/2022] Open
Abstract
Sucrose is a natural osmolyte accumulated in cells of organisms as they adapt to environmental stresses. In vitro, sucrose increases protein stability and forces partially unfolded structures to refold. Its effects on the native fold structure and dynamics are not fully established. This study, utilizing Trp phosphorescence spectroscopy, examined the influence of molar concentrations of sucrose on the flexibility of metal-free azurin from Pseudomonas aeruginosa. In addition, by means of specific mutants of the test protein, namely I7S, F110S, and C3A/C26A, that altered its thermodynamic stability, its intrinsic flexibility, and the extent of internal hydration, this investigation sought to identify possible correlations between these features of protein structure and the influence of the osmolyte on protein dynamics. Alterations of structural fluctuations were assessed by both the intrinsic phosphorescence lifetime (tau), which reports on local structure about the triplet probe, and the acrylamide bimolecular quenching rate constant (k(q)) that is a measure of the average acrylamide diffusion coefficient through the macromolecule. From the modulation of tau and k(q) across a wide temperature range and up to a concentration of 2M sucrose, it is concluded that sucrose attenuates structural fluctuations principally when macromolecules are internally hydrated and thermally expanded. Preliminary tests with trehalose and xylitol suggest that the effects of sucrose are general of the polyol class of osmolytes.
Collapse
Affiliation(s)
- Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | | |
Collapse
|
47
|
Singh R, Haque I, Ahmad F. Counteracting Osmolyte Trimethylamine N-Oxide Destabilizes Proteins at pH below Its pK. J Biol Chem 2005; 280:11035-42. [PMID: 15653673 DOI: 10.1074/jbc.m410716200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Earlier studies have reported that trimethylamine N-oxide (TMAO), a naturally occurring osmolyte, is a universal stabilizer of proteins because it folds unstructured proteins and counteracts the deleterious effects of urea and salts on the structure and function of proteins. This conclusion has been reached from the studies of the effect of TMAO on proteins in the pH range 6.0-8.0. In this pH range TMAO is almost neutral (zwitterionic form), for it has a pK(a) of 4.66 +/- 0.10. We have asked the question of whether the effect of TMAO on protein stability is pH-dependent. To answer this question we have carried out thermal denaturation studies of lysozyme, ribonuclease-A, and apo-alpha-lactalbumin in the presence of various TMAO concentrations at different pH values above and below the pK(a) of TMAO. The main conclusion of this study is that near room temperature TMAO destabilizes proteins at pH values below its pK(a), whereas it stabilizes proteins at pH values above its pK(a). This conclusion was reached by determining the T(m) (midpoint of denaturation), delta H(m) (denaturational enthalpy change at T(m)), delta C(p) (constant pressure heat capacity change), and delta G(D) degrees (denaturational Gibbs energy change at 25 degrees C) of proteins in the presence of different TMAO concentrations. Other conclusions of this study are that T(m) and delta G(D) degrees depend on TMAO concentration at each pH value and that delta H(m) and the delta C(p) are not significantly changed in presence of TMAO.
Collapse
Affiliation(s)
- Rajendrakumar Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | | | | |
Collapse
|
48
|
Pais TM, Lamosa P, dos Santos W, Legall J, Turner DL, Santos H. Structural determinants of protein stabilization by solutes. FEBS J 2005; 272:999-1011. [PMID: 15691333 DOI: 10.1111/j.1742-4658.2004.04534.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their high sequence homology, rubredoxins from Desulfovibrio gigas and D. desulfuricans are stabilized to very different extents by compatible solutes such as diglycerol phosphate, the major osmolyte in the hyperthermophilic archaeon Archaeoglobus fulgidus[Lamosa P, Burke A, Peist R, Huber R, Liu M Y, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C and Santos H (2000) Appl Environ Microbiol66, 1974-1979]. The principal structural difference between these two proteins is the absence of the hairpin loop in the rubredoxin from D. desulfuricans. Therefore, mutants of D. gigas rubredoxin bearing deletions in the loop region were constructed to investigate the importance of this structural feature on protein intrinsic stability, as well as on its capacity to undergo stabilization by compatible solutes. The three-dimensional structure of the mutant bearing the largest deletion, Delta17/29, was determined by 1H-NMR, demonstrating that, despite the drastic deletion, the main structural features were preserved. The dependence of the NH chemical shifts on temperature and solute concentration (diglycerol phosphate or mannosylglycerate) provide evidence of subtle conformational changes induced by the solute. The kinetic stability (as assessed from the absorption decay at 494 nm) of six mutant rubredoxins was determined at 90 degrees C and the stabilizing effect exerted by both solutes was assessed. The extent of protection conferred by each solute was highly dependent on the specific mutant examined: while the half-life for iron release in the wild-type D. gigas rubredoxin increased threefold in the presence of 0.1 M diglycerol phosphate, mutant Delta23/29 was destabilized. This study provides evidence for solute-induced compaction of the protein structure and occurrence of weak, specific interactions with the protein surface. The relevance of these findings to our understanding of the molecular basis for protein stabilization is discussed.
Collapse
Affiliation(s)
- Tiago M Pais
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Gahl RF, Narayan M, Xu G, Scheraga HA. Trimethylamine-N-oxide modulates the reductive unfolding of onconase. Biochem Biophys Res Commun 2004; 325:707-10. [PMID: 15541346 DOI: 10.1016/j.bbrc.2004.10.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Indexed: 11/13/2022]
Abstract
The physiological osmolyte trimethylamine-N-oxide (TMAO) stabilizes proteins by decreasing the entropy of the unfolded state through a solvophobic effect. Our studies on the effect of TMAO on the reductive unfolding of onconase (ONC) to form its reductive intermediate, des [30-75], indicate that TMAO diminishes the reductive unfolding rate of the protein although it does not significantly affect the stability of the native protein relative to its denatured state. Since the reductive unfolding of ONC is a local event, our studies provide direct evidence for a TMAO-induced local structural change that reduces the rate of redox-dependent protein unfolding. The implications of our findings for protein folding/unfolding are discussed.
Collapse
Affiliation(s)
- Robert F Gahl
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | |
Collapse
|
50
|
Meng FG, Hong YK, He HW, Lyubarev AE, Kurganov BI, Yan YB, Zhou HM. Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase. Biophys J 2004; 87:2247-54. [PMID: 15454427 PMCID: PMC1304650 DOI: 10.1529/biophysj.104.044784] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 07/20/2004] [Indexed: 11/18/2022] Open
Abstract
Protein stability plays an extremely important role not only in its biological function but also in medical science and protein engineering. Osmolytes provide a general method to protect proteins from the unfolding and aggregation induced by extreme environmental stress. In this study, the effect of glycerol on protection of the model enzyme creatine kinase (CK) against heat stress was investigated by a combination of spectroscopic method and thermodynamic analysis. Glycerol could prevent CK from thermal inactivation and aggregation in a concentration-dependent manner. The spectroscopic measurements suggested that the protective effect of glycerol was a result of enhancing the structural stability of native CK. A further thermodynamic analysis using the activated-complex theory suggested that the effect of glycerol on preventing CK against aggregation was consistent with those previously established mechanisms in reversible systems. The osmophobic effect of glycerol, which preferentially raised the free energy of the activated complex, shifted the equilibrium between the native state and the activated complex in favor of the native state. A comparison of the inactivation rate and the denaturation rate suggested that the protection of enzyme activity by glycerol should be attributed to the enhancement of the structural stability of the whole protein rather than the flexible active site.
Collapse
Affiliation(s)
- Fan-Guo Meng
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|