1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Biswas S, Niedzwiedzki DM, Liberton M, Pakrasi HB. Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 162:197-210. [PMID: 37737529 DOI: 10.1007/s11120-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Tian LR, Chen JH. Photosystem I: A Paradigm for Understanding Biological Environmental Adaptation Mechanisms in Cyanobacteria and Algae. Int J Mol Sci 2024; 25:8767. [PMID: 39201454 PMCID: PMC11354412 DOI: 10.3390/ijms25168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The process of oxygenic photosynthesis is primarily driven by two multiprotein complexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations, especially for photosynthetic organisms that grow in special environments. In this review, we make a concise overview of the recent investigations of PSI from photosynthetic microorganisms including prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
Collapse
Affiliation(s)
- Li-Rong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
5
|
Iwai M, Patel-Tupper D, Niyogi KK. Structural Diversity in Eukaryotic Photosynthetic Light Harvesting. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:119-152. [PMID: 38360524 DOI: 10.1146/annurev-arplant-070623-015519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Photosynthesis has been using energy from sunlight to assimilate atmospheric CO2 for at least 3.5 billion years. Through evolution and natural selection, photosynthetic organisms have flourished in almost all aquatic and terrestrial environments. This is partly due to the diversity of light-harvesting complex (LHC) proteins, which facilitate photosystem assembly, efficient excitation energy transfer, and photoprotection. Structural advances have provided angstrom-level structures of many of these proteins and have expanded our understanding of the pigments, lipids, and residues that drive LHC function. In this review, we compare and contrast recently observed cryo-electron microscopy structures across photosynthetic eukaryotes to identify structural motifs that underlie various light-harvesting strategies. We discuss subtle monomer changes that result in macroscale reorganization of LHC oligomers. Additionally, we find recurring patterns across diverse LHCs that may serve as evolutionary stepping stones for functional diversification. Advancing our understanding of LHC protein-environment interactions will improve our capacity to engineer more productive crops.
Collapse
Affiliation(s)
- Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Ara AM, D'Haene S, van Grondelle R, Wahadoszamen M. Unveiling large charge transfer character of PSII in an iron-deficient cyanobacterial membrane: A Stark fluorescence spectroscopy study. PHOTOSYNTHESIS RESEARCH 2024; 160:77-86. [PMID: 38619701 DOI: 10.1007/s11120-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.
Collapse
Affiliation(s)
- Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sandrine D'Haene
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Md Wahadoszamen
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
7
|
Akhtar P, Jana S, Lambrev PH, Tan HS. Inhomogeneous energy transfer dynamics from iron-stress-induced protein A to photosystem I. FRONTIERS IN PLANT SCIENCE 2024; 15:1393886. [PMID: 38817933 PMCID: PMC11137255 DOI: 10.3389/fpls.2024.1393886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Cyanobacteria respond to iron limitation by producing the pigment-protein complex IsiA, forming rings associated with photosystem I (PSI). Initially considered a chlorophyll-storage protein, IsiA is known to act as an auxiliary light-harvesting antenna of PSI, increasing its absorption cross-section and reducing the need for iron-rich PSI core complexes. Spectroscopic studies have demonstrated efficient energy transfer from IsiA to PSI. Here we investigate the room-temperature excitation dynamics in isolated PSI-IsiA, PSI, IsiA monomer complexes and IsiA aggregates using two-dimensional electronic spectroscopy. Cross analyses of the data from these three samples allow us to resolve components of energy transfer between IsiA and PSI with lifetimes of 2-3 ps and around 20 ps. Structure-based Förster theory calculations predict a single major timescale of IsiA-PSI equilibration, that depends on multiple energy transfer routes between different IsiA subunits in the ring. Despite the experimentally observed lifetime heterogeneity, which is attributed to structural heterogeneity of the supercomplexes, IsiA is found to be a unique, highly efficient, membrane antenna complex in cyanobacteria.
Collapse
Affiliation(s)
- Parveen Akhtar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Sanjib Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Petar H. Lambrev
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
Akhtar P, Balog-Vig F, Kuntam S, Tóth SZ, Lambrev PH. Function of iron-stress-induced protein A in cyanobacterial cells with monomeric and trimeric photosystem I. PLANT PHYSIOLOGY 2024; 194:1397-1410. [PMID: 37850879 DOI: 10.1093/plphys/kiad562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
The acclimation of cyanobacteria to iron deficiency is crucial for their survival in natural environments. In response to iron deficiency, many cyanobacterial species induce the production of a pigment-protein complex called iron-stress-induced protein A (IsiA). IsiA proteins associate with photosystem I (PSI) and can function as light-harvesting antennas or dissipate excess energy. They may also serve as chlorophyll storage during iron limitation. In this study, we examined the functional role of IsiA in cells of Synechocystis sp. PCC 6803 grown under iron limitation conditions by measuring the cellular IsiA content and its capability to transfer energy to PSI. We specifically tested the effect of the oligomeric state of PSI by comparing wild-type (WT) Synechocystis sp. PCC 6803 with mutants lacking specific subunits of PSI, namely PsaL/PsaI (PSI subunits XI/VIII) and PsaF/PsaJ (PSI subunits III/IX). Time-resolved fluorescence spectroscopy revealed that IsiA formed functional PSI3-IsiA18 supercomplexes, wherein IsiA effectively transfers energy to PSI on a timescale of 10 ps at room temperature-measured in isolated complexes and in vivo-confirming the primary role of IsiA as an accessory light-harvesting antenna to PSI. However, a notable fraction (40%) remained unconnected to PSI, supporting the notion of a dual functional role of IsiA. Cells with monomeric PSI under iron deficiency contained, on average, only 3 to 4 IsiA complexes bound to PSI. These results show that IsiA can transfer energy to trimeric and monomeric PSI but to varying degrees and that the acclimatory production of IsiA under iron stress is controlled by its ability to perform its light-harvesting function.
Collapse
Affiliation(s)
- Parveen Akhtar
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Fanny Balog-Vig
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Soujanya Kuntam
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Szilvia Z Tóth
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Petar H Lambrev
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
9
|
Harris D, Toporik H, Schlau-Cohen GS, Mazor Y. Energetic robustness to large scale structural fluctuations in a photosynthetic supercomplex. Nat Commun 2023; 14:4650. [PMID: 37532717 PMCID: PMC10397321 DOI: 10.1038/s41467-023-40146-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Photosynthetic organisms transport and convert solar energy with near-unity quantum efficiency using large protein supercomplexes held in flexible membranes. The individual proteins position chlorophylls to tight tolerances considered critical for fast and efficient energy transfer. The variability in protein organization within the supercomplexes, and how efficiency is maintained despite variability, had been unresolved. Here, we report on structural heterogeneity in the 2-MDa cyanobacterial PSI-IsiA photosynthetic supercomplex observed using Cryo-EM, revealing large-scale variances in the positions of IsiA relative to PSI. Single-molecule measurements found efficient IsiA-to-PSI energy transfer across all conformations, along with signatures of transiently decoupled IsiA. Structure based calculations showed that rapid IsiA-to-PSI energy transfer is always maintained, and even increases by three-fold in rare conformations via IsiA-specific chls. We postulate that antennae design mitigates structural fluctuations, providing a mechanism for robust energy transfer in the flexible membrane.
Collapse
Affiliation(s)
- Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Hila Toporik
- Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85801, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Yuval Mazor
- Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85801, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
10
|
Ferrieux M, Dufour L, Doré H, Ratin M, Guéneuguès A, Chasselin L, Marie D, Rigaut-Jalabert F, Le Gall F, Sciandra T, Monier G, Hoebeke M, Corre E, Xia X, Liu H, Scanlan DJ, Partensky F, Garczarek L. Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Front Microbiol 2022; 13:893413. [PMID: 35615522 PMCID: PMC9124967 DOI: 10.3389/fmicb.2022.893413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters.
Collapse
Affiliation(s)
- Mathilde Ferrieux
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Louison Dufour
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Hugo Doré
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Audrey Guéneuguès
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Léo Chasselin
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Fabienne Rigaut-Jalabert
- Sorbonne Université, CNRS, Fédération de Recherche FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Florence Le Gall
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Théo Sciandra
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Garance Monier
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mark Hoebeke
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Erwan Corre
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - David J. Scanlan
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
- CNRS Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| |
Collapse
|
11
|
Jia A, Zheng Y, Chen H, Wang Q. Regulation and Functional Complexity of the Chlorophyll-Binding Protein IsiA. Front Microbiol 2021; 12:774107. [PMID: 34867913 PMCID: PMC8635728 DOI: 10.3389/fmicb.2021.774107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
As the oldest known lineage of oxygen-releasing photosynthetic organisms, cyanobacteria play the key roles in helping shaping the ecology of Earth. Iron is an ideal transition metal for redox reactions in biological systems. Cyanobacteria frequently encounter iron deficiency due to the environmental oxidation of ferrous ions to ferric ions, which are highly insoluble at physiological pH. A series of responses, including architectural changes to the photosynthetic membranes, allow cyanobacteria to withstand this condition and maintain photosynthesis. Iron-stress-induced protein A (IsiA) is homologous to the cyanobacterial chlorophyll (Chl)-binding protein, photosystem II core antenna protein CP43. IsiA is the major Chl-containing protein in iron-starved cyanobacteria, binding up to 50% of the Chl in these cells, and this Chl can be released from IsiA for the reconstruction of photosystems during the recovery from iron limitation. The pigment–protein complex (CPVI-4) encoded by isiA was identified and found to be expressed under iron-deficient conditions nearly 30years ago. However, its precise function is unknown, partially due to its complex regulation; isiA expression is induced by various types of stresses and abnormal physiological states besides iron deficiency. Furthermore, IsiA forms a range of complexes that perform different functions. In this article, we describe progress in understanding the regulation and functions of IsiA based on laboratory research using model cyanobacteria.
Collapse
Affiliation(s)
- Anqi Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanli Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Fasnacht M, Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Front Mol Biosci 2021; 8:671037. [PMID: 34041267 PMCID: PMC8141631 DOI: 10.3389/fmolb.2021.671037] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Ever since the "great oxidation event," Earth's cellular life forms had to cope with the danger of reactive oxygen species (ROS) affecting the integrity of biomolecules and hampering cellular metabolism circuits. Consequently, increasing ROS levels in the biosphere represented growing stress levels and thus shaped the evolution of species. Whether the ROS were produced endogenously or exogenously, different systems evolved to remove the ROS and repair the damage they inflicted. If ROS outweigh the cell's capacity to remove the threat, we speak of oxidative stress. The injuries through oxidative stress in cells are diverse. This article reviews the damage oxidative stress imposes on the different steps of the central dogma of molecular biology in bacteria, focusing in particular on the RNA machines involved in transcription and translation.
Collapse
Affiliation(s)
- Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
14
|
Abstract
Oxygenic photosynthetic organisms have evolved a multitude of mechanisms for protection against high-light stress. IsiA, a chlorophyll a-binding cyanobacterial protein, serves as an accessory antenna complex for photosystem I. Intriguingly, IsiA can also function as an independent pigment protein complex in the thylakoid membrane and facilitate the dissipation of excess energy, providing photoprotection. The molecular basis of the IsiA-mediated excitation quenching mechanism remains poorly understood. In this study, we demonstrate that IsiA uses a novel cysteine-mediated process to quench excitation energy. The single cysteine in IsiA in the cyanobacterium Synechocystis sp. strain PCC 6803 was converted to a valine. Ultrafast fluorescence spectroscopic analysis showed that this single change abolishes the excitation energy quenching ability of IsiA, thus providing direct evidence of the crucial role of this cysteine residue in energy dissipation from excited chlorophylls. Under stress conditions, the mutant cells exhibited enhanced light sensitivity, indicating that the cysteine-mediated quenching process is critically important for photoprotection.
Collapse
|
15
|
Sandrini G, Piel T, Xu T, White E, Qin H, Slot PC, Huisman J, Visser PM. Sensitivity to hydrogen peroxide of the bloom-forming cyanobacterium Microcystis PCC 7806 depends on nutrient availability. HARMFUL ALGAE 2020; 99:101916. [PMID: 33218441 DOI: 10.1016/j.hal.2020.101916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Application of low concentrations of hydrogen peroxide (H2O2) is a relatively new and promising method to selectively suppress harmful cyanobacterial blooms, while minimizing effects on eukaryotic organisms. However, it is still unknown how nutrient limitation affects the sensitivity of cyanobacteria to H2O2. In this study, we compare effects of H2O2 on the microcystin-producing cyanobacterium Microcystis PCC 7806 under light-limited but nutrient-replete conditions, nitrogen (N) limitation and phosphorus (P) limitation. Microcystis was first grown in chemostats to acclimate to these different experimental conditions, and subsequently transferred to batch cultures where they were treated with a range of H2O2 concentrations (0-10 mg L-1) while exposed to high light (100 µmol photons m-2 s-1) or low light (15 µmol photons m-2 s-1). Our results show that, at low light, N- and P-limited Microcystis were less sensitive to H2O2 than light-limited but nutrient-replete Microcystis. A significantly higher expression of the genes encoding for anti-oxidative stress enzymes (2-cys-peroxiredoxin, thioredoxin A and type II peroxiredoxin) was observed prior to and after the H2O2 treatment for both N- and P-limited Microcystis, which may explain their increased resistance against H2O2. At high light, Microcystis was more sensitive to H2O2 than at low light, and differences in the decline of the photosynthetic yield between nutrient-replete and nutrient-limited Microcystis exposed to H2O2 were less pronounced. Leakage of microcystin was stronger and faster from nutrient-replete than from N- and P-limited Microcystis. Overall, this study provides insight in the sensitivity of harmful cyanobacteria to H2O2 under various environmental conditions.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily White
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hongjie Qin
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Schoffman H, Brown WM, Paltiel Y, Keren N, Gauger EM. Structure-based Hamiltonian model for IsiA uncovers a highly robust pigment-protein complex. J R Soc Interface 2020; 17:20200399. [PMID: 32842892 PMCID: PMC7482578 DOI: 10.1098/rsif.2020.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 11/12/2022] Open
Abstract
The iron stress-induced protein A (IsiA) is a source of interest and debate in biological research. The IsiA supercomplex, binding over 200 chlorophylls, assembles in multimeric rings around photosystem I (PSI). Recently, the IsiA-PSI structure from Synechocystis sp. PCC 6803 was resolved to 3.48 Å. Based on this structure, we created a model simulating a single excitation event in an IsiA monomer. This model enabled us to calculate the fluorescence and the localization of the excitation in the IsiA structure. To further examine this system, noise was introduced to the model in two forms-thermal and positional. Introducing noise highlights the functional differences in the system between cryogenic temperatures and biologically relevant temperatures. Our results show that the energetics of the IsiA pigment-protein complex are very robust at room temperature. Nevertheless, shifts in the position of specific chlorophylls lead to large changes in their optical and fluorescence properties. Based on these results, we discuss the implication of highly robust structures, with potential for serving different roles in a context-dependent manner, on our understanding of the function and evolution of photosynthetic processes.
Collapse
Affiliation(s)
- Hanan Schoffman
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William M. Brown
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Yossi Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Erik M. Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
17
|
Zhao LS, Huokko T, Wilson S, Simpson DM, Wang Q, Ruban AV, Mullineaux CW, Zhang YZ, Liu LN. Structural variability, coordination and adaptation of a native photosynthetic machinery. NATURE PLANTS 2020; 6:869-882. [PMID: 32665651 DOI: 10.1038/s41477-020-0694-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/14/2020] [Indexed: 05/12/2023]
Abstract
Cyanobacterial thylakoid membranes represent the active sites for both photosynthetic and respiratory electron transport. We used high-resolution atomic force microscopy to visualize the native organization and interactions of photosynthetic complexes within the thylakoid membranes from the model cyanobacterium Synechococcus elongatus PCC 7942. The thylakoid membranes are heterogeneous and assemble photosynthetic complexes into functional domains to enhance their coordination and regulation. Under high light, the chlorophyll-binding proteins IsiA are strongly expressed and associate with Photosystem I (PSI), forming highly variable IsiA-PSI supercomplexes to increase the absorption cross-section of PSI. There are also tight interactions of PSI with Photosystem II (PSII), cytochrome b6f, ATP synthase and NAD(P)H dehydrogenase complexes. The organizational variability of these photosynthetic supercomplexes permits efficient linear and cyclic electron transport as well as bioenergetic regulation. Understanding the organizational landscape and environmental adaptation of cyanobacterial thylakoid membranes may help inform strategies for engineering efficient photosynthetic systems and photo-biofactories.
Collapse
Affiliation(s)
- Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tuomas Huokko
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Deborah M Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, China.
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| |
Collapse
|
18
|
Cavaiuolo M, Chagneau C, Laalami S, Putzer H. Impact of RNase E and RNase J on Global mRNA Metabolism in the Cyanobacterium Synechocystis PCC6803. Front Microbiol 2020; 11:1055. [PMID: 32582060 PMCID: PMC7283877 DOI: 10.3389/fmicb.2020.01055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
mRNA levels result from an equilibrium between transcription and degradation. Ribonucleases (RNases) facilitate the turnover of mRNA, which is an important way of controlling gene expression, allowing the cells to adjust transcript levels to a changing environment. In contrast to the heterotrophic model bacteria Escherichia coli and Bacillus subtilis, RNA decay has not been studied in detail in cyanobacteria. Synechocystis sp. PCC6803 encodes orthologs of both E. coli and B. subtilis RNases, including RNase E and RNase J, respectively. We show that in vitro Sy RNases E and J have an endonucleolytic cleavage specificity that is very similar between them and also compared to orthologous enzymes from E. coli, B. subtilis, and Chlamydomonas. Moreover, Sy RNase J displays a robust 5′-exoribonuclease activity similar to B. subtilis RNase J1, but unlike the evolutionarily related RNase J in chloroplasts. Both nucleases are essential and gene deletions could not be fully segregated in Synechocystis. We generated partially disrupted strains of Sy RNase E and J that were stable enough to allow for their growth and characterization. A transcriptome analysis of these strains partially depleted for RNases E and J, respectively, allowed to observe effects on specific transcripts. RNase E altered the expression of a larger number of chromosomal genes and antisense RNAs compared to RNase J, which rather affects endogenous plasmid encoded transcripts. Our results provide the first description of the main transcriptomic changes induced by the partial depletion of two essential ribonucleases in cyanobacteria.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Carine Chagneau
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Soumaya Laalami
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Harald Putzer
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| |
Collapse
|
19
|
Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins. Commun Biol 2020; 3:232. [PMID: 32393811 PMCID: PMC7214436 DOI: 10.1038/s42003-020-0949-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Iron-stress induced protein A (IsiA) is a chlorophyll-binding membrane-spanning protein in photosynthetic prokaryote cyanobacteria, and is associated with photosystem I (PSI) trimer cores, but its structural and functional significance in light harvesting remains unclear. Here we report a 2.7-Å resolution cryo-electron microscopic structure of a supercomplex between PSI core trimer and IsiA from a thermophilic cyanobacterium Thermosynechococcus vulcanus. The structure showed that 18 IsiA subunits form a closed ring surrounding a PSI trimer core. Detailed arrangement of pigments within the supercomplex, as well as molecular interactions between PSI and IsiA and among IsiAs, were resolved. Time-resolved fluorescence spectra of the PSI–IsiA supercomplex showed clear excitation-energy transfer from IsiA to PSI, strongly indicating that IsiA functions as an energy donor, but not an energy quencher, in the supercomplex. These structural and spectroscopic findings provide important insights into the excitation-energy-transfer and subunit assembly mechanisms in the PSI–IsiA supercomplex. Akita et al. present the latest approach to solve IsiA–PSI supercomplex molecular structure with increased resolution using cryo-EM and time-resolved fluorescence studies. With 2.7 Å resolution, they reveal molecular interactions between PSI and IsiA subunits and that IsiA functions as an energy donor in the supercomplex.
Collapse
|
20
|
Cao P, Cao D, Si L, Su X, Tian L, Chang W, Liu Z, Zhang X, Li M. Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin supercomplex. NATURE PLANTS 2020; 6:167-176. [PMID: 32042157 DOI: 10.1038/s41477-020-0593-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/06/2020] [Indexed: 05/10/2023]
Abstract
Under iron-deficiency stress, which occurs frequently in natural aquatic environments, cyanobacteria reduce the amount of iron-enriched proteins, including photosystem I (PSI) and ferredoxin (Fd), and upregulate the expression of iron-stress-induced proteins A and B (IsiA and flavodoxin (Fld)). Multiple IsiAs function as the peripheral antennae that encircle the PSI core, whereas Fld replaces Fd as the electron receptor of PSI. Here, we report the structures of the PSI3-IsiA18-Fld3 and PSI3-IsiA18 supercomplexes from Synechococcus sp. PCC 7942, revealing features that are different from the previously reported PSI structures, and a sophisticated pigment network that involves previously unobserved pigment molecules. Spectroscopic results demonstrated that IsiAs are efficient light harvesters for PSI. Three Flds bind symmetrically to the trimeric PSI core-we reveal the detailed interaction and the electron transport path between PSI and Fld. Our results provide a structural basis for understanding the mechanisms of light harvesting, energy transfer and electron transport of cyanobacterial PSI under stressed conditions.
Collapse
Affiliation(s)
- Peng Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Long Si
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lijin Tian
- Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
21
|
Schoffman H, Keren N. Function of the IsiA pigment-protein complex in vivo. PHOTOSYNTHESIS RESEARCH 2019; 141:343-353. [PMID: 30929163 DOI: 10.1007/s11120-019-00638-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The acclimation of cyanobacterial photosynthetic apparatus to iron deficiency is crucial for their performance under limiting conditions. In many cyanobacterial species, one of the major responses to iron deficiency is the induction of isiA. The function of the IsiA pigment-protein complex has been the subject of intensive research. In this study of the model Synechocystis sp. PCC 6803 strain, we probe the accumulation of the pigment-protein complex and its effects on in vivo photosynthetic performance. We provide evidence that in this organism the dominant factor controlling IsiA accumulation is the intracellular iron concentration and not photo-oxidative stress or redox poise. These findings support the use of IsiA as a tool for assessing iron bioavailability in environmental studies. We also present evidence demonstrating that the IsiA pigment-protein complex exerts only small effects on the performance of the reaction centers. We propose that its major function is as a storage depot able to hold up to 50% of the cellular chlorophyll content during transition into iron limitation. During recovery from iron limitation, chlorophyll is released from the complex and used for the reconstruction of photosystems. Therefore, the IsiA pigment-protein complex can play a critical role not only when cells transition into iron limitation, but also in supporting efficient recovery of the photosynthetic apparatus in the transition back out of the iron-limited state.
Collapse
Affiliation(s)
- Hanan Schoffman
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
22
|
Toporik H, Li J, Williams D, Chiu PL, Mazor Y. The structure of the stress-induced photosystem I-IsiA antenna supercomplex. Nat Struct Mol Biol 2019; 26:443-449. [PMID: 31133699 DOI: 10.1038/s41594-019-0228-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 01/20/2023]
Abstract
Photochemical conversion in oxygenic photosynthesis takes place in two large protein-pigment complexes named photosystem II and photosystem I (PSII and PSI, respectively). Photosystems associate with antennae in vivo to increase the size of photosynthetic units to hundreds or thousands of pigments. Regulation of the interactions between antennae and photosystems allows photosynthetic organisms to adapt to their environment. In low-iron environments, cyanobacteria express IsiA, a PSI antenna, critical to their survival. Here we describe the structure of the PSI-IsiA complex isolated from the mesophilic cyanobacterium Synechocystis sp. PCC 6803. This 2-MDa photosystem-antenna supercomplex structure reveals more than 700 pigments coordinated by 51 subunits, as well as the mechanisms facilitating the self-assembly and association of IsiA with multiple PSI assemblies.
Collapse
Affiliation(s)
- Hila Toporik
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Jin Li
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, AZ, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA. .,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
23
|
Riediger M, Kadowaki T, Nagayama R, Georg J, Hihara Y, Hess WR. Biocomputational Analyses and Experimental Validation Identify the Regulon Controlled by the Redox-Responsive Transcription Factor RpaB. iScience 2019; 15:316-331. [PMID: 31103851 PMCID: PMC6525291 DOI: 10.1016/j.isci.2019.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022] Open
Abstract
Oxygenic photosynthesis requires the coordination of environmental stimuli with the regulation of transcription. The transcription factor RpaB is conserved from the simplest unicellular cyanobacteria to complex eukaryotic algae, representing more than 1 billion years of evolution. To predict the RpaB-controlled regulon in the cyanobacterium Synechocystis, we analyzed the positional distribution of binding sites together with high-resolution mapping data of transcriptional start sites (TSSs). We describe more than 150 target promoters whose activity responds to fluctuating light conditions. Binding sites close to the TSS mediate repression, whereas sites centered ∼50 nt upstream mediate activation. Using complementary experimental approaches, we found that RpaB controls genes involved in photoprotection, cyclic electron flow and state transitions, photorespiration, and nirA and isiA for which we suggest cross-regulation with the transcription factors NtcA or FurA. The deep integration of RpaB with diverse photosynthetic gene functions makes it one of the most important and versatile transcriptional regulators. RpaB controls a complex regulon, widely beyond the photosynthetic machinery The expression of the RNA regulators IsrR, PsrR1, and others depends on RpaB RpaB exhibits cross-regulations with other transcription factors, NtcA and Fur RpaB is a crucial transcriptional regulator in a photosynthetic microorganism
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ryuta Nagayama
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Li Q, Huisman J, Bibby TS, Jiao N. Biogeography of Cyanobacterial isiA Genes and Their Link to Iron Availability in the Ocean. Front Microbiol 2019; 10:650. [PMID: 31024472 PMCID: PMC6460047 DOI: 10.3389/fmicb.2019.00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/14/2019] [Indexed: 11/15/2022] Open
Abstract
The cyanobacterial iron-stress-inducible isiA gene encodes a chlorophyll-binding protein that provides flexibility in photosynthetic strategy enabling cells to acclimate to low iron availability. Here, we report on the diversity and abundance of isiA genes from 14 oceanic stations encompassing large natural gradients in iron availability. Synechococcus CRD1 and CRD2-like isiA genes were ubiquitously identified from tropical and subtropical waters of the Pacific, Atlantic, and Indian Oceans. The relative abundance of isiA-containing Synechococcus cells ranged from less than 10% of the total Synechococcus population in regions where iron is replete such as the North Atlantic subtropical gyre, to over 80% in low-iron but high-nitrate regions of the eastern equatorial Pacific. Interestingly, Synechococcus populations in regions with both low iron and low nitrate concentrations such as the subtropical gyres in the North Pacific and South Atlantic had a low relative abundance of the isiA gene. Indeed, fitting our data into a multiple regression model showed that ∼80% of the variation in isiA relative abundances can be explained by nitrate and iron concentrations, whereas no other environmental variables (temperature, salinity, Chl a) had a significant effect. Hence, isiA has a predictable biogeographical distribution, consistent with the perceived biological role of IsiA as an adaptation to low-iron conditions. Understanding such photosynthetic strategies is critical to our ability to accurately estimate primary production and map nutrient limitation on global scales.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecosphere, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas S. Bibby
- School of Ocean and Earth Science, National Oceanography Centre Southampton, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecosphere, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Boatman TG, Oxborough K, Gledhill M, Lawson T, Geider RJ. An Integrated Response of Trichodesmium erythraeum IMS101 Growth and Photo-Physiology to Iron, CO 2, and Light Intensity. Front Microbiol 2018; 9:624. [PMID: 29755417 PMCID: PMC5932364 DOI: 10.3389/fmicb.2018.00624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
We have assessed how varying CO2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m-2 s-1) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rPm). Under iron-limiting concentrations, high-light increased growth rates and rPm; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rPm and lowered the iron half saturation constants for growth (Km). We attribute these CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake and transport at low and high CO2, respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO2, light intensity and iron-limitation. These results are important given predictions of increased dissolved CO2 and water column stratification (i.e., higher light exposures) over the coming decades.
Collapse
Affiliation(s)
- Tobias G Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Kevin Oxborough
- Chelsea Technologies Group Ltd, West Molesey, United Kingdom
| | - Martha Gledhill
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom.,GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
26
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Chen HYS, Liberton M, Pakrasi HB, Niedzwiedzki DM. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:249-258. [DOI: 10.1016/j.bbabio.2017.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
|
28
|
Vuorijoki L, Tiwari A, Kallio P, Aro EM. Inactivation of iron-sulfur cluster biogenesis regulator SufR in Synechocystis sp. PCC 6803 induces unique iron-dependent protein-level responses. Biochim Biophys Acta Gen Subj 2017; 1861:1085-1098. [PMID: 28216046 DOI: 10.1016/j.bbagen.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Iron-sulfur (Fe-S) clusters are protein-bound cofactors associated with cellular electron transport and redox sensing, with multiple specific functions in oxygen-evolving photosynthetic cyanobacteria. The aim here was to elucidate protein-level effects of the transcriptional repressor SufR involved in the regulation of Fe-S cluster biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. METHODS The approach was to quantitate 94 pre-selected target proteins associated with various metabolic functions using SRM in Synechocystis. The evaluation was conducted in response to sufR deletion under different iron conditions, and complemented with EPR analysis on the functionality of the photosystems I and II as well as with RT-qPCR to verify the effects of SufR also on transcript level. RESULTS The results on both protein and transcript levels show that SufR acts not only as a repressor of the suf operon when iron is available but also has other direct and indirect functions in the cell, including maintenance of the expression of pyruvate:ferredoxin oxidoreductase NifJ and other Fe-S cluster proteins under iron sufficient conditions. Furthermore, the results imply that in the absence of iron the suf operon is repressed by some additional regulatory mechanism independent of SufR. CONCLUSIONS The study demonstrates that Fe-S cluster metabolism in Synechocystis is stringently regulated, and has complex interactions with multiple primary functions in the cell, including photosynthesis and central carbon metabolism. GENERAL SIGNIFICANCE The study provides new insight into the regulation of Fe-S cluster biogenesis via suf operon, and the associated wide-ranging protein-level changes in photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Linda Vuorijoki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Arjun Tiwari
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Pauli Kallio
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
29
|
Ma F, Zhang X, Zhu X, Li T, Zhan J, Chen H, He C, Wang Q. Dynamic Changes of IsiA-Containing Complexes during Long-Term Iron Deficiency in Synechocystis sp. PCC 6803. MOLECULAR PLANT 2017; 10:143-154. [PMID: 27777125 DOI: 10.1016/j.molp.2016.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 05/26/2023]
Abstract
Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of IsiA-containing complexes in Synechocystis sp. PCC 6803 during exposure to long-term iron deficiency. Within 3 days of exposure to iron deficiency conditions, the initially induced free IsiA proteins preferentially conjugated to PS I trimer to form IsiA18-PS I trimers, which serve as light energy collectors for efficiently transmitting energy to PS I. With prolonged iron deficiency, IsiA proteins assembled either into IsiA aggregates or into two other types of IsiA-PS I supercomplexes, namely IsiA-PS I high fluorescence supercomplex (IHFS) and IsiA-PS I low fluorescence supercomplex (ILFS). Further analysis revealed a role for IsiA as an energy dissipater in the IHFS and as an energy collector in the ILFS. The trimeric structure of PS I mediated by PsaL was found to be indispensable for the formation of IHFS/ILFS. Dynamic changes in IsiA-containing complexes in cyanobacteria during long-term iron deficiency may represent an adaptation to iron limitation stress for flexible light energy distribution, which balances electron transfer between PS I and PS II, thus minimizing photooxidative damage.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xi Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
30
|
Šlouf V, Kuznetsova V, Fuciman M, de Carbon CB, Wilson A, Kirilovsky D, Polívka T. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 131:105-117. [PMID: 27612863 DOI: 10.1007/s11120-016-0302-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.
Collapse
Affiliation(s)
- Václav Šlouf
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
31
|
Shen G, Gan F, Bryant DA. The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. PHOTOSYNTHESIS RESEARCH 2016; 128:325-340. [PMID: 27071628 DOI: 10.1007/s11120-016-0257-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
In the evolution of different cyanobacteria performing oxygenic photosynthesis, the core complexes of the two photosystems were highly conserved. However, cyanobacteria exhibit significant diversification in their light-harvesting complexes and have flexible regulatory mechanisms to acclimate to changes in their growth environments. In the siderophilic, filamentous cyanobacterium, Leptolyngbya sp. strain JSC-1, five different isiA-family genes occur in two gene clusters. During acclimation to Fe limitation, relative transcript levels for more than 600 genes increased more than twofold. Relative transcript levels were ~250 to 300 times higher for the isiA1 gene cluster (isiA1-isiB-isiC), and ~440- to 540-fold for the isiA2-isiA3-isiA4-cpcG2-isiA5 gene cluster after 48 h of iron starvation. Chl-protein complexes were isolated and further purified from cells grown under Fe-replete and Fe-depleted conditions. A single class of particles, trimeric PSI, was identified by image analysis of electron micrographs of negatively stained PSI complexes from Fe-replete cells. However, three major classes of particles were observed for the Chl-protein supercomplexes from cells grown under iron starvation conditions. Based on LC-MS-MS analyses, the five IsiA-family proteins were found in the largest supercomplexes together with core components of the two photosystems; however, IsiA5 was not present in complexes in which only the core subunits of PSI were detected. IsiA5 belongs to the same clade as PcbC proteins in a phylogenetic classification, and it is proposed that IsiA5 is most likely involved in supercomplexes containing PSII dimers. IsiA4, which is a fusion of an IsiA domain and a C-terminal PsaL domain, was found together with IsiA1, IsiA2, and IsiA3 in complexes with monomeric PSI. The data indicate that horizontal gene transfer, gene duplication, and divergence have played important roles in the adaptive evolution of this cyanobacterium to iron starvation conditions.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
32
|
Sandrini G, Tann RP, Schuurmans JM, van Beusekom SAM, Matthijs HCP, Huisman J. Diel Variation in Gene Expression of the CO2-Concentrating Mechanism during a Harmful Cyanobacterial Bloom. Front Microbiol 2016; 7:551. [PMID: 27148233 PMCID: PMC4840274 DOI: 10.3389/fmicb.2016.00551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Dense phytoplankton blooms in eutrophic waters often experience large daily fluctuations in environmental conditions. We investigated how this diel variation affects in situ gene expression of the CO2-concentrating mechanism (CCM) and other selected genes of the harmful cyanobacterium Microcystis aeruginosa. Photosynthetic activity of the cyanobacterial bloom depleted the dissolved CO2 concentration, raised pH to 10, and caused large diel fluctuations in the bicarbonate and O2 concentration. The Microcystis population consisted of three Ci uptake genotypes that differed in the presence of the low-affinity and high-affinity bicarbonate uptake genes bicA and sbtA. Expression of the bicarbonate uptake genes bicA, sbtA, and cmpA (encoding a subunit of the high-affinity bicarbonate uptake system BCT1), the CCM transcriptional regulator gene ccmR and the photoprotection gene flv4 increased at first daylight and was negatively correlated with the bicarbonate concentration. In contrast, genes of the two CO2 uptake systems were constitutively expressed, whereas expression of the RuBisCO chaperone gene rbcX, the carboxysome gene ccmM, and the photoprotection gene isiA was highest at night and down-regulated during daytime. In total, our results show that the harmful cyanobacterium Microcystis is very responsive to the large diel variations in carbon and light availability often encountered in dense cyanobacterial blooms.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Robert P. Tann
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - J. Merijn Schuurmans
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
- Department of Aquatic Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Sebastiaan A. M. van Beusekom
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Hans C. P. Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
33
|
González A, Sevilla E, Bes MT, Peleato ML, Fillat MF. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Adv Microb Physiol 2016; 68:169-217. [PMID: 27134024 DOI: 10.1016/bs.ampbs.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms.
Collapse
Affiliation(s)
| | - E Sevilla
- University of Zaragoza, Zaragoza, Spain
| | - M T Bes
- University of Zaragoza, Zaragoza, Spain
| | | | - M F Fillat
- University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
34
|
Schoffman H, Lis H, Shaked Y, Keren N. Iron-Nutrient Interactions within Phytoplankton. FRONTIERS IN PLANT SCIENCE 2016; 7:1223. [PMID: 27588022 PMCID: PMC4989028 DOI: 10.3389/fpls.2016.01223] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/02/2016] [Indexed: 05/04/2023]
Abstract
Iron limits photosynthetic activity in up to one third of the world's oceans and in many fresh water environments. When studying the effects of Fe limitation on phytoplankton or their adaptation to low Fe environments, we must take into account the numerous cellular processes within which this micronutrient plays a central role. Due to its flexible redox chemistry, Fe is indispensable in enzymatic catalysis and electron transfer reactions and is therefore closely linked to the acquisition, assimilation and utilization of essential resources. Iron limitation will therefore influence a wide range of metabolic pathways within phytoplankton, most prominently photosynthesis. In this review, we map out four well-studied interactions between Fe and essential resources: nitrogen, manganese, copper and light. Data was compiled from both field and laboratory studies to shed light on larger scale questions such as the connection between metabolic pathways and ambient iron levels and the biogeographical distribution of phytoplankton species.
Collapse
Affiliation(s)
- Hanan Schoffman
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Hagar Lis
- The Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of JerusalemJerusalem, Israel
| | - Yeala Shaked
- The Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of JerusalemJerusalem, Israel
- Interuniversity Institute for Marine Sciences in EilatEilat, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
- *Correspondence: Nir Keren,
| |
Collapse
|
35
|
Vuorijoki L, Isojärvi J, Kallio P, Kouvonen P, Aro EM, Corthals GL, Jones PR, Muth-Pawlak D. Development of a Quantitative SRM-Based Proteomics Method to Study Iron Metabolism of Synechocystis sp. PCC 6803. J Proteome Res 2015; 15:266-79. [DOI: 10.1021/acs.jproteome.5b00800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Linda Vuorijoki
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Janne Isojärvi
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Pauli Kallio
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Petri Kouvonen
- Turku
Proteomics Facility, Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Garry L. Corthals
- Turku
Proteomics Facility, Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, 1018 WV Amsterdam, The Netherlands
| | - Patrik R. Jones
- Department
of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Dorota Muth-Pawlak
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
- Turku
Proteomics Facility, Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland
| |
Collapse
|
36
|
Snow JT, Polyviou D, Skipp P, Chrismas NAM, Hitchcock A, Geider R, Moore CM, Bibby TS. Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium. PLoS One 2015; 10:e0142626. [PMID: 26562022 PMCID: PMC4642986 DOI: 10.1371/journal.pone.0142626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/23/2015] [Indexed: 02/03/2023] Open
Abstract
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual 'new' nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55-60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean.
Collapse
Affiliation(s)
- Joseph T. Snow
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
- * E-mail:
| | - Despo Polyviou
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| | - Paul Skipp
- Centre for Proteomic Research, University of Southampton, Southampton, United Kingdom
| | - Nathan A. M. Chrismas
- School of Geographical Sciences, University of Bristol, University Road, Clifton, Bristol, United Kingdom
| | - Andrew Hitchcock
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Richard Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - C. Mark Moore
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| | - Thomas S. Bibby
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
37
|
Sun J, Golbeck JH. The Presence of the IsiA-PSI Supercomplex Leads to Enhanced Photosystem I Electron Throughput in Iron-Starved Cells of Synechococcus sp. PCC 7002. J Phys Chem B 2015; 119:13549-59. [DOI: 10.1021/acs.jpcb.5b02176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junlei Sun
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| |
Collapse
|
38
|
Sandrini G, Cunsolo S, Schuurmans JM, Matthijs HCP, Huisman J. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2. Front Microbiol 2015; 6:401. [PMID: 25999931 PMCID: PMC4419860 DOI: 10.3389/fmicb.2015.00401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Serena Cunsolo
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - J. Merijn Schuurmans
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
- Department of Aquatic Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Hans C. P. Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
39
|
Salomon E, Keren N. Acclimation to environmentally relevant Mn concentrations rescues a cyanobacterium from the detrimental effects of iron limitation. Environ Microbiol 2015; 17:2090-8. [DOI: 10.1111/1462-2920.12826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/13/2015] [Accepted: 02/22/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Eitan Salomon
- Department of Plant and Environmental Sciences; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
40
|
Wahadoszamen M, D'Haene S, Ara AM, Romero E, Dekker JP, Grondelle RV, Berera R. Identification of common motifs in the regulation of light harvesting: The case of cyanobacteria IsiA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:486-492. [PMID: 25615585 DOI: 10.1016/j.bbabio.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
When cyanobacteria are grown under iron-limited or other oxidative stress conditions the iron stress inducible pigment-protein IsiA is synthesized in variable amounts. IsiA accumulates in aggregates inside the photosynthetic membrane that strongly dissipate chlorophyll excited state energy. In this paper we applied Stark fluorescence (SF) spectroscopy at 77K to IsiA aggregates to gain insight into the nature of the emitting and energy dissipating state(s). Our study shows that two emitting states are present in the system, one emitting at 684 nm and the other emitting at about 730 nm. The new 730 nm state exhibits strongly reduced fluorescence (F) together with a large charge transfer character. We discuss these findings in the light of the energy dissipation mechanisms involved in the regulation of photosynthesis in plants, cyanobacteria and diatoms. Our results suggest that photosynthetic organisms have adopted common mechanisms to cope with the deleterious effects of excess light under unfavorable growth conditions.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands; Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Sandrine D'Haene
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Anjue Mane Ara
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands; Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Elisabet Romero
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Jan P Dekker
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rudi Berera
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Qin X, Wang W, Chang L, Chen J, Wang P, Zhang J, He Y, Kuang T, Shen JR. Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans. PHOTOSYNTHESIS RESEARCH 2015; 123:61-76. [PMID: 25214185 DOI: 10.1007/s11120-014-0039-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/03/2014] [Indexed: 05/24/2023]
Abstract
A novel super-complex of photosystem I (PSI)-light-harvesting complex I (LHCI) was isolated from a siphonaceous marine green alga, Bryopsis corticulans. The super-complex contained 9-10 Lhca antennas as external LHCI bound to the core complex. The super-complex was further disintegrated into PSI core and LHCI sub-complexes, and analysis of the pigment compositions by high-performance liquid chromatography revealed unique characteristics of the B. corticulans PSI in that one PSI core contained around 14 α-carotenes and 1-2 ε-carotenes. This is in sharp contrast to the PSI core from higher plants and most cyanobacteria where only β-carotenes were present, and is the first report for an α-carotene-type PSI core complex among photosynthetic eukaryotes, suggesting a structural flexibility of the PSI core. Lhca antennas from B. corticulans contained seven kinds of carotenoids (siphonaxanthin, all-trans neoxanthin, 9'-cis neoxanthin, violaxanthin, siphonein, ε-carotene, and α-carotene) and showed a high carotenoid:chlorophyll ratio of around 7.5:13. PSI-LHCI super-complex and PSI core showed fluorescence emission peaks at 716 and 718 nm at 77 K, respectively; whereas two Lhca oligomers had fluorescence peaks at 681 and 684 nm, respectively. By comparison with spinach PSI preparations, it was found that B. corticulans PSI had less red chlorophylls, most of them are present in the core complex but not in the outer light-harvesting systems. These characteristics may contribute to the fine tuning of the energy transfer network, and to acclimate to the ever-changing light conditions under which the unique green alga inhabits.
Collapse
Affiliation(s)
- Xiaochun Qin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cheng D, He Q. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803. PLoS One 2014; 9:e101743. [PMID: 25010795 PMCID: PMC4092027 DOI: 10.1371/journal.pone.0101743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter), feoB (encoding a ferrous iron transporter), bfr genes (encoding bacterioferritins), ho genes (encoding heme oxygenases), isiA (encoding a chlorophyll-binding protein), and furA (encoding a ferric uptake regulator). The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Qingfang He
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| |
Collapse
|
43
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Boekema EJ, Scheffers DJ, van Bezouwen LS, Bolhuis H, Folea IM. Focus on membrane differentiation and membrane domains in the prokaryotic cell. J Mol Microbiol Biotechnol 2013; 23:345-56. [PMID: 23920497 DOI: 10.1159/000351361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology. More recently, light microscopy in combination with the use of fluorescent dyes has become an attractive technique for protein localization with the natural membrane. However, the resolution problem in light microscopy remains and overinterpretation of observed phenomena is a pitfall. Thus, light microscopy as a stand-alone technique is not sufficient to prove, for instance, the long-range helical distribution of proteins in membrane such as MinD spirals in Bacillus subtilis. Electron tomography is an emerging electron microscopy technique that can provide three-dimensional reconstructions of small, nonchemically fixed bacteria. It will become a useful tool for studying prokaryotic membranes in more detail and is expected to collect information complementary to those of advanced light microscopy. Together, microscopy techniques can meet the challenge of the coming years: to specify membrane structures in more detail and to bring them to the level of specific protein-protein interactions.
Collapse
Affiliation(s)
- Egbert J Boekema
- Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL–9747 AG Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Sturm S, Engelken J, Gruber A, Vugrinec S, G Kroth P, Adamska I, Lavaud J. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 2013; 13:159. [PMID: 23899289 PMCID: PMC3750529 DOI: 10.1186/1471-2148-13-159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/22/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. RESULTS Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. CONCLUSIONS The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.
Collapse
Affiliation(s)
- Sabine Sturm
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Johannes Engelken
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona,Spain
| | - Ansgar Gruber
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sascha Vugrinec
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Peter G Kroth
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
| | - Johann Lavaud
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: UMR 7266 CNRS-ULR ’LIENSs’, CNRS/University of La Rochelle, Institute for Coastal and Environmental Research, La Rochelle Cedex, France
| |
Collapse
|
46
|
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 2013; 52:539-61. [PMID: 23896007 DOI: 10.1016/j.plipres.2013.07.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022]
Abstract
Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.
Collapse
Affiliation(s)
- Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
47
|
Fraser JM, Tulk SE, Jeans JA, Campbell DA, Bibby TS, Cockshutt AM. Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS One 2013; 8:e59861. [PMID: 23527279 PMCID: PMC3602374 DOI: 10.1371/journal.pone.0059861] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/19/2013] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abundances and photophysiological parameters in the model cyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803 over a 120 hour time course of iron deprivation. The iron stress induced protein (IsiA) accumulated to high levels within 48 h of the onset of iron deprivation, reaching a molar ratio of ∼42 IsiA : Photosystem I in Synechococcus PCC 7942 and ∼12 IsiA : Photosystem I in Synechocystis PCC 6803. Concomitantly the iron-rich complexes Cytochrome b6f and Photosystem I declined in abundance, leading to a decrease in the Photosystem I : Photosystem II ratio. Chlorophyll fluorescence analyses showed a drop in electron transport per Photosystem II in Synechococcus, but not in Synechocystis after iron depletion. We found no evidence that the accumulated IsiA contributes to light capture by Photosystem II complexes.
Collapse
Affiliation(s)
- Jared M Fraser
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Mank NN, Berghoff BA, Klug G. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes. RNA Biol 2013; 10:347-52. [PMID: 23392242 PMCID: PMC3672276 DOI: 10.4161/rna.23769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.
Collapse
Affiliation(s)
- Nils N Mank
- Institut für Mikrobiologie und Molekularbiologie; Universität Giessen; Giessen, Germany
| | | | | |
Collapse
|
49
|
Behrenfeld MJ, Milligan AJ. Photophysiological expressions of iron stress in phytoplankton. ANNUAL REVIEW OF MARINE SCIENCE 2013; 5:217-46. [PMID: 22881354 DOI: 10.1146/annurev-marine-121211-172356] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Iron is essential for all life, but it is particularly important to photoautotrophs because of the many iron-dependent electron transport components in photosynthetic membranes. Since the proliferation of oxygenic photosynthesis in the Archean ocean, iron has been a scarce commodity, and it is now recognized as a limiting resource for phytoplankton over broad expanses of the open ocean and even in some coastal/continental shelf waters. Iron stress does not impair photochemical or carbon fixation efficiencies, and in this respect it resembles the highly tuned photosynthetic systems of steady-state macronutrient-limited phytoplankton. However, iron stress does present unique photophysiological challenges, and phytoplankton have responded to these challenges through major architectural changes in photosynthetic membranes. These evolved responses include overexpression of photosynthetic pigments and iron-economic pathways for ATP synthesis, and they result in diagnostic fluorescence properties that allow a broad appraisal of iron stress in the field and even the detection of iron stress from space.
Collapse
Affiliation(s)
- Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA.
| | | |
Collapse
|
50
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|