1
|
Tateishi Y, Webb SN, Li B, Liu L, Lindsey Rose K, Leser M, Patel P, Guengerich FP. Proteomics, modeling, and fluorescence assays delineate cytochrome b 5 residues involved in binding and stimulation of cytochrome P450 17A1 17,20-lyase. J Biol Chem 2024; 300:105688. [PMID: 38280431 PMCID: PMC10878793 DOI: 10.1016/j.jbc.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Micheal Leser
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Purvi Patel
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Singh H, Kumar R, Mazumder A, Salahuddin, Mazumder R, Abdullah MM. Insights into Interactions of Human Cytochrome P450 17A1: Review. Curr Drug Metab 2022; 23:172-187. [DOI: 10.2174/1389200223666220401093833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/15/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cytochrome P450s are a widespread and vast superfamily of hemeprotein monooxygenases that metabolize physiologically essential chemicals necessary for most species' survival, from protists to plants to humans. They catalyze the synthesis of steroid hormones, cholesterol, bile acids, and arachidonate metabolites and the degradation of endogenous compounds such as steroids, fatty acids, and other catabolizing compounds as an energy source and detoxifying xenobiotics such as drugs, procarcinogens, and carcinogens. The human CYP17A1 is one of the cytochrome P450 genes located at the 10q chromosome. The gene expression occurs in the adrenals and gonads, with minor amounts in the brain, placenta, and heart. This P450c17 cytochrome gene is a critical steroidogenesis regulator which performs two distinct activities: 17 alpha-hydroxylase activity (converting pregnenolone to 17-hydroxypregnenolone and progesterone to 17-hydroxyprogesterone, these precursors are further processed to provide glucocorticoids and sex hormones) and 17, 20-lyase activity (which converts 17-hydroxypregnenolone to DHEA). Dozens of mutations within CYP17A1 are found to cause 17-alpha-hydroxylase and 17, 20-lyase deficiency. This condition affects the function of certain hormone-producing glands, resulting in high blood pressure levels (hypertension), abnormal sexual development, and other deficiency diseases. This review highlights the changes in CYP17A1 associated with gene-gene interaction, drug-gene interaction, chemical-gene interaction, and its biochemical reactions; they have some insights to correlate with the fascinating functional characteristics of this human steroidogenic gene. The findings of our theoretical results will be helpful to further the design of specific inhibitors of CYP17A1.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | |
Collapse
|
3
|
Yamagata S, Kageyama K, Usui T, Saito K, Takayasu S, Usutani M, Terui K, Daimon M. Identification of a homozygous c.1039C>T (p.R347C) variant in CYP17A1 in a 67-year-old female patient with partial 17α-hydroxylase/17,20-lyase deficiency. Endocr J 2022; 69:115-120. [PMID: 34483146 DOI: 10.1507/endocrj.ej21-0266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
17α-Hydroxylase/17,20-lyase deficiency (17OHD) is caused by pathogenic mutations in CYP17A1. Impaired 17α-hydroxylase and 17,20-lyase activities typically induce hypertension, hypokalemia, sexual infantilism, and amenorrhea. Most patients with 17OHD are diagnosed in adolescence. Here, we report a female (46, XX) patient with 17OHD who was diagnosed at the age of 67 years. Genetic analysis was performed using direct DNA sequencing of polymerase chain reaction (PCR) products and multiplex ligation-dependent probe amplification (MLPA) analysis. Direct DNA sequencing revealed a homozygous c.1039C>T in CYP17A1, corresponding to a p.R347C amino acid change. MLPA probe signals showed that the CYP17A1 mutation was present in the homozygous carrier state. The patient's dehydroepiandrosterone sulfate and androstenedione levels were extremely low, despite elevated adrenocorticotropic hormone (ACTH) and normal cortisol levels. A corticotropin-releasing hormone (CRH) test showed no response of cortisol, despite a normal response of ACTH. Rapid ACTH injection resulted in elevations in the deoxycorticosterone, corticosterone, aldosterone, and 17-hydroxypregnenolone levels, but not in the cortisol level. These results suggested that 17α-hydroxylase/17,20-lyase activities were partially impaired. Computed tomography revealed bilateral adrenal hyperplasia and a hypoplastic uterus. A high basal plasma ACTH level and a discrepancy between ACTH and cortisol responses in a CRH test may provide a definitive diagnostic clue for this disease.
Collapse
Affiliation(s)
- Satoshi Yamagata
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takeshi Usui
- Department of Medical Genetics, Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Kohei Saito
- Department of Medical Genetics, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Shinobu Takayasu
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Mari Usutani
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ken Terui
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
4
|
Oral methylene blue treatment in a dog with cytochrome b 5 reductase deficiency and 78, XX testicular disorder of sex development. Top Companion Anim Med 2022; 49:100649. [PMID: 35202847 DOI: 10.1016/j.tcam.2022.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
A 6-month-old mixed breed dog was referred for evaluation of a potential disorder of sex development (DSD) and lower than expected energy level. Genitourinary examination revealed ambiguous external genitalia, hypospadias, and a subtle pouch of skin that resembled an empty scrotum. Corrective surgery was planned and subsequently aborted after cyanosis was identified preoperatively and an arterial blood gas analysis by co-oximetry identified increased methemoglobin (MetHb) concentration (35%, normal < 2%) with normal arterial oxygen tension. Ensuing investigations confirmed hereditary methemoglobinemia caused by cytochrome b5 reductase (CYB5R) deficiency via molecular genetic (Arg219Pro homozygous variant in CYB5R3 gene) and biochemical (cytochrome b5 reductase enzyme activity of 8% [normal, 100% activity] testing. Karyotyping and molecular analysis of sex chromosomes revealed the dog was genetically female with a normal female karyotype (78,XX), and was negative for the Y-linked SRY gene and positive for the X-linked androgen receptor gene. Methylene blue (MB, 3.3 mg/kg per os [PO] q24 h) was administered and the MetHb concentration decreased to 9% within 14 days. Urogenital revision surgery proceeded without complication and the dog was maintained on MB (3-4 mg/kg PO q24 h) long-term without adverse effects. This is the first report to describe the use of PO MB to decrease MetHb concentrations in a dog with CYB5R deficiency in preparation for anesthesia and highlights its potential as a viable alternative to the intravenous formulation for elective procedures. In addition, this report describes the clinical, molecular, imaging, surgical, and macroscopic and microscopic pathological features of a dog with SRY-negative, 78,XX testicular DSD.
Collapse
|
5
|
Kurnaz E, Kartal Baykan E, Türkyılmaz A, Yaralı O, Yavaş Abalı Z, Turan S, Bereket A, Çayır A, Guran T. Genotypic Sex and Severity of the Disease Determine the Time of Clinical Presentation in Steroid 17α-Hydroxylase/17,20-Lyase Deficiency. Horm Res Paediatr 2022; 93:558-566. [PMID: 33780934 DOI: 10.1159/000515079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Steroid 17α-hydroxylase/17,20-lyase deficiency (17OHD) is characterized by decreased sex steroids and cortisol, and excessive mineralocorticoid action. The clinical symptoms of hypocortisolemia are subtle. AIM The clinical, biochemical, and molecular characteristics of patients with 17OHD were evaluated to determine the factors influencing the time of diagnosis and the management. PATIENTS AND METHODS Clinical data, steroid profiles by liquid chromatography-tandem mass spectrometry, and Sanger sequencing of the CYP17A1 gene was evaluated in 12 patients with 17OHD diagnosed between 2004 and 2020. RESULTS Median age of diagnosis was 13.9 (range: 0.04-29.5) years. Ten of 12 patients had 46,XY karyotype. Except for one boy with partial 17OHD, all patients had female external genitalia hence raised as females. The clinical presentation of 17OHD was earlier (median age: 7 years) in patients, who presented with severe hypertension, atypical genitalia, or positive family history (n = 6, 50%) than those without (median age: 15.3 years; p = 0.0005). The latter group presented with amenorrhea (n = 6, 50%). Steroid profile of patients uniformly showed a typical pattern of 17OHD regardless of the age at diagnosis. Serum gonadotropin concentrations were elevated in patients >12 years (n = 7), normal in pre-adolescents (n = 4), and low in a patient, who had a digenic inheritance of homozygous CYP17A1 and KISS1R mutations. CONCLUSIONS Early clinical presentation and diagnosis in 17OHD are associated with symptomatic hypertension in both 46,XX and 46,XY patients or inadequate virilization of external genitalia in 46,XY partial 17OHD. In the absence of these, the clinical presentation is at late pubertal ages at which time amenorrhea and elevated gonadotropins are the hints for diagnosis.
Collapse
Affiliation(s)
- Erdal Kurnaz
- Department of Pediatric Endocrinology and Diabetes, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Emine Kartal Baykan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Oğuzhan Yaralı
- Department of Medical Genetics, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Zehra Yavaş Abalı
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology and Diabetes, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Miller WL. Steroidogenic electron-transfer factors and their diseases. Ann Pediatr Endocrinol Metab 2021; 26:138-148. [PMID: 34610701 PMCID: PMC8505039 DOI: 10.6065/apem.2142154.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
Most steroidogenesis disorders are caused by mutations in genes encoding the steroidogenic enzymes, but work in the past 20 years has identified related disorders caused by mutations in the genes encoding the cofactors that transport electrons from NADPH to P450 enzymes. Most P450s are microsomal and require electron donation by P450 oxidoreductase (POR); by contrast, mitochondrial P450s require electron donation via ferredoxin reductase (FdxR) and ferredoxin (Fdx). POR deficiency is the most common and best-described of these new forms of congenital adrenal hyperplasia. Severe POR deficiency is characterized by the Antley-Bixler skeletal malformation syndrome and genital ambiguity in both sexes, and hence is easily recognized, but mild forms may present only with infertility and subtle disorders of steroidogenesis. The common POR polymorphism A503V reduces catalysis by P450c17 (17-hydroxylase/17,20-lyase) and the principal drugmetabolizing P450 enzymes. The 17,20-lyase activity of P450c17 requires the allosteric action of cytochrome b5, which promotes interaction of P450c17 with POR, with consequent electron transfer. Rare b5 mutations are one of several causes of 17,20-lyase deficiency. In addition to their roles with steroidogenic mitochondrial P450s, Fdx and FdxR participate in the synthesis of iron-sulfur clusters used by many enzymes. Disruptions in the assembly of Fe-S clusters is associated with Friedreich ataxia and Parkinson disease. Recent work has identified mutations in FdxR in patients with neuropathic hearing loss and visual impairment, somewhat resembling the global neurologic disorders seen with mitochondrial diseases. Impaired steroidogenesis is to be expected in such individuals, but this has not yet been studied.
Collapse
Affiliation(s)
- Walter L. Miller
- Department of Pediatrics, Center for Reproductive Sciences and Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Kim D, Kim V, Tateishi Y, Guengerich FP. Cytochrome b 5 Binds Tightly to Several Human Cytochrome P450 Enzymes. Drug Metab Dispos 2021; 49:902-909. [PMID: 34330716 DOI: 10.1124/dmd.121.000475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have been reported in the past 50-plus years regarding the stimulatory role of cytochrome b 5 (b 5) in some, but not all, microsomal cytochrome P450 (P450) reactions with drugs and steroids. A missing element in most of these studies has been a sensitive and accurate measure of binding affinities of b 5 with P450s. In the course of work with P450 17A1, we developed a fluorescent derivative of a human b 5 site-directed mutant, Alexa 488-T70C-b 5, that could be used in binding assays at sub-μM concentrations. Alexa 488-T70C-b 5 bound to human P450s 1A2, 2B6, 2C8, 2C9, 2E1, 2S1, 4A11, 3A4, and 17A1, with estimated K d values ranging from 2.5 to 61 nM. Only weak binding was detected with P450 2D6, and no fluorescence attenuation was observed with P450 2A6. All of the P450s that bound b 5 have some reported activity stimulation except for P450 2S1. The affinity of P450 3A4 for b 5 was decreased somewhat by the presence of a substrate or inhibitor. The fluorescence of a P450 3A4•Alexa 488-T70C-b 5 complex was partially restored by titration with NADPH-P450 reductase (POR) (K d,apparent 89 nM), suggesting the existence of a ternary P450 3A4-b 5-POR complex, as observed previously with P450 17A1. Gel filtration evidence was also obtained for this ternary complex with P450 3A4. Overall, the results indicated that the affinity of b 5 for many P450s is very high, and that ternary P450-b 5-POR complexes are relevant in P450 3A4 reactions as opposed to a shuttle mechanism. SIGNIFICANCE STATEMENT: High-affinity binding of cytochrome b 5 (b 5) (K d < 100 nM) was observed with many drug-metabolizing cytochrome P450 (P450) enzymes. There is some correlation of binding with reported stimulation, with several exceptions. Evidence is provided for a ternary P450 3A4-b 5-NADPH-P450 reductase complex.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - Vitchan Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| |
Collapse
|
8
|
Gleicher N, Darmon S, Molinari E, Zhang L, Hu J, Albertini DF, Barad DH. A form of secondary ovarian insufficiency (SOI) due to adrenal hypoandrogenism as new infertility diagnosis. Endocrine 2021; 72:260-267. [PMID: 33009651 DOI: 10.1007/s12020-020-02512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mediated via the androgen receptor on granulosa cells, models of small growing follicle stages demonstrate dependence on testosterone. Androgen deficiency reduces ovarian response to follicle stimulation hormone (FSH), granulosa cell mass and estradiol (E2) production falls and FSH, therefore, rises. Though potentially of adrenal and/or ovarian origin, androgen deficiency in association with female infertility is almost universally primarily of adrenal origin, raising the possibility that women with presumptive diagnosis of primary ovarian insufficiency (POI), also called primary ovarian failure (POF) may actually suffer from secondary ovarian insufficiency (SOI) due to adrenal hypoandrogenism that leads to follicular arrest at small-growing follicle stages. METHODS This retrospective cohort study was performed in a private, academically affiliated infertility center in New York City. We searched the center's anonymized electronic research data bank for consecutive patients who presented with a diagnosis of POI, defined by age <41 year, FSH > 40.0 mIU/mL, amenorrhea for at least 6 month, and low testosterone (T), defined as total T (TT) in the lowest age-specific quartile of normal range. This study did not include patients with oophoritis. Since dehydroepiandrosterone sulfate (DHEAS) is the only androgen almost exclusively produce by adrenals, adrenal hypoandrogenism was defined by DHEAS < 100ug/dL. Thirteen of 78 presumed POI women (16.67%) qualified and represented the original study population. POI patients are usually treated with third-party egg donation; 6/13, however, rejected egg donation for personal or religious reasons and insisted on undergoing at least one last IVF cycle attempt (final study population). In preparation, they were supplemented with DHEA 25 mg TID and CoQ10 333 mg TID for at least 6 weeks prior to ovarian stimulation for IVF with FSH and human menopausal gonadotropins (hMG). Since POI patients are expected to be resistant to ovarian stimulation, primary outcome for the study was ovarian response, while secondary outcome was pregnancy/delivery. RESULTS Though POI/POF patients usually are completely unresponsive to ovarian stimulation, to our surprise, 5/6 (83.3%) patients demonstrated an objective follicle response. In addition, 2/6 (33.3%) conceived spontaneously between IVF cycles, while on DHEA and CoQ10 supplementation and delivered healthy offspring. One of those is currently in treatment for a second child. CONCLUSIONS This preliminary report suggests that a surprising portion of young women below age 41, tagged with a diagnosis of POI/POF, due to adrenal hypoandrogenism actually suffer from a form of SOI, at least in some cases amenable to treatment by androgen supplementation. Since true POI/POF usually requires third-party egg donation, correct differentiation between POI and SOI in such women appears of great importance and may warrant a trial stimulation after androgen pre-supplementation for at least 6 weeks.
Collapse
Affiliation(s)
- Norbert Gleicher
- The Center for Human Reproduction, New York, NY, 10021, USA.
- The Foundation for Reproductive Medicine, New York, NY, 10022, USA.
- Stem Cell Biology and Molecular Embryology Laboratory, Rockefeller University, New York, NY, 10016, USA.
- Department of Obstetrics and Gynecology, Vienna University School of Medicine, 1009, Vienna, Austria.
| | - Sarah Darmon
- The Center for Human Reproduction, New York, NY, 10021, USA
| | | | - Lin Zhang
- The Center for Human Reproduction, New York, NY, 10021, USA
| | - Jianjun Hu
- The Center for Human Reproduction, New York, NY, 10021, USA
| | - David F Albertini
- The Center for Human Reproduction, New York, NY, 10021, USA
- Stem Cell Biology and Molecular Embryology Laboratory, Rockefeller University, New York, NY, 10016, USA
| | - David H Barad
- The Center for Human Reproduction, New York, NY, 10021, USA
- The Foundation for Reproductive Medicine, New York, NY, 10022, USA
| |
Collapse
|
9
|
Squires EJ, Gray MA, Lou Y. Effect of mutations in porcine CYB5A and CYP17A1 on the metabolism of pregnenolone. J Steroid Biochem Mol Biol 2019; 195:105469. [PMID: 31509771 DOI: 10.1016/j.jsbmb.2019.105469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) catalyses the 17α-hydroxylation and 17,20 lyase reactions to convert pregnenolone to 17α-hydroxypregnenolone (17OHP) and subsequently the androgen dehydroepiandrosterone (DHEA). In pigs and humans, CYP17A1 also catalyses the delta-16-synthase reaction to produce the 16-androstene steroid 5,16-androstadien-3β-ol (16A), which is then further metabolised to the sex pheromone androstenone. Cytochrome b5A (CYB5A) stimulates the 17,20 lyase reaction and is required for the delta 16-synthase reaction. We have identified and mutated residues in porcine CYP17A1 and CYB5A that may alter the synthesis of DHEA and 16A. This included residues in the steroid binding pocket of CYP17A1 and residues on the surface of CYP17A1 and CYB5A that are involved in binding of CYP17A1 to CYB5A. We then expressed the various mutations of CYB5A and CYP17A1 along with porcine cytochrome P450 oxidoreductase (POR) and cytochrome b5 reductase (CYB5R3) in HEK293 cells and measured the formation of metabolites 16A, 17OHP and DHEA from radiolabelled pregnenolone by high performance liquid chromatography (HPLC). Mutations were identified in both CYP17A1 and CYB5A that affected the production of the different metabolites and also affected the overall production of metabolites. Several combinations of mutations decreased the production of both 16A and DHEA and increased production of 17OHP, while the N62S mutation of CYB5A with wild type CYP17A1 increased production of both 16A and DHEA. The best combination of mutations to reduce the production of 16A, while maintaining the production of DHEA and the overall conversion similar to wild type are the N21K, L28V, N21K/L28V and the R52 M/N62S mutations of CYB5A with the D103S mutation of CYP17A1.
Collapse
Affiliation(s)
- E James Squires
- Dept. of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada.
| | - Matthew A Gray
- Dept. of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Yanping Lou
- Dept. of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| |
Collapse
|
10
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
11
|
Mahajan M, Ravula T, Prade E, Anantharamaiah GM, Ramamoorthy A. Probing membrane enhanced protein-protein interactions in a minimal redox complex of cytochrome-P450 and P450-reductase. Chem Commun (Camb) 2019; 55:5777-5780. [PMID: 31041432 PMCID: PMC7467500 DOI: 10.1039/c9cc01630a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Investigating the interplay in a minimal redox complex of cytochrome-P450 and its reductase is crucial for understanding cytochrome-P450's enzymatic activity. Probing the hotspots of dynamic structural interactions using NMR revealed the engagement of loop residues from P450-reductase to be responsible for the enhanced affinity of CYP450 towards its obligate redox partner.
Collapse
Affiliation(s)
- Mukesh Mahajan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
12
|
Bart AG, Scott EE. Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 2017; 292:20818-20833. [PMID: 29079577 DOI: 10.1074/jbc.ra117.000220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/22/2017] [Indexed: 02/04/2023] Open
Abstract
The small heme-containing protein cytochrome b5 can facilitate, inhibit, or have no effect on cytochrome P450 catalysis, often in a P450-dependent and substrate-dependent manner that is not well understood. Herein, solution NMR was used to identify b5 residues interacting with different human drug-metabolizing P450 enzymes. NMR results revealed that P450 enzymes bound to either b5 α4-5 (CYP2A6 and CYP2E1) or this region and α2-3 (CYP2D6 and CYP3A4) and suggested variation in the affinity for b5 Mutations of key b5 residues suggest not only that different b5 surfaces are responsible for binding different P450 enzymes, but that these different complexes are relevant to the observed effects on P450 catalysis.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Biophysics Program and .,the Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
13
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
14
|
Peng HM, Auchus RJ. Molecular Recognition in Mitochondrial Cytochromes P450 That Catalyze the Terminal Steps of Corticosteroid Biosynthesis. Biochemistry 2017; 56:2282-2293. [DOI: 10.1021/acs.biochem.7b00034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology,
and Diabetes, Department of Internal Medicine, and Department of Pharmacology, University of Michigan Health System, Ann Arbor, Michigan 48109, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology,
and Diabetes, Department of Internal Medicine, and Department of Pharmacology, University of Michigan Health System, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Yadav R, Petrunak EM, Estrada DF, Scott EE. Structural insights into the function of steroidogenic cytochrome P450 17A1. Mol Cell Endocrinol 2017; 441:68-75. [PMID: 27566228 PMCID: PMC5235955 DOI: 10.1016/j.mce.2016.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) operates at the core of human steroidogenesis, directing precursors into mineralocorticoids, glucocorticoids, or sex steroids. Although the 17α-hydroxylase and 17,20-lyase activities of this dual function enzyme have been investigated extensively, until recently no CYP17A1 structures were available to inform our understanding. Structures of CYP17A1 with a range of steroidal inhibitors and substrates are now available. This review relates functional knowledge of this enzyme to structural features defining the selective differentiation between its various substrates. While both hydroxylase and lyase substrates have similar orientations with respect to the heme, subtle differences in hydrogen bonding between CYP17A1 and the C3 substituent at the opposite end of ligands appear to correlate with differential substrate utilization and product formation. Complementary structural information from solution NMR supports cytochrome b5 allosteric modulation of the lyase reaction, implicating regions involved in ligand access to the otherwise buried active site.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Medicinal Chemistry, 1251 Wescoe Hall Dr., The University of Kansas, Lawrence, KS 66045, USA
| | - Elyse M Petrunak
- Department of Medicinal Chemistry, 1251 Wescoe Hall Dr., The University of Kansas, Lawrence, KS 66045, USA
| | - D Fernando Estrada
- Department of Medicinal Chemistry, 1251 Wescoe Hall Dr., The University of Kansas, Lawrence, KS 66045, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, 1251 Wescoe Hall Dr., The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
16
|
Auchus RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. J Steroid Biochem Mol Biol 2017; 165:71-78. [PMID: 26862015 PMCID: PMC4976049 DOI: 10.1016/j.jsbmb.2016.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Steroid 17-hydroxylase 17,20-lyase (cytochrome P450c17, P450 17A1, CYP17A1) catalyzes two major reactions: steroid 17-hydroxylation followed by the 17,20-lyase reactions. The most severe mutations in the cognate CYP17A1 gene abrogate all activities and cause combined 17-hydroxylase/17,20-lyase deficiency (17OHD), a biochemical phenotype that is replicated by treatment with the potent CYP17A1 inhibitor abiraterone acetate. The adrenals of patients with 17OHD synthesize 11-deoxycorticosterone (DOC) and corticosterone but no 19-carbon steroids, similar to the rodent adrenal, and DOC causes hypertension and hypokalemia. Loss of 17,20-lyase activity precludes sex steroid synthesis and leads to sexual infantilism. Rare missense CYP17A1 mutations minimally disrupt 17-hydroxylase activity but cause isolated 17,20-lyase deficiency (ILD), Mutations in the POR gene encoding the required cofactor protein cytochrome P450-oxidoreductase causes a spectrum of disease from ILD to 17OHD combined with 21-hydroxylase and aromatase deficiencies, sometimes including skeletal malformations. Mutations in the CYB5A gene encoding a second cofactor protein cytochrome b5 also selectively disrupt 17,20-lyase activity and cause the purest form of ILD. The clinical manifestations of these conditions are best understood in the context of the biochemistry of CYP17A1.
Collapse
Affiliation(s)
- Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine and Department of Pharmacology, University of Michigan, Rm. 5560A MSRBII, 1150 W Medical Center Drive, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, Auchus RJ. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production. Biochemistry 2016; 55:4356-65. [PMID: 27426448 PMCID: PMC5287367 DOI: 10.1021/acs.biochem.6b00532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Sang-Choul Im
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Naw May Pearl
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Adina F. Turcu
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Juilee Rege
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lucy Waskell
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochem Biophys Res Commun 2016; 477:202-8. [PMID: 27297105 DOI: 10.1016/j.bbrc.2016.06.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 02/02/2023]
Abstract
Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second CC lyase step, at the expense of glucocorticoid production. Cytochrome b5 (cyt b5) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b5 increases androgen biosynthesis. Cyt b5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b5, we generated a redox-inactive form of cyt b5, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b5), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b5. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b5. Upon addition of Mn-b5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b5-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal FeS vibrational frequency. Thus, although Mn-b5 binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis.
Collapse
|
19
|
Scott EE, Wolf CR, Otyepka M, Humphreys SC, Reed JR, Henderson CJ, McLaughlin LA, Paloncýová M, Navrátilová V, Berka K, Anzenbacher P, Dahal UP, Barnaba C, Brozik JA, Jones JP, Estrada DF, Laurence JS, Park JW, Backes WL. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metab Dispos 2016; 44:576-90. [PMID: 26851242 PMCID: PMC4810767 DOI: 10.1124/dmd.115.068569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 11/22/2022] Open
Abstract
This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function.
Collapse
Affiliation(s)
- Emily E Scott
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - C Roland Wolf
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Michal Otyepka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Sara C Humphreys
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James R Reed
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Colin J Henderson
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Lesley A McLaughlin
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Markéta Paloncýová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Veronika Navrátilová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Karel Berka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Pavel Anzenbacher
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Upendra P Dahal
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Carlo Barnaba
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James A Brozik
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jeffrey P Jones
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - D Fernando Estrada
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jennifer S Laurence
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Ji Won Park
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Wayne L Backes
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| |
Collapse
|
20
|
Sondhi V, Owen BM, Liu J, Chomic R, Kliewer SA, Hughes BA, Arlt W, Mangelsdorf DJ, Auchus RJ. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells. Mol Endocrinol 2016; 30:469-78. [PMID: 26974035 PMCID: PMC4814474 DOI: 10.1210/me.2015-1282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5flox/flox:Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings.
Collapse
Affiliation(s)
- Varun Sondhi
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bryn M Owen
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jiayan Liu
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert Chomic
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steven A Kliewer
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Beverly A Hughes
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David J Mangelsdorf
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard J Auchus
- Departments of Pharmacology (V.S., B.M.O., S.A.K., D.J.M.) and Molecular Biology (S.A.K.) and the Howard Hughes Medical Institute (D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Departments of Internal Medicine and Pharmacology (J.L., R.J.A.) and the Michigan Metabolomics and Obesity Center (R.C.), University of Michigan, Ann Arbor, Michigan 48109; and the Institute of Metabolism and Systems Research (B.A.H., W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
21
|
Estrada DF, Laurence JS, Scott EE. Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 2015; 291:3990-4003. [PMID: 26719338 DOI: 10.1074/jbc.m115.677294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
To accomplish key physiological processes ranging from drug metabolism to steroidogenesis, human microsomal cytochrome P450 enzymes require the sequential input of two electrons delivered by the FMN domain of NADPH-cytochrome P450 reductase. Although some human microsomal P450 enzymes can instead accept the second electron from cytochrome b5, for human steroidogenic CYP17A1, the cytochrome P450 reductase FMN domain delivers both electrons, and b5 is an allosteric modulator. The structural basis of these key but poorly understood protein interactions was probed by solution NMR using the catalytically competent soluble domains of each protein. Formation of the CYP17A1·FMN domain complex induced differential line broadening of the NMR signal for each protein. Alterations in the exchange dynamics generally occurred for residues near the surface of the flavin mononucleotide, including 87-90 (loop 1), and for key CYP17A1 active site residues. These interactions were modulated by the identity of the substrate in the buried CYP17A1 active site and by b5. The FMN domain outcompetes b5 for binding to CYP17A1 in the three-component system. These results and comparison with previous NMR studies of the CYP17A1·b5 complex suggest a model of CYP17A1 enzyme regulation.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Jennifer S Laurence
- the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
22
|
Simonov AN, Holien JK, Yeung JCI, Nguyen AD, Corbin CJ, Zheng J, Kuznetsov VL, Auchus RJ, Conley AJ, Bond AM, Parker MW, Rodgers RJ, Martin LL. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1). PLoS One 2015; 10:e0141252. [PMID: 26587646 PMCID: PMC4654539 DOI: 10.1371/journal.pone.0141252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/06/2015] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions.
Collapse
Affiliation(s)
| | - Jessica K. Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Ann D. Nguyen
- School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - C. Jo Corbin
- School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jie Zheng
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | | | - Richard J. Auchus
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alan J. Conley
- School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Alan M. Bond
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
23
|
Yoshimoto FK, Auchus RJ. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J Steroid Biochem Mol Biol 2015; 151:52-65. [PMID: 25482340 PMCID: PMC4456341 DOI: 10.1016/j.jsbmb.2014.11.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The steroid hydroxylation and carbon-carbon bond cleavage activities of cytochrome P450 17A1 (CYP17A1) are responsible for the production of glucocorticoids and androgens, respectively. The inhibition of androgen synthesis is an important strategy to treat androgen-dependent prostate cancer. We discuss the different enzymatic activities towards the various substrates of CYP17A1, demonstrating its promiscuity. Additionally, a novel interhelical interaction is proposed between the F-G loop and the B'-helix to explain the 16α-hydroxylase activity of human CYP17A1 with progesterone as the substrate. The techniques used by biochemists to study this important enzyme are also summarized. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Richard J Auchus
- Division of Metabolism, Diabetes, and Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, United States.
| |
Collapse
|
24
|
Storbeck KH, Swart AC, Fox CL, Swart P. Cytochrome b5 modulates multiple reactions in steroidogenesis by diverse mechanisms. J Steroid Biochem Mol Biol 2015; 151:66-73. [PMID: 25446886 DOI: 10.1016/j.jsbmb.2014.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/02/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022]
Abstract
Cytochrome b5 (cyt-b5) is a relatively small haemoprotein which plays an important role in the regulation of mammalian steroidogenesis. This unique protein has the ability to modulate the activity of key steroidogenic enzymes via a number of diverse reaction mechanisms. Cyt-b5 can augment the 17,20-lyase activity of CYP17A1 by promoting the interaction of CYP17A1 and POR; enhance the 16-ene-synthase activity of CYP17A1 by acting as an electron donor; and enhance the activity of 3βHSD by increasing the affinity of 3βHSD for its cofactor NAD(+). We review the modulation of CYP17A1 and 3βHSD activity by cyt-b5 and discuss the reaction mechanisms associated with each activity. The physiological importance of cyt-b5 in regulating mammalian steroidogenesis is presented and the impact of inactivating cyt-b5 mutations are reviewed. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Cheryl L Fox
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa.
| |
Collapse
|
25
|
Miller WL, Tee MK. The post-translational regulation of 17,20 lyase activity. Mol Cell Endocrinol 2015; 408:99-106. [PMID: 25224484 DOI: 10.1016/j.mce.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 01/20/2023]
Abstract
A single enzyme, microsomal P450c17, catalyzes the 17α-hydroxylase activity needed to make cortisol and the subsequent 17,20 lyase activity needed to produce the 19-carbon precursors of sex steroids. The biochemical decision concerning whether P450c17 stops after 17α-hydroxylation or proceeds to 17,20 lyase activity is largely dependent on three post-translational factors. First, 17,20 lyase activity is especially sensitive to the molar abundance of the electron-transfer protein P450 oxidoreductase (POR). Second, cytochrome b5 strongly promotes 17,20 lyase activity, principally by acting as an allosteric factor promoting the interaction of P450c17 with POR, although a minor role as an alternative electron-transfer protein has not been wholly excluded. Third, the serine/threonine phosphorylation of P450c17 itself promotes 17,20 lyase activity, again apparently by promoting the interaction of P450c17 with POR. The principal kinase that phosphorylates P450c17 to confer 17,20 lyase activity appears to be p38α (MAPK14), which increases the maximum velocity of the 17,20 lyase reaction, while having no effect on the Michaelis constant for 17,20 lyase or any detectable effect on the 17α-hydroxylase reaction. Other kinases can also phosphorylate P450c17, but only p38α has been shown to affect its enzymology. Understanding the mechanisms regulating 17,20 lyase activity is essential for the understanding of hyperandrogenic disorders such as premature, exaggerated adrenarche and the polycystic ovary syndrome, and also for the design of selective 17,20 lyase inhibitors for use in hyperandrogenic states and in sex-steroid dependent cancers.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA.
| | - Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA
| |
Collapse
|
26
|
Röhrig T, Pihlajoki M, Ziegler R, Cochran RS, Schrade A, Schillebeeckx M, Mitra RD, Heikinheimo M, Wilson DB. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue. Mol Cell Endocrinol 2015; 408:165-77. [PMID: 25498963 PMCID: PMC4417465 DOI: 10.1016/j.mce.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epigenetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed.
Collapse
Affiliation(s)
- Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Ricarda Ziegler
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Mizrachi D, Chen Y, Liu J, Peng HM, Ke A, Pollack L, Turner RJ, Auchus RJ, DeLisa MP. Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy. Nat Commun 2015; 6:6826. [PMID: 25851941 PMCID: PMC4403311 DOI: 10.1038/ncomms7826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Integral membrane proteins (IMPs) play crucial roles in all cells and represent attractive pharmacological targets. However, functional and structural studies of IMPs are hindered by their hydrophobic nature and the fact that they are generally unstable following extraction from their native membrane environment using detergents. Here we devise a general strategy for in vivo solubilization of IMPs in structurally relevant conformations without the need for detergents or mutations to the IMP itself, as an alternative to extraction and in vitro solubilization. This technique, called SIMPLEx (solubilization of IMPs with high levels of expression), allows the direct expression of soluble products in living cells by simply fusing an IMP target with truncated apolipoprotein A-I, which serves as an amphipathic proteic ‘shield' that sequesters the IMP from water and promotes its solubilization. The study of integral membrane proteins (IMPs) is hampered by yields and the difficulty in retaining activity once they have been solubilized. Here Mizrachi et al. develop a strategy for in vivo expression and solubilization of IMPs in functionally relevant states by fusing them to truncated apolipoprotein A-I.
Collapse
Affiliation(s)
- Dario Mizrachi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Jiayan Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hwei-Ming Peng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
28
|
Pihlajoki M, Dörner J, Cochran RS, Heikinheimo M, Wilson DB. Adrenocortical zonation, renewal, and remodeling. Front Endocrinol (Lausanne) 2015; 6:27. [PMID: 25798129 PMCID: PMC4350438 DOI: 10.3389/fendo.2015.00027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Helsinki University Central Hospital, Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Julia Dörner
- Hochschule Mannheim – University of Applied Sciences, Mannheim, Germany
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca S. Cochran
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Markku Heikinheimo
- Helsinki University Central Hospital, Children’s Hospital, University of Helsinki, Helsinki, Finland
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - David B. Wilson
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
- *Correspondence: David B. Wilson, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO 63110, USA e-mail:
| |
Collapse
|
29
|
Peng HM, Liu J, Forsberg SE, Tran HT, Anderson SM, Auchus RJ. Catalytically relevant electrostatic interactions of cytochrome P450c17 (CYP17A1) and cytochrome b5. J Biol Chem 2014; 289:33838-49. [PMID: 25315771 DOI: 10.1074/jbc.m114.608919] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: (84)EVLIKK(89)-b5: (53)EQAGGDATENFEDVGHSTDAR(73) and CYP17A1-R347K: (341)TPTISDKNR(349)-b5: (40)FLEEHPGGEEVLR(52). Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | - Jiayan Liu
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | - Sarah E Forsberg
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | | | - Sean M Anderson
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | - Richard J Auchus
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
30
|
Petrunak EM, DeVore NM, Porubsky PR, Scott EE. Structures of human steroidogenic cytochrome P450 17A1 with substrates. J Biol Chem 2014; 289:32952-64. [PMID: 25301938 DOI: 10.1074/jbc.m114.610998] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human cytochrome P450 17A1 (CYP17A1) enzyme operates at a key juncture of human steroidogenesis, controlling the levels of mineralocorticoids influencing blood pressure, glucocorticoids involved in immune and stress responses, and androgens and estrogens involved in development and homeostasis of reproductive tissues. Understanding CYP17A1 multifunctional biochemistry is thus integral to treating prostate and breast cancer, subfertility, blood pressure, and other diseases. CYP17A1 structures with all four physiologically relevant steroid substrates suggest answers to four fundamental aspects of CYP17A1 function. First, all substrates bind in a similar overall orientation, rising ∼60° with respect to the heme. Second, both hydroxylase substrates pregnenolone and progesterone hydrogen bond to Asn(202) in orientations consistent with production of 17α-hydroxy major metabolites, but functional and structural evidence for an A105L mutation suggests that a minor conformation may yield the minor 16α-hydroxyprogesterone metabolite. Third, substrate specificity of the subsequent 17,20-lyase reaction may be explained by variation in substrate height above the heme. Although 17α-hydroxyprogesterone is only observed farther from the catalytic iron, 17α-hydroxypregnenolone is also observed closer to the heme. In conjunction with spectroscopic evidence, this suggests that only 17α-hydroxypregnenolone approaches and interacts with the proximal oxygen of the catalytic iron-peroxy intermediate, yielding efficient production of dehydroepiandrosterone as the key intermediate in human testosterone and estrogen synthesis. Fourth, differential positioning of 17α-hydroxypregnenolone offers a mechanism whereby allosteric binding of cytochrome b5 might selectively enhance the lyase reaction. In aggregate, these structures provide a structural basis for understanding multiple key reactions at the heart of human steroidogenesis.
Collapse
Affiliation(s)
- Elyse M Petrunak
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Natasha M DeVore
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Patrick R Porubsky
- the Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
31
|
Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia 2014; 47:729-43. [PMID: 25277225 DOI: 10.1111/and.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
Populations living at high altitudes (HA), particularly in the Peruvian Central Andes, are characterised by presenting subjects with erythrocytosis and others with excessive erythrocytosis (EE)(Hb>21 g dl(-1) ). EE is associated with chronic mountain sickness (CMS), or lack of adaptation to HA. Testosterone is an erythropoietic hormone and it may play a role on EE at HA. The objective of the present review was to summarise findings on role of serum T levels on adaptation at HA and genes acting on this process. Men at HA without EE have higher androstenedione levels and low ratio androstenedione/testosterone than men with EE, suggesting low activity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and this could be a mechanism of adaptation to HA. Higher conversion of dehydroepiandrosterone to testosterone in men with EE suggests nigher 17beta-HSD activity. Men with CMS at Peruvian Central Andes have two genes SENP1, and ANP32D with higher transcriptional response to hypoxia relative to those without. SUMO-specific protease 1 (SENP1) is an erythropoiesis regulator, which is essential for the stability and activity of hypoxia-inducible factor 1 (HIF-1α) under hypoxia. SENP1 reverses the hormone-augmented SUMOylation of androgen receptor (AR) increasing the transcription activity of AR.In conclusion, increased androgen activity is related with CMS.
Collapse
Affiliation(s)
- G F Gonzales
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - D Chaupis
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
32
|
Peng HM, Auchus RJ. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries. Arch Biochem Biophys 2013; 541:53-60. [PMID: 24256945 DOI: 10.1016/j.abb.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
33
|
Johnson EF, Connick JP, Reed JR, Backes WL, Desai MC, Xu L, Estrada DF, Laurence JS, Scott EE. Correlating structure and function of drug-metabolizing enzymes: progress and ongoing challenges. Drug Metab Dispos 2013; 42:9-22. [PMID: 24130370 DOI: 10.1124/dmd.113.054627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH-cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches.
Collapse
Affiliation(s)
- Eric F Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California (E.F.J.); Department of Pharmacology and Experimental Therapeutics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.P.C., J.R.R., W.L.B.); Department of Medicinal Chemistry, Gilead Sciences, Inc., Foster City, California (M.C.D., L.X.); Department of Pharmaceutical Chemistry (J.S.L.) and Department of Medicinal Chemistry (D.F.E., E.E.S.), University of Kansas, Lawrence, Kansas
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Salvador JAR, Pinto RMA, Silvestre SM. Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. J Steroid Biochem Mol Biol 2013; 137:199-222. [PMID: 23688836 DOI: 10.1016/j.jsbmb.2013.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 04/14/2013] [Accepted: 04/26/2013] [Indexed: 11/26/2022]
Abstract
The role of steroidal inhibitors of androgen biosynthesis as potential weapons in the treatment of prostatic diseases, such as benign prostatic hyperplasia and prostatic cancer will be reviewed. Two enzymes have been targeted in the development of inhibitors that potentially could be useful in the management of such conditions. 5α-Reductase is primarily of interest in benign prostatic disease, though some role in the chemoprevention of prostatic carcinoma have been considered, whereas the 17α-hydroxylase/17,20-lyase (CYP17) enzyme is of interest in the treatment of malignant disease. An overview of the main achievements obtained during the past years will be presented, however special focus will be made on steroidal molecules that reached clinical trials or have been commercially launched. Relevant examples of such drugs are finasteride, dutasteride, abiraterone acetate and galeterone (TOK-001, formerly known as VN/124-1). This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.
| | | | | |
Collapse
|
35
|
Ferraldeschi R, Sharifi N, Auchus RJ, Attard G. Molecular pathways: Inhibiting steroid biosynthesis in prostate cancer. Clin Cancer Res 2013; 19:3353-9. [PMID: 23470964 PMCID: PMC3736095 DOI: 10.1158/1078-0432.ccr-12-0931] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A significant proportion of castration-resistant prostate cancers (CRPC) remains driven by ligand activation of the androgen receptor. Although the testes are the primary source of testosterone, testosterone can also be produced from peripheral conversion of adrenal sex hormone precursors DHEA and androstenedione in the prostate and other tissues. CYP17A1 catalyzes two essential reactions in the production of DHEA and androstenedione: the hydroxylation (hydroxylase activity) and the subsequent cleavage of the C17-20 side chain (lyase activity). Potent and selective inhibition of CYP17A1 by abiraterone depletes residual nongonadal androgens and is an effective treatment for CRPC. Elucidation of the mechanisms that underlie resistance to abiraterone will inform the development of novel therapeutic strategies post-abiraterone. Preclinical evidence that androgen biosynthesis in prostate cancer cells does not necessarily follow a single dominant pathway, and residual androgens or alternative ligands (including administered glucocorticoids) can reactivate androgen receptor signaling, supports cotargeting of more than one enzyme involved in steroidogenesis and combining a CYP17A1 inhibitor with an antiandrogen. Furthermore, given the drawbacks of 17α-hydroxylase inhibition, there is considerable interest in developing new CYP17A1 inhibitors that more specifically inhibit lyase activity and are therefore less likely to require glucocorticoid coadministration.
Collapse
Affiliation(s)
- Roberta Ferraldeschi
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, UK
| | - Nima Sharifi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gerhardt Attard
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, UK
| |
Collapse
|
36
|
Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A. A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 2013; 288:22080-95. [PMID: 23709268 DOI: 10.1074/jbc.m112.448225] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Storbeck KH, Swart AC, Goosen P, Swart P. Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 2013; 371:87-99. [PMID: 23228600 DOI: 10.1016/j.mce.2012.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
Cytochrome b(5) (cyt-b(5)) is essential for the regulation of steroidogenesis and as such has been implicated in a number of clinical conditions. It is well documented that this small hemoprotein augments the 17,20-lyase activity of cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1). Studies have revealed that this augmentation is accomplished by cyt-b(5) enhancing the interaction between cytochrome P450 reductase (POR) and CYP17A1. In this paper we present evidence that cyt-b(5) induces a conformational change in CYP17A1, in addition to facilitating the interaction between CYP17A1 and POR. We also review the recently published finding that cyt-b(5) allosterically augments the activity of 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD), a non cytochrome P450 enzyme, by increasing the enzymes affinity for its cofactor, NAD(+). The physiological importance of this finding, in terms of understanding adrenal androstenedione production, is examined. Finally, evidence that cyt-b(5) is able to form homomeric complexes in living cells is presented and discussed.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | | | |
Collapse
|
38
|
Estrada DF, Laurence JS, Scott EE. Substrate-modulated cytochrome P450 17A1 and cytochrome b5 interactions revealed by NMR. J Biol Chem 2013; 288:17008-17018. [PMID: 23620596 DOI: 10.1074/jbc.m113.468926] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane heme protein cytochrome b5 (b5) can enhance, inhibit, or have no effect on cytochrome P450 (P450) catalysis, depending on the specific P450, substrate, and reaction conditions, but the structural basis remains unclear. Here the interactions between the soluble domain of microsomal b5 and the catalytic domain of the bifunctional steroidogenic cytochrome P450 17A1 (CYP17A1) were investigated. CYP17A1 performs both steroid hydroxylation, which is unaffected by b5, and an androgen-forming lyase reaction that is facilitated 10-fold by b5. NMR chemical shift mapping of b5 titrations with CYP17A1 indicates that the interaction occurs in an intermediate exchange regime and identifies charged surface residues involved in the protein/protein interface. The role of these residues is confirmed by disruption of the complex upon mutagenesis of either the anionic b5 residues (Glu-48 or Glu-49) or the corresponding cationic CYP17A1 residues (Arg-347, Arg-358, or Arg-449). Cytochrome b5 binding to CYP17A1 is also mutually exclusive with binding of NADPH-cytochrome P450 reductase. To probe the differential effects of b5 on the two CYP17A1-mediated reactions and, thus, communication between the superficial b5 binding site and the buried CYP17A1 active site, CYP17A1/b5 complex formation was characterized with either hydroxylase or lyase substrates bound to CYP17A1. Significantly, the CYP17A1/b5 interaction is stronger when the hydroxylase substrate pregnenolone is present in the CYP17A1 active site than when the lyase substrate 17α-hydroxypregnenolone is in the active site. These findings form the basis for a clearer understanding of this important interaction by directly measuring the reversible binding of the two proteins, providing evidence of communication between the CYP17A1 active site and the superficial proximal b5 binding site.
Collapse
Affiliation(s)
| | | | - Emily E Scott
- Departments of Medicinal Chemistry, Lawrence, Kansas 66045.
| |
Collapse
|
39
|
Peng HM, Auchus RJ. The action of cytochrome b(5) on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65. Biochemistry 2012. [PMID: 23193974 DOI: 10.1021/bi301384n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5). Using purified P450, b(5), and reductase (POR) in reconstituted assays, the D58G/D65G double mutation, of residues located in a hydrophilic α-helix of b(5), totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G/D65G double mutation retained the full ability to stimulate the 17,20-lyase activity of CYP17A1. The D58G/D65G double mutation competes poorly with wild-type b(5) for binding to the CYP2E1·POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b(5) stimulation and specificity, particularly for CYP17A1, in the following order: phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. The D58G/D65G double mutation also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas the E48G/E49G double mutation stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b(5). We conclude that b(5) residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that the phospholipid composition significantly influences the b(5)-P450 interaction. At least two surfaces of b(5) differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b(5) alone.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
40
|
Zhao C, Gao Q, Roberts AG, Shaffer SA, Doneanu CE, Xue S, Goodlett DR, Nelson SD, Atkins WM. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5). Biochemistry 2012; 51:9488-500. [PMID: 23150942 DOI: 10.1021/bi301069r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.
Collapse
Affiliation(s)
- Chunsheng Zhao
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yoshimoto FK, Zhou Y, Peng HM, Stidd D, Yoshimoto JA, Sharma KK, Matthew S, Auchus RJ. Minor activities and transition state properties of the human steroid hydroxylases cytochromes P450c17 and P450c21, from reactions observed with deuterium-labeled substrates. Biochemistry 2012; 51:7064-77. [PMID: 22873692 DOI: 10.1021/bi300895w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steroid hydroxylases CYP17A1 (P450c17, 17-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) catalyze progesterone hydroxylation at one or more sites within a 2 Å radius. We probed their hydrogen atom abstraction mechanisms and regiochemical plasticity with deuterium-labeled substrates: 17-[(2)H]-pregnenolone; 17-[(2)H]-, 16α-[(2)H]-, 21,21,21-[(2)H(3)]-, and 21-[(2)H]-progesterone; and 21,21,21-[(2)H(3)]-17-hydroxyprogesterone. Product distribution and formation rates with recombinant human P450-oxidoreductase and wild-type human CYP17A1 or mutation A105L (reduced progesterone 16α-hydroxylation) and wild-type human CYP21A2 or mutation V359A (substantial progesterone 16α-hydroxylation) were used to calculate intramolecular and intermolecular kinetic isotope effects (KIEs). The intramolecular KIEs for CYP17A1 and mutation A105L were 4.1 and 3.8, respectively, at H-17 and 2.9 and 5.1, respectively, at H-16α. Mutation A105L 21-hydroxylates progesterone (5% of products), and wild-type CYP17A1 also catalyzes a trace of 21-hydroxylation, which increases with 16α-[(2)H]- and 17-[(2)H]-progesterone. The intramolecular KIEs with CYP21A2 mutation V359A and progesterone were 6.2 and 3.8 at H-21 and H-16α, respectively. Wild-type CYP21A2 also forms a trace of 16α-hydroxyprogesterone, which increased with 21,21,21-[(2)H(3)]-progesterone substrate. Competitive intermolecular KIEs paralleled the intramolecular KIE values, with (D)V values of 1.4-5.1 and (D)V/K values of 1.8-5.1 for these reactions. CYP17A1 and CYP21A2 mutation V359A both 16α-hydroxylate 16α-[(2)H]-progesterone with 33-44% deuterium retention, indicating stereochemical inversion. We conclude that human CYP17A1 has progesterone 21-hydroxylase activity and human CYP21A2 has progesterone 16α-hydroxylase activity, both of which are enhanced with deuterated substrates. The transition states for C-H bond cleavage in these hydroxylation reactions are either significantly nonlinear and/or asymmetric, and C-H bond breakage is partially rate-limiting for all reactions.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Idkowiak J, Randell T, Dhir V, Patel P, Shackleton CHL, Taylor NF, Krone N, Arlt W. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endocrinol Metab 2012; 97:E465-75. [PMID: 22170710 PMCID: PMC3388247 DOI: 10.1210/jc.2011-2413] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/11/2011] [Indexed: 11/29/2022]
Abstract
CONTEXT Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by facilitating the allosteric interaction of CYP17A1 with its electron donor P450 oxidoreductase (POR). OBJECTIVE We investigated a large consanguineous family including three siblings with 46,XY disorder of sex development (DSD) presenting with isolated 17,20 lyase deficiency. DESIGN We investigated the clinical and biochemical phenotype, conducted genetic analyses, and functionally characterized the identified CYB5A mutation in cell-based CYP17A1 coexpression assays. RESULTS All three siblings presented with 46,XY DSD, sex steroid deficiency, normal mineralocorticoids and glucocorticoids, and a urine steroid metabolome suggestive of isolated 17,20 lyase deficiency. CYP17A1 and POR sequences were normal, but we detected a homozygous CYB5A missense mutation (g.28,400A→T; p.H44L). Functional in vitro analysis revealed normal CYP17A1 17α-hydroxylase activity but severely impaired 17,20 lyase activity. In silico analysis suggested the disruption of CYB5A heme binding by p.H44L. CONCLUSION We have identified the first human CYB5A missense mutation as the cause of isolated 17,20 lyase deficiency in three individuals with 46,XY DSD. Detailed review of previously reported cases with apparently isolated 17,20 lyase deficiency due to mutant CYP17A1 and POR reveals impaired 17α-hydroxylase activity as assessed by steroid metabolome analysis and short cosyntropin testing. This suggests that truly isolated 17,20 lyase deficiency is observed only in individuals with inactivating CYB5A mutations.
Collapse
Affiliation(s)
- Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
CONTEXT Disorders of steroidogenesis have been instrumental in delineating human steroidogenic pathways. Each genetic disorder seemed to correspond to a different steroidogenic activity, helping to identify several enzymes. Beginning in 1972, several patients have been reported as having "17,20 lyase deficiency," but there have been inconsistent genetic findings. OBJECTIVE This manuscript reviews the biochemistry, genetics, and clinical disorders of 17,20 lyase activity, which converts 21-carbon precursors of glucocorticoids to 19-carbon precursors of sex steroids. FINDINGS A single enzyme, cytochrome P450c17, catalyzes both 17α-hydroxylase activity and 17,20 lyase activity. The 17,20 lyase activity is especially sensitive to the activities of the accessory proteins P450 oxidoreductase and cytochrome b(5). The first cases of genetically and biochemically proven 17,20 lyase deficiency were reported in 1997, in which specific P450c17 mutations were identified that lost 17,20 lyase activity but not 17α-hydroxylase activity when assayed in vitro. Subsequent work identified other P450c17 mutations and mutations in the genes encoding P450 oxidoreductase and cytochrome b(5). Recently, the initially reported cases from 1972 were found to carry mutations in two aldo-keto reductases, AKR1C2 and AKR1C4. These AKR1C isozymes catalyze 3α-hydroxysteroid dehydrogenase activity in the so-called "backdoor pathway" by which the fetal testis produces dihydrotestosterone without the intermediacy of testosterone. CONCLUSIONS 17,20 Lyase deficiency should be considered a syndrome with multiple causes, and not a single disease. Study of this very rare disorder has substantially advanced our understanding of the pathways, mechanisms, and control of androgen synthesis. Mutations in other, as-yet unidentified genes may also cause this phenotype.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143-0978, USA.
| |
Collapse
|
44
|
Akhtar M, Wright JN, Lee-Robichaud P. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol 2011; 125:2-12. [PMID: 21094255 DOI: 10.1016/j.jsbmb.2010.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 10/25/2010] [Accepted: 11/03/2010] [Indexed: 11/26/2022]
Abstract
In the conventional P-450 dependent hydroxylation reaction, the Fe(III) resting state of the enzyme, by a single electron transfer, is reduced to Fe(II), which reacts with O(2) to produce a Fe(III)-O-O intermediate. The latter following the transfer of another electron furnishes a ferric-peroxyanion, Fe(III)-O-O(-), which after protonation leads to the fission of the O-O bond resulting in the formation of Fe(V)O, the key player in the hydroxylation process. Certain members of the P-450 family, including CYP17 and CYP19, catalyze, at the same active site, not only the hydroxylation process but also an acyl-carbon bond cleavage reaction which has been interpreted to involve the nucleophilic attack of the ferric-peroxyanion, Fe(III)-O-O(-), on the acyl carbon to furnish a tetrahedral intermediate which fragments, leading to acyl-carbon cleavage. Evidence is presented to show that in the case of CYP17 the attack of Fe(III)-O-O(-) on the target carbon is promoted by cytochrome b(5), which acts as a conformational regulator of CYP17. It is this regulation of CYP17 that provides a safety mechanism which ensures that during corticoid biosynthesis, which involves 17α-hydroxylation by CYP17, androgen formation is avoided. Finally, a brief account is presented of the inhibitors, of the two enzymes, which have been designed on the basis of their mechanism of action. Article from the Special issue on 'Targeted Inhibitors'.
Collapse
Affiliation(s)
- Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | | | | |
Collapse
|
45
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1504] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
46
|
At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:200-9. [PMID: 20619364 DOI: 10.1016/j.bbapap.2010.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C₂₁ steroids (progesterone derivatives) and delta5-C₂₁ steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C₁₉-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.
Collapse
|
47
|
McLaughlin LA, Ronseaux S, Finn RD, Henderson CJ, Roland Wolf C. Deletion of microsomal cytochrome b5 profoundly affects hepatic and extrahepatic drug metabolism. Mol Pharmacol 2010; 78:269-78. [PMID: 20430864 DOI: 10.1124/mol.110.064246] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated recently that cytochrome b(5) plays an important in vivo role in hepatic cytochrome P450 (P450) function [J Biol Chem 283:31385-31393, 2008]. We have now generated a model in which cytochrome b(5) has been deleted in all tissues [cytochrome b(5) complete null (BCN)], which surprisingly results in a viable mouse despite the putative in vivo roles of this protein in lipid and steroid hormone metabolism and the reduction of methemoglobin. In contrast to the liver-specific deletion, complete deletion of cytochrome b(5) leads to a neonatal increase in the expression of many hepatic P450s at both the protein and mRNA level. In extrahepatic tissues, some changes in P450 expression were also observed that were isoform-dependent. In vitro cytochrome P450 activities in liver, kidney, lung, and small intestine of BCN mice were determined for a range of model substrates and probe drugs; a profound reduction in the metabolism of some substrates, particularly in lung, kidney, and small intestine, was observed. In vivo, the metabolism of metoprolol was significantly altered in BCN mice, in contrast to the previous finding in the liver-specific cytochrome b(5) deletion, suggesting that extrahepatic cytochrome b(5) plays a significant role in its disposition. Testicular Cyp17 hydroxylase and lyase activities were also significantly reduced by cytochrome b(5) deletion, leading to significantly lower levels of testicular testosterone. The BCN mouse provides an additional model system with which to further investigate the functions of cytochrome b(5), particularly in extrahepatic tissues.
Collapse
Affiliation(s)
- Lesley A McLaughlin
- Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Institute, Ninewells Hospital & Medical School, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Wang YH, Tee MK, Miller WL. Human cytochrome p450c17: single step purification and phosphorylation of serine 258 by protein kinase a. Endocrinology 2010; 151:1677-84. [PMID: 20160131 PMCID: PMC2850244 DOI: 10.1210/en.2009-1247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytochrome P450c17 (P450c17) is the single microsomal enzyme that catalyzes steroid 17alpha-hydroxylase and 17,20 lyase activities. The ratio of lyase to hydroxylase activity of human P450c17 determines whether steroidogenesis leads to the synthesis of cortisol or sex steroids. This ratio is regulated posttranslationally by factors that influence the efficiency of electron transfer from P450 oxidoreductase to P450c17. One factor favoring more efficient electron transfer and 17,20 lyase activity is cAMP-dependent serine/threonine phosphorylation of P450c17. Identifying the responsible kinase(s) and the P450c17 residues that undergo phosphorylation has been challenging, partly because of difficulties in preparing biochemically useful amounts of pure, catalytically active P450c17. We describe a modified strategy for preparing P450c17 in which the traditional carboxy-terminal 4xHis tag is replaced by 3xGly6xHis. This construct permits more rotational freedom of the protein when bound to the nickel affinity column, reducing steric associations between the protein and the column, and permitting a single-step chromatographic purification to apparent homogeneity. Using this vector, we explored P450c17 phosphorylation by mutagenesis of Ser and/or Thr residues to Asp or Glu to mimic the approximate size and charge of phospho-Ser or phospho-Thr. This strategy did not identify Ser and/or Thr site(s) that increase the ratio of lyase to hydroxylase activity, suggesting that the regulatory phosphorylation strategy of human P450c17 is very complicated. Although previous work has excluded protein kinase A (PKA) as the responsible kinase, the cAMP-inducible nature of the phosphorylation-associated increase in lyase activity suggests that PKA may play a role, possibly as a priming kinase. Using our novel vector and a series of mutations, we identified the P450c17 site phosphorylated by PKA as Ser258.
Collapse
Affiliation(s)
- Yue-Hao Wang
- Professor of Pediatrics and Chief of Endocrinology, HSE 1427, University of California, San Francisco, San Francisco, California 94143-0978, USA
| | | | | |
Collapse
|
49
|
Kok RC, Timmerman MA, Wolffenbuttel KP, Drop SLS, de Jong FH. Isolated 17,20-lyase deficiency due to the cytochrome b5 mutation W27X. J Clin Endocrinol Metab 2010; 95:994-9. [PMID: 20080843 DOI: 10.1210/jc.2008-1745] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Cytochrome P450c17 (P450c17) is a bifunctional enzyme necessary for the production of glucocorticoids (17-hydroxylase activity) and sex steroids (17,20-lyase activity). Isolated 17,20-lyase deficiency is a rare condition characterized by a deficient production of androgens resulting in 46,XY disorders of sex development (DSD) while the production of glucocorticoids is intact. Several missense mutations in the CYP17A1 gene are known to cause this condition. Cytochrome b(5) (CytB5) is an important factor in 17,20-lyase activity, probably by acting as an allosteric factor. OBJECTIVE The aim of this study was to investigate the role of CytB5 in a patient with defective 17,20-lyase activity. SETTING We conducted the study in a pediatric outpatient clinic of a University Hospital. PATIENTS We studied a 46,XY DSD patient with 17,20-lyase deficiency without missense mutation in the CYP17A1 gene and his parents. MAIN OUTCOME MEASURES We sequenced the CYB5 gene and measured steroid hormone levels. RESULTS Analysis of the CYB5 gene in our patient revealed a homozygous W27X mutation, leading to the formation of a premature stop codon; his parents were both heterozygous carriers of this mutation. This mutation results in the absence of residues E48 and E49 of CytB5, which are necessary for an intact 17,20-lyase activity. CONCLUSION We demonstrated 17,20-lyase deficiency due to an aberrant CytB5. Our findings thus provide evidence for an alternative etiology for this disorder.
Collapse
Affiliation(s)
- Renée C Kok
- Endocrine Laboratory, Department of Internal Medicine, Erasmus Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Nguyen AD, Corbin CJ, Pattison JC, Bird IM, Conley AJ. The developmental increase in adrenocortical 17,20-lyase activity (biochemical adrenarche) is driven primarily by increasing cytochrome b5 in neonatal rhesus macaques. Endocrinology 2009; 150:1748-56. [PMID: 19036885 PMCID: PMC2732332 DOI: 10.1210/en.2008-1303] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenarche is thought to be experienced only by humans and some Old World primates despite observed regression of an adrenal fetal zone and establishment of a functional zona reticularis (ZR) in other species like rhesus macaques. Adrenal differentiation remains poorly defined biochemically in nonhuman primates. The present studies defined ZR development in the neonatal rhesus by examining androgen synthetic capacity and factors affecting it in rhesus and marmoset adrenals. Western immunoblots examined expression of 17alpha-hydroxylase/17,20-lyase cytochrome P450 (P450c17), cytochrome b5 (b5), and 3beta-hydroxysteroid dehydrogenase (3betaHSD), among other key enzymes. 17,20-lyase activity was quantified in adrenal microsomes, as was the contribution of b5 to 17,20-lyase activity in microsomes and cell transfection experiments with rhesus and marmoset P450c17. Expression of b5 increased from birth to 3 months, and was positively correlated with age and 17,20-lyase activity in the rhesus. Recombinant b5 addition stimulated 17,20-lyase activity to an extent inversely proportional to endogenous levels in adrenal microsomes. Although 3betaHSD expression also increased with age, P450c17, 21-hydroxylase cytochrome P450, and the redox partner, reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 oxidoreductase, did not; nor did recombinant cytochrome P450 oxidoreductase augment 17,20-lyase activity. Cotransfection with b5 induced a dose-dependent increase in dehydroepiandrosterone synthesis by both nonhuman primate P450c17 enzymes. We conclude that the increase in 17,20-lyase activity characteristic of an adrenarche in rhesus macaques is driven primarily by increased b5 expression, without the need for a decrease in 3betaHSD, as suggested from human studies. The rhesus macaque is a relevant and accessible model for human ZR development and adrenal function.
Collapse
Affiliation(s)
- Ann D Nguyen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|