1
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Barbuti PA, Guardia-Laguarta C, Yun T, Chatila ZK, Flowers X, Santos BFR, Larsen SB, Hattori N, Bradshaw E, Dettmer U, Fanning S, Vilas M, Reddy H, Teich AF, Krüger R, Area-Gomez E, Przedborski S. The Role of Alpha-Synuclein in Synucleinopathy: Impact on Lipid Regulation at Mitochondria-ER Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599406. [PMID: 38948777 PMCID: PMC11212931 DOI: 10.1101/2024.06.17.599406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson's disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.
Collapse
Affiliation(s)
- Peter A. Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
| | - Cristina Guardia-Laguarta
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taekyung Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Zena K. Chatila
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY 10032, USA
| | - Bruno FR. Santos
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
- Disease Modelling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg RRID:SCR_025237
| | - Simone B. Larsen
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Elizabeth Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY 10032, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manon Vilas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Hasini Reddy
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew F. Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, 28040, Spain
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Almeida FC, Patra K, Giannisis A, Niesnerova A, Nandakumar R, Ellis E, Oliveira TG, Nielsen HM. APOE genotype dictates lipidomic signatures in primary human hepatocytes. J Lipid Res 2024; 65:100498. [PMID: 38216055 PMCID: PMC10875595 DOI: 10.1016/j.jlr.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimer's disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across ε2/ε3, ε3/ε3, and ε3/ε4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to ε2/ε3, ε3/ε4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The ε3/ε4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the ε3/ε3 hepatocytes. Only in the ε3/ε4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the ε4 allele.
Collapse
Affiliation(s)
- Francisco C Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Kalicharan Patra
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anezka Niesnerova
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, USA
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, (CLINTEC), Division of Transplantation surgery, Karolinska Institutet and ME Transplantation, Karolinska University Hospital, Huddinge, Sweden
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, Braga, Portugal.
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Chen J, Soni RK, Xu Y, Simoes S, Liang FX, DeFreitas L, Hwang R, Montesinos J, Lee JH, Area-Gomez E, Nandakumar R, Vardarajan B, Marquer C. Juvenile CLN3 disease is a lysosomal cholesterol storage disorder: similarities with Niemann-Pick type C disease. EBioMedicine 2023; 92:104628. [PMID: 37245481 PMCID: PMC10227369 DOI: 10.1016/j.ebiom.2023.104628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains. METHODS An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples. LE/Lys isolated from samples of JNCL patients were compared with age-matched unaffected controls and Niemann-Pick Type C (NPC) disease patients. Indeed, mutations in NPC1 or NPC2 result in the accumulation of cholesterol in LE/Lys of NPC disease samples, thus providing a positive control. The lipid and protein content of LE/Lys was then analysed using lipidomics and proteomics, respectively. FINDINGS Lipid and protein profiles of LE/Lys isolated from JNCL patients were profoundly altered compared to controls. Importantly, cholesterol accumulated in LE/Lys of JNCL samples to a comparable extent than in NPC samples. Lipid profiles of LE/Lys were similar in JNCL and NPC patients, except for levels of bis(monoacylglycero)phosphate (BMP). Protein profiles detected in LE/Lys of JNCL and NPC patients appeared identical, except for levels of NPC1. INTERPRETATION Our results support that JNCL is a lysosomal cholesterol storage disorder. Our findings also support that JNCL and NPC disease share pathogenic pathways leading to aberrant lysosomal accumulation of lipids and proteins, and thus suggest that the treatments available for NPC disease may be beneficial to JNCL patients. This work opens new avenues for further mechanistic studies in model systems of JNCL and possible therapeutic interventions for this disorder. FUNDING San Francisco Foundation.
Collapse
Affiliation(s)
- Jacinda Chen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York City, NY 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Feng-Xia Liang
- Microscopy Core Laboratory of Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York City, NY 10016, USA
| | - Laura DeFreitas
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Robert Hwang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; G. H. Sergievsky Center, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Estela Area-Gomez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; G. H. Sergievsky Center, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Catherine Marquer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
5
|
Hiniesto-Iñigo I, Castro-Gonzalez LM, Corradi V, Skarsfeldt MA, Yazdi S, Lundholm S, Nikesjö J, Noskov SY, Bentzen BH, Tieleman DP, Liin SI. Endocannabinoids enhance hK V7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval. EBioMedicine 2023; 89:104459. [PMID: 36796231 PMCID: PMC9958262 DOI: 10.1016/j.ebiom.2023.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS. METHODS We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts. FINDINGS We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. INTERPRETATION We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts. FUNDING ERC (No. 850622), Canadian Institutes of Health Research, Canada Research Chairs and Compute Canada, Swedish National Infrastructure for Computing.
Collapse
Affiliation(s)
- Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Laura M Castro-Gonzalez
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Mark A Skarsfeldt
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samira Yazdi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Siri Lundholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sergei Yu Noskov
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
6
|
Chen J, Cazenave-Gassiot A, Xu Y, Piroli P, Hwang R, DeFreitas L, Chan RB, Di Paolo G, Nandakumar R, Wenk MR, Marquer C. Lysosomal phospholipase A2 contributes to the biosynthesis of the atypical late endosome lipid bis(monoacylglycero)phosphate. Commun Biol 2023; 6:210. [PMID: 36823305 PMCID: PMC9950130 DOI: 10.1038/s42003-023-04573-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The late endosome/lysosome (LE/Lys) lipid bis(monoacylglycero)phosphate (BMP) plays major roles in cargo sorting and degradation, regulation of cholesterol and intercellular communication and has been linked to viral infection and neurodegeneration. Although BMP was initially described over fifty years ago, the enzymes regulating its synthesis remain unknown. The first step in the BMP biosynthetic pathway is the conversion of phosphatidylglycerol (PG) into lysophosphatidylglycerol (LPG) by a phospholipase A2 (PLA2) enzyme. Here we report that this enzyme is lysosomal PLA2 (LPLA2). We show that LPLA2 is sufficient to convert PG into LPG in vitro. We show that modulating LPLA2 levels regulates BMP levels in HeLa cells, and affects downstream pathways such as LE/Lys morphology and cholesterol levels. Finally, we show that in a model of Niemann-Pick disease type C, overexpressing LPLA2 alleviates the LE/Lys cholesterol accumulation phenotype. Altogether, we shed new light on BMP biosynthesis and contribute tools to regulate BMP-dependent pathways.
Collapse
Affiliation(s)
- Jacinda Chen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Yimeng Xu
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Paola Piroli
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Robert Hwang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Laura DeFreitas
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY, 10032, USA
- AliveX Biotech, Shanghai, China
| | - Gilbert Di Paolo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY, 10032, USA
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Markus R Wenk
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Catherine Marquer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY, 10032, USA.
| |
Collapse
|
7
|
Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Muñoz M, Bhattacharya J, Blaner WS. Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice. Nat Commun 2023; 14:851. [PMID: 36792627 PMCID: PMC9932169 DOI: 10.1038/s41467-023-36475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Retinoids are potent transcriptional regulators that act in regulating cell proliferation, differentiation, and other cellular processes. We carried out studies in male mice to establish the importance of local cellular retinoid stores within the lung alveolus for maintaining its health in the face of an acute inflammatory challenge induced by intranasal instillation of lipopolysaccharide. We also undertook single cell RNA sequencing and bioinformatic analyses to identify roles for different alveolar cell populations involved in mediating these retinoid-dependent responses. Here we show that local retinoid stores and uncompromised metabolism and signaling within the lung are required to lessen the severity of an acute inflammatory challenge. Unexpectedly, our data also establish that alveolar cells other than lipofibroblasts, specifically microvascular endothelial and alveolar epithelial cells, are able to take up lipoprotein-transported retinoid and to accumulate cellular retinoid stores that are directly used to respond to an acute inflammatory challenge.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Galina A Gusarova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mohammad N Islam
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - María Marhuenda-Muñoz
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921, Santa Coloma de Gramenet, Spain
| | - Jahar Bhattacharya
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
8
|
Kalinichenko LS, Mühle C, Jia T, Anderheiden F, Datz M, Eberle AL, Eulenburg V, Granzow J, Hofer M, Hohenschild J, Huber SE, Kämpf S, Kogias G, Lacatusu L, Lugmair C, Taku SM, Meixner D, Sembritzki NK, Praetner M, Rhein C, Sauer C, Scholz J, Ulrich F, Valenta F, Weigand E, Werner M, Tay N, Mc Veigh CJ, Haase J, Wang AL, Abdel-Hafiz L, Huston JP, Smaga I, Frankowska M, Filip M, Lourdusamy A, Kirchner P, Ekici AB, Marx LM, Suresh NP, Frischknecht R, Fejtova A, Saied EM, Arenz C, Bozec A, Wank I, Kreitz S, Hess A, Bäuerle T, Ledesma MD, Mitroi DN, Miranda AM, Oliveira TG, Lenz B, Schumann G, Kornhuber J, Müller CP. Adult alcohol drinking and emotional tone are mediated by neutral sphingomyelinase during development in males. Cereb Cortex 2023; 33:844-864. [PMID: 35296883 DOI: 10.1093/cercor/bhac106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Tianye Jia
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China.,PONS Centre and SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, UK
| | - Felix Anderheiden
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Maria Datz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Anna-Lisa Eberle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Jonas Granzow
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Martin Hofer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Julia Hohenschild
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Sabine E Huber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Stefanie Kämpf
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Laura Lacatusu
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Charlotte Lugmair
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Stephen Mbu Taku
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Doris Meixner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Nina-Kristin Sembritzki
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Marc Praetner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christina Sauer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Jessica Scholz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Franziska Ulrich
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Florian Valenta
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Esther Weigand
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Markus Werner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Nicole Tay
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China
| | - Conor J Mc Veigh
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jana Haase
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Anbarasu Lourdusamy
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Lena M Marx
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Neeraja Puliparambil Suresh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Essa M Saied
- Institute for Chemistry, Humboldt University, Berlin 12489, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Christoph Arenz
- Institute for Chemistry, Humboldt University, Berlin 12489, Germany
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen 91054, Germany
| | - Isabel Wank
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Silke Kreitz
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Hospital Erlangen, Erlangen 91054, Germany
| | | | - Daniel N Mitroi
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), Madrid 28040, Spain
| | - André M Miranda
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Tiago Gil Oliveira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J5, Mannheim 68159, Germany
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China.,Department of Psychiatry and Psychotherapie, CCM, PONS Centre, Charite Mental Health, Charite Universitaetsmedizin Berlin, Berlin 10117, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
9
|
Ilnytska O, Lai K, Gorshkov K, Schultz ML, Tran BN, Jeziorek M, Kunkel TJ, Azaria RD, McLoughlin HS, Waghalter M, Xu Y, Schlame M, Altan-Bonnet N, Zheng W, Lieberman AP, Dobrowolski R, Storch J. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage. J Biol Chem 2021; 297:100813. [PMID: 34023384 PMCID: PMC8294588 DOI: 10.1016/j.jbc.2021.100813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Niemann-Pick C (NPC) is an autosomal recessive disorder characterized by mutations in the NPC1 or NPC2 genes encoding endolysosomal lipid transport proteins, leading to cholesterol accumulation and autophagy dysfunction. We have previously shown that enrichment of NPC1-deficient cells with the anionic lipid lysobisphosphatidic acid (LBPA; also called bis(monoacylglycerol)phosphate) via treatment with its precursor phosphatidylglycerol (PG) results in a dramatic decrease in cholesterol storage. However, the mechanisms underlying this reduction are unknown. In the present study, we showed using biochemical and imaging approaches in both NPC1-deficient cellular models and an NPC1 mouse model that PG incubation/LBPA enrichment significantly improved the compromised autophagic flux associated with NPC1 disease, providing a route for NPC1-independent endolysosomal cholesterol mobilization. PG/LBPA enrichment specifically enhanced the late stages of autophagy, and effects were mediated by activation of the lysosomal enzyme acid sphingomyelinase. PG incubation also led to robust and specific increases in LBPA species with polyunsaturated acyl chains, potentially increasing the propensity for membrane fusion events, which are critical for late-stage autophagy progression. Finally, we demonstrated that PG/LBPA treatment efficiently cleared cholesterol and toxic protein aggregates in Purkinje neurons of the NPC1I1061T mouse model. Collectively, these findings provide a mechanistic basis supporting cellular LBPA as a potential new target for therapeutic intervention in NPC disease.
Collapse
Affiliation(s)
- Olga Ilnytska
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| | - Kimberly Lai
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark L Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miriam Waghalter
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Yang Xu
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
10
|
Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C, McIntire LB, John V, Gylys KH, Bilousova T. Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Disease Brain Tissue Reveals Disease-Associated Signatures. Front Pharmacol 2021; 12:766082. [PMID: 34925024 PMCID: PMC8675946 DOI: 10.3389/fphar.2021.766082] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aβ. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.
Collapse
Affiliation(s)
- Whitaker Cohn
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Huang
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sujyoti Chandra
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laura Beth McIntire
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects. Mol Psychiatry 2021; 26:7403-7416. [PMID: 34584229 PMCID: PMC8872992 DOI: 10.1038/s41380-021-01304-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.
Collapse
|
12
|
Zhang A, Guan Z, Ockerman K, Dong P, Guo J, Wang Z, Yan D. Regulation of glial size by eicosapentaenoic acid through a novel Golgi apparatus mechanism. PLoS Biol 2020; 18:e3001051. [PMID: 33370778 PMCID: PMC7793280 DOI: 10.1371/journal.pbio.3001051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/08/2021] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Coordination of cell growth is essential for the development of the brain, but the molecular mechanisms underlying the regulation of glial and neuronal size are poorly understood. To investigate the mechanisms involved in glial size regulation, we used Caenorhabditis elegans amphid sheath (AMsh) glia as a model and show that a conserved cis-Golgi membrane protein eas-1/GOLT1B negatively regulates glial growth. We found that eas-1 inhibits a conserved E3 ubiquitin ligase rnf-145/RNF145, which, in turn, promotes nuclear activation of sbp-1/ SREBP, a key regulator of sterol and fatty acid synthesis, to restrict cell growth. At early developmental stages, rnf-145 in the cis-Golgi network inhibits sbp-1 activation to promote the growth of glia, and when animals reach the adult stage, this inhibition is released through an eas-1-dependent shuttling of rnf-145 from the cis-Golgi to the trans-Golgi network to stop glial growth. Furthermore, we identified long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA), as downstream products of the eas-1-rnf-145-sbp-1 pathway that functions to prevent the overgrowth of glia. Together, our findings reveal a novel and potentially conserved mechanism underlying glial size control. The molecular mechanisms underlying the regulation of glial and neuronal size are poorly understood. This study in nematodes reveals eicosapentaenoic acid as the downstream product of a pathway that functions to prevent the overgrowth of glia, suggesting a novel and potentially conserved mechanism underlying glial size control.
Collapse
Affiliation(s)
- Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kyle Ockerman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Pengyuan Dong
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Zhiping Wang
- Institute of Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Regeneration Next Initiative, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
MAEKAWA M, MANO N. Identification and Evaluation of Biomarkers for Niemann-Pick Disease Type C Based on Chemical Analysis Techniques. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
14
|
Iaea DB, Spahr ZR, Singh RK, Chan RB, Zhou B, Bareja R, Elemento O, Di Paolo G, Zhang X, Maxfield FR. Stable reduction of STARD4 alters cholesterol regulation and lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158609. [PMID: 31917335 DOI: 10.1016/j.bbalip.2020.158609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
STARD4, a member of the evolutionarily conserved START gene family, is a soluble sterol transport protein implicated in cholesterol sensing and maintenance of cellular homeostasis. STARD4 is widely expressed and has been shown to transfer sterol between liposomes as well as organelles in cells. However, STARD4 knockout mice lack an obvious phenotype, so the overall role of STARD4 is unclear. To model long term depletion of STARD4 in cells, we use short hairpin RNA technology to stably decrease STARD4 expression in human U2OS osteosarcoma cells (STARD4-KD). We show that STARD4-KD cells display increased total cholesterol, slower cholesterol trafficking between the plasma membrane and the endocytic recycling compartment, and increased plasma membrane fluidity. These effects can all be rescued by transient expression of a short hairpin RNA-resistant STARD4 construct. Some of the cholesterol increase was due to excess storage in late endosomes or lysosomes. To understand the effects of reduced STARD4, we carried out transcriptional and lipidomic profiling of control and STARD4-KD cells. Reduction of STARD4 activates compensatory mechanisms that alter membrane composition and lipid homeostasis. Based on these observations, we propose that STARD4 functions as a critical sterol transport protein involved in sterol sensing and maintaining lipid homeostasis.
Collapse
Affiliation(s)
- David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA; Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center Tri-Institutional Chemical Biology Program, New York, NY 10065, USA
| | - Zachary R Spahr
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Rajesh K Singh
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Robin B Chan
- Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Bowen Zhou
- Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Rohan Bareja
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Gilbert Di Paolo
- Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaoxue Zhang
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA; Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center Tri-Institutional Chemical Biology Program, New York, NY 10065, USA.
| |
Collapse
|
15
|
Baraghithy S, Smoum R, Attar-Namdar M, Mechoulam R, Bab I, Tam J. HU-671, a Novel Oleoyl Serine Derivative, Exhibits Enhanced Efficacy in Reversing Ovariectomy-Induced Osteoporosis and Bone Marrow Adiposity. Molecules 2019; 24:molecules24203719. [PMID: 31623098 PMCID: PMC6832161 DOI: 10.3390/molecules24203719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
Oleoyl serine (OS), an endogenous fatty acyl amide (FAA) found in bone, has been shown to have an anti-osteoporotic effect. OS, being an amide, can be hydrolyzed in the body by amidases. Hindering its amide bond by introducing adjacent substituents has been demonstrated as a successful method for prolonging its skeletal activity. Here, we tested the therapeutic efficacy of two methylated OS derivatives, oleoyl α-methyl serine (HU-671) and 2-methyl-oleoyl serine (HU-681), in an ovariectomized mouse model for osteoporosis by utilizing combined micro-computed tomography, histomorphometry, and cell culture analyses. Our findings indicate that daily treatment for 6 weeks with OS or HU-671 completely rescues bone loss, whereas HU-681 has only a partial effect. The increased bone density was primarily due to enhanced trabecular thickness and number. Moreover, the most effective dose of HU-671 was 0.5 mg/kg/day, an order of magnitude lower than with OS. The reversal of bone loss resulted from increased bone formation and decreased bone resorption, as well as reversal of bone marrow adiposity. These results were further confirmed by determining the serum levels of osteocalcin and type 1 collagen C-terminal crosslinks, as well as demonstrating the enhanced antiadipogenic effect of HU-671. Taken together, these data suggest that methylation interferes with OS’s metabolism, thus enhancing its effects by extending its availability to its target cells.
Collapse
Affiliation(s)
- Saja Baraghithy
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
| | - Reem Smoum
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Malka Attar-Namdar
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
| | - Raphael Mechoulam
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Itai Bab
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence: ; Tel.: +972-2-6757645; Fax: +972-2-6757015
| |
Collapse
|
16
|
Maekawa M, Jinnoh I, Matsumoto Y, Narita A, Mashima R, Takahashi H, Iwahori A, Saigusa D, Fujii K, Abe A, Higaki K, Yamauchi S, Ozeki Y, Shimoda K, Tomioka Y, Okuyama T, Eto Y, Ohno K, T Clayton P, Yamaguchi H, Mano N. Structural Determination of Lysosphingomyelin-509 and Discovery of Novel Class Lipids from Patients with Niemann-Pick Disease Type C. Int J Mol Sci 2019; 20:ijms20205018. [PMID: 31658747 PMCID: PMC6829288 DOI: 10.3390/ijms20205018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 02/02/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder caused by the mutation of cholesterol-transporting proteins. In addition, early treatment is important for good prognosis of this disease because of the progressive neurodegeneration. However, the diagnosis of this disease is difficult due to a variety of clinical spectrum. Lysosphingomyelin-509, which is one of the most useful biomarkers for NPC, was applied for the rapid and easy detection of NPC. The fact that its chemical structure was unknown until recently implicates the unrevealed pathophysiology and molecular mechanisms of NPC. In this study, we aimed to elucidate the structure of lysosphingomyelin-509 by various mass spectrometric techniques. As our identification strategy, we adopted analytical and organic chemistry approaches to the serum of patients with NPC. Chemical derivatization and hydrogen abstraction dissociation-tandem mass spectrometry were used for the determination of function groups and partial structure, respectively. As a result, we revealed the exact structure of lysosphingomyelin-509 as N-acylated and O-phosphocholine adducted serine. Additionally, we found that a group of metabolites with N-acyl groups were increased considerably in the serum/plasma of patients with NPC as compared to that of other groups using targeted lipidomics analysis. Our techniques were useful for the identification of lysosphingomyelin-509.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| | - Isamu Jinnoh
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Yotaro Matsumoto
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai, Miyagi 980-8578, Japan.
| | - Aya Narita
- Division of Child Neurology, Tottori University Hospital, 86 Nishi-machi, Yonago, Tottori 683-8503, Japan.
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan.
| | - Anna Iwahori
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Daisuke Saigusa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Kumiko Fujii
- Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Ai Abe
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.
| | - Shosei Yamauchi
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan.
| | - Yuji Ozeki
- Department of Psychiatry, Shiga University of Medical Science, Setatsukiwacho, Otsu, Shiga 520-2192 Japan.
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Yoshihisa Tomioka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai, Miyagi 980-8578, Japan.
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders, Furusawa-Miyako 255, Asou-ku, Kawasaki, Kanagawa 215-0026, Japan.
| | - Kousaku Ohno
- Division of Child Neurology, Tottori University Hospital, 86 Nishi-machi, Yonago, Tottori 683-8503, Japan.
| | - Peter T Clayton
- Inborn Errors of Metabolism, Clinical and Molecular Genetics Unit, UCL Great Ormond Street Institute of Child Health. 30 Guilford Street, University College London, WC1N 1EH London, UK.
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
17
|
Sidhu R, Mondjinou Y, Qian M, Song H, Kumar AB, Hong X, Hsu FF, Dietzen DJ, Yanjanin NM, Porter FD, Berry-Kravis E, Vite CH, Gelb MH, Schaffer JE, Ory DS, Jiang X. N-acyl- O-phosphocholineserines: structures of a novel class of lipids that are biomarkers for Niemann-Pick C1 disease. J Lipid Res 2019; 60:1410-1424. [PMID: 31201291 DOI: 10.1194/jlr.ra119000157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.
Collapse
Affiliation(s)
- Rohini Sidhu
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yawo Mondjinou
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mingxing Qian
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Haowei Song
- Process and Analytical Development, MilliporeSigma, St. Louis, MO 63118
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Fong-Fu Hsu
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dennis J Dietzen
- Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole M Yanjanin
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Charles H Vite
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 70736
| | - Michael H Gelb
- Process and Analytical Development, MilliporeSigma, St. Louis, MO 63118
| | - Jean E Schaffer
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Řezanka T, Vítová M, Lukavský J, Sigler K. Lipidomic Study of Precursors of Endocannabinoids in Freshwater Bryozoan Pectinatella magnifica. Lipids 2018; 53:413-427. [PMID: 29709080 DOI: 10.1002/lipd.12039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/08/2022]
Abstract
Freshwater bryozoan Pectinatella magnifica was collected from a sand pit (South Bohemia). The total lipids after extraction from lyophilized bryozoans were analyzed using high-performance liquid chromatography/high-resolution negative tandem electrospray mass spectrometry. A total of 19 lipid classes were identified, including N-acyl-substituted phospholipids, that is, N-acylphosphatidylethanolamine and N-acylphosphatidylserine in their plasmenyl forms. Based on gas chromatography/mass spectrometry of 3-pyridylcarbonyl (picolinyl) esters, a very unusual fatty acid was identified, namely 24:7n-3 (all-cis-3,6,9,12,15,18,21-tetracosaheptaenoic acid). The presence of polyunsaturated fatty acids in individual classes is very specific: arachidonic and eicosapentaenoic acids being predominantly bound as amides in N-acyl phospholipids, that is, diacyl-N-acylphosphatidylethanolamines (NAPtdEtn), plasmenyl-N-acylphosphatidyl ethanolamines (PlsNAPtdEtn), diacyl-N-acylphosphatidylserines (NAPtdSer), and plasmenyl-N-acylphosphatidylserines (PlsNAPtdSer). While 24:6n-3 was identified in the sn-2 position of several phospholipids, 24:7n-3 was identified in only two plasmalogens, that is, PlsNAPtdEtn and PlsNAPtdSer. Thanks to the tandem mass spectrometry, we managed to identify the position of all acyl groups in both diacyl- and also in alkenyl-acyl-(plasmenyl) molecular species of N-acylphospholipids. The identification of the molecular species of N-acyl-substituted phosphatidylethanolamine and phosphatidylserine, including their plasmalogen forms, in the freshwater bryozoan P. magnifica has enabled the identification of endogenous cannabinoid precursors.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Laboratory of Fungal Genetics and Metabolism, The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, The Czech Academy of Sciences, Institute of Microbiology, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Jaromír Lukavský
- Department of Plant Ecology, Biorefinery Centre of Competence, The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82, Třeboň, Czech Republic
| | - Karel Sigler
- Laboratory of Fungal Genetics and Metabolism, The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
19
|
Li C, Tan BK, Zhao J, Guan Z. In Vivo and in Vitro Synthesis of Phosphatidylglycerol by an Escherichia coli Cardiolipin Synthase. J Biol Chem 2016; 291:25144-25153. [PMID: 27760827 DOI: 10.1074/jbc.m116.762070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/18/2016] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylglycerol (PG) makes up 5-20% of the phospholipids of Escherichia coli and is essential for growth in wild-type cells. PG is synthesized from the dephosphorylation of its immediate precursor, phosphatidylglycerol phosphate (PGP) whose synthase in E. coli is PgsA. Using genetic, biochemical, and highly sensitive mass spectrometric approaches, we identified an alternative mechanism for PG synthesis in E. coli that is PgsA independent. The reaction of synthesis involves the conversion of phosphatidylethanolamine and glycerol into PG and is catalyzed by ClsB, a phospholipase D-type cardiolipin synthase. This enzymatic reaction is demonstrated herein both in vivo and in vitro as well as by using the purified ClsB protein. When the growth medium was supplemented with glycerol, the expression of E. coli ClsB significantly increased PG and cardiolipin levels, with the growth deficiency of pgsA null strain also being complemented under such conditions. Identification of this alternative mechanism for PG synthesis not only expands our knowledge of bacterial anionic phospholipid biosynthesis, but also sheds light on the biochemical functions of the cls gene redundancy in E. coli and other bacteria. Finally, the PGP-independent PG synthesis in E. coli may also have important implications for the understanding of PG biosynthesis in eukaryotes that remains incomplete.
Collapse
Affiliation(s)
- Chijun Li
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Brandon K Tan
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Jinshi Zhao
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Ziqiang Guan
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
20
|
Wehrli PM, Angerer TB, Farewell A, Fletcher JS, Gottfries J. Investigating the Role of the Stringent Response in Lipid Modifications during the Stationary Phase in E. coli by Direct Analysis with Time-of-Flight-Secondary Ion Mass Spectrometry. Anal Chem 2016; 88:8680-8. [DOI: 10.1021/acs.analchem.6b01981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Patrick M. Wehrli
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
- Centre for Antibiotic
Resistance Research (CARe), University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Tina B. Angerer
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Anne Farewell
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
- Centre for Antibiotic
Resistance Research (CARe), University of Gothenburg, 405 30, Gothenburg, Sweden
| | - John S. Fletcher
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Johan Gottfries
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
- Centre for Antibiotic
Resistance Research (CARe), University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
21
|
Triebl A, Weissengruber S, Trötzmüller M, Lankmayr E, Köfeler H. Quantitative analysis of N-acylphosphatidylethanolamine molecular species in rat brain using solid-phase extraction combined with reversed-phase chromatography and tandem mass spectrometry. J Sep Sci 2016; 39:2474-80. [PMID: 27144983 PMCID: PMC4949747 DOI: 10.1002/jssc.201600172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 04/24/2016] [Indexed: 12/14/2022]
Abstract
A novel method for the sensitive and selective identification and quantification of N‐acylphosphatidylethanolamine molecular species was developed. Samples were prepared using a combination of liquid–liquid and solid‐phase extraction, and intact N‐acylphosphatidylethanolamine species were determined by reversed‐phase high‐performance liquid chromatography coupled to positive electrospray tandem mass spectrometry. As a result of their biological functions as precursors for N‐acylethanolamines and as signaling molecules, tissue concentrations of N‐acylphosphatidylethanolamines are very low, and their analysis is additionally hindered by the vast excess of other sample components. Our sample preparation methods are able to selectively separate the analytes of interest from any expected biological interferences. Finally, the highest selectivity is achieved by coupling chromatographic separation and two N‐acyl chain specific selected reaction monitoring scans per analyte, enabling identification of both the N‐acyl chain and the phosphatidylethanolamine moiety. The validated method is suitable for the reliable quantification of N‐acylphosphatidylethanolamine species from rat brain with a lower limit of quantification of 10 pmol/g and a linear range up to 2300 pmol/g. In total, 41 N‐acylphosphatidylethanolamine molecular species with six different N‐acyl chains, amounting to a total concentration of 3 nmol/g, were quantified.
Collapse
Affiliation(s)
- Alexander Triebl
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Sabrina Weissengruber
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Ernst Lankmayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Harald Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell Host Microbe 2016; 18:371-81. [PMID: 26355219 DOI: 10.1016/j.chom.2015.08.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022]
Abstract
During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum sexual and asexual blood stage (ABS) development. Using liquid chromatography-mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum, and 70%-75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts.
Collapse
|
23
|
Lee HC, Simon GM, Cravatt BF. ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system. Biochemistry 2015; 54:2539-49. [PMID: 25853435 DOI: 10.1021/acs.biochem.5b00207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Acyl phospholipids are atypical components of cell membranes that bear three acyl chains and serve as potential biosynthetic precursors for lipid mediators such as endocannabinoids. Biochemical studies have implicated ABHD4 as a brain N-acyl phosphatidylethanolamine (NAPE) lipase, but in vivo evidence for this functional assignment is lacking. Here, we describe ABHD4(-/-) mice and their characterization using untargeted lipidomics to discover that ABHD4 regulates multiple classes of brain N-acyl phospholipids. In addition to showing reductions in brain glycerophospho-NAEs (GP-NAEs) and plasmalogen-based lyso-NAPEs (lyso-pNAPEs), ABHD4(-/-) mice exhibited decreases in a distinct set of brain lipids that were structurally characterized as N-acyl lysophosphatidylserines (lyso-NAPSs). Biochemical assays confirmed that NAPS lipids are direct substrates of ABHD4. These findings, taken together, designate ABHD4 as a principal regulator of N-acyl phospholipid metabolism in the mammalian nervous system.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriel M Simon
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Wood PL. Accumulation of N-Acylphosphatidylserines and N-Acylserines in the Frontal Cortex in Schizophrenia. ACTA ACUST UNITED AC 2015; 1. [PMID: 26120595 DOI: 10.14800/nt.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND While schizophrenia is generally considered a neurodevelopment disorder, our basic understanding of the biochemical processes involved in disease etiology and/or progression is limited. One class of biochemical mediators that has been suggested to play a role in the development of schizophrenia is N-acyl ethanolamine metabolites of N-acylphosphatidylethanolamines. However, no investigations of N-acylphosphatidylserines or their N-acylserine metabolites have been published. METHODS We undertook a targeted postmortem lipidomics analysis of N-acylphosphatidylserines (NAPS) and N-acylserines (NAS) in gray matter of the frontal cortex of schizophrenia subjects. RESULTS Our data are the first to demonstrate that NAPS and NAS are present in human brain. Furthermore, NAPS and their bioactive metabolites, N-acylserines (NAS), were found to be significantly elevated in the frontal cortex of schizophrenia subjects. CONCLUSIONS Elevated levels of NAPS lipid pools in schizophrenia may result in complex alterations in the structural function of neuronal membranes while increases in NAS may alter signal transduction pathways.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN
| |
Collapse
|
25
|
Gorden DL, Myers DS, Ivanova PT, Fahy E, Maurya MR, Gupta S, Min J, Spann NJ, McDonald JG, Kelly SL, Duan J, Sullards MC, Leiker TJ, Barkley RM, Quehenberger O, Armando AM, Milne SB, Mathews TP, Armstrong MD, Li C, Melvin WV, Clements RH, Washington MK, Mendonsa AM, Witztum JL, Guan Z, Glass CK, Murphy RC, Dennis EA, Merrill AH, Russell DW, Subramaniam S, Brown HA. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res 2015; 56:722-736. [PMID: 25598080 DOI: 10.1194/jlr.p056002] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an "omics" approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.
Collapse
Affiliation(s)
- D Lee Gorden
- Departments of Surgery, Vanderbilt University Medical Center, Nashville, TN; Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
| | - David S Myers
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Eoin Fahy
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Mano R Maurya
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Shakti Gupta
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Jun Min
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Nathanael J Spann
- Departments of Cellular and Molecular Medicine and Medicine, University of California, San Diego, La Jolla, CA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Samuel L Kelly
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Jingjing Duan
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - M Cameron Sullards
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Thomas J Leiker
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO
| | - Robert M Barkley
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO
| | - Oswald Quehenberger
- Departments of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA; Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Aaron M Armando
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen B Milne
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas P Mathews
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Chijun Li
- Department of Biochemistry, Duke University Medical Center, Durham, NC
| | - Willie V Melvin
- Departments of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Ronald H Clements
- Departments of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - M Kay Washington
- Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Joseph L Witztum
- Departments of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC
| | - Christopher K Glass
- Departments of Cellular and Molecular Medicine and Medicine, University of California, San Diego, La Jolla, CA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO
| | - Edward A Dennis
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Alfred H Merrill
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shankar Subramaniam
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, CA.
| | - H Alex Brown
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN; Biochemistry, and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
26
|
Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res 2014; 56:1-18. [PMID: 24992464 DOI: 10.1016/j.plipres.2014.06.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 01/08/2023]
Abstract
Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States.
| | - Bill X Huang
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| | - Arthur A Spector
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| |
Collapse
|
27
|
Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. MASS SPECTROMETRY REVIEWS 2012; 31:134-78. [PMID: 21755525 PMCID: PMC3259006 DOI: 10.1002/mas.20342] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/05/2023]
Abstract
Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell's lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems.
Collapse
Affiliation(s)
- Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
28
|
Brouwers JF. Liquid chromatographic–mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:763-75. [DOI: 10.1016/j.bbalip.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
|
29
|
Abstract
Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the "comprehensive lipidomics analysis by separation simplification" (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues.
Collapse
Affiliation(s)
- Richard Harkewicz
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093-0601, USA.
| | | |
Collapse
|
30
|
Garrett TA, Raetz CRH, Son JD, Richardson TD, Bartling C, Guan Z. Non-enzymatically derived minor lipids found in Escherichia coli lipid extracts. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:827-37. [PMID: 21925285 DOI: 10.1016/j.bbalip.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 02/04/2023]
Abstract
Electrospray ionization mass spectrometry is a powerful technique to analyze lipid extracts especially for the identification of new lipid metabolites. A hurdle to lipid identification is the presence of solvent contaminants that hinder the identification of low abundance species or covalently modify abundant lipid species. We have identified several non-enzymatically derived minor lipid species in lipid extracts of Escherichia coli; phosphatidylmethanol, ethyl and methyl carbamates of PE and N-succinyl PE were identified in lipid extracts of E. coli. Phosphatidylmethanol (PM) was identified by exact mass measurement and collision induced dissociation tandem mass spectrometry (MS/MS). Extraction in the presence of deuterated methanol leads to a 3 atomic mass unit shift in the [M-H](-) ions of PM indicating its formation during extraction. Ethyl and methyl carbamates of PE, also identified by exact mass measurement and MS/MS, are likely to be formed by phosgene, a breakdown product of chloroform. Addition of phosgene to extractions containing synthetic PE significantly increases the levels of PE-MC detected in the lipid extracts by ESI-MS. Extraction in the presence of methylene chloride significantly reduced the levels of these lipid species. N-succinyl PE is formed from reaction of succinyl-CoA with PE during extraction. Interestingly N-succinyl PE can be formed in an aqueous reaction mixture in the absence of added E. coli proteins. This work highlights the reactivity of the amine of PE and emphasizes that careful extraction controls are required to ensure that new minor lipid species identified using mass spectrometry are indeed endogenous lipid metabolites.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Kopp F, Komatsu T, Nomura DK, Trauger SA, Thomas JR, Siuzdak G, Simon GM, Cravatt BF. The glycerophospho metabolome and its influence on amino acid homeostasis revealed by brain metabolomics of GDE1(-/-) mice. ACTA ACUST UNITED AC 2011; 17:831-40. [PMID: 20797612 DOI: 10.1016/j.chembiol.2010.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
GDE1 is a mammalian glycerophosphodiesterase (GDE) implicated by in vitro studies in the regulation of glycerophophoinositol (GroPIns) and possibly other glycerophospho (GroP) metabolites. Here, we show using untargeted metabolomics that GroPIns is profoundly (>20-fold) elevated in brain tissue from GDE1(-/-) mice. Furthermore, two additional GroP metabolites not previously identified in eukaryotic cells, glycerophosphoserine (GroPSer) and glycerophosphoglycerate (GroPGate), were also highly elevated in GDE1(-/-) brains. Enzyme assays with synthetic GroP metabolites confirmed that GroPSer and GroPGate are direct substrates of GDE1. Interestingly, our metabolomic profiles also revealed that serine (both L-and D-) levels were significantly reduced in brains of GDE1(-/-) mice. These findings designate GroPSer as a previously unappreciated reservoir for free serine in the nervous system and suggest that GDE1, through recycling serine from GroPSer, may impact D-serine-dependent neural signaling processes in vivo.
Collapse
Affiliation(s)
- Florian Kopp
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman G, Reichart D, Merrill AH, Sullards MC, Wang E, Murphy RC, Raetz CRH, Garrett TA, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S. A mouse macrophage lipidome. J Biol Chem 2010; 285:39976-85. [PMID: 20923771 PMCID: PMC3000979 DOI: 10.1074/jbc.m110.182915] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/01/2010] [Indexed: 12/14/2022] Open
Abstract
We report the lipidomic response of the murine macrophage RAW cell line to Kdo(2)-lipid A, the active component of an inflammatory lipopolysaccharide functioning as a selective TLR4 agonist and compactin, a statin inhibitor of cholesterol biosynthesis. Analyses of lipid molecular species by dynamic quantitative mass spectrometry and concomitant transcriptomic measurements define the lipidome and demonstrate immediate responses in fatty acid metabolism represented by increases in eicosanoid synthesis and delayed responses characterized by sphingolipid and sterol biosynthesis. Lipid remodeling of glycerolipids, glycerophospholipids, and prenols also take place, indicating that activation of the innate immune system by inflammatory mediators leads to alterations in a majority of mammalian lipid categories, including unanticipated effects of a statin drug. Our studies provide a systems-level view of lipid metabolism and reveal significant connections between lipid and cell signaling and biochemical pathways that contribute to innate immune responses and to pharmacological perturbations.
Collapse
Affiliation(s)
- Edward A. Dennis
- From the Department of Chemistry and Biochemistry
- Department of Pharmacology, School of Medicine, and
| | | | | | - Oswald Quehenberger
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - H. Alex Brown
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Stephen B. Milne
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - David S. Myers
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Christopher K. Glass
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- the Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Gary Hardiman
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Donna Reichart
- the Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alfred H. Merrill
- the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - M. Cameron Sullards
- the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Elaine Wang
- the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Robert C. Murphy
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| | - Christian R. H. Raetz
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Teresa A. Garrett
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Ziqiang Guan
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Andrea C. Ryan
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - David W. Russell
- the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jeffrey G. McDonald
- the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bonne M. Thompson
- the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Walter A. Shaw
- Avanti Polar Lipids, Inc., Alabaster, Alabama 35007-9105, and
| | | | | | | | | | - Eoin Fahy
- the San Diego Supercomputer Center and
| | - Shankar Subramaniam
- From the Department of Chemistry and Biochemistry
- the Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- the San Diego Supercomputer Center and
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
33
|
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc Natl Acad Sci U S A 2010; 107:17710-5. [PMID: 20876113 DOI: 10.1073/pnas.0912479107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.
Collapse
|
34
|
Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CRH, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 2010; 51:3299-305. [PMID: 20671299 DOI: 10.1194/jlr.m009449] [Citation(s) in RCA: 997] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of the present study was to define the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a first step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tan B, O'Dell DK, Yu YW, Monn MF, Hughes HV, Burstein S, Walker JM. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J Lipid Res 2010; 51:112-9. [PMID: 19584404 DOI: 10.1194/jlr.m900198-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a partially purified bovine brain extract, our lab identified three novel endogenous acyl amino acids in mammalian tissues. The presence of numerous amino acids in the body and their ability to form amides with several saturated and unsaturated fatty acids indicated the potential existence of a large number of heretofore unidentified acyl amino acids. Reports of several additional acyl amino acids that activate G-protein coupled receptors (e.g., N-arachidonoyl glycine, N-arachidonoyl serine) and transient receptor potential channels (e.g., N-arachidonoyl dopamine, N-acyl taurines) suggested that some or many novel acyl amino acids could serve as signaling molecules. Here, we used a targeted lipidomics approach including specific enrichment steps, nano-LC/MS/MS, high-throughput screening of the datasets with a potent search algorithm based on fragment ion analysis, and quantification using the multiple reaction monitoring mode in Analyst software to measure the biological levels of acyl amino acids in rat brain. We successfully identified 50 novel endogenous acyl amino acids present at 0.2 to 69 pmol g(-1) wet rat brain.
Collapse
Affiliation(s)
- Bo Tan
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Metzger LE, Raetz CRH. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry 2009; 48:11559-71. [PMID: 19883124 DOI: 10.1021/bi901750f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli LpxB, an inverting glycosyl transferase of the GT-B superfamily and a member of CAZy database family 19, catalyzes the fifth step of lipid A biosynthesis: UDP-2,3-diacylglucosamine + 2,3-diacylglucosamine 1-phosphate --> 2',3'-diacylglucosamine-(beta,1'-6)-2,3-diacylglucosamine 1-phosphate + UDP. LpxB is a target for the development of new antibiotics, but no member of family 19, which consists entirely of LpxB orthologues, has been characterized mechanistically or structurally. Here, we have purified E. coli and Haemophilus influenzae LpxB to near homogeneity on a 10-100 mg scale using protease-cleavable His(10)-tagged constructs. E. coli LpxB activity is dependent upon the bulk surface concentration of its substrates in a mixed micelle assay system, suggesting that catalysis occurs at the membrane interface. E. coli LpxB (M(r) approximately 43 kDa) sediments with membranes at low salt concentrations but is largely solubilized with buffers of high ionic strength. It purifies with 1.6-3.5 mol of phospholipid/mol of LpxB polypeptide. Transmission electron microscopy reveals the accumulation of aberrant intracellular membranes when LpxB is overexpressed. Mutagenesis of LpxB identified two conserved residues, D89A and R201A, for which no residual catalytic activity was detected. Our results provide a rational starting point for structural studies.
Collapse
Affiliation(s)
- Louis E Metzger
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
37
|
Ivanova PT, Milne SB, Brown HA. Identification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry. J Lipid Res 2009; 51:1581-90. [PMID: 19965583 DOI: 10.1194/jlr.d003715] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A large scale profiling and analysis of glycerophospholipid species in macrophages has facilitated the identification of several rare and atypical glycerophospholipid species. By using liquid chromatography tandem mass spectrometry and comparison of the elution and fragmentation properties of the rare lipids to synthetic standards, we were able to identify an array of ether-linked phosphatidylinositols (PIs), phosphatidic acids, phosphatidylserines (PSs), very long chain phosphatidylethanolamines (PEs), and phosphatidylcholines (PCs) as well as phosphatidylthreonines (PTs) and a wide collection of odd carbon fatty acid-containing phospholipids in macrophages. A comprehensive qualitative analysis of glycerophospholipids from different macrophage cells was conducted. During the phospholipid profiling of the macrophage-like RAW 264.7 cells, we identified dozens of rare or previously uncharacterized phospholipids, including ether-linked PIs, PSs, and glycerophosphatidic acids, PTs, and PCs and PTs containing very long polyunsaturated fatty acids. Additionally, large numbers of phospholipids containing at least one odd carbon fatty acid were identified. Using the same methodology, we also identified many of the same species of glycerophospholipids in resident peritoneal macrophages, foam cells, and murine bone marrow derived macrophages.
Collapse
Affiliation(s)
- Pavlina T Ivanova
- Department of Pharmacology and Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
38
|
Guan Z. Discovering novel brain lipids by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2814-21. [PMID: 19303823 PMCID: PMC2723173 DOI: 10.1016/j.jchromb.2009.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 11/20/2022]
Abstract
Discovery and structural elucidation of novel brain lipids hold great promise in revealing new lipid functions in the brain and in understanding the biochemical mechanisms underlying brain physiology and pathology. The revived interests in searching for novel brain lipids have been stimulated by the expanding knowledge of the roles of lipids in brain functions, lipids acting as signaling molecules, and the advent of lipidomics enabled by the advances in mass spectrometry (MS) and liquid chromatography (LC). The identification and characterization of two classes of novel lipids from the brain are reviewed here: N-acyl phosphatidylserine (N-acyl-PS) and dolichoic acid (Dol-CA). The identification of these lipids benefited from the use of efficient lipid fractionation and separation techniques and highly sensitive, high-resolution tandem MS.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, 240 Nanaline Duke, P.O. Box 3711, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Ivanova PT, Milne SB, Myers DS, Brown HA. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol 2009; 13:526-31. [PMID: 19744877 DOI: 10.1016/j.cbpa.2009.08.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/11/2009] [Accepted: 08/15/2009] [Indexed: 12/21/2022]
Abstract
Lipidomics is a logical outcome of the history and traditions of lipid biochemistry and advances in mass spectrometry are at the heart of a renaissance in understanding the roles of lipids in cellular functions. Our desire to understand the complexity of lipids in biology has led to new techniques that allow us to identify over 1000 phospholipids in mammalian cell types and tissues. Improvements in chromatographic separation and mass spectrometry have positioned us to determine not only the lipid composition (i.e. parts list) of cells and tissues, but also address questions regarding lipid substrates and products that previously overwhelmed traditional analytical technologies. In the decade since lipidomics was conceived much of the efforts have been on new methodologies, development of computer programs to decipher the gigabytes of raw data, and struggling with the highly variable nature of biological systems where absolute quantities of a given metabolite may be less important than its relative change in concentration. It is clear that the technology is now sufficiently developed to address fundamental questions about the roles of lipids in cellular signaling and metabolic pathways.
Collapse
Affiliation(s)
- Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | | | | | | |
Collapse
|
40
|
Song F, Guan Z, Raetz CRH. Biosynthesis of undecaprenyl phosphate-galactosamine and undecaprenyl phosphate-glucose in Francisella novicida. Biochemistry 2009; 48:1173-82. [PMID: 19166326 DOI: 10.1021/bi802212t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid A of Francisella tularensis subsp. novicida contains a galactosamine (GalN) residue linked to its 1-phosphate group. As shown in the preceding paper, this GalN unit is transferred to lipid A from the precursor undecaprenyl phosphate-beta-D-GalN. A small portion of the free lipid A of Francisella novicida is further modified with a glucose residue at position-6'. We now demonstrate that the two F. novicida homologues of Escherichia coli ArnC, designated FlmF1 and FlmF2, are essential for lipid A modification with glucose and GalN, respectively. Recombinant FlmF1 expressed in E. coli selectively condenses undecaprenyl phosphate and UDP-glucose in vitro to form undecaprenyl phosphate-glucose. Recombinant FlmF2 selectively catalyzes the condensation of undecaprenyl phosphate and UDP-N-acetylgalactosamine to generate undecaprenyl phosphate-N-acetylgalactosamine. On the basis of an analysis of the lipid A composition of flmF1 and flmF2 mutants of F. novicida, we conclude that FlmF1 generates the donor substrate for the modification of F. novicida free lipid A with glucose, whereas FlmF2 generates the immediate precursor of the GalN donor substrate, undecaprenyl phosphate-beta-D-GalN. A novel deacetylase, present in membranes of F. novicida, removes the acetyl group from undecaprenyl phosphate-N-acetylgalactosamine to yield undecaprenyl phosphate-beta-D-GalN. This deacetylase may have an analogous function to the deformylase that generates undecaprenyl phosphate-4-amino-4-deoxy-alpha-l-arabinose from undecaprenyl phosphate-4-deoxy-4-formylamino-alpha-l-arabinose in polymyxin-resistant strains of E. coli and Salmonella typhimurium.
Collapse
Affiliation(s)
- Feng Song
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
41
|
Romantsov T, Guan Z, Wood JM. Cardiolipin and the osmotic stress responses of bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2092-100. [PMID: 19539601 DOI: 10.1016/j.bbamem.2009.06.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 06/07/2009] [Accepted: 06/10/2009] [Indexed: 11/29/2022]
Abstract
Cells control their own hydration by accumulating solutes when they are exposed to high osmolality media and releasing solutes in response to osmotic down-shocks. Osmosensory transporters mediate solute accumulation and mechanosensitive channels mediate solute release. Escherichia coli serves as a paradigm for studies of cellular osmoregulation. Growth in media of high salinity alters the phospholipid headgroup and fatty acid compositions of bacterial cytoplasmic membranes, in many cases increasing the ratio of anionic to zwitterionic lipid. In E. coli, the proportion of cardiolipin (CL) increases as the proportion of phosphatidylethanolamine (PE) decreases when osmotic stress is imposed with an electrolyte or a non-electrolyte. Osmotic induction of the gene encoding CL synthase (cls) contributes to these changes. The proportion of phosphatidylglycerol (PG) increases at the expense of PE in cls(-) bacteria and, in Bacillus subtilis, the genes encoding CL and PG synthases (clsA and pgsA) are both osmotically regulated. CL is concentrated at the poles of diverse bacterial cells. A FlAsH-tagged variant of osmosensory transporter ProP is also concentrated at E. coli cell poles. Polar concentration of ProP is CL-dependent whereas polar concentration of its paralogue LacY, a H(+)-lactose symporter, is not. The proportion of anionic lipids (CL and PG) modulates the function of ProP in vivo and in vitro. These effects suggest that the osmotic induction of CL synthesis and co-localization of ProP with CL at the cell poles adjust the osmolality range over which ProP activity is controlled by placing it in a CL-rich membrane environment. In contrast, a GFP-tagged variant of mechanosensitive channel MscL is not concentrated at the cell poles but anionic lipids bind to a specific site on each subunit of MscL and influence its function in vitro. The sub-cellular locations and lipid dependencies of other osmosensory systems are not known. Varying CL content is a key element of osmotic adaptation by bacteria but much remains to be learned about its roles in the localization and function of osmoregulatory proteins.
Collapse
Affiliation(s)
- Tatyana Romantsov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | |
Collapse
|
42
|
Garrett TA, Raetz CRH, Richardson T, Kordestani R, Son JD, Rose RL. Identification of phosphatidylserylglutamate: a novel minor lipid in Escherichia coli. J Lipid Res 2008; 50:1589-99. [PMID: 19096047 DOI: 10.1194/jlr.m800549-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advances in mass spectrometry have facilitated the identification of novel lipid structures. In this work, we fractionated the lipids of Escherichia coli B and analyzed the fractions using negative-ion electrospray ionization mass spectrometry to reveal unknown lipid structures. Analysis of a fraction eluting with high salt from DEAE cellulose revealed a series of ions not corresponding to any of the known lipids of E. coli. The ions, with m/z 861.5, 875.5, 887.5, 889.5, and 915.5, were analyzed using collision-induced dissociation mass spectrometry (MS/MS) and yielded related fragmentation patterns consistent with a novel diacylated glycerophospholipid. Product ions arising by neutral loss of 216 mass units were observed with all of the unknowns. A corresponding negative product ion was also observed at m/z 215.0. Additional ions at m/z 197.0, 171.0, 146.0, and 128.0 were used to propose the novel structure phosphatidylserylglutamate (PSE). The hypothesized structure was confirmed by comparison with the MS/MS spectrum of a synthetic standard. Normal phase liquid chromatography-mass spectrometry analysis further showed that the endogenous PSE and synthetic PSE eluted with the same retention times. PSE was also observed in the equivalent anion exchange fractions of total lipids extracted from the wild-type E. coli K-12 strain MG1655.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | |
Collapse
|