1
|
Kraichely KN, Sandall CR, Liang B, Kiessling V, Tamm LK. Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion. Biophys J 2025; 124:637-650. [PMID: 39982442 DOI: 10.1016/j.bpj.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Intracellular membrane traffic involves controlled membrane fission and fusion and is essential for eukaryotic cell homeostasis. Most intracellular fusion is facilitated by Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, which catalyze membrane merging by assembly of a coiled helical bundle of four 60- to 70-residue "SNARE motifs." Perhaps no intracellular fusion reaction is as tightly regulated as that at the neuronal synapse, mediated by the synaptic vesicle SNARE Synaptobrevin-2 and the presynaptic plasma membrane SNAREs Syntaxin-1a and SNAP25. SNAP25 is different from its partner SNAREs: it contributes not one but two SNARE motifs to the final complex and instead of transmembrane domains is anchored in the membrane by post-translational palmitoylation of a long flexible linker between the SNARE motifs. Despite reports of structural and functional differences between the two SNARE motifs, many models of SNARE assembly and fusion consider SNAP25 to be a single functional unit and do not address how linking two distinct motifs in a single polypeptide contributes to synaptic SNARE assembly and fusion. To investigate whether SNAP25's two SNARE motifs regulate each other's folding and ability to assemble with other SNAREs, we determined their secondary structures in isolation and in the context of the whole protein by NMR spectroscopy and correlated the ability of the individual membrane-anchored SNARE motifs to interact with Syntaxin-1a and catalyze fusion in FRET-based binding and single-particle fusion assays, respectively. Our results demonstrate that the isolated N-terminal SNARE motif of SNAP25 promotes stronger Syntaxin-1a binding on membranes and more efficient fusion than wild-type SNAP25, while the C-terminal SNARE motif binds only transiently and facilitates kinetically delayed fusion. By comparing the functional properties of the single motifs to those of the full-length protein, we propose a new model of SNAP25 self-regulation in SNARE assembly and membrane fusion.
Collapse
Affiliation(s)
- Katelyn N Kraichely
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Connor R Sandall
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
2
|
White KI, Khan YA, Qiu K, Balaji A, Couoh-Cardel S, Esquivies L, Pfuetzner RA, Diao J, Brunger AT. Pre-fusion AAA+ remodeling of target-SNARE protein complexes enables synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617886. [PMID: 39416070 PMCID: PMC11482947 DOI: 10.1101/2024.10.11.617886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Membrane fusion is driven by SNARE complex formation across cellular contexts, including vesicle fusion during synaptic transmission. Multiple proteins organize trans-SNARE complex assembly and priming, leading to fusion. One target membrane SNARE, syntaxin, forms nanodomains at the active zone, and another, SNAP-25, enters non-fusogenic complexes with it. Here, we show that the AAA+ protein NSF (N-ethylmaleimide sensitive factor) and SNAP (soluble NSF attachment protein) must act prior to fusion. We show that syntaxin clusters are conserved, that NSF colocalizes with them, and characterize SNARE populations within and near these clusters using cryo-EM. Supercomplexes of NSF, α-SNAP, and either a syntaxin tetramer or two binary complexes of syntaxin-SNAP-25 reveal atomic details of SNARE processing and show how sequential ATP hydrolysis drives disassembly. These results suggest a functional role for syntaxin clusters as reservoirs and a corresponding role for NSF in syntaxin liberation and SNARE protein quality control preceding fusion.
Collapse
|
3
|
Shin KC, Ali Moussa HY, Park Y. Cholesterol imbalance and neurotransmission defects in neurodegeneration. Exp Mol Med 2024; 56:1685-1690. [PMID: 39085348 PMCID: PMC11371908 DOI: 10.1038/s12276-024-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation.
Collapse
Affiliation(s)
- Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
4
|
Ali Moussa HY, Shin KC, Ponraj J, Park SH, Lee OS, Mansour S, Park Y. PIP 2 Is An Electrostatic Catalyst for Vesicle Fusion by Lowering the Hydration Energy: Arresting Vesicle Fusion by Masking PIP 2. ACS NANO 2024; 18:12737-12748. [PMID: 38717305 DOI: 10.1021/acsnano.3c09614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Janarthanan Ponraj
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Košice SK-04001, Slovakia
| | - Said Mansour
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
5
|
Weisgerber AW, Otruba Z, Knowles MK. Syntaxin clusters and cholesterol affect the mobility of Syntaxin1a. Biophys J 2024:S0006-3495(24)00028-6. [PMID: 38221759 DOI: 10.1016/j.bpj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
Syntaxin1a (Syx1a) is essential for stimulated exocytosis in neuroendocrine cells. The vesicle docking process involves the formation of nanoscale Syx1a domains on the plasma membrane and the Syx1a clusters disintegrate during the fusion process. Syx1a nanodomains are static yet Syx1a molecules dynamically enter and leave the domains; the process by which these clusters maintain this balance is unclear. In this work, the dynamics of the Syx1a molecules is elucidated relative to the cluster position through a labeling strategy that allows both the bulk position of the Syx clusters to be visualized concurrent with the trajectories of single Syx1a molecules on the surface of PC12 cells. Single Syx1a molecules were tracked in time relative to cluster positions to decipher how Syx1a moves within a cluster and when clusters are not present. Syx1a is mobile on the plasma membrane, more mobile at the center of clusters, and less mobile near the edges of clusters; this depends on the presence of the N-terminal Habc domain and cholesterol, which are essential for proper exocytosis. Simulations of the dynamics observed at clusters support a model where clusters are maintained by a large cage (r = 100 nm) within which Syx1a remains highly mobile within the cluster (r = 50 nm). The depletion of cholesterol dramatically reduces the mobility of Syx1a within clusters and less so over the rest of the plasma membrane. This suggests that fluidity of Syx1a supramolecular clusters is needed for function.
Collapse
Affiliation(s)
- Alan W Weisgerber
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Zdeněk Otruba
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
6
|
Ali Moussa HY, Shin KC, Ponraj J, Kim SJ, Ryu J, Mansour S, Park Y. Requirement of Cholesterol for Calcium-Dependent Vesicle Fusion by Strengthening Synaptotagmin-1-Induced Membrane Bending. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206823. [PMID: 37058136 PMCID: PMC10214243 DOI: 10.1002/advs.202206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Indexed: 05/27/2023]
Abstract
Cholesterol is essential for neuronal activity and function. Cholesterol depletion in the plasma membrane impairs synaptic transmission. However, the molecular mechanisms by which cholesterol deficiency leads to defects in vesicle fusion remain poorly understood. Here, it is shown that cholesterol is required for Ca2+ -dependent native vesicle fusion using the in vitro reconstitution of fusion and amperometry to monitor exocytosis in chromaffin cells. Purified native vesicles are crucial for the reconstitution of physiological Ca2+ -dependent fusion, because vesicle-mimicking liposomes fail to reproduce the cholesterol effect. Intriguingly, cholesterol has no effect on the membrane binding of synaptotagmin-1, a Ca2+ sensor for ultrafast fusion. Cholesterol strengthens local membrane deformation and bending induced by synaptotagmin-1, thereby lowering the energy barrier for Ca2+ -dependent fusion to occur. The data provide evidence that cholesterol depletion abolishes Ca2+ -dependent vesicle fusion by disrupting synaptotagmin-1-induced membrane bending, and suggests that cholesterol is an essential lipid regulator for Ca2+ -dependent fusion.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | - Kyung Chul Shin
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | | | - Soo Jin Kim
- Division of Molecular and Life SciencesPohang University of Science and TechnologyPohang790‐784Republic of Korea
| | - Je‐Kyung Ryu
- Department of Physics & AstronomySeoul National University. 1 Gwanak‐roGwanak‐guSeoul08826South Korea
| | - Said Mansour
- HBKU Core LabsHamad Bin Khalifa University (HBKU)DohaQatar
| | - Yongsoo Park
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
- College of Health & Life Sciences (CHLS)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| |
Collapse
|
7
|
Fadil SA, Janetopoulos C. The Polarized Redistribution of the Contractile Vacuole to the Rear of the Cell is Critical for Streaming and is Regulated by PI(4,5)P2-Mediated Exocytosis. Front Cell Dev Biol 2022; 9:765316. [PMID: 35928786 PMCID: PMC9344532 DOI: 10.3389/fcell.2021.765316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Dictyostelium discoideum amoebae align in a head to tail manner during the process of streaming during fruiting body formation. The chemoattractant cAMP is the chemoattractant regulating cell migration during this process and is released from the rear of cells. The process by which this cAMP release occurs has eluded investigators for many decades, but new findings suggest that this release can occur through expulsion during contractile vacuole (CV) ejection. The CV is an organelle that performs several functions inside the cell including the regulation of osmolarity, and discharges its content via exocytosis. The CV localizes to the rear of the cell and appears to be part of the polarity network, with the localization under the influence of the plasma membrane (PM) lipids, including the phosphoinositides (PIs), among those is PI(4,5)P2, the most abundant PI on the PM. Research on D. discoideum and neutrophils have shown that PI(4,5)P2 is enriched at the rear of migrating cells. In several systems, it has been shown that the essential regulator of exocytosis is through the exocyst complex, mediated in part by PI(4,5)P2-binding. This review features the role of the CV complex in D. discoideum signaling with a focus on the role of PI(4,5)P2 in regulating CV exocytosis and localization. Many of the regulators of these processes are conserved during evolution, so the mechanisms controlling exocytosis and membrane trafficking in D. discoideum and mammalian cells will be discussed, highlighting their important functions in membrane trafficking and signaling in health and disease.
Collapse
Affiliation(s)
- Sana A. Fadil
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- Department of Natural product, Faculty of Pharmacy, King Abdulaziz University, Saudia Arabia
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- The Science Research Institute, Albright College, Reading, PA, United States
- The Department of Cell Biology at Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Chris Janetopoulos,
| |
Collapse
|
8
|
Vardar G, Salazar-Lázaro A, Zobel S, Trimbuch T, Rosenmund C. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. eLife 2022; 11:78182. [PMID: 35638903 PMCID: PMC9183232 DOI: 10.7554/elife.78182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A’s JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A’s JMD; and (3) palmitoylation deficiency mutations in STX1A’s TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A’s JMD regulates the palmitoylation of STX1A’s TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A’s JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.
Collapse
Affiliation(s)
- Gülçin Vardar
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Salazar-Lázaro
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Zobel
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion. Curr Biol 2022; 32:2821-2833.e6. [PMID: 35609603 PMCID: PMC9382030 DOI: 10.1016/j.cub.2022.04.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane. Complete reconstitution and subunit connectivity of the human exocyst complex Binding to PI(4,5)P2 in trans by each subcomplex enables membrane tethering PI(4)P to PI(4,5)P2 conversion is sufficient for exocyst recruitment and tethering Arf6 controls phosphoinositide conversion by PIP5K1C in cells and in vitro
Collapse
|
10
|
Sardar A, Dewangan N, Panda B, Bhowmick D, Tarafdar PK. Lipid and Lipidation in Membrane Fusion. J Membr Biol 2022; 255:691-703. [PMID: 36102950 PMCID: PMC9472184 DOI: 10.1007/s00232-022-00267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Membrane fusion plays a lead role in the transport of vesicles, neurotransmission, mitochondrial dynamics, and viral infection. There are fusion proteins that catalyze and regulate the fusion. Interestingly, various types of fusion proteins are present in nature and they possess diverse mechanisms of action. We have highlighted the importance of the functional domains of intracellular heterotypic fusion, homotypic endoplasmic reticulum (ER), homotypic mitochondrial, and type-I viral fusion. During intracellular heterotypic fusion, the SNAREs and four-helix bundle formation are prevalent. Type-I viral fusion is controlled by the membrane destabilizing properties of fusion peptide and six-helix bundle formation. The ER/mitochondrial homotypic fusion is controlled by GTPase activity and the membrane destabilization properties of the amphipathic helix(s). Although the mechanism of action of these fusion proteins is diverse, they have some similarities. In all cases, the lipid composition of the membrane greatly affects membrane fusion. Next, examples of lipidation of the fusion proteins were discussed. We suggest that the fatty acyl hydrophobic tail not only acts as an anchor but may also modulate the energetics of membrane fusion intermediates. Lipidation is also important to design more effective peptide-based fusion inhibitors. Together, we have shown that membrane lipid composition and lipidation are important to modulate membrane fusion.
Collapse
Affiliation(s)
- Avijit Sardar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Nikesh Dewangan
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Bishvanwesha Panda
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Debosmita Bhowmick
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Pradip K. Tarafdar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| |
Collapse
|
11
|
Barak-Broner N, Singer-Lahat D, Chikvashvili D, Lotan I. CK2 Phosphorylation Is Required for Regulation of Syntaxin 1A Activity in Ca 2+-Triggered Release in Neuroendocrine Cells. Int J Mol Sci 2021; 22:ijms222413556. [PMID: 34948351 PMCID: PMC8708312 DOI: 10.3390/ijms222413556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.
Collapse
Affiliation(s)
- Noa Barak-Broner
- Department of Neurobiology Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel;
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel
- Correspondence:
| |
Collapse
|
12
|
Munc18-dependent and -independent clustering of syntaxin in the plasma membrane of cultured endocrine cells. Proc Natl Acad Sci U S A 2021; 118:2025748118. [PMID: 34857632 DOI: 10.1073/pnas.2025748118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Syntaxin helps in catalyzing membrane fusion during exocytosis. It also forms clusters in the plasma membrane, where both its transmembrane and SNARE domains are thought to homo-oligomerize. To study syntaxin clustering in live PC12 cells, we labeled granules with neuropeptide-Y-mCherry and syntaxin clusters with syntaxin-1a green fluorescent protein (GFP). Abundant clusters appeared under total internal reflection (TIRF) illumination, and some of them associated with granules ("on-granule clusters"). Syntaxin-1a-GFP or its mutants were expressed at low levels and competed with an excess of endogenous syntaxin for inclusion into clusters. On-granule inclusion was diminished by mutations known to inhibit binding to Munc18-1 in vitro. Knock-down of Munc18-1 revealed Munc18-dependent and -independent on-granule clustering. Clustering was inhibited by mutations expected to break salt bridges between syntaxin's Hb and SNARE domains and was rescued by additional mutations expected to restore them. Most likely, syntaxin is in a closed conformation when it clusters on granules, and its SNARE and Hb domains approach to within atomic distances. Pairwise replacements of Munc18-contacting residues with alanines had only modest effects, except that the pair R114A/I115A essentially abolished on-granule clustering. In summary, an on-granule cluster arises from the specific interaction between a granule and a dense cluster of syntaxin-Munc18-1 complexes. Off-granule clusters, by contrast, were resistant to even the strongest mutations we tried and required neither Munc18-1 nor the presence of a SNARE domain. They may well form through the nonstoichiometric interactions with membrane lipids that others have observed in cell-free systems.
Collapse
|
13
|
Polit A, Mystek P, Błasiak E. Every Detail Matters. That Is, How the Interaction between Gα Proteins and Membrane Affects Their Function. MEMBRANES 2021; 11:222. [PMID: 33804791 PMCID: PMC8003949 DOI: 10.3390/membranes11030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
In highly organized multicellular organisms such as humans, the functions of an individual cell are dependent on signal transduction through G protein-coupled receptors (GPCRs) and subsequently heterotrimeric G proteins. As most of the elements belonging to the signal transduction system are bound to lipid membranes, researchers are showing increasing interest in studying the accompanying protein-lipid interactions, which have been demonstrated to not only provide the environment but also regulate proper and efficient signal transduction. The mode of interaction between the cell membrane and G proteins is well known. Despite this, the recognition mechanisms at the molecular level and how the individual G protein-membrane attachment signals are interrelated in the process of the complex control of membrane targeting of G proteins remain unelucidated. This review focuses on the mechanisms by which mammalian Gα subunits of G proteins interact with lipids and the factors responsible for the specificity of membrane association. We summarize recent data on how these signaling proteins are precisely targeted to a specific site in the membrane region by introducing well-defined modifications as well as through the presence of polybasic regions within these proteins and interactions with other components of the heterocomplex.
Collapse
Affiliation(s)
- Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.M.); (E.B.)
| | | | | |
Collapse
|
14
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
15
|
Li M, Oh TJ, Fan H, Diao J, Zhang K. Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion. J Mol Biol 2020; 432:4773-4782. [PMID: 32682743 DOI: 10.1016/j.jmb.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 01/01/2023]
Abstract
Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
Collapse
Affiliation(s)
- Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Teak-Jung Oh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Structural dynamics and transient lipid binding of synaptobrevin-2 tune SNARE assembly and membrane fusion. Proc Natl Acad Sci U S A 2019; 116:8699-8708. [PMID: 30975750 PMCID: PMC6500178 DOI: 10.1073/pnas.1813194116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vesicular membrane protein synaptobrevin-2 (syb-2) plays an important role in vesicular membrane fusion at the neuronal synapse by participating in the dynamic formation of the SNARE complex. Here, by a combination of solution-state NMR and fluorescence spectroscopy, we find that syb-2 in its prefusion form, before forming the SNARE complex, shows high internal flexibility, characteristic for an intrinsically disordered protein (IDP). But it also reveals an increasing rigidity from the N to C terminus that correlates with an observed increase in lipid binding affinity as well as the known increased rate for C-terminal compared with N-terminal SNARE zippering. This provides a mechanistic perspective on how an IDP and its lipid interactions can lower the energy barrier for membrane fusion. Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.
Collapse
|
17
|
Padmanabhan P, Bademosi AT, Kasula R, Lauwers E, Verstreken P, Meunier FA. Need for speed: Super-resolving the dynamic nanoclustering of syntaxin-1 at exocytic fusion sites. Neuropharmacology 2019; 169:107554. [PMID: 30826343 DOI: 10.1016/j.neuropharm.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct motion states which are governed by short-lived molecular interactions. Critical biochemical reactions between exocytic proteins that occur in the confinement of nanodomains underpin the precise sequence of priming steps which leads to the fusion of vesicles. The advent of super-resolution microscopy techniques has provided the means to visualize individual molecules on the plasma membrane with high spatiotemporal resolution in live cells. These techniques are revealing a highly dynamic nature of the nanoscale organization of the exocytic machinery. In this review, we focus on soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) syntaxin-1, which mediates vesicular fusion. Syntaxin-1 is highly mobile at the plasma membrane, and its inherent speed allows fast assembly and disassembly of syntaxin-1 nanoclusters which are associated with exocytosis. We reflect on recent studies which have revealed the mechanisms regulating syntaxin-1 nanoclustering on the plasma membrane and draw inferences on the effect of synaptic activity, phosphoinositides, N-ethylmaleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and SNARE complex assembly on the dynamic nanoscale organization of syntaxin-1. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Ravikiran Kasula
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia.
| |
Collapse
|
18
|
Wheeler S, Schmid R, Sillence DJ. Lipid⁻Protein Interactions in Niemann⁻Pick Type C Disease: Insights from Molecular Modeling. Int J Mol Sci 2019; 20:E717. [PMID: 30736449 PMCID: PMC6387118 DOI: 10.3390/ijms20030717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
The accumulation of lipids in the late endosomes and lysosomes of Niemann⁻Pick type C disease (NPCD) cells is a consequence of the dysfunction of one protein (usually NPC1) but induces dysfunction in many proteins. We used molecular docking to propose (a) that NPC1 exports not just cholesterol, but also sphingosine, (b) that the cholesterol sensitivity of big potassium channel (BK) can be traced to a previously unappreciated site on the channel's voltage sensor, (c) that transient receptor potential mucolipin 1 (TRPML1) inhibition by sphingomyelin is likely an indirect effect, and (d) that phosphoinositides are responsible for both the mislocalization of annexin A2 (AnxA2) and a soluble NSF (N-ethylmaleimide Sensitive Fusion) protein attachment receptor (SNARE) recycling defect. These results are set in the context of existing knowledge of NPCD to sketch an account of the endolysosomal pathology key to this disease.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK.
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
19
|
Curthoys NM, Mlodzianoski MJ, Parent M, Butler MB, Raut P, Wallace J, Lilieholm J, Mehmood K, Maginnis MS, Waters H, Busse B, Zimmerberg J, Hess ST. Influenza Hemagglutinin Modulates Phosphatidylinositol 4,5-Bisphosphate Membrane Clustering. Biophys J 2019; 116:893-909. [PMID: 30773293 DOI: 10.1016/j.bpj.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) forms nanoscopic clusters in cell plasma membranes; however, the processes determining PIP2 mobility and thus its spatial patterns are not fully understood. Using super-resolution imaging of living cells, we find that PIP2 is tightly colocalized with and modulated by overexpression of the influenza viral protein hemagglutinin (HA). Within and near clusters, HA and PIP2 follow a similar spatial dependence, which can be described by an HA-dependent potential gradient; PIP2 molecules move as if they are attracted to the center of clusters by a radial force of 0.079 ± 0.002 pN in HAb2 cells. The measured clustering and dynamics of PIP2 are inconsistent with the unmodified forms of the raft, tether, and fence models. Rather, we found that the spatial PIP2 distributions and how they change in time are explained via a novel, to our knowledge, dynamic mechanism: a radial gradient of PIP2 binding sites that are themselves mobile. This model may be useful for understanding other biological membrane domains whose distributions display gradients in density while maintaining their mobility.
Collapse
Affiliation(s)
- Nikki M Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | | | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Michael B Butler
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Jaqulin Wallace
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | | | - Kashif Mehmood
- Department of Physics and Astronomy, University of Maine, Orono, Maine; Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Brad Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Samuel T Hess
- Department of Physics and Astronomy, University of Maine, Orono, Maine.
| |
Collapse
|
20
|
Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 2019; 73:92-100. [PMID: 30611882 DOI: 10.1016/j.plipres.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.
Collapse
|
21
|
Wittig S, Haupt C, Hoffmann W, Kostmann S, Pagel K, Schmidt C. Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:149-160. [PMID: 29949059 PMCID: PMC6318248 DOI: 10.1007/s13361-018-2000-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Synaptobrevin-2 is a key player in signal transmission in neurons. It forms, together with SNAP25 and Syntaxin-1A, the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and mediates exocytosis of synaptic vesicles with the pre-synaptic membrane. While Synaptobrevin-2 is part of a four-helix bundle in this SNARE complex, it is natively unstructured in the absence of lipids or other SNARE proteins. Partially folded segments, presumably SNARE complex formation intermediates, as well as formation of Synaptobrevin-2 dimers and oligomers, were identified in previous studies. Here, we employ three Synaptobrevin-2 variants-the full-length protein Syb(1-116), the soluble, cytosolic variant Syb(1-96) as well as a shorter version Syb(49-96) containing structured segments but omitting a trigger site for SNARE complex formation-to study oligomerisation in the absence of interaction partners or when incorporated into the lipid bilayer of liposomes. Combining native mass spectrometry with chemical cross-linking, we find that the truncated versions show increased oligomerisation. Our findings from both techniques agree well and confirm the presence of oligomers in solution while membrane-bound Synaptobrevin-2 is mostly monomeric. Using ion mobility mass spectrometry, we could further show that lower charge states of Syb(49-96) oligomers, which most likely represent solution structures, follow an isotropic growth curve suggesting that they are intrinsically disordered. From a technical point of view, we show that the combination of native ion mobility mass spectrometry with chemical cross-linking is well-suited for the analysis of protein homo-oligomers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sabine Wittig
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Caroline Haupt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Waldemar Hoffmann
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradaystr. 4-6, 14195, Berlin, Germany
| | - Susann Kostmann
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| |
Collapse
|
22
|
Lee M, Moon Y, Lee S, Lee C, Jun Y. Ergosterol interacts with Sey1p to promote atlastin-mediated endoplasmic reticulum membrane fusion in Saccharomyces cerevisiae. FASEB J 2018; 33:3590-3600. [PMID: 30462528 DOI: 10.1096/fj.201800779rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sterols play critical roles in various membrane fusion events, including soluble NSF attachment protein receptor-mediated membrane fusion, mainly by modulating the physical properties of biologic membranes; however, it remains unclear whether they also function in atlastin-mediated endoplasmic reticulum (ER) membrane fusion. Although ergosterol, the major sterol in yeast, is essential for fusion of Sey1p (yeast atlastin)-containing liposomes with an ER-mimicking lipid composition, fusion of phosphatidylcholine/phosphatidylserine liposomes does not require sterols. Here, we examined whether sterols are important for Sey1p-mediated ER fusion in Saccharomyces cerevisiae using an in vitro ER fusion assay with isolated yeast ER microsomes. Ergosterol-specific ligands inhibited microsome fusion, indicating that ergosterol is critical for ER fusion. However, microsomes isolated from yeast strains lacking genes that encode enzymes involved in synthesis of ergosterol from lanosterol still fused, suggesting that other sterols can replace ergosterol and support Sey1p-mediated ER fusion. Importantly, disruption of sterol-binding motifs in the transmembrane regions of Sey1p markedly reduced ER fusion. Sey1p physically interacted with Erg11p and Erg4p, which function in ergosterol biosynthesis, suggesting that Sey1p recruits ergosterol-synthesizing enzymes to fusion sites and thereby enriches ergosterol, which, in turn, may recruit more Sey1p. This positive feedback loop may facilitate ER membrane fusion by concentrating fusion factors at fusion sites.-Lee, M., Moon, Y., Lee, S., Lee, C., Jun, Y. Ergosterol interacts with Sey1p to promote atlastin-mediated endoplasmic reticulum membrane fusion in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sanghwa Lee
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, South Korea; and
| | - Changwook Lee
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
23
|
Wang J, Yan C, Xu C, Chua BT, Li P, Chen FJ. Polybasic RKKR motif in the linker region of lipid droplet (LD)-associated protein CIDEC inhibits LD fusion activity by interacting with acidic phospholipids. J Biol Chem 2018; 293:19330-19343. [PMID: 30361435 DOI: 10.1074/jbc.ra118.004892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles and a central site for lipid synthesis, storage, and mobilization. The size of LDs reflects the dynamic regulation of lipid metabolism in cells. Previously, we found that cell death-inducing DFFA-like effector C (CIDEC) mediates LD fusion and growth by lipid transfer through LD-LD contact sites in adipocytes and hepatocytes. The CIDE-N domains of CIDEC molecules form homodimers, whereas the CIDE-C domain plays an important role in LD targeting and enrichment. Here, using targeted protein deletions and GFP expression coupled with fluorescence microscopy, we identified a polybasic RKKR motif in the linker region that connects the CIDE-N and CIDE-C domains of CIDEC and functions as a regulatory motif for LD fusion. We found that deletion of the linker region or mutation of the RKKR motif increases the formation of supersized LDs compared with LD formation in cells with WT CIDEC. This enhanced LD fusion activity required the interaction between CIDE-N domains. Mechanistically, we found that the RKKR motif interacts with acidic phospholipids via electrostatic attraction. Loss of this motif disrupted the protein-lipid interaction, resulting in enhanced lipid droplet fusion activity and thus formation of larger LDs. In summary, we have uncovered a CIDEC domain that regulates LD fusion activity, a finding that provides insights into the inhibitory regulation of LD fusion through CIDEC-lipid interactions.
Collapse
Affiliation(s)
- Jia Wang
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Chengsong Yan
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Chenqi Xu
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Boon Tin Chua
- the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Peng Li
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| | - Feng-Jung Chen
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, .,the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Yin P, Gandasi NR, Arora S, Omar-Hmeadi M, Saras J, Barg S. Syntaxin clusters at secretory granules in a munc18-bound conformation. Mol Biol Cell 2018; 29:2700-2708. [PMID: 30156474 PMCID: PMC6249827 DOI: 10.1091/mbc.e17-09-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Syntaxin (stx)-1 is an integral plasma membrane protein that is crucial for two distinct steps of regulated exocytosis, docking of secretory granules at the plasma membrane and membrane fusion. During docking, stx1 clusters at the granule docking site, together with the S/M protein munc18. Here we determined features of stx1 that contribute to its clustering at granules. In live insulin-secreting cells, stx1 and stx3 (but not stx4 or stx11) accumulated at docked granules, and stx1 (but not stx4) rescued docking in cells expressing botulinum neurotoxin-C. Using a series of stx1 deletion mutants and stx1/4 chimeras, we found that all four helical domains (Ha, Hb, Hc, SNARE) and the short N-terminal peptide contribute to recruitment to granules. However, only the Hc domain confers specificity, and it must be derived from stx1 for recruitment to occur. Point mutations in the Hc or the N-terminal peptide designed to interfere with binding to munc18-1 prevent stx1 from clustering at granules, and a mutant munc18 deficient in binding to stx1 does not cluster at granules. We conclude that stx1 is recruited to the docking site in a munc18-1–bound conformation, providing a rationale for the requirement for both proteins for granule docking.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Nikhil R Gandasi
- Institute of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Swati Arora
- Institute of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Muhmmad Omar-Hmeadi
- Institute of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Jan Saras
- Institute of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Sebastian Barg
- Institute of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
25
|
Abstract
Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site.
Collapse
Affiliation(s)
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Vesicle Docking Is a Key Target of Local PI(4,5)P 2 Metabolism in the Secretory Pathway of INS-1 Cells. Cell Rep 2018; 20:1409-1421. [PMID: 28793264 PMCID: PMC5613661 DOI: 10.1016/j.celrep.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P2 perturbations, rapid and cell-wide PI(4,5)P2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca2+ concentration ([Ca2+]i) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca2+]i. These results highlight a key role of local PI(4,5)P2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P2 signaling in vivo.
Collapse
|
27
|
Sharma S, Lindau M. t-SNARE Transmembrane Domain Clustering Modulates Lipid Organization and Membrane Curvature. J Am Chem Soc 2017; 139:18440-18443. [PMID: 29231734 PMCID: PMC5802331 DOI: 10.1021/jacs.7b10677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The t-SNARE complex plays a central role in neuronal fusion. Its components, syntaxin-1 and SNAP25, are largely present in individual clusters and partially colocalize at the presumptive fusion site. How these protein clusters modify local lipid composition and membrane morphology is largely unknown. In this work, using coarse-grained molecular dynamics, the transmembrane domains (TMDs) of t-SNARE complexes are shown to form aggregates leading to formation of lipid nanodomains, which are enriched in cholesterol, phosphatidylinositol 4,5-bisphosphate, and gangliosidic lipids. These nano-domains induce membrane curvature that would promote a closer contact between vesicle and plasma membrane.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory of Nanoscale Cell Biology, Max-Planck-Institut für Biophysikalische Chemie , Göttingen 37077 Germany
| | - Manfred Lindau
- Laboratory of Nanoscale Cell Biology, Max-Planck-Institut für Biophysikalische Chemie , Göttingen 37077 Germany.,School of Applied and Engineering Physics, Cornell University , Ithaca, New York 14850, United States
| |
Collapse
|
28
|
The Dual Function of the Polybasic Juxtamembrane Region of Syntaxin 1A in Clamping Spontaneous Release and Stimulating Ca 2+-Triggered Release in Neuroendocrine Cells. J Neurosci 2017; 38:220-231. [PMID: 29133430 DOI: 10.1523/jneurosci.1541-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/07/2017] [Accepted: 10/07/2017] [Indexed: 11/21/2022] Open
Abstract
The exact function of the polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin 1A (Syx), in vesicle exocytosis, although widely studied, is currently not clear. Here, we addressed the role of 5RK in Ca2+-triggered release, using our Syx-based intramolecular fluorescence resonance energy transfer (FRET) probe, which previously allowed us to resolve a depolarization-induced Ca2+-dependent close-to-open transition (CDO) of Syx that occurs concomitant with evoked release, both in PC12 cells and hippocampal neurons and was abolished upon charge neutralization of 5RK. First, using dynamic FRET analysis in PC12 cells, we show that CDO occurs following assembly of SNARE complexes that include the vesicular SNARE, synaptobrevin 2, and that the participation of 5RK in CDO goes beyond its participation in the final zippering of the complex, because mutations of residues adjacent to 5RK, believed to be crucial for final zippering, do not abolish this transition. In addition, we show that CDO is contingent on membrane phosphatidylinositol 4,5-bisphosphate (PIP2), which is fundamental for maintaining regulated exocytosis, as depletion of membranal PIP2 abolishes CDO. Prompted by these results, which underscore a potentially significant role of 5RK in exocytosis, we next amperometrically analyzed catecholamine release from PC12 cells, revealing that charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release events. Namely, 5RK acts as a fusion clamp, making release dependent on stimulation by Ca2+SIGNIFICANCE STATEMENT Syntaxin 1A (Syx) is a central protein component of the SNARE complex, which underlies neurotransmitter release. Although widely studied in relation to its participation in SNARE complex formation and its interaction with phosphoinositides, the function of Syx's polybasic juxtamembrane region (5RK) remains unclear. Previously, we showed that a conformational transition of Syx, related to calcium-triggered release, reported by a Syx-based FRET probe, is abolished upon charge neutralization of 5RK (5RK/A). Here we show that this conformational transition is dependent on phosphatidylinositol 4,5-bisphosphate (PIP2) and is related to SNARE complex formation. Subsequently, we show that the 5RK/A mutation enhances spontaneous release and inhibits calcium-triggered release in neuroendocrine cells, indicating a previously unrecognized role of 5RK in neurotransmitter release.
Collapse
|
29
|
Wu Z, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Front Mol Neurosci 2017; 10:315. [PMID: 29066949 PMCID: PMC5641348 DOI: 10.3389/fnmol.2017.00315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically defined setting which have recently become available. Finally, computer simulations are valuable mechanistic tools because they have the power to access small length scales and very short times that are experimentally inaccessible.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale University, West Haven, CT, United States
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale University, West Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
30
|
Merklinger E, Schloetel JG, Weber P, Batoulis H, Holz S, Karnowski N, Finke J, Lang T. The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions. eLife 2017; 6. [PMID: 28722652 PMCID: PMC5536946 DOI: 10.7554/elife.20705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/17/2017] [Indexed: 01/24/2023] Open
Abstract
Molecule clustering is an important mechanism underlying cellular self-organization. In the cell membrane, a variety of fundamentally different mechanisms drive membrane protein clustering into nanometre-sized assemblies. To date, it is unknown whether this clustering process can be dissected into steps differentially regulated by independent mechanisms. Using clustered syntaxin molecules as an example, we study the influence of a cytoplasmic protein domain on the clustering behaviour. Analysing protein mobility, cluster size and accessibility to myc-epitopes we show that forces acting on the transmembrane segment produce loose clusters, while cytoplasmic protein interactions mediate a tightly packed state. We conclude that the data identify a hierarchy in membrane protein clustering likely being a paradigm for many cellular self-organization processes. DOI:http://dx.doi.org/10.7554/eLife.20705.001
Collapse
Affiliation(s)
- Elisa Merklinger
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Pascal Weber
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Helena Batoulis
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sarah Holz
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nora Karnowski
- Chemical Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jérôme Finke
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Stone MB, Shelby SA, Veatch SL. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane. Chem Rev 2017; 117:7457-7477. [PMID: 28211677 PMCID: PMC5471115 DOI: 10.1021/acs.chemrev.6b00716] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
Collapse
Affiliation(s)
- Matthew B Stone
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| | - Sarah A Shelby
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| | - Sarah L Veatch
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| |
Collapse
|
32
|
Kiessling V, Liang B, Kreutzberger AJB, Tamm LK. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion. Front Mol Neurosci 2017; 10:72. [PMID: 28360838 PMCID: PMC5352703 DOI: 10.3389/fnmol.2017.00072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods.
Collapse
Affiliation(s)
- Volker Kiessling
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
33
|
Han J, Pluhackova K, Böckmann RA. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Front Physiol 2017; 8:5. [PMID: 28163686 PMCID: PMC5247469 DOI: 10.3389/fphys.2017.00005] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Collapse
Affiliation(s)
- Jing Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-NürnbergErlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
34
|
Bademosi AT, Lauwers E, Padmanabhan P, Odierna L, Chai YJ, Papadopulos A, Goodhill GJ, Verstreken P, van Swinderen B, Meunier FA. In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters. Nat Commun 2017; 8:13660. [PMID: 28045048 PMCID: PMC5171881 DOI: 10.1038/ncomms13660] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release. Syntaxin1A (Sx1A) is organized in nanoclusters in neurosecretory cells but how these nanoclusters are affected by neurotransmitter release in a living organism is unknown. Here the authors perform single molecule imaging analysis in live fly larvae and show that the lateral diffusion and trapping of Sx1A in nanoclusters are altered by synaptic activity.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elsa Lauwers
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ye Jin Chai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
35
|
Zhang B, Karnik R, Waghmare S, Donald N, Blatt MR. VAMP721 Conformations Unmask an Extended Motif for K+ Channel Binding and Gating Control. PLANT PHYSIOLOGY 2017; 173:536-551. [PMID: 27821719 PMCID: PMC5210753 DOI: 10.1104/pp.16.01549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/04/2016] [Indexed: 05/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play a major role in membrane fusion and contribute to cell expansion, signaling, and polar growth in plants. The SNARE SYP121 of Arabidopsis thaliana that facilitates vesicle fusion at the plasma membrane also binds with, and regulates, K+ channels already present at the plasma membrane to affect K+ uptake and K+-dependent growth. Here, we report that its cognate partner VAMP721, which assembles with SYP121 to drive membrane fusion, binds to the KAT1 K+ channel via two sites on the protein, only one of which contributes to channel-gating control. Binding to the VAMP721 SNARE domain suppressed channel gating. By contrast, interaction with the amino-terminal longin domain conferred specificity on VAMP721 binding without influencing gating. Channel binding was defined by a linear motif within the longin domain. The SNARE domain is thought to wrap around this structure when not assembled with SYP121 in the SNARE complex. Fluorescence lifetime analysis showed that mutations within this motif, which suppressed channel binding and its effects on gating, also altered the conformational displacement between the VAMP721 SNARE and longin domains. The presence of these two channel-binding sites on VAMP721, one also required for SNARE complex assembly, implies a well-defined sequence of events coordinating K+ uptake and the final stages of vesicle traffic. It suggests that binding begins with VAMP721, and subsequently with SYP121, thereby coordinating K+ channel gating during SNARE assembly and vesicle fusion. Thus, our findings also are consistent with the idea that the K+ channels are nucleation points for SNARE complex assembly.
Collapse
Affiliation(s)
- Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
36
|
Tarafdar PK, Chakraborty H, Bruno MJ, Lentz BR. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide. Biophys J 2016; 109:1863-72. [PMID: 26536263 DOI: 10.1016/j.bpj.2015.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 08/16/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022] Open
Abstract
Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex's ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex's presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state.
Collapse
Affiliation(s)
- Pradip K Tarafdar
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hirak Chakraborty
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael J Bruno
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barry R Lentz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
37
|
The role of cholesterol in membrane fusion. Chem Phys Lipids 2016; 199:136-143. [PMID: 27179407 DOI: 10.1016/j.chemphyslip.2016.05.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion.
Collapse
|
38
|
High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion. Biophys J 2016. [PMID: 26200867 DOI: 10.1016/j.bpj.2015.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.
Collapse
|
39
|
Membrane Lipids in Presynaptic Function and Disease. Neuron 2016; 90:11-25. [DOI: 10.1016/j.neuron.2016.02.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
|
40
|
Sharma S, Kim BN, Stansfeld PJ, Sansom MSP, Lindau M. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry. PLoS One 2015; 10:e0144814. [PMID: 26659855 PMCID: PMC4681583 DOI: 10.1371/journal.pone.0144814] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022] Open
Abstract
The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD) simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG) membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5)bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| | - Brian N. Kim
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, United Kingdom
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
41
|
Destainville N, Schmidt TH, Lang T. Where Biology Meets Physics--A Converging View on Membrane Microdomain Dynamics. CURRENT TOPICS IN MEMBRANES 2015; 77:27-65. [PMID: 26781829 DOI: 10.1016/bs.ctm.2015.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For several decades, the phenomenon of membrane component segregation into microdomains has been a well-known and highly debated subject, and varying concepts including the raft hypothesis, the fence-and-picket model, hydrophobic-mismatch, and specific protein-protein interactions have been offered as explanations. Here, we review the level of insight into the molecular architecture of membrane domains one is capable of obtaining through biological experimentation. Using SNARE proteins as a paradigm, comprehensive data suggest that several dozens of molecules crowd together into almost circular spots smaller than 100 nm. Such clusters are highly dynamical as they constantly capture and lose molecules. The organization has a strong influence on the functional availability of proteins and likely provides a molecular scaffold for more complex protein networks. Despite this high level of insight, fundamental open questions remain, applying not only to SNARE protein domains but more generally to all types of membrane domains. In this context, we explain the view of physical models and how they are beneficial in advancing our concept of micropatterning. While biological models generally remain qualitative and descriptive, physics aims towards making them quantitative and providing reproducible numbers, in order to discriminate between different mechanisms which have been proposed to account for experimental observations. Despite the fundamental differences in biological and physical approaches as far as cell membrane microdomains are concerned, we are able to show that convergence on common points of views is in reach.
Collapse
Affiliation(s)
- Nicolas Destainville
- Laboratoire de Physique Theorique (IRSAMC), Universite Toulouse 3-Paul Sabatier, UPS/CNRS, Toulouse, France
| | - Thomas H Schmidt
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
42
|
Ullrich A, Böhme MA, Schöneberg J, Depner H, Sigrist SJ, Noé F. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone. PLoS Comput Biol 2015; 11:e1004407. [PMID: 26367029 PMCID: PMC4569342 DOI: 10.1371/journal.pcbi.1004407] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/15/2015] [Indexed: 01/10/2023] Open
Abstract
Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release.
Collapse
Affiliation(s)
- Alexander Ullrich
- Department of Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Mathias A. Böhme
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany
| | | | - Harald Depner
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
43
|
Zhang B, Karnik R, Wang Y, Wallmeroth N, Blatt MR, Grefen C. The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. THE PLANT CELL 2015; 27:1697-717. [PMID: 26002867 PMCID: PMC4498211 DOI: 10.1105/tpc.15.00305] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 05/04/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive vesicle traffic, delivering membrane and cargo to target sites within the cell and at its surface. They contribute to cell homeostasis, morphogenesis, and pathogen defense. A subset of SNAREs, including the Arabidopsis thaliana SNARE SYP121, are known also to coordinate solute uptake via physical interactions with K(+) channels and to moderate their gating at the plasma membrane. Here, we identify a second subset of SNAREs that interact to control these K(+) channels, but with opposing actions on gating. We show that VAMPs (vesicle-associated membrane proteins), which target vesicles to the plasma membrane, also interact with and suppress the activities of the inward-rectifying K(+) channels KAT1 and KC1. Interactions were evident in yeast split-ubiquitin assays, they were recovered in vivo by ratiometric bimolecular fluorescence complementation, and they were sensitive to mutation of a single residue, Tyr-57, within the longin domain of VAMP721. Interaction was also recovered on exchange of the residue at this site in the homolog VAMP723, which normally localizes to the endoplasmic reticulum and otherwise did not interact. Functional analysis showed reduced channel activity and alterations in voltage sensitivity that are best explained by a physical interaction with the channel gates. These actions complement those of SYP121, a cognate SNARE partner of VAMP721, and lead us to propose that the channel interactions reflect a "hand-off" in channel control between the two SNARE proteins that is woven together with vesicle fusion.
Collapse
Affiliation(s)
- Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
44
|
Yang ST, Kiessling V, Simmons JA, White JM, Tamm LK. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol 2015; 11:424-31. [PMID: 25915200 PMCID: PMC4433777 DOI: 10.1038/nchembio.1800] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Lipid rafts in plasma membranes have emerged as possible platforms for the entry of HIV and other viruses into cells. However, little is known about how lipid phase heterogeneity contributes to viral entry because of the fine-grained and still poorly understood complexity of biological membranes. We used model systems mimicking HIV envelopes and T cell membranes and found that raft-like liquid-ordered (Lo-phase) lipid domains were necessary and sufficient for efficient membrane targeting and fusion. Interestingly, membrane binding and fusion were low in homogeneous liquid-disordered (Ld-phase) and Lo-phase membranes, indicating that lipid phase heterogeneity is essential. The HIV fusion peptide preferentially targeted to Lo-Ld boundary regions and promoted full fusion at the interface between ordered and disordered lipids. Ld-phase vesicles proceeded only to hemifusion. Thus, we propose that edges but not areas of raft-like ordered lipid domains are vital for HIV entry and membrane fusion.
Collapse
Affiliation(s)
- Sung-Tae Yang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, U.S.A
- Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, U.S.A
- Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - James A. Simmons
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
- Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
- Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, U.S.A
- Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
45
|
Lai Y, Zhao L, Bu B, Lou X, Li D, Ji B, Liu J, Diao J, Shin YK. Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys Biol 2015; 12:025003. [PMID: 25898400 DOI: 10.1088/1478-3975/12/2/025003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lipid molecules, structural components of biomembranes, have been proposed for an important role in membrane fusion. Through various techniques based on a protein-reconstituted vesicle-vesicle fusion system, we investigated the influence of several lipid molecules on different stages of a yeast soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion process. Lipid compositions played a significant role in the early stages, docking and lipid mixing, while only exhibiting a minor effect on fusion pore formation and dilation phases, indicated by both small and large content mixing.
Collapse
Affiliation(s)
- Ying Lai
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kiessling V, Liang B, Tamm LK. Reconstituting SNARE-mediated membrane fusion at the single liposome level. Methods Cell Biol 2015; 128:339-63. [PMID: 25997356 DOI: 10.1016/bs.mcb.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Successful reconstitutions of SNARE-mediated intracellular membrane fusion have been achieved in bulk fusion assays since 1998 and in single liposome fusion assays since 2004. Especially in neuronal presynaptic SNARE-mediated exocytosis, fusion is controlled by numerous accessory proteins, of which some functions have also been reconstituted in vitro. The development of and results obtained with two fundamentally different single liposome fusion assays, namely liposome-to-supported membrane and liposome-to-liposome, are reviewed. Both assays distinguish between liposome docking and fusion steps of the overall fusion reaction and both assays are capable of resolving hemi-and full-fusion intermediates and end states. They have opened new windows for elucidating the mechanisms of these fundamentally important cellular reactions with unprecedented time and molecular resolution. Although many of the molecular actors in this process have been discovered, we have only scratched the surface of looking at their fascinating plays, interactions, and choreographies that lead to vesicle traffic as well as neurotransmitter and hormone release in the cell.
Collapse
Affiliation(s)
- Volker Kiessling
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
47
|
Milovanovic D, Jahn R. Organization and dynamics of SNARE proteins in the presynaptic membrane. Front Physiol 2015; 6:89. [PMID: 25852575 PMCID: PMC4365744 DOI: 10.3389/fphys.2015.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
48
|
Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1886-96. [PMID: 25791349 DOI: 10.1016/j.bbamem.2015.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
49
|
Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nat Commun 2015; 6:5984. [PMID: 25635869 PMCID: PMC4313621 DOI: 10.1038/ncomms6984] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. Clustering of proteins in the plasma membrane plays an important role in the regulation of both cellular signalling and membrane remodelling. Milovanovic et al. demonstrate that mismatch between transmembrane domain length and the lipid bilayer thickness is sufficient to drive clustering of SNARE proteins.
Collapse
|
50
|
|