1
|
Regulation of Neuronal Na +/K +-ATPase by Specific Protein Kinases and Protein Phosphatases. J Neurosci 2019; 39:5440-5451. [PMID: 31085608 DOI: 10.1523/jneurosci.0265-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasmalemma of living cells. Numerous studies in non-neuronal tissues have shown that this transport mechanism is reversibly regulated by phosphorylation/dephosphorylation of the catalytic α subunit and/or associated proteins. In neurons, Na+/K+ transport by NKA is essential for almost all neuronal operations, consuming up to two-thirds of the neuron's energy expenditure. However, little is known about its cellular regulatory mechanisms. Here we have used an electrophysiological approach to monitor NKA transport activity in male rat hippocampal neurons in situ We report that this activity is regulated by a balance between serine/threonine phosphorylation and dephosphorylation. Phosphorylation by the protein kinases PKG and PKC inhibits NKA activity, whereas dephosphorylation by the protein phosphatases PP-1 and PP-2B (calcineurin) reverses this effect. Given that these kinases and phosphatases serve as downstream effectors in key neuronal signaling pathways, they may mediate the coupling of primary messengers, such as neurotransmitters, hormones, and growth factors, to the NKAs, through which multiple brain functions can be regulated or dysregulated.SIGNIFICANCE STATEMENT The Na+/K+-ATPase (NKA), known as the "Na+ pump," is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasma membrane of living cells. In neurons, as in most types of cells, the NKA generates the negative resting membrane potential, which is the basis for almost all aspects of cellular function. Here we used an electrophysiological approach to monitor physiological NKA transport activity in single hippocampal pyramidal cells in situ We have found that neuronal NKA activity is oppositely regulated by phosphorylation and dephosphorylation, and we have identified the main protein kinases and phosphatases mediating this regulation. This fundamental form of NKA regulation likely plays a role in multiple brain functions.
Collapse
|
2
|
Poulsen H, Morth P, Egebjerg J, Nissen P. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase. FEBS Lett 2010; 584:2589-95. [PMID: 20412804 DOI: 10.1016/j.febslet.2010.04.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 01/11/2023]
Abstract
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.
Collapse
Affiliation(s)
- Hanne Poulsen
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Aarhus University, Department of Molecular Biology, Denmark.
| | | | | | | |
Collapse
|
3
|
Gatto C, Milanick M. Red blood cell Na pump: Insights from species differences. Blood Cells Mol Dis 2009; 42:192-200. [PMID: 19268612 DOI: 10.1016/j.bcmd.2009.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 01/21/2023]
Abstract
The red blood cell membrane is specialized to exchange chloride and bicarbonate; usually the pH gradient, the chloride ratio, and the membrane potential are tightly coupled. We review the evidence that led to the ability to separately vary inside and outside pH in red cells. The effect of pH on Na pump activity and on the selectivity of the inside and the outside transport sites is reviewed. In red blood cells, at high pH, the outside site is not selective. An increase in protons leads to an increase in K(+) affinity, thus making the site more selective. The pK for this site is different in rats and humans; because of the high conservation of residues in these two species, there are only a few possible residues that can account for this difference. On the inside, work from unsided preparations suggests that, at high pH, the transport site is highly selective for Na(+). Once again, an increase in protons leads to an increase in K(+) affinity, but now the result is a less selective site. During their maturation, reticulocytes lose many membrane proteins. The type and fractional loss is species dependent. For example, most reticulocytes lose most of their Na pumps, retaining about 100 pumps per cell, but animals from the order Carnivora lose all their pumps. We review some of the evidence that PKC phosphorylation of N-terminus serines is responsible for endocytosis in other cell types and species variation in this region.
Collapse
Affiliation(s)
- Craig Gatto
- Division of Biomedical Sciences, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | | |
Collapse
|
4
|
Regulation of the Na,K-ATPase: Special implications for cardiovascular complications of metabolic syndrome. PATHOPHYSIOLOGY 2007; 14:153-8. [DOI: 10.1016/j.pathophys.2007.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Zhang L, Morris KJ, Ng YC. Fiber type-specific immunostaining of the Na+,K+-ATPase subunit isoforms in skeletal muscle: age-associated differential changes. Biochim Biophys Acta Mol Basis Dis 2006; 1762:783-93. [PMID: 16979878 PMCID: PMC1761903 DOI: 10.1016/j.bbadis.2006.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 08/15/2006] [Accepted: 08/15/2006] [Indexed: 11/22/2022]
Abstract
The expression of the Na(+),K(+)-ATPase alpha and beta subunit isoforms in rat skeletal muscle and its age-associated changes have been shown to be muscle-type dependent. The cellular basis underlying these findings is not completely understood. In this study, we examined the expression of Na(+),K(+)-ATPase isoforms in individual fiber types and tested the hypothesis that, with age, the changes in the expression of the isoforms differ among individual fibers. We utilized immunohistochemical techniques to examine the expression of the subunit isoforms at the individual fiber levels. Immunofluorescence staining of the subunit isoforms in both white gastrocnemius (GW) and red gastrocnemius (GR) revealed a predominance of staining on the sarcolemmal membrane. Compared to the skeletal muscle of 6-month-old rats, there were substantial increases in the levels of alpha1, beta1, and beta3 subunit isoforms, and decreases in the levels of alpha2 and beta2 in 30-month-old rats. In addition, we found distinct patterns of staining for the alpha1, alpha2, beta1, and beta2 isoforms in tissue sections from young and aged rats. Muscle fiber-typing was performed to correlate the pattern of staining with specific fiber types. Staining for alpha1 and alpha2 isoforms in the skeletal muscle of young rats was generally evenly distributed among the fibers of GW and GR, with the exception of higher alpha1 levels in slow-twitch oxidative Type I fibers of GR. By contrast, staining for the beta1 and beta2 isoforms in the mostly oxidative fibers and the mostly glycolytic fibers, respectively, was almost mutually exclusive. With age, there was a fiber-type selective qualitative decrease of alpha2 and beta2 in Type IIB fibers, and increase of beta1 in Type IIB fibers and beta2 in Type IID fibers of white gastrocnemius. These results provide, at the individual fiber level, a cellular basis for the differential expression of the Na(+),K(+)-ATPase subunit isoforms in the muscle groups. The data further indicate that the aged-associated changes in expression of the subunit isoforms occur in both a fiber-type specific as well as an across fiber-type manner. Because of the differing biochemical properties of the subunit isoforms, these changes add another layer of complexity in our understanding of the adaptation of the Na-pump in skeletal muscle with advancing age.
Collapse
Affiliation(s)
- Lianqin Zhang
- Department of Pharmacology, The Milton S. Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Keith J. Morris
- Cell Biology Division, Institute of Ophthalmology, University College London, London, United Kingdom, EC1V 9EL
| | - Yuk-Chow Ng
- Department of Pharmacology, The Milton S. Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033
| |
Collapse
|
6
|
Al-Khalili L, Kotova O, Tsuchida H, Ehrén I, Féraille E, Krook A, Chibalin AV. ERK1/2 Mediates Insulin Stimulation of Na,K-ATPase by Phosphorylation of the α-Subunit in Human Skeletal Muscle Cells. J Biol Chem 2004; 279:25211-8. [PMID: 15069082 DOI: 10.1074/jbc.m402152200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Lubna Al-Khalili
- Section of Integrative Physiology, Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Ng YC, Nagarajan M, Jew KN, Mace LC, Moore RL. Exercise training differentially modifies age-associated alteration in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2003; 285:R733-40. [PMID: 12805093 DOI: 10.1152/ajpregu.00266.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tests the hypothesis that endurance exercise training (ETr) reverses age-associated alterations in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Expression of the isoforms was examined in 16-mo-old sedentary middle-aged, 29-mo-old sedentary senescent, and 29-mo-old treadmill exercise-trained senescent Fischer 344 x Brown Norway rats. Levels of the alpha1-isoform increased with age in red gastrocnemius (GR), white gastrocnemius (GW), and extensor digitorum longus (EDL) muscles, and ETr further increased its levels. Levels of the alpha2-isoform were unchanged in GR, had a strong trend for a decrease in GW, and decreased significantly in EDL. ETr increased expression of the alpha2-isoform in all three muscle groups. There was no increase in expression of the beta1-isoform in GR, GW, or EDL with age, whereas ETr markedly increased its levels in the muscles. There was a marked decrease with age in expression of the beta2-isoform in the muscle groups that was not reversed by ETr. By contrast, beta3-isoform levels increased with age in GR and GW, and ETr was able to reverse this increase. Na+-K+-ATPase enzyme activity was unchanged with age in GR and GW but increased in EDL. ETr increased enzyme activity in GR and GW and did not change in EDL. Myosin heavy chain isoforms in the muscle groups did not change significantly with age; ETr caused a general shift toward more oxidative fibers. Thus ETr differentially modifies age-associated alterations in expression of Na+-K+-ATPase subunit isoforms, and a mechanism(s) other than physical inactivity appears to play significant role in some of the age-associated changes.
Collapse
Affiliation(s)
- Yuk-Chow Ng
- Department of Pharmacology, Milton S Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
8
|
Teixeira VL, Katz AI, Pedemonte CH, Bertorello AM. Isoform-specific regulation of Na+,K+-ATPase endocytosis and recruitment to the plasma membrane. Ann N Y Acad Sci 2003; 986:587-94. [PMID: 12763893 DOI: 10.1111/j.1749-6632.2003.tb07257.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Na(+),K(+)-ATPase traffics between the plasma membrane and intracellular compartments in response to acute changes in membrane receptor activation. These effects are accomplished by a time-dependent interaction of the Na(+),K(+)-ATPase alpha-subunit with specific intracellular signaling molecules either at the plasma membrane (endocytosis) or at the endosome's membranes (recruitment). Most of these studies have been performed in rat renal epithelial cells in which only the alpha(1) isoenzyme is present. Studies in neurons from the neostriatum in which all three alpha-subunit isoforms are present indicate that neurotransmitter-dependent regulation of Na(+),K(+)-ATPase activity displays isoform specificity and also suggest a more complex organization of the intracellular signaling networks controlling Na(+),K(+)-ATPase traffic in mammalian cells.
Collapse
Affiliation(s)
- Vera Lucas Teixeira
- Department of Medicine, Atherosclerosis Research Unit, Karolinska Institutet, Karolinska Hospital, 171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Tsimaratos M, Roger F, Chabardès D, Mordasini D, Hasler U, Doucet A, Martin PY, Féraille E. C-peptide stimulates Na+,K+-ATPase activity via PKC alpha in rat medullary thick ascending limb. Diabetologia 2003; 46:124-31. [PMID: 12637991 DOI: 10.1007/s00125-002-0996-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Revised: 09/09/2002] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS C-peptide, the cleavage product of proinsulin processing exerts physiological effects including stimulation of Na(+),K(+)-ATPase in erythrocytes and renal proximal tubules. This study was undertaken to assess the physiological effects of connecting peptide on Na(+),K(+)-ATPase activity in the medullary thick ascending limb of Henle's loop. METHODS Na(+),K(+)-ATPase activity was measured as the ouabain-sensitive generation of (32)Pi from gamma[(32)P]-ATP and (86)Rb uptake on isolated rat medullary thick ascending limbs. The cell-surface expression of Na(+),K(+)-ATPase was evaluated by Western blotting of biotinylated proteins, and its phosphorylation amount was measured by autoradiography. The membrane-associated fraction of protein kinase C isoforms was evaluated by Western blotting. RESULTS Rat connecting peptide concentration-dependently stimulated Na(+),K(+)-ATPase activity with a threshold at 10(-9) mol/l and a maximal effect at 10(-7) mol/l. C-peptide (10(-7) mol/l) already stimulates Na(+),K(+)-ATPase activity after 5 min with a plateau from 15 to 60 min. C-peptide (10(-7) mol/l) stimulated Na(+),K(+)-ATPase activity and (86)Rb uptake to the same extent, but did not alter Na(+),K(+)-ATPase cell surface expression. The stimulation of Na(+),K(+)-ATPase activity was associated with an increase in Na(+),K(+)-ATPase alpha-subunit phosphorylation and both effects were abolished by a specific protein kinase C inhibitor. Furthermore, connecting peptide induced selective membrane translocation of PKC-alpha. CONCLUSION/INTERPRETATION This study provides evidence that in rat medullary thick ascending limb, C-peptide stimulates Na(+),K(+)-ATPase activity within a physiological concentration range. This effect is due to an increase in Na(+),K(+)-ATPase turnover rate that is most likely mediated by protein kinase C-alpha phosphorylation of the Na(+),K(+)-ATPase alpha-subunit, suggesting that C-peptide could control Na(+) reabsorption during non-fasting periods.
Collapse
Affiliation(s)
- M Tsimaratos
- Paediatric Nephrology Unit, Children's Hospital la Timone, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Féraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 2001; 81:345-418. [PMID: 11152761 DOI: 10.1152/physrev.2001.81.1.345] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.
Collapse
Affiliation(s)
- E Féraille
- Division of Nephrology, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
11
|
Nowicki S, Kruse MS, Brismar H, Aperia A. Dopamine-induced translocation of protein kinase C isoforms visualized in renal epithelial cells. Am J Physiol Cell Physiol 2000; 279:C1812-8. [PMID: 11078696 DOI: 10.1152/ajpcell.2000.279.6.c1812] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term regulation of sodium metabolism is dependent on the modulation of the activity of sodium transporters by first and second messengers. In understanding diseases associated with sodium retention, it is necessary to identify the coupling between these messengers. We have examined whether dopamine, an important first messenger in tubular cells, activates and translocates various protein kinase C (PKC) isoforms. We used a proximal tubular-like cell line, LLCPK-1 cells, in which dopamine was found to inhibit Na(+)-K(+)-ATPase in a PKC-dependent manner. Translocation of PKC isoforms was studied with both subcellular fractionation and confocal microscopy. Both techniques revealed a dopamine-induced translocation from cytosol to plasma membrane of PKC-alpha and -epsilon, but not of PKC-delta, -gamma, and -zeta. The process of subcellular fractionation resulted in partial translocation of PKC-epsilon. This artifact was eliminated in confocal studies. Confocal imaging permitted detection of translocation within 20 s. Translocation was abolished by a phospholipase C inhibitor and by an antagonist against the dopamine 1 subtype (D(1)) but not the 2 subtype of receptor (D(2)). In conclusion, this study visualizes in renal epithelial cells a very rapid activation of the PKC-alpha and -epsilon isoforms by the D(1) receptor subtype.
Collapse
Affiliation(s)
- S Nowicki
- Department of Woman and Child Health, Karolinska Institute, Astrid Lindgren Children's Hospital, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
12
|
Ladka R, Ng YC. Na+ -transport modulation induces isoform-specific expression of Na+,K+ -Atpase alpha-subunit isoforms in C2C12 skeletal muscle cell. Mol Cell Biochem 2000; 211:79-84. [PMID: 11055550 DOI: 10.1023/a:1007158616383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in demands for Na+ transport alter expression of the Na+,K+ -ATPase subunit isoforms. In skeletal muscle, the effects of these changes on expression the alpha2 isoform, the major isoform expressed in differentiated muscle cell, is not known. Therefore, this study examines regulation of the alpha-subunit isoforms by Na+ in the C2C12 skeletal muscle cell that expresses the alpha1 and alpha2 isoforms. Western blot analysis showed that in differentiating C2C12 muscle cell, but not in undifferentiated myoblast, veratridine, a Na+ channel activator, greatly increased expression of the alpha2 isoform; expression of alpha1 was unaltered. Because the level of alpha-actinin was unaltered, the data suggest that veratridine treatment did not significantly alter the progression of cell differentiation. Furthermore, a reduction in Na+ transport by tetrodotoxin again failed to alter expression of alpha1. Thus, in C2C12 skeletal muscle cell, changes in Na+ transport alters expression of the alpha2, but not the alpha1 isoform. These results differ from those observed previously in muscle cells that express only the alpha1 isoform. Because mammalian skeletal muscle expresses both the alpha1- and alpha2-subunit isoforms, the differential regulation that was observed may be physiologically relevant in these muscle cells in vivo.
Collapse
Affiliation(s)
- R Ladka
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey 17033, USA
| | | |
Collapse
|
13
|
MacPhee DJ, Jones DH, Barr KJ, Betts DH, Watson AJ, Kidder GM. Differential involvement of Na(+),K(+)-ATPase isozymes in preimplantation development of the mouse. Dev Biol 2000; 222:486-98. [PMID: 10837135 DOI: 10.1006/dbio.2000.9708] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+),K(+)-ATPase plays an essential role in mammalian blastocoel formation (cavitation) by driving trans-epithelial sodium transport. Previously, the alpha1 and beta1 subunit isoforms of this enzyme were identified in preimplantation mouse embryos and were assumed to be responsible for this function. Here we show that mRNAs encoding an additional alpha subunit isoform (alpha3) and the remaining two beta subunit isoforms are also present in preimplantation embryos. Whereas alpha3 mRNA accumulates between the four-cell and the blastocyst stages and thus results from embryonic transcription, the same could not be demonstrated for beta2 and beta3 mRNAs. Immunoblot analyses confirmed that these subunits are present in cavitating embryos. Using confocal immunofluorescence microscopy we found that alpha1 and beta1 subunits are concentrated in the basolateral membranes of the trophectoderm while being equally distributed in plasma membranes of the inner cell mass. In contrast, alpha3, beta2, and beta3 subunits were not detected in plasma membranes. Our current assessment, therefore, is that as many as six isozymes of Na(+),K(+)-ATPase could be involved in preimplantation development although it is primarily the alpha1beta1 isozyme that is responsible for blastocoel formation. Our findings imply that the regulation of sodium transport within the preimplantation mouse embryo is more complex than had been appreciated.
Collapse
Affiliation(s)
- D J MacPhee
- Department of Physiology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Féraille E, Béguin P, Carranza ML, Gonin S, Rousselot M, Martin PY, Favre H, Geering K. Is phosphorylation of the alpha1 subunit at Ser-16 involved in the control of Na,K-ATPase activity by phorbol ester-activated protein kinase C? Mol Biol Cell 2000; 11:39-50. [PMID: 10637289 PMCID: PMC14755 DOI: 10.1091/mbc.11.1.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The alpha1 subunit of Na,K-ATPase is phosphorylated at Ser-16 by phorbol ester-sensitive protein kinase(s) C (PKC). The role of Ser-16 phosphorylation was analyzed in COS-7 cells stably expressing wild-type or mutant (T15A/S16A and S16D-E) ouabain-resistant Bufo alpha1 subunits. In cells incubated at 37 degrees C, phorbol 12, 13-dibutyrate (PDBu) inhibited the transport activity and decreased the cell surface expression of wild-type and mutant Na,K-pumps equally ( approximately 20-30%). This effect of PDBu was mimicked by arachidonic acid and was dependent on PKC, phospholipase A(2), and cytochrome P450-dependent monooxygenase. In contrast, incubation of cells at 18 degrees C suppressed the down-regulation of Na,K-pumps and revealed a phosphorylation-dependent stimulation of the transport activity of Na,K-ATPase. Na,K-ATPase from cells expressing alpha1-mutants mimicking Ser-16 phosphorylation (S16D or S16E) exhibited an increase in the apparent Na affinity. This finding was confirmed by the PDBu-induced increase in Na sensitivity of the activity of Na,K-ATPase measured in permeabilized nontransfected COS-7 cells. These results illustrate the complexity of the regulation of Na,K-ATPase alpha1 isozymes by phorbol ester-sensitive PKCs and reveal 1) a phosphorylation-independent decrease in cell surface expression and 2) a phosphorylation-dependent stimulation of the transport activity attributable to an increase in the apparent Na affinity.
Collapse
Affiliation(s)
- E Féraille
- Division de Néphrologie, Hôpital Cantonal Universitaire, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cellular and subcellular specification of Na,K-ATPase alpha and beta isoforms in the postnatal development of mouse retina. J Neurosci 1999. [PMID: 10559397 DOI: 10.1523/jneurosci.19-22-09878.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na,K-ATPase is a dominant factor in retinal energy metabolism, and unique combinations of isoforms of its alpha and beta subunits are expressed in different cell types and determine its functional properties. We used isoform-specific antibodies and fluorescence confocal microscopy to determine the expression of Na,K-ATPase alpha and beta subunits in the mouse and rat retina. In the adult retina, alpha1 was found in Müller and horizontal cells, alpha2 in some Müller glia, and alpha3 in photoreceptors and all retinal neurons. beta1 was largely restricted to horizontal, amacrine, and ganglion cells; beta2 was largely restricted to photoreceptors, bipolar cells, and Müller glia; and beta3 was largely restricted to photoreceptors. Photoreceptor inner segments have the highest concentration of Na,K-ATPase in adult retinas. Isoform distribution exhibited marked changes during postnatal development. alpha3 and beta2 were in undifferentiated photoreceptor somas at birth but only later were targeted to inner segments and synaptic terminals. beta3, in contrast, was expressed late in photoreceptor differentiation and was immediately targeted to inner segments. A high level of beta1 expression in horizontal cells preceded migration, whereas increases in beta2 expression in bipolar cells occurred very late, coinciding with synaptogenesis in the inner plexiform layer. Most of the spatial specification of Na,K-ATPase isoform expression was completed before eye opening and the onset of electroretinographic responses on postnatal day 13 (P13), but quantitative increase continued until P22 in parallel with synaptogenesis.
Collapse
|
16
|
Nishi A, Fisone G, Snyder GL, Dulubova I, Aperia A, Nairn AC, Greengard P. Regulation of Na+, K+-ATPase isoforms in rat neostriatum by dopamine and protein kinase C. J Neurochem 1999; 73:1492-501. [PMID: 10501194 DOI: 10.1046/j.1471-4159.1999.0731492.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our previous studies showed that dopamine inhibits Na+,K+-ATPase activity in acutely dissociated neurons from striatum. In the present study, we have found that in this preparation, dopamine inhibited significantly (by approximately 25%) the activity of the alpha3 and/or alpha2 isoforms, but not the alpha1 isoform, of Na+,K+-ATPase. Dopamine, via D1 receptors, activates cyclic AMP-dependent protein kinase (PKA) in striatal neurons. Dopamine is also known to activate the calcium- and phospholipid-dependent protein kinase (PKC) in a number of different cell types. The PKC activator phorbol 12,13-dibutyrate reduced the activity of Na+,K+-ATPase alpha3 and/or alpha2 isoforms (by approximately 30%) as well as the alpha1 isoform (by approximately 15%). However, dopamine-mediated inhibition of Na+,K+-ATPase activity was unaffected by calphostin C, a PKC inhibitor. Dopamine did not affect the phosphorylation of Na+,K+-ATPase isoforms at the PKA-dependent phosphorylation site. Phorbol ester treatment did not alter the phosphorylation of alpha2 or alpha3 isoforms of Na+,K+-ATPase in neostriatal neurons but did increase the phosphorylation of the alpha1 isoform. Thus, in rat neostriatal neurons, treatment with either dopamine or PKC activators results in inhibition of the activity of specific (alpha3 and/or alpha2) isoforms of Na+,K+-ATPase, but this is not apparently mediated through direct phosphorylation of the enzyme. In addition, PKC is unlikely to mediate inhibition of rat Na+,K+-ATPase activity by dopamine in neostriatal neurons.
Collapse
Affiliation(s)
- A Nishi
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sun X, Nagarajan M, Beesley PW, Ng YC. Age-associated differential expression of Na(+)-K(+)-ATPase subunit isoforms in skeletal muscles of F-344/BN rats. J Appl Physiol (1985) 1999; 87:1132-40. [PMID: 10484587 DOI: 10.1152/jappl.1999.87.3.1132] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle expresses multiple isoforms of the Na(+)-K(+)-ATPase. Their expression has been shown to be differentially regulated under pathophysiological conditions. In addition, previous studies suggest possible age-dependent alterations in Na(+)-K(+) pump function. The present study tests the hypothesis that advancing age is associated with altered Na(+)-K(+)-ATPase enzyme activity and isoform-specific changes in expression of the enzyme subunits. Red and white gastrocnemius (Gast) as well as soleus muscles of male Fischer 344/Brown Norway (F-344/BN) rats at 6, 18, and 30 mo of age were examined. Na(+)-K(+)-ATPase activity, measured by K(+)-stimulated 3-O-methylfluorescein phosphatase activity, increased by approximately 50% in a mixed Gast homogenate from 30-mo-old compared with 6- and 18-mo-old rats. Advancing age was associated with markedly increased alpha(1)- and beta(1)-subunit, and decreased alpha(2)- and beta(2)-subunit in red and white Gast. In soleus, there were similar changes in expression of alpha(1)- and alpha(2)-subunits, but levels of beta(1)-subunit were unchanged. Functional Na(+)-K(+)-ATPase units, measured by [(3)H]ouabain binding, undergo muscle-type specific changes. In red Gast, high-affinity ouabain-binding sites, which are a measure of alpha(2)-isozyme, increased in 30-mo-old rats despite decreased levels of alpha(2)-subunit. In white Gast, by contrast, decreased levels of alpha(2)-subunit were accompanied by decreased high-affinity ouabain-binding sites. Finally, patterns of expression of the four myosin heavy chain (MHC) isoforms (type I, IIA, IIX, and IIB) in these muscles were similar in the three age groups examined. We conclude that, in the skeletal muscles of F-344/BN rats, advancing age is associated with muscle type-specific alterations in Na(+)-K(+)-ATPase activity and patterns of expression of alpha- and beta-subunit isoforms. These changes apparently occurred without obvious shift in muscle fiber types, since expression of MHC isoforms remained unchanged. Some of the alterations occurred between middle-age (18 mo) and senescence (30 mo), and, therefore, may be attributed to aging of skeletal muscle.
Collapse
Affiliation(s)
- X Sun
- Department of Pharmacology, The Milton S. Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | |
Collapse
|
18
|
Pajor AM, Sun N. Protein kinase C-mediated regulation of the renal Na(+)/dicarboxylate cotransporter, NaDC-1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:223-30. [PMID: 10446305 DOI: 10.1016/s0005-2736(99)00102-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Na(+)/dicarboxylate cotransporter of the renal proximal tubule, NaDC-1, reabsorbs Krebs cycle intermediates, such as succinate and citrate, from the tubular filtrate. Although long-term regulation of this transporter by chronic metabolic acidosis and K(+) deficiency is well documented, there is no information on acute regulation of NaDC-1. In the present study, the transport of succinate in Xenopus oocytes expressing NaDC-1 was inhibited up to 95% by two activators of protein kinase C, phorbol 12-myristate, 13-acetate (PMA) and sn-1, 2-dioctanoylglycerol (DOG). Activation of protein kinase A had no effect on NaDC-1 activity. The inhibition of NaDC-1 transport by PMA was dose-dependent, and could be prevented by incubation of the oocytes with staurosporine. Mutations of the two consensus protein kinase C phosphorylation sites in NaDC-1 did not affect inhibition by PMA. The inhibitory effects of PMA were partially prevented by cytochalasin D, which disrupts microfilaments and endocytosis. PMA treatment was also associated with a decrease of approximately 30% in the amount of NaDC-1 protein found on the plasma membrane. We conclude that the inhibition of NaDC-1 transport activity by PMA occurs by a combination of endocytosis and inhibition of transport activity.
Collapse
Affiliation(s)
- A M Pajor
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0641, USA.
| | | |
Collapse
|
19
|
Beggah AT, Béguin P, Bamberg K, Sachs G, Geering K. beta-subunit assembly is essential for the correct packing and the stable membrane insertion of the H,K-ATPase alpha-subunit. J Biol Chem 1999; 274:8217-23. [PMID: 10075726 DOI: 10.1074/jbc.274.12.8217] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-subunits of H,K-ATPase (HKAalpha) and Na,K-ATPase require a beta-subunit for maturation. We investigated the role of the beta-subunit in the membrane insertion and stability of the HKAalpha expressed in Xenopus oocytes. Individual membrane segments M1, M2, M3, M4, and M9 linked to a glycosylation reporter act as signal anchor (SA) motifs, and M10 acts as a partial stop transfer motif. In combined HKAalpha constructs, M2 acts as an efficient stop transfer sequence, and M3 acts as a SA sequence. However, M5 and M9 have only partial SA function, and M7 has no SA function. Consistent with the membrane insertion properties of segments in combined alpha constructs, M1-3 alpha-proteins are resistant to cellular degradation, and M1-5 up to M1-10 alpha-proteins are not resistant to cellular degradation. However, co-expression with beta-subunits increases the membrane insertion of M9 in a M1-9 alpha-protein and completely protects M1-10 alpha-proteins against cellular degradation. Our results indicate that HKAalpha N-terminal (M1-M4) membrane insertion and stabilization are mediated by intrinsic molecular characteristics; however, the C-terminal (M5-M10) membrane insertion and thus the stabilization of the entire alpha-subunit depend on intramolecular and intermolecular beta-subunit interactions that are similar but not identical to data obtained for the Na,K-ATPase alpha-subunit.
Collapse
Affiliation(s)
- A T Beggah
- Institut de Pharmacologie et de Toxicologie de l'Université, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Blanco G, Sánchez G, Mercer RW. Differential regulation of Na,K-ATPase isozymes by protein kinases and arachidonic acid. Arch Biochem Biophys 1998; 359:139-50. [PMID: 9808755 DOI: 10.1006/abbi.1998.0904] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While several studies have investigated the regulation of the Na, K-ATPase consisting of the alpha1 and beta1 subunits, there is little evidence that intracellular messengers influence the other Na pump isozymes. We studied the effect of different protein kinases and arachidonic acid on the rat Na,K-ATPase isoforms expressed in Sf-9 insect cells. Our results indicate that PKA, PKC, and PKG are able to differentially modify the function of the Na,K-ATPase isozymes. While PKC activation leads to inhibition of all isozymes, PKA activation stimulates the activity of the Na,K-ATPase alpha3 beta1 and decreases that of the alpha1 beta1 and alpha2 beta1 isozymes. In contrast, activation of PKG diminishes the activity of the alpha1 beta1 and alpha3 beta1 isozymes, without altering that of alpha2 beta1. Treatment of cells with arachidonic acid reduced the activities of all the isozymes. The changes in the catalytic capabilities of the Na pump isozymes elicited by PKA and PKC are reflected by changes in the molecular activity of the Na,K-ATPases. One of the mechanisms by which PKA and PKC affect Na pump isozyme activity is through direct phosphorylation of the alpha subunit. In the insect cells, we found a PKA- and PKC-dependent phosphorylation of the alpha1, alpha2 and alpha3 polypeptides. In conclusion, several intracellular messengers are able to modulate the function of the Na,K-ATPase isozymes and some of them in a specific fashion. Because the Na,K-ATPase isozymes have kinetic properties that are unique, this isozyme-specific regulation may be important in adapting Na pump function to the requirements of each cell.
Collapse
Affiliation(s)
- G Blanco
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | | |
Collapse
|
21
|
Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F633-50. [PMID: 9815123 DOI: 10.1152/ajprenal.1998.275.5.f633] [Citation(s) in RCA: 576] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na-K-ATPase is characterized by a complex molecular heterogeneity that results from the expression and differential association of multiple isoforms of both its alpha- and beta-subunits. At present, as many as four different alpha-polypeptides (alpha1, alpha2, alpha3, and alpha4) and three distinct beta-isoforms (beta1, beta2, and beta3) have been identified in mammalian cells. The stringent constraints on the structure of the Na pump isozymes during evolution and their tissue-specific and developmental pattern of expression suggests that the different Na-K-ATPases have evolved distinct properties to respond to cellular requirements. This review focuses on the functional properties, regulation, and possible physiological relevance of the Na pump isozymes. The coexistence of multiple alpha- and beta-isoforms in most cells has hindered the understanding of the roles of the individual polypeptides. The use of heterologous expression systems has helped circumvent this problem. The kinetic characteristics of different Na-K-ATPase isozymes to the activating cations (Na+ and K+), the substrate ATP, and the inhibitors Ca2+ and ouabain demonstrate that each isoform has distinct properties. In addition, intracellular messengers differentially regulate the activity of the individual Na-K-ATPase isozymes. Thus the regulation of specific Na pump isozymes gives cells the ability to precisely coordinate Na-K-ATPase activity to their physiological requirements.
Collapse
Affiliation(s)
- G Blanco
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
22
|
Yingst DR, Yang SY, Schiebinger R. Purification of active Na+-K+-ATPase using a new ouabain-affinity column. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1167-77. [PMID: 9755071 DOI: 10.1152/ajpcell.1998.275.4.c1167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ouabain, a specific inhibitor of Na+-K+-ATPase, was coupled to epoxy agarose via a 13-atom spacer to make an affinity column that specifically binds Na+-K+-ATPase. Na+-K+-ATPase from rat and dog kidney was bound to the column and was eluted as a function of enzyme conformation, altered by adding specific combinations of ligands. Na+-K+-ATPase from both sources bound to the column in the presence of Na + ATP + Mg and in solutions containing 30 mM K. No binding was observed in the presence of Na or Na + ATP. These experiments suggest that Na+-K+-ATPase binds to the column under the same conditions that it binds to untethered ouabain. Na+-K+-ATPase already bound to the column was competitively eluted with excess free Na + ouabain or with Na + ATP. The latter eluted active enzyme. For comparable amounts of bound Na+-K+-ATPase, Na + ouabain and Na + ATP eluted more rat than dog Na+-K+-ATPase, consistent with the lower affinity of the rat Na+-K+-ATPase for ouabain. The ouabain-affinity column was used to purify active Na+-K+-ATPase from rat kidney microsomes and rat adrenal glomerulosa cells. The specific activity of the kidney enzyme was increased from approximately 2 to 15 micromol Pi . mg-1 . min-1. Na+-K+-ATPase purified from glomerulosa cells that were prelabeled with [32P]orthophosphate was phosphorylated on the alpha-subunit, suggesting that these cells contain a kinase that phosphorylates Na+-K+-ATPase.
Collapse
Affiliation(s)
- D R Yingst
- Department of Physiology, Division of Endocrinology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
23
|
Affiliation(s)
- M G Palmgren
- Department of Plant Biology, Royal Veterinary and Agricultural University, Copenhagen, Denmark.
| | | |
Collapse
|
24
|
Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 1998; 808:23-41. [PMID: 9652109 DOI: 10.1016/s0021-9673(98)00115-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein phosphorylation plays a central role in many biological and biomedical phenomena. In this review, while a brief overview of the occurrence and function of protein phosphorylation is given, the primary focus is on studies related to the detection and analysis of phosphorylation both in vivo and in vitro. We focus on phosphorylation of serine, threonine and tyrosine, the most commonly phosphorylated amino acids in eukaryotes. Technologies such as radiolabelling, antibody recognition, chromatographic methods (HPLC, TLC), electrophoresis, Edman sequencing and mass spectrometry are reviewed. We consider the speed, simplicity and sensitivity of tools for detection and identification of protein phosphorylation, as well as quantitation and site characterisation. The limitations of currently available methods are summarised.
Collapse
Affiliation(s)
- J X Yan
- Macquarie University Centre for Analytical Biotechnology, School of Biological Sciences, Macquarie University, Sydney NSW, Australia
| | | | | | | |
Collapse
|
25
|
Gertsberg I, Brodsky I, Priel Z, Danilenko M. Na(+)-K(+)-ATPase in frog esophagus mucociliary cell membranes: inhibition by protein kinase C activation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1842-8. [PMID: 9435488 DOI: 10.1152/ajpcell.1997.273.6.c1842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined protein kinase C (PKC)-dependent regulation of Na(+)-K(+)-ATPase in frog mucociliary cells. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol (diC8) either in intact cells or isolated membranes resulted in a specific inhibition of Na(+)-K(+)-ATPase activity by approximately 25-45%. The inhibitory effects in membranes exhibited time dependence and dose dependence [half-maximal inhibition concentration (IC50) = 0.5 +/- 0.1 nM and 2.4 +/- 0.2 microM, respectively, for TPA and diC8] and were not influenced by Ca2+. Analysis of the ouabain inhibition pattern revealed the presence of two Na(+)-K(+)-ATPase isoforms with IC50 values for cardiac glycoside of 2.6 +/- 0.8 nM and 409 +/- 65 nM, respectively. Most importantly, the isoform possessing a higher affinity for ouabain was almost completely inhibited by TPA, whereas its counterpart was hardly sensitive to the PKC activator. The results suggest that, in frog mucociliary cells, PKC regulates Na(+)-K(+)-ATPase and that this action is related to the specific Na(+)-K(+)-ATPase isoform.
Collapse
Affiliation(s)
- I Gertsberg
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
26
|
Béguin P, Wang X, Firsov D, Puoti A, Claeys D, Horisberger JD, Geering K. The gamma subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J 1997; 16:4250-60. [PMID: 9250668 PMCID: PMC1170050 DOI: 10.1093/emboj/16.14.4250] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.
Collapse
Affiliation(s)
- P Béguin
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|