1
|
Li S, Tang L, Pu J, Wang J, Fan C, Li Z, Song J. Continuous Hyaluronic Acid Supply by a UHMWPE/PEEK Interlocking Scaffold for Metatarsophalangeal Joint Prosthesis Lubricating Applications. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39935021 DOI: 10.1021/acsami.4c19390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Wear is one of the main causes of prothesis failure in hemiarthroplasty of small joints such as the metatarsophalangeal joint, to which lubrication improvement is a promising solution. Inspired by the natural joint structure and lubrication mechanisms, we developed a novel composite strategy for metatarsophalangeal joint hemiarthroplasty. An ultrahigh-molecular-weight polyethylene (UHMWPE) lubrication layer is interlocked within a 3D-printed poly(ether ether ketone) (PEEK) scaffold, and hyaluronic acid (HA) is introduced for hydrophilic modification of the UHMWPE matrix. HA encapsulated in the matrix can consistently emerge to the friction interface and firmly form a boundary lubrication layer, consequently enhancing the lubrication of the UHMWPE component. The friction coefficient of the scaffolds could be as low as 0.041 under a joint-equivalent load and a low friction velocity. Besides, the tested samples demonstrate good in vitro and in vivo biocompatibility. The bone tissues around the implantation site can heal normally and achieve implant fixation within 6 weeks. Summarily, in this work, inspired by the natural "cartilage-and-subchondral bone" structure, a continuous HA supply was attained in a UHMWPE/PEEK interlocking scaffold. Such a composite shall provide an excellent combination of tribological properties and biocompatibility, thus hopefully being a candidate material for the next-generation hemi-implants for metatarsophalangeal arthroplasty.
Collapse
Affiliation(s)
- Shenglin Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Luyao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Jian Pu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Congze Fan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
| | - Zeng Li
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, P.R. China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
2
|
Nayagam SM, Ramachandran K, Selvaraj G, Sunmathi R, Easwaran M, Palraj ND, Anand K S SV, Muthurajan R, Tangavel C, Rajasekaran S. Identification of extracellular matrix proteins in plasma as a potential biomarker for intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4062-4075. [PMID: 39299936 DOI: 10.1007/s00586-024-08481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Recently, there has been significant focus on extracellular matrix proteolysis due to its importance in the pathological progression of intervertebral disc degeneration (IVDD). The present study investigates the circulating levels of extracellular matrix proteins in the plasma of IVDD and determines their potential relevance as biomarkers in disc degeneration. METHODS Global proteomic analysis was performed in the plasma samples of 10 healthy volunteers (HV) and 10 diseased subjects (DS) after depletion of highly abundant proteins such as albumin and IgG. RESULTS We identified 144 and 135 matrix-associated proteins in plasma samples from healthy volunteers (HV) and patients with disc degeneration (DS), respectively. Among these, 49 of the matrix-associated proteins were identical to the proteins found in intervertebral disc (IVD) tissues retrieved from the in-house library. Applying stringent parameters, we selected 28 proteins, with 26 present in DS and 21 in HV. 19 proteins were found common between the groups, two of which-aggrecan (ACAN) and fibulin 1 (FBLN1) - showed statistically significant differences. Specifically, ACAN was up-regulated and FBLN1 was down-regulated in the DS-plasma. In particular, DS-plasma exhibited specific expression of collagen type 2a1 (COL2A1), native to the nucleus pulposus. CONCLUSION The distinct presence of collagen type 2a1 and the elevated expression of aggrecan in IVDD plasma may serve as the basis for the development of a potential biomarker for monitoring the progression of disc degeneration.
Collapse
Affiliation(s)
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ganesh Selvaraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - R Sunmathi
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Murugesh Easwaran
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Narmatha Devi Palraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Sri Vijay Anand K S
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| |
Collapse
|
3
|
Pham DA, Wang CS, Séguy L, Zhang H, Benbabaali S, Faivre J, Sim S, Xie G, Olszewski M, Rabanel JM, Moldovan F, Matyjaszewski K, Banquy X. Bioinspired Bottlebrush Polymers Effectively Alleviate Frictional Damage Both In Vitro and In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401689. [PMID: 38552182 DOI: 10.1002/adma.202401689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Bottlebrush polymers (BB) have emerged as compelling candidates for biosystems to face tribological challenges, including friction and wear. This study provides a comprehensive assessment of an engineered triblock BB polymer's affinity, cell toxicity, lubrication, and wear protection in both in vitro and in vivo settings, focusing on applications for conditions like osteoarthritis and dry eye syndrome. Results show that the designed polymer rapidly adheres to various surfaces (e.g., cartilage, eye, and contact lens), forming a robust, biocompatible layer for surface lubrication and protection. The tribological performance and biocompatibility are further enhanced in the presence of hyaluronic acid (HA) both in vitro and in vivo. The exceptional lubrication performance and favorable interaction with HA position the synthesized triblock polymer as a promising candidate for innovative treatments addressing deficiencies in bio-lubricant systems.
Collapse
Affiliation(s)
- Duy Anh Pham
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Chang-Sheng Wang
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Line Séguy
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
- Research Center of CHU Sainte-Justine, University of Montreal, Montréal, QC, H3T 1C5, Canada
| | - Hu Zhang
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Sabrina Benbabaali
- Faculté des Sciences et Ingénierie, Sorbonne University, Paris, 75005, France
| | - Jimmy Faivre
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Sotcheadt Sim
- Biomomentum Inc, 1980 rue Michelin, Laval, Québec, H7L 5C2, Canada
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jean-Michel Rabanel
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Florina Moldovan
- Research Center of CHU Sainte-Justine, University of Montreal, Montréal, QC, H3T 1C5, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
- Institute of Biomedical Engineering, Faculty of Medicine, University of Montreal, Montréal, QC, H3C 3J7, Canada
- Department of Chemistry, Faculty of Arts and Science, University of Montreal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
4
|
Pérez S. Computational modeling of protein-carbohydrate interactions: Current trends and future challenges. Adv Carbohydr Chem Biochem 2023; 83:133-149. [PMID: 37968037 DOI: 10.1016/bs.accb.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The article leads the reader through an up-to-date presentation of the concepts, developments, and main applications of computational modeling to study protein-carbohydrate interactions. It follows with the presentation of some current issues and perspectives arising from the expected evolution of generic methodological developments in deep learning, immersive analytics, and virtual reality for molecular visualization and data management. Such methodological developments for macromolecular interactions would greatly benefit a wide range of scientific endeavors in the field of carbohydrate chemistry and biochemistry, including the following interrelated efforts dealing with highly crowded media, with examples concerning glycoside transferases, the extracellular matrix, and the exploration of interactions between complex carbohydrates and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Serge Pérez
- Centre de Recherches sur les Macromolécules Végétales, CNRS, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
5
|
Porcello A, Hadjab F, Ajouaou M, Philippe V, Martin R, Abdel-Sayed P, Hirt-Burri N, Scaletta C, Raffoul W, Applegate LA, Allémann E, Jordan O, Laurent A. Ex Vivo Functional Benchmarking of Hyaluronan-Based Osteoarthritis Viscosupplement Products: Comprehensive Assessment of Rheological, Lubricative, Adhesive, and Stability Attributes. Gels 2023; 9:808. [PMID: 37888381 PMCID: PMC10606320 DOI: 10.3390/gels9100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Maryam Ajouaou
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Wassim Raffoul
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| |
Collapse
|
6
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Hu Q, Zhang F, Wei Y, Liu J, Nie Y, Xie J, Yang L, Luo R, Shen B, Wang Y. Drug-Embedded Nanovesicles Assembled from Peptide-Decorated Hyaluronic Acid for Rheumatoid Arthritis Synergistic Therapy. Biomacromolecules 2023; 24:3532-3544. [PMID: 37417966 DOI: 10.1021/acs.biomac.3c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes endless pain and poor quality of life in patients. Usage of a lubricant combined with anti-inflammatory therapy is considered a reasonable and effective approach for the treatment of RA. Herein, inspired by glycopeptides, a peptide-decorated hyaluronic acid was synthesized, and the grafted Fmoc-phenylalanine-phenylalanine-COOH (FmocFF) peptide self-assembled with β-sheet conformations could induce the folding of polymer molecular chains to form a vesicle structure in aqueous solution. The hydrophobic anti-inflammatory drug curcumin (Cur) could be embedded in the vesicle walls through π-π interactions with the FmocFF peptide. Furthermore, the inflammation suppression function of the Cur-loaded vesicles both in vitro and in vivo was demonstrated to be an effective treatment for RA therapy. This work proposes new insights into the folding and hierarchical assembly of glycopeptide mimics, providing an efficient approach for constructing intelligent platforms for drug delivery, disease therapy, and diagnostic applications.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedic Surgery, Yaan People's Hospital, Yaan 625000, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Yuan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Jingze Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinwei Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Kanda H, Oya K, Goto M. Surfactant-Free Decellularization of Porcine Auricular Cartilage Using Liquefied Dimethyl Ether and DNase. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3172. [PMID: 37110010 PMCID: PMC10146022 DOI: 10.3390/ma16083172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
The most common decellularization method involves lipid removal using surfactant sodium dodecyl sulfate (SDS) and DNA fragmentation using DNase, and is associated with residual SDS. We previously proposed a decellularization method for the porcine aorta and ostrich carotid artery using liquefied dimethyl ether (DME), which is free from the concerns associated with SDS residues, instead of SDS. In this study, the DME + DNase method was tested on crushed porcine auricular cartilage tissues. Unlike with the porcine aorta and the ostrich carotid artery, it is important to degas the porcine auricular cartilage using an aspirator before DNA fragmentation. Although approximately 90% of the lipids were removed using this method, approximately 2/3 of the water was removed, resulting in a temporary Schiff base reaction. The amount of residual DNA in the tissue was approximately 27 ng/mg dry weight, which is lower than the regulatory value of 50 ng/mg dry weight. Hematoxylin and eosin staining confirmed that cell nuclei were removed from the tissue. Residual DNA fragment length assessment by electrophoresis confirmed that the residual DNA was fragmented to less than 100 bp, which was lower than the regulatory limit of 200 bp. By contrast, in the uncrushed sample, only the surface was decellularized. Thus, although limited to a sample size of approximately 1 mm, liquefied DME can be used to decellularize porcine auricular cartilage. Thus, liquefied DME, with its low persistence and high lipid removal capacity, is an effective alternative to SDS.
Collapse
|
9
|
Perez S, Makshakova O, Angulo J, Bedini E, Bisio A, de Paz JL, Fadda E, Guerrini M, Hricovini M, Hricovini M, Lisacek F, Nieto PM, Pagel K, Paiardi G, Richter R, Samsonov SA, Vivès RR, Nikitovic D, Ricard Blum S. Glycosaminoglycans: What Remains To Be Deciphered? JACS AU 2023; 3:628-656. [PMID: 37006755 PMCID: PMC10052243 DOI: 10.1021/jacsau.2c00569] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.
Collapse
Affiliation(s)
- Serge Perez
- Centre
de Recherche sur les Macromolecules, Vegetales,
University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041 France
| | - Olga Makshakova
- FRC
Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| | - Jesus Angulo
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Emiliano Bedini
- Department
of Chemical Sciences, University of Naples
Federico II, Naples,I-80126, Italy
| | - Antonella Bisio
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Jose Luis de Paz
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Elisa Fadda
- Department
of Chemistry and Hamilton Institute, Maynooth
University, Maynooth W23 F2H6, Ireland
| | - Marco Guerrini
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Michal Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Milos Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Frederique Lisacek
- Computer
Science Department & Section of Biology, University of Geneva & Swiss Institue of Bioinformatics, Geneva CH-1227, Switzerland
| | - Pedro M. Nieto
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Kevin Pagel
- Institut
für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Giulia Paiardi
- Molecular
and Cellular Modeling Group, Heidelberg Institute for Theoretical
Studies, Heidelberg University, Heidelberg 69118, Germany
| | - Ralf Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology and Bragg Centre for
Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sergey A. Samsonov
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdsank 80-309, Poland
| | - Romain R. Vivès
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
| | - Dragana Nikitovic
- School
of Histology-Embriology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Sylvie Ricard Blum
- University
Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry,
UMR 5246, Villeurbanne F 69622 Cedex, France
| |
Collapse
|
10
|
Recombinant lubricin improves anti-adhesive, wear protection, and lubrication of collagen II surface. Colloids Surf B Biointerfaces 2022; 220:112906. [DOI: 10.1016/j.colsurfb.2022.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
11
|
Cederlund AA, Aspden RM. Walking on water: revisiting the role of water in articular cartilage biomechanics in relation to tissue engineering and regenerative medicine. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220364. [PMID: 35919975 PMCID: PMC9346369 DOI: 10.1098/rsif.2022.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The importance, and the difficulty, of generating biosynthetic articular cartilage is widely recognized. Problems arise from obtaining sufficient stiffness, toughness and longevity in the material and integration of new material into existing cartilage and bone. Much work has been done on chondrocytes and tissue macromolecular components while water, which comprises the bulk of the tissue, is largely seen as a passive component; the ‘solid matrix’ is believed to be the main load-bearing element most of the time. Water is commonly seen as an inert filler whose restricted flow through the tissue is believed to be sufficient to generate the properties measured. We propose that this model should be turned on its head. Water comprises 70–80% of the matrix and has a bulk modulus considerably greater than that of cartilage. We suggest that the macromolecular components structure the water to support the loads applied. Here, we shall examine the structure and organization of the main macromolecules, collagen, aggrecan and hyaluronan, and explore how water interacts with their polyelectrolyte nature. This may inform the biosynthetic process by identifying starting points to enable developing tissue properties to guide the cells into producing the appropriate macromolecular composition and structure.
Collapse
Affiliation(s)
- Anna A Cederlund
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Richard M Aspden
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
12
|
Liu X, Claesson PM. Bioinspired Bottlebrush Polymers for Aqueous Boundary Lubrication. Polymers (Basel) 2022; 14:2724. [PMID: 35808769 PMCID: PMC9269121 DOI: 10.3390/polym14132724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/30/2023] Open
Abstract
An extremely efficient lubrication system is achieved in synovial joints by means of bio-lubricants and sophisticated nanostructured surfaces that work together. Molecular bottlebrush structures play crucial roles for this superior tribosystem. For example, lubricin is an important bio-lubricant, and aggrecan associated with hyaluronan is important for the mechanical response of cartilage. Inspired by nature, synthetic bottlebrush polymers have been developed and excellent aqueous boundary lubrication has been achieved. In this review, we summarize recent experimental investigations of the interfacial lubrication properties of surfaces coated with bottlebrush bio-lubricants and bioinspired bottlebrush polymers. We also discuss recent advances in understanding intermolecular synergy in aqueous lubrication including natural and synthetic polymers. Finally, opportunities and challenges in developing efficient aqueous boundary lubrication systems are outlined.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Per M. Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| |
Collapse
|
13
|
Liao J, Liu X, Miramini S, Zhang L. Influence of variability and uncertainty in vertical and horizontal surface roughness on articular cartilage lubrication. Comput Biol Med 2022; 148:105904. [DOI: 10.1016/j.compbiomed.2022.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
|
14
|
Construction and Tribological Properties of Biomimetic Cartilage-Lubricating Hydrogels. Gels 2022; 8:gels8070415. [PMID: 35877500 PMCID: PMC9319379 DOI: 10.3390/gels8070415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/15/2023] Open
Abstract
Articular cartilage provides ultralow friction to maintain the physiological function of the knee joint, which arises from the hierarchical complex composed of hyaluronic acid, phospholipids, and lubricin, covering the cartilage surface as boundary lubrication layers. Cartilage-lubricating polymers (HA/PA and HA/PM) mimicking this complex have been demonstrated to restore the lubrication of cartilage via hydration lubrication, thus contributing to the treatment of early osteoarthritis (OA) in vivo. Here, biomimetic cartilage-lubricating hydrogels (HPX/PVA) were constructed by blending HA/PA and HA/PM (HPX) with polyvinyl alcohol (PVA) to improve the boundary lubrication and wear properties, so that the obtained hydrogels may offer a solution to the main drawbacks of PVA hydrogels used as cartilage implants. The HPX/PVA hydrogels exhibited good physicochemical and mechanical properties through hydrogen-bonding interactions, and showed lower friction and wear under the boundary lubrication and fluid film lubrication mechanisms, which remained when the hydrogels were rehydrated. Our strategy may provide new insights into exploring cartilage-inspired lubricating hydrogels.
Collapse
|
15
|
Mann AS, Smith AM, Saltzherr JO, Gopinath A, Andresen Eguiluz RC. Glycosaminoglycans and glycoproteins influence the elastic response of synovial fluid nanofilms on model oxide surfaces. Colloids Surf B Biointerfaces 2022; 213:112407. [PMID: 35180655 DOI: 10.1016/j.colsurfb.2022.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Synovial fluid (SF) is the natural lubricant found in articulated joints, providing unique cartilage surface protecting films under confinement and relative motion. While it is known that the synergistic interactions of the macromolecular constituents provide its unique load-bearing and tribological performance, it is not fully understood how two of the main constituents, glycosaminoglycans (GAGs) and glycoproteins, regulate the formation and mechanics of robust load-bearing films. Here, we present evidence that the load-bearing capabilities, rather than the tribological performance, of the formed SF films depend strongly on its components' integrity. For this purpose, we used a combination of enzymatic treatments, quartz crystal microbalance with dissipation (QCM-D), and the surface forces apparatus (SFA) to characterize the formation and load-bearing capabilities of SF films on model oxide (i.e., silicates) surfaces. We find that, upon cleavage of proteins, the elasticity of the films is reduced and that cleaving GAGs results in irreversible (plastic) molecular re-arrangements of the film constituents when subjected to confinement. Understanding thin film mechanics of SF can provide insight into the progression of diseases, such as arthritis, but may also be applicable to the development of new implant surface treatments or new biomimetic lubricants.
Collapse
Affiliation(s)
- Amar S Mann
- Department of Materials Science and Engineering, University of California, Merced, CA 95344, USA
| | - Ariell M Smith
- Department of Materials Science and Engineering, University of California, Merced, CA 95344, USA
| | - Joyce O Saltzherr
- Department of Materials Science and Engineering, University of California, Merced, CA 95344, USA
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, CA 95344, USA; Health Sciences Research Institute, University of California, Merced, CA 95344, USA
| | - Roberto C Andresen Eguiluz
- Department of Materials Science and Engineering, University of California, Merced, CA 95344, USA; Health Sciences Research Institute, University of California, Merced, CA 95344, USA.
| |
Collapse
|
16
|
Ogbonna N, Dearman M, Cho CT, Bharti B, Peters AJ, Lawrence J. Topologically Precise and Discrete Bottlebrush Polymers: Synthesis, Characterization, and Structure-Property Relationships. JACS AU 2022; 2:898-905. [PMID: 35557765 PMCID: PMC9088296 DOI: 10.1021/jacsau.2c00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 05/17/2023]
Abstract
As the complexity of polymer structure grows, so do the challenges for developing an accurate understanding of their structure-property relationships. Here, the synthesis of bottlebrush polymers with topologically precise and fully discrete structures is reported. A key feature of the strategy is the synthesis of discrete macromonomer libraries for their polymerization into topologically precise bottlebrushes that can be separated into discrete bottlebrushes (Đ = 1.0). As the system becomes more discrete, packing efficiency increases, distinct three-phase Langmuir-Blodgett isotherms are observed, and its glass transition temperature becomes responsive to side-chain sequence. Overall, this work presents a versatile strategy to access a range of precision bottlebrush polymers and unravels the impact of side-chain topology on their macroscopic properties. Precise control over side chains opens a pathway for tailoring polymer properties without changing their chemical makeup.
Collapse
Affiliation(s)
- Nduka
D. Ogbonna
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Michael Dearman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Cheng-Ta Cho
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Andrew J. Peters
- Department
of Chemical Engineering, Louisiana Tech
University, Ruston, Louisiana 71272, United States
| | - Jimmy Lawrence
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
17
|
Ren K, Wan H, Kaper HJ, Sharma PK. Dopamine-conjugated hyaluronic acid delivered via intra-articular injection provides articular cartilage lubrication and protection. J Colloid Interface Sci 2022; 619:207-218. [PMID: 35397456 DOI: 10.1016/j.jcis.2022.03.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Due to its high molecular weight and viscosity, hyaluronic acid (HA) is widely used for viscosupplementation to provide joint pain relief in osteoarthritis. However, this benefit is temporary due to poor adhesion of HA on articular surfaces. In this study, we therefore conjugated HA with dopamine to form HADN, which made the HA adhesive while retaining its viscosity enhancement capacity. We hypothesized that HADN could enhance cartilage lubrication through adsorption onto the exposed collagen type II network and repair the lamina splendens. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine. Analysis of Magnetic Resonance (NMR) and Ultraviolet spectrophotometry (Uv-vis) showed that HADN was successfully synthesized. Adsorption of HADN on collagen was demonstrated using Quartz crystal microbalance with dissipation (QCM-D). Ex vivo tribological tests including measurement of coefficient of friction (COF), dynamic creep, in stance (40 N) and swing (4 N) phases of gait cycle indicated adequate protection of cartilage by HADN with higher lubrication compared to HA alone. HADN solution at the cartilage-glass sliding interface not only retains the same viscosity as HA and provides fluid film lubrication, but also ensures better boundary lubrication through adsorption. To confirm the cartilage surface protection of HADN, we visualized cartilage wear using optical coherence tomography (OCT) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ke Ren
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hongping Wan
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; College of Veterinary Medicine, Sichuan Agricultural University, Department of Animal and Plant Quarantine, Chengdu 611130, China
| | - Hans J Kaper
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Prashant K Sharma
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
18
|
Romio M, Grob B, Trachsel L, Mattarei A, Morgese G, Ramakrishna SN, Niccolai F, Guazzelli E, Paradisi C, Martinelli E, Spencer ND, Benetti EM. Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. J Am Chem Soc 2021; 143:19067-19077. [PMID: 34738797 PMCID: PMC8769490 DOI: 10.1021/jacs.1c08383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.
Collapse
Affiliation(s)
- Matteo Romio
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lucca Trachsel
- George
& Josephine Butler Polymer Research Laboratory, Department of
Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Andrea Mattarei
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Morgese
- Institute
of Materials and Process Engineering (IMPE), School of Engineering
(SoE), Zürich University of Applied
Sciences (ZHAW), Technikumstrasse 9, 8401 Winterthur, Switzerland
| | - Shivaprakash N. Ramakrishna
- Soft Materials
and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, 8093 Zürich, Switzerland
| | - Francesca Niccolai
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elisa Guazzelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Cristina Paradisi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Elisa Martinelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| |
Collapse
|
19
|
Li Y, Yuan Z, Yang H, Zhong H, Peng W, Xie R. Recent Advances in Understanding the Role of Cartilage Lubrication in Osteoarthritis. Molecules 2021; 26:6122. [PMID: 34684706 PMCID: PMC8540456 DOI: 10.3390/molecules26206122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
The remarkable lubrication properties of normal articular cartilage play an essential role in daily life, providing almost frictionless movements of joints. Alterations of cartilage surface or degradation of biomacromolecules within synovial fluid increase the wear and tear of the cartilage and hence determining the onset of the most common joint disease, osteoarthritis (OA). The irreversible and progressive degradation of articular cartilage is the hallmark of OA. Considering the absence of effective options to treat OA, the mechanosensitivity of chondrocytes has captured attention. As the only embedded cells in cartilage, the metabolism of chondrocytes is essential in maintaining homeostasis of cartilage, which triggers motivations to understand what is behind the low friction of cartilage and develop biolubrication-based strategies to postpone or even possibly heal OA. This review firstly focuses on the mechanism of cartilage lubrication, particularly on boundary lubrication. Then the mechanotransduction (especially shear stress) of chondrocytes is discussed. The following summarizes the recent development of cartilage-inspired biolubricants to highlight the correlation between cartilage lubrication and OA. One might expect that the restoration of cartilage lubrication at the early stage of OA could potentially promote the regeneration of cartilage and reverse its pathology to cure OA.
Collapse
Affiliation(s)
- Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hui Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Haijian Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; (Y.L.); (H.Y.); (H.Z.)
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
20
|
Xie R, Yao H, Mao AS, Zhu Y, Qi D, Jia Y, Gao M, Chen Y, Wang L, Wang DA, Wang K, Liu S, Ren L, Mao C. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat Biomed Eng 2021; 5:1189-1201. [PMID: 34608279 DOI: 10.1038/s41551-021-00785-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
The early stages of progressive degeneration of cartilage in articular joints are a hallmark of osteoarthritis. Healthy cartilage is lubricated by brush-like cartilage-binding nanofibres with a hyaluronan backbone and two key side chains (lubricin and lipid). Here, we show that hyaluronan backbones grafted with lubricin-like sulfonate-rich polymers or with lipid-like phosphocholine-rich polymers together enhance cartilage regeneration in a rat model of early osteoarthritis. These biomimetic brush-like nanofibres show a high affinity for cartilage proteins, form a lubrication layer on the cartilage surface and efficiently lubricate damaged human cartilage, lowering its friction coefficient to the low levels typical of native cartilage. Intra-articular injection of the two types of nanofibre into rats with surgically induced osteoarthritic joints led to cartilage regeneration and to the abrogation of osteoarthritis within 8 weeks. Biocompatible injectable lubricants that facilitate cartilage regeneration may offer a translational strategy for the treatment of early osteoarthritis.
Collapse
Affiliation(s)
- Renjian Xie
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Hang Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | | | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Dawei Qi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yongguang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Meng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Kun Wang
- Department of Joint Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China. .,Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China. .,Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA. .,School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Zhang Z, Lin S, Yan Y, You X, Ye H. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2402-2422. [PMID: 34428384 DOI: 10.1080/09205063.2021.1971823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors (GFs) are soluble proteins extracellular that control a wide range of cellular processes as well as tissue regeneration. While transforming growth factor beta-1 (TGF-β1) promotes chondrogenesis, its medical use is restricted by its potential protein instability, which necessitates high doses of the protein, which can result in adverse side effects such as inefficient cartilage formation. In this work, we have developed a novel hydrogel composite based on the polymer, cross-linked thiolated chitosan; TCS and carboxymethyl cellulose; CMC (TCS/CMC) hydrogel system was utilized as injectable TGF-β1 carriers for cartilage tissue engineering applications. Rheological measurements showed that the elastic modulus of TCS/CMC hydrogels with an optimized CMC concentration could reach around 2.5 kPa or higher than their respective viscous modulus, indicating that they behaved like strong hydrogels. Crosslinking significantly alters the overall network distribution, surface morphology, pore size, porosity, gelation time, swelling ratio, water content, and in vitro degradation of the TCS/CMC hydrogels. TCS/CMC hydrogels maintain more than 90% of their weight and retain their original form after 21 days. TGF-β1 released marginally from TCS/CMC hydrogels as incubation time increased, up to 21 days, with around 18.6 ± 0.9% of the drug stored inside the TCS/CMC hydrogels. On day 21, BMSC treated with TGF-β1 in medium or TGF-β1-loaded TCS/CMC hydrogels grew faster than the other groups. For in vivo cartilage repair, full-thickness cartilage defects were induced on rat knees for 8 weeks. The optimal ability of this novel TGF-β1-loaded TCS/CMC hydrogel system was further demonstrated by histological analysis, resulting in a novel therapeutic strategy for repairing articular cartilage defects.Research HighlightsAn in situ forming and injectable thiolated chitosan and carboxymethyl cellulose hydrogel was fabricated for cartilage tissue engineering.TCS/CMC displays suitable gelation time with high swelling ratio, tunable mechanical properties and highly porous.TGF-β1-loaded-TCS/CMC hydrogels showed maximum drug release activity.TGF-β1-loaded-TCS/CMC hydrogels had good biocompatibility to articular chondrocytes.An injectable TCS/CMC/TGF-β1 hydrogel is a promising material system for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Shufeng Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Yipeng Yan
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Xiaoxuan You
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Hui Ye
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| |
Collapse
|
22
|
Grevenstein D, Schafigh D, Oikonomidis S, Eysel P, Brochhausen C, Spies CK, Oppermann J. Short-term radiological results after spheroid-based autologous chondrocyte implantation in the knee are independent of defect localisation. Technol Health Care 2021; 30:725-733. [PMID: 34397439 DOI: 10.3233/thc-213066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lesions of articular cartilage represent a crucial risk factor for the early development of osteoarthritis. Autologous chondrocyte implantation (ACI) is a well-established procedure in therapy of those lesions in the knee. The aim of the presented study is to detect differences in short-term radiological outcome depending on defect localization (femoral condyle vs. retropatellar) after spheroid-based ACI. OBJECTIVE This study aimed to demonstrate that radiological outcome after spheroid-based ACI in the knee is independent of defect localization. METHODS MRI-scans after retropatellar ACI and ACI of the medial/lateral femoral condyle, with a preoperative Outerbridge grade of III or IV were evaluated regarding MOCART 2.0. RESULTS The mean defect-size was 5.0 ± 1.8 cm2, with a minimum size of 2 cm2 and a maximum size of 9 cm2. Scans were performed 7.7 months (± 3.1 months) postoperatively. The mean MOCART 2.0 score was 78.5 ± 15.6. No statistically significant influence neither of the localization (p= 0.159), the gender (p= 0.124) nor defect size (< 5 cm2 vs. ⩾ 5 cm2; p= 0.201) could be observed. CONCLUSIONS The presented data demonstrate good to excellent radiological short-term results after spheroid-based ACI. Data indicates, that at least radiological results are independent of gender, defect-size and defect-localization.
Collapse
Affiliation(s)
- David Grevenstein
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine, University Hospital of Cologne, JCologne, Germany
| | - Darius Schafigh
- Department for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Stavros Oikonomidis
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine, University Hospital of Cologne, JCologne, Germany
| | - Peer Eysel
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine, University Hospital of Cologne, JCologne, Germany
| | | | | | - Johannes Oppermann
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine, University Hospital of Cologne, JCologne, Germany
| |
Collapse
|
23
|
Lo WC, Dubey NK, Tsai FC, Lu JH, Peng BY, Chiang PC, Singh AK, Wu CY, Cheng HC, Deng WP. Amelioration of Nicotine-Induced Osteoarthritis by Platelet-Derived Biomaterials Through Modulating IGF-1/AKT/IRS-1 Signaling Axis. Cell Transplant 2021; 29:963689720947348. [PMID: 32757664 PMCID: PMC7563024 DOI: 10.1177/0963689720947348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Besides inhalation, a few studies have indicated that the uptake of nicotine
through air or clothing may be a significant pathway of its exposure among
passive smokers. Nicotine is well known to exert various physiological impacts,
including stimulating sympathetic nervous system, causing vascular disturbances,
and inducing cell death. Therefore, we aimed to establish whether exposure of
nicotine could induce articular cartilage degeneration in a mouse model of
osteoarthritis (OA). We specifically assessed dose-dependent effect of nicotine
in vitro to mimic its accumulation. Further, during the
in vivo studies, mice subcutaneously administered with
nicotine was examined for OA-associated pathologic changes. We found that
nicotine significantly suppressed chondrocytes and chondrogenic markers (Sox,
Col II, and aggrecan). Nicotine-treated mice also showed altered knee joint
ultrastructure with reduced Col II and proteoglycans. After corroborating
nicotine-induced OA characteristics, we treated this pathologic condition
through employing platelet-derived biomaterial (PDB)-based regenerative therapy.
The PDB significantly suppressed OA-like pathophysiological characteristics by 4
weeks. The mechanistic insight underlying this therapy demonstrated that PDB
significantly restored levels of insulin-like growth factor 1 (IGF-1) signaling
pathway proteins, especially pIGF-1 R, pAKT, and IRS-1, regulating extracellular
matrix synthesis by chondrocytes. Taken together, the PDB exerts regenerative
and reparative activities in nicotine-mediated initiation and progression of OA,
through modulating IGF-1/AKT/IRS-1 signaling axis.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Feng-Chou Tsai
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Plastic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pao-Chang Chiang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Dental Department, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
24
|
Derwich M, Mitus-Kenig M, Pawlowska E. Mechanisms of Action and Efficacy of Hyaluronic Acid, Corticosteroids and Platelet-Rich Plasma in the Treatment of Temporomandibular Joint Osteoarthritis-A Systematic Review. Int J Mol Sci 2021; 22:ijms22147405. [PMID: 34299024 PMCID: PMC8308010 DOI: 10.3390/ijms22147405] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a low-inflammatory disorder with multifactorial etiology. The aim of this review was to present the current state of knowledge regarding the mechanisms of action and the efficacy of hyaluronic acid (HA), corticosteroids (CS) and platelet-rich plasma (PRP) in the treatment of TMJ OA.: The PubMed database was analyzed with the keywords: "(temporomandibular joint) AND ((osteoarthritis) OR (dysfunction) OR (disorders) OR (pain)) AND ((treatment) OR (arthrocentesis) OR (arthroscopy) OR (injection)) AND ((hyaluronic acid) OR (corticosteroid) OR (platelet rich plasma))". After screening of 363 results, 16 studies were included in this review. Arthrocentesis alone effectively reduces pain and improves jaw function in patients diagnosed with TMJ OA. Additional injections of HA, either low-molecular-weight (LMW) HA or high-molecular-weight (HMW) HA, or CS at the end of the arthrocentesis do not improve the final clinical outcomes. CS present several negative effects on the articular cartilage. Results related to additional PRP injections are not consistent and are rather questionable. Further studies should be multicenter, based on a larger group of patients and should answer the question of whether other methods of TMJ OA treatment are more beneficial for the patients than simple arthrocentesis.
Collapse
Affiliation(s)
- Marcin Derwich
- ORTODENT, Specialist Orthodontic Private Practice in Grudziadz, 86-300 Grudziadz, Poland
- Correspondence: ; Tel.: +48-660-723-164
| | - Maria Mitus-Kenig
- Department of Experimental Dentistry and Prophylaxis, Medical College, Jagiellonian University in Krakow, 31-008 Krakow, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
25
|
Warren JP, Miles DE, Kapur N, Wilcox RK, Beales PA. Hydrodynamic Mixing Tunes the Stiffness of Proteoglycan-Mimicking Physical Hydrogels. Adv Healthc Mater 2021; 10:e2001998. [PMID: 33943034 PMCID: PMC11468938 DOI: 10.1002/adhm.202001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Indexed: 11/09/2022]
Abstract
Self-assembling hydrogels are promising materials for regenerative medicine and tissue engineering. However, designing hydrogels that replicate the 3-4 order of magnitude variation in soft tissue mechanics remains a major challenge. Here hybrid hydrogels are investigated formed from short self-assembling β-fibril peptides, and the glycosaminoglycan chondroitin sulfate (CS), chosen to replicate physical aspects of proteoglycans, specifically natural aggrecan, which provides structural mechanics to soft tissues. Varying the peptide:CS compositional ratio (1:2, 1:10, or 1:20) can tune the mechanics of the gel by one to two orders of magnitude. In addition, it is demonstrated that at any fixed composition, the gel shear modulus can be tuned over approximately two orders of magnitude through varying the initial vortex mixing time. This tuneability arises due to changes in the mesoscale structure of the gel network (fibril width, length, and connectivity), giving rise to both shear-thickening and shear-thinning behavior. The resulting hydrogels range in shear elastic moduli from 0.14 to 220 kPa, mimicking the mechanical variability in a range of soft tissues. The high degree of discrete tuneability of composition and mechanics in these hydrogels makes them particularly promising for matching the chemical and mechanical requirements of different applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- James P. Warren
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Institute of Medical and Biological EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Danielle E. Miles
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Institute of Medical and Biological EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Ruth K. Wilcox
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Institute of Medical and Biological EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Paul A. Beales
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural BiologyUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
26
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
27
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
28
|
Zhao W, Wang H, Wang H, Han Y, Zheng Z, Liu X, Feng B, Zhang H. Light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement for the treatment of osteoarthritis. NANOSCALE 2021; 13:6394-6399. [PMID: 33629094 DOI: 10.1039/d0nr08887k] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visible light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement were constructed by supramolecular interaction between azobenzene-modified mesoporous silica nanoparticles (bMSNs-AZO) and β-cyclodextrin-modified poly(2-methacryloyloxyethyl phosphorylcholine) (CD-PMPC). Visible light could effectively trigger azobenzene isomerization and thus induce drug release after passing through the dermal tissue. Additionally, the hydration layer formed by CD-PMPC on the surface of the nanoparticles played an important role in lubrication enhancement, which was beneficial for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu C, Wang S, Wang H, Liu K, Zhang S, Chen B, Liu H, Tong F, Peng F, Tu Y, Li Y. Magnesium-Based Micromotors as Hydrogen Generators for Precise Rheumatoid Arthritis Therapy. NANO LETTERS 2021; 21:1982-1991. [PMID: 33624495 DOI: 10.1021/acs.nanolett.0c04438] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen therapy is an emerging and highly promising strategy for the treatment of inflammation-related diseases. However, nonpolarity and low solubility of hydrogen under the physiological conditions results in a limited therapeutic effect. Herein, we develop a biocompatible magnesium micromotor coated with hyaluronic acid as a hydrogen generator for precise rheumatoid arthritis management. The hydrogen bubbles generated locally not only function as a propellant for the motion but also function as the active ingredient for reactive oxygen species (ROS) and inflammation scavenging. Under ultrasound guidance, the micromotors are injected intra-articularly, and the dynamics of the micromotors can be visualized. By scavenging ROS and inflammation via active hydrogen, the oxidative stress is relieved and the levels of inflammation cytokines are reduced by our micromotors, showing prominent therapeutic efficacy in ameliorating joint damage and suppressing the overall arthritis severity toward a collagen-induced arthritis rat model. Therefore, our micromotors show great potential for the therapy of rheumatoid arthritis and further clinical transformation.
Collapse
Affiliation(s)
- Cong Xu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Hao Liu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Dedic J, Okur HI, Roke S. Hyaluronan orders water molecules in its nanoscale extended hydration shells. SCIENCE ADVANCES 2021; 7:eabf2558. [PMID: 33658208 PMCID: PMC7929505 DOI: 10.1126/sciadv.abf2558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 05/17/2023]
Abstract
Hyaluronan (HA) is an anionic, highly hydrated bio-polyelectrolyte found in the extracellular environment, like the synovial fluid between joints. We explore the extended hydration shell structure of HA in water using femtosecond elastic second-harmonic scattering (fs-ESHS). HA enhances orientational water-water correlations. Angle-resolved fs-ESHS measurements and nonlinear optical modeling show that HA behaves like a flexible chain surrounded by extended shells of orientationally correlated water. We describe several ways to determine the concentration-dependent size and shape of a polyelectrolyte in water, using the amount of water oriented by the polyelectrolyte charges as a contrast agent. The spatial extent of the hydration shell is determined via temperature-dependent measurements and can reach up to 475 nm, corresponding to a length of 1600 water molecules. A strong isotope effect, stemming from nuclear quantum effects, is observed when light water (H2O) is replaced by heavy water (D2O), amounting to a factor of 4.3 in the scattered SH intensity.
Collapse
Affiliation(s)
- J Dedic
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - S Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
31
|
Yang J, Han Y, Lin J, Zhu Y, Wang F, Deng L, Zhang H, Xu X, Cui W. Ball-Bearing-Inspired Polyampholyte-Modified Microspheres as Bio-Lubricants Attenuate Osteoarthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004519. [PMID: 32940012 DOI: 10.1002/smll.202004519] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 05/18/2023]
Abstract
Osteoarthritis, a lubrication dysfunction related disorder in joint, is characterized by articular cartilage degradation and joint capsule inflammation. Enhancing joint lubrication, combined with anti-inflammatory therapy, is considered as an effective strategy for osteoarthritis treatment. Herein, based on the ball-bearing-inspired superlubricity and the mussel-inspired adhesion, a superlubricated microsphere, i.e., poly (dopamine methacrylamide-to-sulfobetaine methacrylate)-grafted microfluidic gelatin methacrylate sphere (MGS@DMA-SBMA), is developed by fabricating a monodisperse, size-uniform microsphere using the microfluidic technology, and then a spontaneously modified microsphere with DMA-SBMA copolymer by a one-step biomimetic grafting approach. The microspheres are endowed with enhanced lubrication due to the tenacious hydration layer formed around the charged headgroups (-N+ (CH3 )2 - and -SO3- ) of the grafted poly sulfobetaine methacrylate (pSBMA), and simultaneously are capable of efficient drug loading and release capability due to their porous structure. Importantly, the grafting of pSBMA enables the microspheres with preferable properties (i.e., enhanced lubrication, reduced degradation, and sustained drug release) that are highly desirable for intraarticular treatment of osteoarthritis. In addition, when loaded with diclofenac sodium, the superlubricated microspheres with excellent biocompatibility can inhibit the tumor necrosis factor α (TNF-α)-induced chondrocyte degradation in vitro, and further exert a therapeutic effect toward osteoarthritis in vivo.
Collapse
Affiliation(s)
- Jielai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Ying Han
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiawei Lin
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuan Zhu
- Department of orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiangyang Xu
- Department of orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
32
|
Wang Y, Wan L, Sun Y, Zhang H. Synthesis of articular cartilage‐inspired branched polyelectrolyte polymer for enhanced lubrication. BIOSURFACE AND BIOTRIBOLOGY 2020; 6:82-86. [DOI: 10.1049/bsbt.2020.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Affiliation(s)
- Yixin Wang
- State Key Laboratory of TribologyDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084People's Republic of China
| | - Li Wan
- State Key Laboratory of TribologyDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084People's Republic of China
- College of MiningGuizhou UniversityGuiyang550025People's Republic of China
| | - Yulong Sun
- State Key Laboratory of TribologyDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of TribologyDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084People's Republic of China
| |
Collapse
|
33
|
Xiang L, Zhang J, Gong L, Zeng H. Surface forces and interaction mechanisms of soft thin films under confinement: a short review. SOFT MATTER 2020; 16:6697-6719. [PMID: 32648881 DOI: 10.1039/d0sm00924e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface forces of soft thin films under confinement in fluids play an important role in diverse biological and technological applications, such as bio-adhesion, lubrication and micro- and nano-electromechanical systems. Understanding the involved interaction mechanisms underlying the adhesion behaviors and tribological performances (i.e., friction and lubrication) of various confined soft thin films is significant in the development of both fundamental science and practical technologies. In this review, the fundamentals of surface forces are briefly presented. The widely utilized force measurement techniques including surface forces apparatus (SFA), atomic force microscopy (AFM) and spacer layer interferometry tribometer techniques are introduced. The advances in the fundamental understanding of a wide range of adhesion and tribological phenomena have been reviewed, in terms of the intermolecular and surface interaction mechanisms involved. The influences of various factors such as confined film properties, experimental conditions (e.g., normal load, and sliding velocity) and environmental variables (e.g., salts, salinity, additives and pH) on the adhesion, friction or lubrication forces of confined soft thin films are presented. The correlation between adhesion hysteresis and friction/lubrication behaviors has been discussed. Some of the challenging issues remaining and future perspectives are also provided.
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
34
|
The Role of Hyaluronic Acid in Cartilage Boundary Lubrication. Cells 2020; 9:cells9071606. [PMID: 32630823 PMCID: PMC7407873 DOI: 10.3390/cells9071606] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
Hydration lubrication has emerged as a new paradigm for lubrication in aqueous and biological media, accounting especially for the extremely low friction (friction coefficients down to 0.001) of articular cartilage lubrication in joints. Among the ensemble of molecules acting in the joint, phosphatidylcholine (PC) lipids have been proposed as the key molecules forming, in a complex with other molecules including hyaluronic acid (HA), a robust layer on the outer surface of the cartilage. HA, ubiquitous in synovial joints, is not in itself a good boundary lubricant, but binds the PC lipids at the cartilage surface; these, in turn, massively reduce the friction via hydration lubrication at their exposed, highly hydrated phosphocholine headgroups. An important unresolved issue in this scenario is why the free HA molecules in the synovial fluid do not suppress the lubricity by adsorbing simultaneously to the opposing lipid layers, i.e., forming an adhesive, dissipative bridge between them, as they slide past each other during joint articulation. To address this question, we directly examined the friction between two hydrogenated soy PC (HSPC) lipid layers (in the form of liposomes) immersed in HA solution or two palmitoyl-oleoyl PC (POPC) lipid layers across HA-POPC solution using a surface force balance (SFB). The results show, clearly and surprisingly, that HA addition does not affect the outstanding lubrication provided by the PC lipid layers. A possible mechanism indicated by our data that may account for this is that multiple lipid layers form on each cartilage surface, so that the slip plane may move from the midplane between the opposing surfaces, which is bridged by the HA, to an HA-free interface within a multilayer, where hydration lubrication is freely active. Another possibility suggested by our model experiments is that lipids in synovial fluid may complex with HA, thereby inhibiting the HA molecules from adhering to the lipids on the cartilage surfaces.
Collapse
|
35
|
|
36
|
Navarro LA, Shah TP, Zauscher S. Grafting To of Bottlebrush Polymers: Conformation and Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4745-4756. [PMID: 32105081 DOI: 10.1021/acs.langmuir.9b03620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Specifically adsorbed bottlebrush coatings are found in nature as brush-like glycoproteins that decorate biointerfaces and provide antifouling, lubrication, or wear-protection. Although various synthetic strategies have been developed to mimic glycoprotein structure and function, the use of these mimics is still limited because of the current lack of understanding of their adsorption behavior and surface conformation. In this paper, we examine the adsorption behavior of PEG-based, biotinylated bottlebrushes with different backbone and bristle lengths to streptavidin model surfaces in phosphate-buffered saline. By using quartz crystal microbalance, localized surface plasmon resonance, and atomic force microscopy, we learn how bottlebrush dimensions impact their adsorption kinetics, surface conformation, mechanical properties, and antifouling properties. Our bottlebrushes qualitatively mirror the adsorption behavior of linear polymers and exhibit three kinetic regimes of adsorption: (I) a transport-limited regime, (II) a pause, and (III) a penetration-limited regime. Furthermore, we find that the bristle length more dramatically affects brush properties than the backbone length. Generally, larger bottlebrush dimensions lead to reduced molar adsorption, retarded kinetics, weaker antifouling, and softer brush coatings. Longer bristles also lead to less mass adsorption, while the opposite trend is observed for increasing backbone length. In summary, our findings aid the rational design of new bottlebrush coatings by elucidating how their dimensions impact adsorption, surface conformation, and the properties of the final coating.
Collapse
Affiliation(s)
- Luis A Navarro
- Department of Mechanical Engineering and Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Tejank P Shah
- Department of Mechanical Engineering and Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
37
|
Furmann D, Nečas D, Rebenda D, Čípek P, Vrbka M, Křupka I, Hartl M. The Effect of Synovial Fluid Composition, Speed and Load on Frictional Behaviour of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1334. [PMID: 32183442 PMCID: PMC7143089 DOI: 10.3390/ma13061334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Articular cartilage ensures smooth motion of natural synovial joints operating at very low friction. However, the number of patients suffering from joint diseases, usually associated with cartilage degradation, continuously increases. Therefore, an understanding of cartilage tribological behaviour is of great interest in order to minimize its degradation, preserving the reliable function of the joints. The aim of the present study is to provide a comprehensive comparison of frictional behaviour of articular cartilage, focusing on the effect of synovial fluid composition (i), speed (ii), and load (iii). The experiments were realized using a pin-on-plate tribometer with reciprocating motion. The articular cartilage pin was loaded against smooth glass plate while the tests consisted of loading and unloading phases in order to enable cartilage rehydration. Various model fluids containing albumin, γ-globulin, hyaluronic acid, and phospholipids were prepared in two different concentrations simulating physiologic and osteoarthritic synovial fluid. Two different speeds, 5 mm/s and 10 mm/s were applied, and the tests were carried out under 5 N and 10 N. It was found that protein-based solutions exhibit almost no difference in friction coefficient, independently of the concentration of the constituents. However, the behaviour is considerably changed when adding hyaluronic acid and phospholipids. Especially when interacting with γ-globulin, friction coefficient decreased substantially. In general, an important role of the interaction of fluid constituents was observed. On the other hand, a limited effect of speed was detected for most of the model fluids. Finally, it was shown that elevated load leads to lower friction, which corresponds well with previous observations. Further study should concentrate on specific explored phenomena focusing on the detailed statistical evaluation.
Collapse
Affiliation(s)
- Denis Furmann
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - David Nečas
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Pavel Čípek
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Ivan Křupka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| |
Collapse
|
38
|
Wang CS, Xie R, Liu S, Giasson S. Tribological Behavior of Surface-Immobilized Novel Biomimicking Multihierarchical Polymers: The Role of Structure and Surface Attachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15592-15604. [PMID: 31550893 DOI: 10.1021/acs.langmuir.9b02018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tribological properties of two novel biomimetic multihierarchical polymers, synthesized by covalently linking single bottlebrush polymers onto a hyaluronic acid (HA) backbone, were investigated in the boundary lubrication regime using the surface forces apparatus. The polymers were immobilized on flat substrates, and their lubrication properties and wear resistance were investigated in aqueous media in the absence of a polymer reservoir (i.e., no free polymer chains in the surrounding medium) in order to better reveal the underlying mechanism of surface-attached biomimetic polymers. The effects of composition, structure, and, more particularly, surface attachment (physisorbed vs chemisorbed) on the tribological properties were investigated and compared with other biomimicking systems reported in the literature. The covalently surface attached bottlebrushes allowed wear resistance between sliding surfaces to be significantly improved, compared to physisorbed bottlebrushes, with a constant coefficient of friction (10-1) of up to few tens of MPa. The results confirm that surface-attached bottlebrushes on their own are not responsible for the extremely low friction often reported in the literature or found in articular joints. Moreover, the study confirmed that the irreversible attachment of bottlebrushes, or multihierarchical polymer layers, to surfaces is crucial to improving wear resistance between sliding surfaces in aqueous media.
Collapse
|
39
|
Yan W, Ramakrishna SN, Romio M, Benetti EM. Bioinert and Lubricious Surfaces by Macromolecular Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13521-13535. [PMID: 31532689 DOI: 10.1021/acs.langmuir.9b02316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.
Collapse
Affiliation(s)
- Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Matteo Romio
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
40
|
Abdel-Mohsen A, Pavliňák D, Čileková M, Lepcio P, Abdel-Rahman R, Jančář J. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int J Biol Macromol 2019; 139:730-739. [DOI: 10.1016/j.ijbiomac.2019.07.205] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
|
41
|
Liu W, Wang H, Liu Y, Li J, Erdemir A, Luo J. Mechanism of Superlubricity Conversion with Polyalkylene Glycol Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11784-11790. [PMID: 31432683 DOI: 10.1021/acs.langmuir.9b01857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, ultralow friction coefficient (COF, μ < 0.01) was obtained through polyalkylene glycol (PAG) aqueous solutions with different molecular weights (MWs) ranging from 270 to 3930 g·mol-1 under ambient conditions. With the increase in the MWs of PAG molecules, the threshold concentration to obtain this type of superlubric behavior gradually changed from 90 to 60 wt %. This phenomenon was closely related to the interaction between PAG chains and water molecules and the state of chemical binding. In the superlubricity system, superior load-bearing capacity was achieved at optimal threshold concentrations of all PAG aqueous solutions wherein multilayered adsorption layers that consisted of fully hydrated PAG molecules were formed on the sliding solid surfaces. With respect to the concentration below the threshold value, the existence of a shearing layer was indicated to play a significant role. Thus, the synergetic effect of sufficient adsorption of molecules and the unique shear rheology of the PAG aqueous solution were essential to achieve superlubricity.
Collapse
Affiliation(s)
- Wenrui Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Hongdong Wang
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
- Energy Systems Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Yuhong Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Jinjin Li
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Ali Erdemir
- Energy Systems Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jianbin Luo
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
42
|
Yan W, Ramakrishna SN, Spencer ND, Benetti EM. Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11255-11264. [PMID: 31394039 DOI: 10.1021/acs.langmuir.9b01265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-grafted polyzwitterions (PZW) have gained a foothold in the design of synthetic materials that closely mimic the lubricious properties of articular joints in mammals. Besides their chemical composition, the architecture of PZW brushes strongly determines their morphological, nanomechanical, and nanotribological characteristics. This emerges while comparing the properties of linear poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes with those displayed by graft copolymer and bottlebrush brushes, either featuring a low or a high content of PMPC side chains. Surface-initiated atom transfer radical polymerization (SI-ATRP) enabled the synthesis of different branched-brush architectures from multifunctional macroinitiators via multiple grafting steps, and allowed us to modulate their structure by tuning the polymerization conditions. At relatively low grafting densities (σ), long PMPC side segments extend at the interface of bottlebrush and graft copolymer brushes, providing both morphology and lubrication properties comparable to those shown by loosely grafted, linear PMPC brushes. When σ > 0.1 chains nm-2 the effect of the branched-brush architecture on the nanotribological properties of the films became evident. Linear PMPC brushes showed the lowest friction among the studied brush structures, with a coefficient of friction (μ) that reached 1 × 10-4, as measured by atomic force microscopy (AFM). Bottlebrush brushes showed comparatively higher friction, although the high content of hydrophilic PMPC side chains along their backbone substantially improved lubrication compared to that displayed by the more sparsely substituted graft copolymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
- Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , St. Gallen , Switzerland
| |
Collapse
|
43
|
Benetti EM, Spencer ND. Using Polymers to Impart Lubricity and Biopassivity to Surfaces: Are These Properties Linked? Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of MaterialsETH Zurich Vladimir-Prelog-Weg 5 CH-8093 Zurich Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology, Department of MaterialsETH Zurich Vladimir-Prelog-Weg 5 CH-8093 Zurich Switzerland
| |
Collapse
|
44
|
Investigation of the lubrication properties and synergistic interaction of biocompatible liposome-polymer complexes applicable to artificial joints. Colloids Surf B Biointerfaces 2019; 178:469-478. [PMID: 30925370 DOI: 10.1016/j.colsurfb.2019.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Achievement of efficient biolubrication is essential for the design of artificial joints with long lifetimes. This study examines the frictional behaviors and adsorption structures of liposomes and liposome complexes with biocompatible polymers to reveal the underlying lubrication mechanisms between biomimetic bearing surfaces of polyetheretherketone (PEEK) and silicon nitride (Si3N4). The liposomes with increasing carbon chain lengths exhibit the remarkable lubrication capabilities that correlate strongly with the structural integrity of small unilamellar vesicles adsorbed on the Si3N4 surfaces, while the bilayer structures weaken the stability of vesicles against rupture and cause the increase of friction. The synergistic interaction of liposomes and biocompatible negative-charged polymer leads to the formation of a boundary-lubricating layer with high-density liposome-polymer complex structures that can efficiently improve the lubrication properties of liposomes. Our findings might have implications for future biolubrication investigations on biocompatible liposome-polymer complexes applicable to artificial joints at the specified macroscale conditions.
Collapse
|
45
|
Duan Y, Liu Y, Li J, Feng S, Wen S. AFM Study on Superlubricity between Ti6Al4V/Polymer Surfaces Achieved with Liposomes. Biomacromolecules 2019; 20:1522-1529. [PMID: 30835459 DOI: 10.1021/acs.biomac.8b01683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Liposomes have been considered as the boundary lubricant in natural joints. They are also the main component of bionic lubricant. In this study, the tribological properties of liposomes on Ti6Al4V/polymer surface were studied by atomic force microscope (AFM) at the nanoscale. The superlubricity with a friction coefficient of 0.007 was achieved under the maximal pressure of 15 MPa, consisting with the lubrication condition of natural joints. Especially, when the AFM probe was hydrophilically modified and preadsorbed, the friction coefficient and load bearing capacity could be further improved. In addition, the probe with a large radius could maintain the stable lubrication of liposomes in the contact zone. Finally, an optimal lubrication model of liposomes was established and the critical force for superlubricity was also proposed. It was the boundary between elastic deformation and plastic deformation for vesicles. It was also the indicator of the plough effect appearing on the adsorbed layer. This work reveals the interfacial behavior of liposomes and realizes the controllable superlubricity system, providing more guidance for clinical application.
Collapse
Affiliation(s)
- Yiqin Duan
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Yuhong Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Jinjin Li
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Shaofei Feng
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Shizhu Wen
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
46
|
Yu L, Martin IJ, Kasi RM, Wei M. Enhanced Intrafibrillar Mineralization of Collagen Fibrils Induced by Brushlike Polymers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28440-28449. [PMID: 30081624 DOI: 10.1021/acsami.8b10234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic mineralization of collagen fibrils is an essential process because the mineralized collagen fibers constitute the basic building block of natural bone. To overcome the limited availability and high cost of the noncollagenous proteins (NCPs) that regulate the mineralization process of collagen, commercially available analogues were developed to replicate sequestration and templating functions of NCPs. The use of branched polymers in intrafibrillar mineralization applications has never been explored. In this work, two novel carboxyl-rich brushlike polymers, a carboxylated polyethylene glycol terpolymer (PEG-COOH) and a polyethylene glycol/poly(acrylic acid) copolymer (PEG-PAA), were synthesized and modified to mimic the sequestration function of NCPs to induce intrafibrillar mineralization of collagen fibrils. It was found that these synthetic brushlike polymers are able to induce intrafibrillar mineralization by stabilizing the amorphous calcium phosphate (ACP) nanoprecursors and subsequently facilitating the infiltration of ACP into the gap zone of collagen microfibrils. Moreover, the weight ratios of mineral to collagen in the mineralized collagen fibrils in the presence of these brushlike polymers were 2.17 ± 0.07 for PEG-COOH and 2.23 ± 0.03 for PEG-PAA, while it is only 1.81 ± 0.21 for linear PAA. Plausible mineralization mechanisms using brushlike polymers are proposed that offer significant insight into the understanding of collagen mineralization induced by synthetic NCP analogues.
Collapse
|
47
|
Fan Z, Li J, Liu J, Jiao H, Liu B. Anti-Inflammation and Joint Lubrication Dual Effects of a Novel Hyaluronic Acid/Curcumin Nanomicelle Improve the Efficacy of Rheumatoid Arthritis Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23595-23604. [PMID: 29920067 DOI: 10.1021/acsami.8b06236] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which can cause endless suffering to the patients and severely impact their normal lives. To treat RA, the drugs in use have many serious side effects, high cost, or only focus on their anti-inflammatory mechanisms without taking joint lubrication into consideration. Therefore, in this study, we aim to construct a novel anti-RA drug composed of hyaluronic acid/curcumin (HA/Cur) nanomicelle to resolve these problems. Characterizations show that Cur is bound to HA by ester linkages and self-assembles to form a spherical nanomicelle with a diameter of around 164 nm under the main driving of the hydrophilic and hydrophobic forces. The nanomicelle enjoys excellent biocompatibility that effectively promotes the proliferation of chondrocytes. When injected to the RA rats, the nanomicelle significantly lowers the edema degree of the arthritic rats compared to other groups; more critically, a dramatic decrease in friction between the surfaces of cartilage around the joints has been found, which protects the cartilage from the RA-induced damage. Additionally, systematic mechanism investigation indicates that the nanomicelle diminishes the expression of related cytokines and vascular endothelial growth factor, finally leading to the excellent performance. The newfound nanomicelle has a potential for clinical practice of RA therapy, which will contribute significantly to alleviating the pain of patients and improving the quality of life for them.
Collapse
|
48
|
Bano F, Tammi MI, Kang DW, Harris EN, Richter RP. Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins. Biophys J 2018; 114:2910-2922. [PMID: 29925027 PMCID: PMC6026378 DOI: 10.1016/j.bpj.2018.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin⋅biotin bond. Implications for the molecular mechanism of unbinding of HA⋅hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA⋅hyaladherin complexes and HA-rich extracellular matrices.
Collapse
Affiliation(s)
- Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; CIC biomaGUNE, Biosurfaces Laboratory, Donostia-San Sebastian, Spain
| | - Markku I Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - David W Kang
- Halozyme Therapeutics Inc., San Diego, California
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; CIC biomaGUNE, Biosurfaces Laboratory, Donostia-San Sebastian, Spain.
| |
Collapse
|
49
|
Jiang L, Liu G, Liu H, Han J, Liu Z, Ma H. Molecular weight impact on the mechanical forces between hyaluronan and its receptor. Carbohydr Polym 2018; 197:326-336. [PMID: 30007620 DOI: 10.1016/j.carbpol.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Hyaluronan (HA) possesses manifold mechanical and signaling properties in the body. Most of these activities are largely regulated by its molecular weight, which often triggers opposing functions. However the molecular basis for such function distinction between HA size categories remains unclear. Using a combination of biophysical techniques, we measured the physical forces between HA ligand and its specific receptor CD44 in both normal and lateral directions, at different HA molecular weights and bound states. It was found that the impact of HA multivalency is more than just the sum of separate monovalent bindings. The HA-CD44 specific interaction enhances with HA molecular weight and the maximum binding occurs at ∼1000 kD, possibly due to the balance between multivalent HA zipping effect and conformational entropy. High friction patches, probably from CD44 protein clustering, was observed in friction force microscopy (FFM) upon HA shearing, which is also dependent on HA molecular weight. These results could help to understand the biophysical mechanism of HA in regulating CD44-induced physiological activities and thus facilitate the new design of HA-based material in fine tuning the receptor responses.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Guihua Liu
- Department of Common Courses, Weifang Medical University, Weifang, Shandong 261042, PR China.
| | - Hanyun Liu
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003,PR China
| | - Juan Han
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Zhibin Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| |
Collapse
|
50
|
Lee Y, Choi J, Hwang NS. Regulation of lubricin for functional cartilage tissue regeneration: a review. Biomater Res 2018; 22:9. [PMID: 29568558 PMCID: PMC5857089 DOI: 10.1186/s40824-018-0118-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/05/2018] [Indexed: 01/20/2023] Open
Abstract
Background Lubricin is chondrocyte-secreted glycoprotein that primarily conducts boundary lubrication between joint surfaces. Besides its cytoprotective function and extracellular matrix (ECM) attachment, lubricin is recommended as a novel biotherapeutic protein that restore functional articular cartilage. Likewise, malfunction of lubrication in damaged articular cartilage caused by complex and multifaceted matter is a major concern in the field of cartilage tissue engineering. Main body Although a noticeable progress has been made toward cartilage tissue regeneration through numerous approaches such as autologous chondrocyte implantation, osteochondral grafts, and microfracture technique, the functionality of engineered cartilage is a challenge for complete reconstruction of cartilage. Thus, delicate modulation of lubricin along with cell/scaffold application will expand the research on cartilage tissue engineering. Conclusion In this review, we will discuss the empirical analysis of lubricin from fundamental interpretation to the practical design of gene expression regulation.
Collapse
Affiliation(s)
- Yunsup Lee
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Jaehoon Choi
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Nathaniel S Hwang
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea.,2Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 152-742 Republic of Korea.,3N-Bio/BioMAX Institute, Seoul National University, Seoul, 152-742 Republic of Korea
| |
Collapse
|