1
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
2
|
Gottschalk A, Menees H, Bogner C, Zewde S, Jibin J, Gamam A, Flink D, Mosissa M, Bonneson F, Wehelie H, Alonso-Caraballo Y, Hamid AA. Wideband ratiometric measurement of tonic and phasic dopamine release in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618918. [PMID: 39484621 PMCID: PMC11526850 DOI: 10.1101/2024.10.17.618918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Reward learning, cognition, and motivation are supported by changes in neurotransmitter levels across multiple timescales. Current measurement technologies for various neuromodulators (such as dopamine and serotonin) do not bridge timescales of fluctuations, limiting the ability to define the behavioral significance, regulation, and relationship between fast (phasic) and slow (tonic) dynamics. To help resolve longstanding debates about the behavioral significance of dopamine across timescales, we developed a novel quantification strategy, augmenting extensively used carbon-fiber Fast Scan Cyclic Voltammetry (FSCV). We iteratively engineered the FSCV scan sequence to rapidly modify electrode sensitivity within a sampling window and applied ratiometric analysis for wideband dopamine measurement. This allowed us to selectively eliminate artifacts unrelated to electrochemical detection (i.e., baseline drift), overcoming previous limitations that precluded wideband dopamine detection from milliseconds to hours. We extensively characterize this approach in vitro, validate performance in vivo with simultaneous microdialysis, and deploy this technique to measure wideband dopamine changes across striatal regions under pharmacological, optogenetic, and behavioral manipulations. We demonstrate that our approach can extend to additional analytes, including serotonin and pH, providing a robust platform to assess the contributions of multi-timescale neuromodulator fluctuations to cognition, learning, and motivation.
Collapse
Affiliation(s)
- Amy Gottschalk
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Haley Menees
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Celine Bogner
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Semele Zewde
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Joanna Jibin
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Asma Gamam
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Dylan Flink
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Meea Mosissa
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Faith Bonneson
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | - Hibo Wehelie
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| | | | - Arif A Hamid
- Department of Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN
| |
Collapse
|
3
|
Mintz Hemed N, Hwang FJ, Zhao ET, Ding JB, Melosh NA. Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm 2 area. Biosens Bioelectron 2024; 261:116474. [PMID: 38870827 DOI: 10.1016/j.bios.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Hu J, Li J, Guo Q, Du G, Li C, Li R, Zhou R, He H. Visual Detection of Dopamine with CdS/ZnS Quantum Dots Bearing by ZIF-8 and Nanofiber Membranes. Int J Mol Sci 2024; 25:10346. [PMID: 39408675 PMCID: PMC11476674 DOI: 10.3390/ijms251910346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dopamine (DA) is a widely present, calcium cholinergic neurotransmitter in the body, playing important roles in the central nervous system and cardiovascular system. Developing fast and sensitive DA detection methods is of great significance. Fluorescence-based methods have attracted much attention due to their advantages of easy operation, a fast response speed, and high sensitivity. This study prepared hydrophilic and high-performance CdS/ZnS quantum dots (QDs) for DA detection. The waterborne CdS/ZnS QDs were synthesized in one step using the amphiphilic polymer PEI-g-C14, obtained by grafting tetradecane (C14) to polyethyleneimine (PEI), as a template. The polyacrylonitrile nanofiber membrane (PAN-NFM) was prepared by electrospinning (e-spinning), and a metal organic frame (ZIF-8) was deposited in situ on the surface of the PAN-NFM. The CdS/ZnS QDs were loaded onto this substrate (ZIF-8@PAN-NFM). The results showed that after the deposition of ZIF-8, the water contact angle of the hydrophobic PAN-NFM decreased to within 40°. The nanofiber membrane loaded with QDs also exhibited significant changes in fluorescence in the presence of DA at different concentrations, which could be applied as a fast detection method of DA with high sensitivity. Meanwhile, the fluorescence on this PAN-NFM could be visually observed as it transitioned from a blue-green color to colorless, making it suitable for the real-time detection of DA.
Collapse
Affiliation(s)
- Jiadong Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Jiaxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Changming Li
- Schneider Institute of Industrial Technology, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Rong Zhou
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| |
Collapse
|
5
|
Gao X, Wei H, Ma W, Wu W, Ji W, Mao J, Yu P, Mao L. Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst. Nat Commun 2024; 15:7915. [PMID: 39256377 PMCID: PMC11387648 DOI: 10.1038/s41467-024-52279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Electrochemical methods with tissue-implantable microelectrodes provide an excellent platform for real-time monitoring the neurochemical dynamics in vivo due to their superior spatiotemporal resolution and high selectivity and sensitivity. Nevertheless, electrode implantation inevitably damages the brain tissue, upregulates reactive oxygen species level, and triggers neuroinflammatory response, resulting in unreliable quantification of neurochemical events. Herein, we report a multifunctional sensing platform for inflammation-free in vivo analysis with atomic-level engineered Fe single-atom catalyst that functions as both single-atom nanozyme with antioxidative activity and electrode material for dopamine oxidation. Through high-temperature pyrolysis and catalytic performance screening, we fabricate a series of Fe single-atom nanozymes with different coordination configurations and find that the Fe single-atom nanozyme with FeN4 exhibits the highest activity toward mimicking catalase and superoxide dismutase as well as eliminating hydroxyl radical, while also featuring high electrode reactivity toward dopamine oxidation. These dual functions endow the single-atom nanozyme-based sensor with anti-inflammatory capabilities, enabling accurate dopamine sensing in living male rat brain. This study provides an avenue for designing inflammation-free electrochemical sensing platforms with atomic-precision engineered single-atom catalysts.
Collapse
Affiliation(s)
- Xiaolong Gao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Junjie Mao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
6
|
Singh R, Kansara K, Yadav P, Mandal S, Varshney R, Gupta S, Kumar A, Maiti PK, Bhatia D. DNA tetrahedral nanocages as a promising nanocarrier for dopamine delivery in neurological disorders. NANOSCALE 2024; 16:15158-15169. [PMID: 39091152 DOI: 10.1039/d4nr00612g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Dopamine is a neurotransmitter in the central nervous system that is essential for many bodily and mental processes, and a lack of it can cause Parkinson's disease. DNA tetrahedral (TD) nanocages are promising in bio-nanotechnology, especially as a nanocarrier. TD is highly programmable, biocompatible, and capable of cell differentiation and proliferation. It also has tissue and blood-brain barrier permeability, making it a powerful tool that could overcome potential barriers in treating neurological disorders. In this study, we used DNA TD as a carrier for dopamine to cells and zebrafish embryos. We investigated the mechanism of complexation between TD and dopamine hydrochloride using gel electrophoresis, fluorescence and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), and molecular dynamic (MD) simulation tools. Further, we demonstrate that these dopamine-loaded DNA TD nanostructures enhanced cellular uptake and differentiation ability in SH-SY5Y neuroblastoma cells. Furthermore, we extended the study to zebrafish embryos as a model organism to examine survival and uptake. The research provides valuable insights into the complexation mechanism and cellular uptake of dopamine-loaded DNA tetrahedral nanostructures, paving the way for further advancements in nanomedicine for Parkinson's disease and other neurological disorders.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Krupa Kansara
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Sandip Mandal
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Ritu Varshney
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Sharad Gupta
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, India
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| |
Collapse
|
7
|
Kundu A, De GC, Ghosh S. Design and Synthesis of a Novel Binuclear Palladium Complex as a Turn on Fluorescent Receptor for Neurotransmitter Dopamine. J Fluoresc 2024:10.1007/s10895-024-03861-z. [PMID: 39060826 DOI: 10.1007/s10895-024-03861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
A novel binuclear palladium complex has been synthesized by the reaction of tetramethylethylenediamine palladium nitrate and sodium salt of pyromellitic acid. UV vis, NMR as well as fluorescent titration techniques show that this binuclear palladium complex interacts with neurotransmitter dopamine. The fluorescence of the palladium complex in aqueous solution gets enhanced with the gradual addition of the neurotransmitter dopamine which makes this complex to act as a turn on fluorescent sensor for neurotransmitter dopamine.
Collapse
Affiliation(s)
- Arunangshu Kundu
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, Westbengal, India
| | - Gobinda Chandra De
- Department of Chemistry, Coochbehar Panchanan Barma University, Coochbehar, West Bengal, India
| | - Sushobhan Ghosh
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, Westbengal, India.
| |
Collapse
|
8
|
Meng L, Akhoundian M, Al Azawi A, Shoja Y, Chi PY, Meinander K, Suihkonen S, Franssila S. Ultrasensitive Monolithic Dopamine Microsensors Employing Vertically Aligned Carbon Nanofibers. Adv Healthc Mater 2024; 13:e2303872. [PMID: 38837670 DOI: 10.1002/adhm.202303872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2024] [Indexed: 06/07/2024]
Abstract
Brain-on-Chip devices, which facilitate on-chip cultures of neurons to simulate brain functions, are receiving tremendous attention from both fundamental and clinical research. Consequently, microsensors are being developed to accomplish real-time monitoring of neurotransmitters, which are the benchmarks for neuron network operation. Among these, electrochemical sensors have emerged as promising candidates for detecting a critical neurotransmitter, dopamine. However, current state-of-the-art electrochemical dopamine sensors are suffering from issues like limited sensitivity and cumbersome fabrication. Here, a novel route in monolithically microfabricating vertically aligned carbon nanofiber electrochemical dopamine microsensors is reported with an anti-blistering slow cooling process. Thanks to the microfabrication process, microsensors is created with complete insulation and large surface areas. The champion device shows extremely high sensitivity of 4.52× 104 µAµM-1·cm-2, which is two-orders-of-magnitude higher than current devices, and a highly competitive limit of detection of 0.243 nM. These remarkable figures-of-merit will open new windows for applications such as electrochemical recording from a single neuron.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Maedeh Akhoundian
- Department of Electrical Engineering and Automation, Aalto University, Espoo, 02150, Finland
| | - Anas Al Azawi
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Yalda Shoja
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Pei-Yin Chi
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Kristoffer Meinander
- Department of Bioproducts and Biosystems, Aalto University, Espoo, 02150, Finland
| | - Sami Suihkonen
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
| | - Sami Franssila
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
9
|
Feng J, Dong H, Lischinsky JE, Zhou J, Deng F, Zhuang C, Miao X, Wang H, Li G, Cai R, Xie H, Cui G, Lin D, Li Y. Monitoring norepinephrine release in vivo using next-generation GRAB NE sensors. Neuron 2024; 112:1930-1942.e6. [PMID: 38547869 PMCID: PMC11364517 DOI: 10.1016/j.neuron.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/21/2024] [Accepted: 03/01/2024] [Indexed: 06/22/2024]
Abstract
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
Collapse
Affiliation(s)
- Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Ni J, Wei H, Ji W, Xue Y, Zhu F, Wang C, Jiang Y, Mao L. Aptamer-Based Potentiometric Sensor Enables Highly Selective and Neurocompatible Neurochemical Sensing in Rat Brain. ACS Sens 2024; 9:2447-2454. [PMID: 38659329 DOI: 10.1021/acssensors.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Selective and nondisruptive in vivo neurochemical monitoring within the central nervous system has long been a challenging endeavor. We introduce a new sensing approach that integrates neurocompatible galvanic redox potentiometry (GRP) with customizable phosphorothioate aptamers to specifically probe dopamine (DA) dynamics in live rat brains. The aptamer-functionalized GRP (aptGRP) sensor demonstrates nanomolar sensitivity and over a 10-fold selectivity for DA, even amidst physiological levels of major interfering species. Notably, conventional sensors without the aptamer modification exhibit negligible reactivity to DA concentrations exceeding 20 μM. Critically, the aptGRP sensor operates without altering neuronal activity, thereby permitting real-time, concurrent recordings of both DA flux and electrical signaling in vivo. This breakthrough establishes aptGRP as a viable and promising framework for the development of high-fidelity sensors, offering novel insights into neurotransmission dynamics in a live setting.
Collapse
Affiliation(s)
- Jiping Ni
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, P.R. China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, P.R. China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
11
|
Amiri A, Ravi MJ, Huang SH, Janda DC, Amemiya S. Suppression of Resistive Coupling in Nanogap Electrochemical Cell: Resolution of Dual Pathways for Dopamine Oxidation. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 406:135440. [PMID: 38435378 PMCID: PMC10907013 DOI: 10.1016/j.snb.2024.135440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A nanogap cell involves two working electrodes separated by a nanometer-wide solution to enable unprecedented electrochemical measurements. The powerful nanogap measurements, however, can be seriously interfered with by resistive coupling between the two electrodes to yield erroneous current responses. Herein, we employ the nanogap cell based on double carbon-fiber microelectrodes to suppress resistive coupling for the assessment of intrinsic current responses. Specifically, we modify a commercial bipotentiostat to compensate the Ohmic potential drop shared by the two electrodes through the common current pathway with a fixed resistance in the solution. Resistive coupling through both non-Faradaic and Faradaic processes is suppressed to eliminate erroneous current responses. Our approach is applied to investigate the mechanism of dopamine oxidation at carbon-fiber microelectrodes as important electrochemical sensors for the crucial neurotransmitter. Resistive coupling is suppressed to manifest the intrinsic current responses based on the oxidation of both adsorbed and non-adsorbed forms of dopamine to the respective forms of dopamine-o-quinone. The simultaneous dual oxidation pathways are observed for the first time and can be mediated through either non-concerted or concerted mechanisms of adsorption-coupled electron transfer. The two mechanisms are not discriminated for the two-electron oxidation of dopamine because it can not be determined whether the intermediate, dopamine semi-quinone, is adsorbed on the electrode surface. Significantly, our approach will be useful to manifest intrinsic current responses without resistive coupling for nanogaps and microgaps, which are too narrow to eliminate the common solution resistance by optimizing the position of a reference electrode.
Collapse
Affiliation(s)
| | | | - Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Donald C. Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
12
|
Wells SS, Bain IJ, Valenta AC, Lenhart AE, Steyer DJ, Kennedy RT. Microdialysis coupled with droplet microfluidics and mass spectrometry for determination of neurotransmitters in vivo with high temporal resolution. Analyst 2024; 149:2328-2337. [PMID: 38488040 PMCID: PMC11018092 DOI: 10.1039/d4an00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
Monitoring the concentration fluctuations of neurotransmitters in vivo is valuable for elucidating the chemical signals that underlie brain functions. Microdialysis sampling is a widely used tool for monitoring neurochemicals in vivo. The volume requirements of most techniques that have been coupled to microdialysis, such as HPLC, result in fraction collection times of minutes, thus limiting the temporal resolution possible. Further the time of analysis can become long for cases where many fractions are collected. Previously we have used direct analysis of dialysate by low-flow electrospray ionization-tandem mass spectrometry (ESI-MS/MS) on a triple quadrupole mass spectrometer to monitor acetylcholine, glutamate, and γ-amino-butyric acid to achieve multiplexed in vivo monitoring with temporal resolution of seconds. Here, we have expanded this approach to adenosine, dopamine, and serotonin. The method achieved limits of detection down to 2 nM, enabling basal concentrations of all these compounds, except serotonin, to be measured in vivo. Comparative analysis with LC-MS/MS showed accurate results for all compounds except for glutamate, possibly due to interference for this compound in vivo. Pairing this analysis with droplet microfluidics yields 11 s temporal resolution and can generate dialysate fractions down to 3 nL at rates up to 3 fractions per s from a microdialysis probe. The system is applied to multiplexed monitoring of neurotransmitter dynamics in response to stimulation by 100 mM K+ and amphetamine. These applications demonstrate the suitability of the droplet ESI-MS/MS method for monitoring short-term dynamics of up to six neurotransmitters simultaneously.
Collapse
Affiliation(s)
- Shane S Wells
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Ian J Bain
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Alec C Valenta
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Ashley E Lenhart
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Daniel J Steyer
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
13
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
14
|
Carter F, Cossette MP, Trujillo-Pisanty I, Pallikaras V, Breton YA, Conover K, Caplan J, Solis P, Voisard J, Yaksich A, Shizgal P. Does phasic dopamine release cause policy updates? Eur J Neurosci 2024; 59:1260-1277. [PMID: 38039083 DOI: 10.1111/ejn.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
Phasic dopamine activity is believed to both encode reward-prediction errors (RPEs) and to cause the adaptations that these errors engender. If so, a rat working for optogenetic stimulation of dopamine neurons will repeatedly update its policy and/or action values, thus iteratively increasing its work rate. Here, we challenge this view by demonstrating stable, non-maximal work rates in the face of repeated optogenetic stimulation of midbrain dopamine neurons. Furthermore, we show that rats learn to discriminate between world states distinguished only by their history of dopamine activation. Comparison of these results to reinforcement learning simulations suggests that the induced dopamine transients acted more as rewards than RPEs. However, pursuit of dopaminergic stimulation drifted upwards over a time scale of days and weeks, despite its stability within trials. To reconcile the results with prior findings, we consider multiple roles for dopamine signalling.
Collapse
Affiliation(s)
- Francis Carter
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, Quebec, Canada
| | | | - Ivan Trujillo-Pisanty
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Langara College, Vancouver, British Columbia, Canada
| | | | | | - Kent Conover
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jill Caplan
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Pavel Solis
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jacques Voisard
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Alexandra Yaksich
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Peter Shizgal
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Ma Y, Ma Y, Liu K, Wang D, Liu R, Chen Q, Jiang D, Pan R. An ultra-sensitive platinized nanocavity electrode for analysis of cytosolic catecholamines in one living cell. Talanta 2024; 269:125503. [PMID: 38070283 DOI: 10.1016/j.talanta.2023.125503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
The catecholamines, mainly dopamine (DA), are present in the cellular cytosol with low abundance, while, play key roles in various neurodegenerative disorders. Here, platinized nanocavity carbon electrodes are employed to analyze cytosolic catecholamines in a single living PC12 cell, which is not easily quantified using the classic electrodes. The confined structure and excellent conductivity in the platinized nanocavity accelerate the electron transfer of the DA, resulting in a low detection limit down to 50 nM. The sensitivity of DA detection is improved to be 10.73 pA mM-1 nm-1 in the response range of 50 nM-100 μM, which guarantees quantitative analysis of cytosolic catecholamines with low abundance. Eventually, the platinized nanocavity electrode is employed to detect cytosolic catecholamines in a single PC12 cell without an obvious interruption of cellular catecholamine level. The cytosolic catecholamines in a single PC12 cell is measured in situ to be 0.1 μM, which is achieved for the first time at the single cell level using the electrochemical method. The results demonstrate that the nanocavity electrode with a high sensitivity could offer a promising means to dynamically track catecholamines in a single cell.
Collapse
Affiliation(s)
- Yuanyuan Ma
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yanyu Ma
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Quanchi Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
16
|
Zhao L, Du X, Xu G, Song P. Nanozyme catalyzed-SERRS sensor for the recognition of dopamine based on AgNPs@PVP with oxidase-like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123606. [PMID: 37976577 DOI: 10.1016/j.saa.2023.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Dopamine (DA), as one of the most significant neurotransmitters, is closely related to several diseases. Achieving rapid and sensitive detection of DA remains a challenge. Herein, we proposed a simple, fast, and sensitive method for DA recognition based on surface-enhanced resonance Raman scattering (SERRS) technique. The synthesized silver nanoparticles coated with polyvinylpyrrolidone (AgNPs@PVP) with oxidase activity could not only oxidize 3,3',5,5'-tetramethylbenzidine (TMB) directly to produce a blue oxidation state TMB (oxTMB) but also could be used as the SERS substrate to generate a strong SERRS signal. When DA was added to the above system, the blue color faded along with the decrease in the SERRS signal. The change value of SERRS intensity was in proportion to the concentration of DA in the range of 0.1-10 μM with a limit of detection of 40 nM. This method presented great potential for the recognition of DA-related diseases.
Collapse
Affiliation(s)
- Lefa Zhao
- College of Physics, Liaoning University, Shenyang 110036, China; School of General Education, Shenyang Sport University, Shenyang 110115, China
| | - Xiaoyu Du
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
17
|
Yin Q, Wang Y, Yang D, Yang Y, Zhu Y. A colorimetric detection of dopamine in urine and serum based on the CeO 2 @ZIF-8/Cu-CDs laccase-like nanozyme activity. LUMINESCENCE 2024; 39:e4684. [PMID: 38332470 DOI: 10.1002/bio.4684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
This study reports a sensitive and selective colorimetric approach for the analysis of dopamine (DA) based on CeO2 @ZIF-8/Cu-CDs laccase-like nanozymes activity. The CeO2 @ZIF-8/Cu-CDs was synthesized using cerium oxide (CeO2 ) and copper-doped carbon dots (Cu-CDs) with 2-methylimidazole by a facilely hydrothermal approach. The CeO2 @ZIF-8/Cu-CDs exhibited excellent laccase-like nanozymes activity and can oxidize the colorless substrate (DA) to red product with 4-aminoantipyrine as the chromogenic agent. The Michaelis-Menten constant (Km ) and the maximal velocity (Vmax ) of CeO2 @ZIF-8/Cu-CDs are 0.20 mM and 1.48 μM/min, respectively. The detection method has a linear range of 0.05-7.5 μg/mL and a detection limit as low as 8.5 ng/mL with good reproducibility. The developed colorimetric sensor was applied to rapid and precise quantitative evaluation of DA levels in serum and urine samples. This study presents a new approach for detecting biological molecules by utilizing the controlled regulation of nanozymes' laccase-like activity.
Collapse
Affiliation(s)
- Qinhong Yin
- Key Laboratory of Intelligent Drug Control, Ministry of Education; Yunnan Key Laboratory of Intelligent Drug Control; Faculty of Narcotics Control, Yunnan Police College, Kunming, China
| | - Yutong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yanqin Zhu
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
18
|
Cunha AB, Schuelke C, Mesri A, Ruud SK, Aizenshtadt A, Ferrari G, Heiskanen A, Asif A, Keller SS, Ramos-Moreno T, Kalvøy H, Martínez-Serrano A, Krauss S, Emnéus J, Sampietro M, Martinsen ØG. Development of a Smart Wireless Multisensor Platform for an Optogenetic Brain Implant. SENSORS (BASEL, SWITZERLAND) 2024; 24:575. [PMID: 38257668 PMCID: PMC11154348 DOI: 10.3390/s24020575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.
Collapse
Affiliation(s)
- André B. Cunha
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
| | - Christin Schuelke
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, P.O. Box 1110 Blindern, 0317 Oslo, Norway; (A.A.); (S.K.)
| | - Alireza Mesri
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; (A.M.); (G.F.); (M.S.)
| | - Simen K. Ruud
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, P.O. Box 1110 Blindern, 0317 Oslo, Norway; (A.A.); (S.K.)
| | - Giorgio Ferrari
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; (A.M.); (G.F.); (M.S.)
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.H.); (A.A.); (J.E.)
| | - Afia Asif
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.H.); (A.A.); (J.E.)
| | - Stephan S. Keller
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Tania Ramos-Moreno
- Lund Stem Cell Center, Division of Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - Håvard Kalvøy
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
| | - Alberto Martínez-Serrano
- Department of Molecular Neurobiology, Center of Molecular Biology ‘Severo Ochoa’, Universidad Autónoma de Madrid, Calle Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Stefan Krauss
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, P.O. Box 1110 Blindern, 0317 Oslo, Norway; (A.A.); (S.K.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.H.); (A.A.); (J.E.)
| | - Marco Sampietro
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; (A.M.); (G.F.); (M.S.)
| | - Ørjan G. Martinsen
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; (A.B.C.); (C.S.); (S.K.R.)
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
| |
Collapse
|
19
|
Wu X, Zhang X, Ma J, Zhang Y, Li M. A ratiometric fluorescence sensor based on the inner filtration effect of gold nanoparticles on quantum dots for monitoring dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123374. [PMID: 37699327 DOI: 10.1016/j.saa.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
In this study, a smart phone assisted ratiometric fluorescence sensor was designed for detecting dopamine (DA). The ratiometric fluorescence sensor was prepared by simple physical mixing green quantum dots (GQDS) and red quantum dots (RQDS). DA could induce gold nanoparticles (AuNPs) aggregate via hydrogen-bonding interactions, and further changed the absorption spectrum of gold nanoparticles to overlap with a certain emission spectrum of ratiometric fluorescence sensor. AuNPs had inner filtration effect (IFE) on the ratiometric fluorescence sensor. Due to the IFE, the dispersive AuNPs could quench GQDS, whereas the clustered AuNPs could quench RQDS. With the addition of DA, the color of ratiometric fluorescence changed from orange red to green. To simplify the detection process, a smartphone was employed to detecting DA in human urine by measuring RGB value of fluorescence color changes with a detection limit of 86 nM. This proposed method has the advantages of low cost, easy prevalence and simple operation, thus provides a great promise for rapid detection of biomarker in biological samples.
Collapse
Affiliation(s)
- Xia Wu
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Xi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Jianbo Ma
- Jinan Special Equipment Inspection and Research, Jinan, Shandong 250101, PR China
| | - Yunyi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| |
Collapse
|
20
|
Singh KR, Singh P, Mallick S, Singh J, Pandey SS. Chitosan stabilized copper iodide nanoparticles enabled nano-bio-engineered platform for efficient electrochemical biosensing of dopamine. Int J Biol Macromol 2023; 253:127587. [PMID: 37866579 DOI: 10.1016/j.ijbiomac.2023.127587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Neurodegenerative disorders are one of the significant challenges to the aging society, as per the United Nations, where 1 in 6 people globally over 65 years of age are expected to suffer by 2050. The exact pathophysiological root of these disorders is although not known adequately, but reduced dopamine (most significant neurotransmitters) levels have been reported in people affected by Parkinson's disease. Sensitive detection and effective monitoring of dopamine can help to diagnose these neurodegenerative disorders at a very early stage, which will help to properly treat these disorders and slow down their progression. Therefore, it is crucial to detect physiological and clinically acceptable amounts of dopamine with high sensitivity and selectivity in basic pathophysiology research, medication, and illness diagnosis. Here in this present investigation, nano-bio-engineered stable chitosan stabilized copper iodide nanoparticles (CS@CuI NPs) were synthesized to engineer the active biosensing platform for developing dopamine biosensors. Initially, the as-synthesized nano-bio-engineered CS@CuI NPs were subjected to its drop-casting onto an Indium tin oxide (ITO) conducting glass substrate. This substrate platform was then utilized to immobilize tyrosinase (Tyr) enzyme by drop-casting to fabricate Tyr/CS@CuI NPs/ITO bioelectrode for the ultrasensitive determination of dopamine. Several techniques were used to characterize the structural, optical, and morphological properties of the synthesized CS@CuI NPs and Tyr/CS@CuI NPs/ITO bioelectrode. Further, the as-prepared bioelectrode was evaluated for its suitability and electrocatalytic behaviour towards dopamine by cyclic voltammetry. A perusal of the electroanalytic results of the fabricated biosensor revealed that under the optimized experimental conditions, Tyr/CS@CuI NPs/ITO bioelectrode exhibits a very high electrochemical sensitivity of 11.64 μA μM-1 cm-2 towards dopamine with the low limit of detection and quantification of 0.02 and 0.386 μM, respectively. In addition, the fabricated bioelectrode was stable up to 46 days with only 4.82 % current loss, reusable till 20 scans, and it also performed effectively while real sample analysis. Therefore, the nano-bio-engineered biosensor platform being reported can determine deficient dopamine levels in a very selective and sensitive manner, which can help adequately manage neurodegenerative disorders, further slowing down the disease progression.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Pooja Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Sadhucharan Mallick
- Department of Chemistry, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| |
Collapse
|
21
|
Ostertag BJ, Ross AE. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective. ECS SENSORS PLUS 2023; 2:043601. [PMID: 38170109 PMCID: PMC10759280 DOI: 10.1149/2754-2726/ad15a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Carbon-based sensors have remained critical materials for electrochemical detection of neurochemicals, rooted in their inherent biocompatibility and broad potential window. Real-time monitoring using fast-scan cyclic voltammetry has resulted in the rise of minimally invasive carbon fiber microelectrodes as the material of choice for making measurements in tissue, but challenges with carbon fiber's innate properties have limited its applicability to understudied neurochemicals. Here, we provide a critical review of the state of carbon-based real-time neurochemical detection and offer insight into ways we envision addressing these limitations in the future. This piece focuses on three main hinderances of traditional carbon fiber based materials: diminished temporal resolution due to geometric properties and adsorption/desorption properties of the material, poor selectivity/specificity to most neurochemicals, and the inability to tune amorphous carbon surfaces for specific interfacial interactions. Routes to addressing these challenges could lie in methods like computational modeling of single-molecule interfacial interactions, expansion to tunable carbon-based materials, and novel approaches to synthesizing these materials. We hope this critical piece does justice to describing the novel carbon-based materials that have preceded this work, and we hope this review provides useful solutions to innovate carbon-based material development in the future for individualized neurochemical structures.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| |
Collapse
|
22
|
Li M, Wang G, Dai J, Zhao Z, Zhe Y, Yang H, Lin Y. Bioinspired CuZn-N/C Single-Atom Nanozyme with High Substrate Specificity for Selective Online Monitoring of Epinephrine in Living Brain. Anal Chem 2023; 95:14365-14374. [PMID: 37712586 DOI: 10.1021/acs.analchem.3c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Though many elegant laccase mimics have emerged, these mimics generally have no substrate selectivity as well as low activity, making it difficult to fulfill the demand for monitoring in physiological conditions. Herein, inspired by the Cu-N ligand structure in the active site of natural laccase, we revealed that a carbon nanomaterial with atomically dispersed Cu and Zn atoms (CuZn-N/C) and a well-defined ligand structure could function as an effective laccase mimic for selectively catalyzing epinephrine (EP) oxidation. Catalytic activity of the CuZn-N/C nanozyme was superior to those of Cu-N/C and Zn-N/C and featured a Km value nearly 3-fold lower than that of natural laccase, which indicated that CuZn-N/C has a better affinity for EP. Density functional theory (DFT) revealed the mechanism of the superior catalytic ability of dual-metal CuZn-N/C as follows: (1) the exact distance of the two metal atoms in the CuZn-N/C catalyst makes it suitable for adsorption of the EP molecule, and the CuZn-N/C catalyst can offer the second hydrogen bond that stabilizes the adsorption; (2) molecular orbitals and density of states indicate that the strong interaction between the EP molecule and CuZn-N/C is important for EP catalytic oxidization. Furthermore, a sensitive and selective online optical detection platform (OODP) is constructed for determining EP with a low limit of detection (LOD) of 0.235 μM and a linear range of 0.2-20 μM. The system allows real-time measurement of EP release in the rat brain in vivo following ischemia with dexmedetomidine administration. This work not only provides an idea of designing efficient laccase mimics but also builds a promising chemical platform for better understanding EP-related drug action for ischemic cerebrovascular illnesses and opens up possibilities to explore brain function.
Collapse
Affiliation(s)
- Mengying Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jing Dai
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yadong Zhe
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Huan Yang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
23
|
Li D, Mu Y. Neuromodulatory system in network science: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al. Phys Life Rev 2023; 46:155-157. [PMID: 37442033 DOI: 10.1016/j.plrev.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Affiliation(s)
- Danyang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
24
|
Wu F, Yu P, Mao L. New Opportunities of Electrochemistry for Monitoring, Modulating, and Mimicking the Brain Signals. JACS AU 2023; 3:2062-2072. [PMID: 37654584 PMCID: PMC10466370 DOI: 10.1021/jacsau.3c00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
In vivo electrochemistry is a powerful key for unlocking the chemical consequences in neural networks of the brain. The past half-century has witnessed the technology revolutionization in this field along with innovations in electrochemical concepts, principles, methods, and devices. Present applications of electrochemical approaches have extended from measuring neurochemical concentrations to modulating and mimicking brain signals. In this Perspective, newly reported strategies for tackling long-standing challenges of in vivo electrochemical brain monitoring (i.e., basal level measurement, electroactivity dependence, in vivo stability, neuron compatibility, multiplexity, and implantable device fabrication) are highlighted. Moreover, recent progress on neuromodulation tools and neuromorphic devices in electrochemical frameworks is introduced. A glimpse of future opportunities for electrochemistry in brain research is offered at last.
Collapse
Affiliation(s)
- Fei Wu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Liu Y, Liu Z, Zhou Y, Tian Y. Implantable Electrochemical Sensors for Brain Research. JACS AU 2023; 3:1572-1582. [PMID: 37388703 PMCID: PMC10301805 DOI: 10.1021/jacsau.3c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Implantable electrochemical sensors provide reliable tools for in vivo brain research. Recent advances in electrode surface design and high-precision fabrication of devices led to significant developments in selectivity, reversibility, quantitative detection, stability, and compatibility of other methods, which enabled electrochemical sensors to provide molecular-scale research tools for dissecting the mechanisms of the brain. In this Perspective, we summarize the contribution of these advances to brain research and provide an outlook on the development of the next generation of electrochemical sensors for the brain.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Zhichao Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yi Zhou
- School
of Basic Medical Sciences, Chengdu University
of Traditional Chinese Medicine, Sichuan 611137, People’s Republic of China
| | - Yang Tian
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|
26
|
Sen D, Lazenby RA. Selective Aptamer Modification of Au Surfaces in a Microelectrode Sensor Array for Simultaneous Detection of Multiple Analytes. Anal Chem 2023; 95:6828-6835. [PMID: 37071798 DOI: 10.1021/acs.analchem.2c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Aptamers have been employed as the biorecognition element in electrochemical aptamer-based (E-AB) biosensors, for the detection of a diverse range of analyte molecules, on electrodes with sizescales ranging from a few microns to several millimeters. Simultaneous detection of multiple different analytes requires the selective modification of multiple electrode surfaces with different aptamers. This process is typically achieved by incubating separate macroscale electrodes in a solution with the desired aptamer, which is unsuitable for microelectrode arrays in which the electrodes are closely spaced. In this work, we selectively modified electrode surfaces with thiolated aptamers of different single-stranded DNA sequences, by successive removal and addition of thiol monolayers. This was achieved by electrodesorption of thiol monolayers using controlled potential, to expose unmodified gold electrodes to be modified with a different thiolated aptamer, thus enabling multiple different aptamers to be used on the surfaces of closely spaced microelectrodes. All aptamers were methylene blue terminated, allowing redox currents to be measured and used to monitor aptamer probe packing density on the electrode surface and the selectivity of the sensors. Here, we demonstrate the microscale E-AB sensor multianalyte detection method using aptamers for target analytes, adenosine triphosphate, dopamine, and serotonin, which can ultimately be applied to perform localized simultaneous detection using electrode arrays.
Collapse
Affiliation(s)
- Debashis Sen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla 3506, Bangladesh
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
27
|
Chu SS, Nguyen HA, Lin D, Bhatti M, Jones-Tinsley CE, Do AH, Frostig RD, Nenadic Z, Xu X, Lim MM, Cao H. Development of highly sensitive, flexible dual L-glutamate and GABA microsensors for in vivo brain sensing. Biosens Bioelectron 2023; 222:114941. [PMID: 36455372 DOI: 10.1016/j.bios.2022.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Real-time tracking of neurotransmitter levels in vivo has been technically challenging due to the low spatiotemporal resolution of current methods. Since the imbalance of cortical excitation/inhibition (E:I) ratios are associated with a variety of neurological disorders, accurate monitoring of excitatory and inhibitory neurotransmitter levels is crucial for investigating the underlying neural mechanisms of these conditions. Specifically, levels of the excitatory neurotransmitter L-glutamate, and the inhibitory neurotransmitter GABA, are assumed to play critical roles in the E:I balance. Therefore, in this work, a flexible electrochemical microsensor is developed for real-time simultaneous detection of L-glutamate and GABA. The flexible polyimide substrate was used for easier handling during implantation and measurement, along with less brain damage. Further, by electrochemically depositing Pt-black nanostructures on the sensor's surface, the active surface area was enhanced for higher sensitivity. This dual neurotransmitter sensor probe was validated under various settings for its performance, including in vitro, ex vivo tests with glutamatergic neuronal cells and in vivo test with anesthetized rats. Additionally, the sensor's performance has been further investigated in terms of longevity and biocompatibility. Overall, our dual L-glutamate:GABA sensor microprobe has its unique features to enable accurate, real-time, and long-term monitoring of the E:I balance in vivo. Thus, this new tool should aid investigations of neural mechanisms of normal brain function and various neurological disorders.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Sciences, University of California Irvine, 92697, CA, USA
| | - Derrick Lin
- Department of Neurology, University of California Irvine, CA, 92697, USA
| | - Mehwish Bhatti
- Department of Neurobiology and Behavior, University of California, CA, 92697, USA
| | - Carolyn E Jones-Tinsley
- VA Portland Health Care System, Department of Neurology, Oregon Health and Science University, OR, 97239, USA
| | - An Hong Do
- Department of Neurology, University of California Irvine, CA, 92697, USA
| | - Ron D Frostig
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Neurobiology and Behavior, University of California, CA, 92697, USA
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Anatomy and Neurobiology, University of California Irvine, CA, 92697, USA; Center for Neural Circuit Mapping, University of California Irvine, CA, 92697, USA
| | - Miranda M Lim
- VA Portland Health Care System, Department of Neurology, Oregon Health and Science University, OR, 97239, USA
| | - Hung Cao
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Electrical Engineering and Computer Sciences, University of California Irvine, 92697, CA, USA; Center for Neural Circuit Mapping, University of California Irvine, CA, 92697, USA; Department of Computer Science, University of California Irvine, CA, 92697, USA.
| |
Collapse
|
28
|
Yin Y, Zeng H, Zhang S, Gao N, Liu R, Cheng S, Zhang M. Hydrogel-Coated Microelectrode Resists Protein Passivation of In Vivo Amperometric Sensors. Anal Chem 2023; 95:3390-3397. [PMID: 36725686 DOI: 10.1021/acs.analchem.2c04806] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Passivation of electrodes caused by nonspecific adsorption of protein can dramatically reduce sensing sensitivity and accuracy, which is a great challenge for in vivo neurochemical monitoring. However, most antipassivation strategies are not suitable to carbon fiber microelectrodes (CFMEs) for in vivo measurement, and these methods also do not work on electrochemical biosensors that fix biometric elements. In this study, we demonstrate that chitosan hydrogel-coated microelectrodes can avoid the current passivation caused by protein adsorption on the surface of carbon fiber because the chitosan hydrogel prepared by local pH gradient caused by hydrogen evolution reaction has three-dimensional networks containing large amounts of water. The highly hydrophilic three-dimensional structure of hydrogel not only forms a biocompatible interface to confine enzymes but also keeps the fast mass transfer of analytes, such as dopamine, ascorbic acid, and glucose. The consistency of the precalibration and postcalibration of the prepared sensor enables in vivo amperometric detection of both electroactive species based on their redox property and electroinactive species based on the enzyme. This study provides a simple and versatile strategy to constitute an amperometric sensor interface to resist passivation of protein adsorption in a complex biological environment such as the brain.
Collapse
Affiliation(s)
- Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Nan Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rantong Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
29
|
Wang Y, Qian Y, Zhang L, Zhang Z, Chen S, Liu J, He X, Tian Y. Conductive Metal-Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain. J Am Chem Soc 2023; 145:2118-2126. [PMID: 36650713 DOI: 10.1021/jacs.2c07053] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, we demonstrated a strategy to regulate the conductive metal-organic framework (MOF) surface, by the conjugated molecule wires for selective and sensitive determination of dopamine (DA) in the live brain. The MOFs were decorated at the carbon fiber electrode deposited by Au nanoleaves as the upper electric transducer to provide rich electrocatalytic sites for electron transfer of neurochemicals at the electrode surface, leading to greatly enhanced sensitivity for detection of neurochemicals. On the other hand, the conjugated molecular wire, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1), was synthesized and assembled as an underlying bridge to regulate the electrochemical processes at the MOF-based electrode, specifically decreasing the reaction Gibbs free energy of DA oxidation, thus selectively promoting the heterogeneous electron transfer of DA from the MOF layer to the electrode surface. Owing to the electrocatalytic activity for DA oxidation, the present microsensor exhibited high selectivity for real-time tracking of DA in a good linear relationship in the range of 0.004-0.4 μM with a detection limit of 1 nM. Eventually, this functionalized electrode was successfully applied for in vivo monitoring of DA in mouse brains with Parkinson's disease (PD) model. The results indicated that the levels of DA were obviously decreased in both acute and subacute PD models. Moreover, the level of DA strongly depended on the amount of uric acid (UA), a physiological antioxidant, which rose as the UA amount was lower than 200 mg kg-1 but was downregulated again after treatment by a higher amount of UA.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yinjie Qian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhihui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shiwei Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jinfeng Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
30
|
Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:138-157. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
31
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
32
|
Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications. Catalysts 2023. [DOI: 10.3390/catal13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The molecular dynamics and density functional theory (DFT) can be applied to discriminate electrocatalyst’s electron transfer (ET) properties. It will be interesting to discriminate the ET properties of green electrocatalysts such as amino acids. Here, we have used DFT to compare the electrocatalytic abilities of asparagine and glutamine at the carbon paste electrode interface. Cyclic voltammetric results reveal that the electrocatalytic activities of aspargine are higher than glutamine for dopamine sensing. Dopamine requires less energy to bind with asparagine when compared to glutamine. Additionally, asparagine has higher electron-donating and accepting powers. Therefore, asparagine has a higher electrocatalytic activity than glutamine—the ability for the asparagine and glutamine carbon electrodes to detect dopamine in commercial injection, and to obtain satisfactory results. As a part of the work, we have also studied dopamine interaction with the modified carbon surface using molecular dynamics.
Collapse
|
33
|
Wu F, Yu P, Mao L. Multi-Spatiotemporal Probing of Neurochemical Events by Advanced Electrochemical Sensing Methods. Angew Chem Int Ed Engl 2023; 62:e202208872. [PMID: 36284258 DOI: 10.1002/anie.202208872] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Neurochemical events involving biosignals of different time and space dimensionalities constitute the complex basis of neurological functions and diseases. In view of this fact, electrochemical measurements enabling real-time quantification of neurochemicals at multiple levels of spatiotemporal resolution can provide informative clues to decode the molecular networks bridging vesicles and brains. This Minireview focuses on how scientific questions regarding the properties of single vesicles, neurotransmitter release kinetics, interstitial neurochemical dynamics, and multisignal interconnections in vivo have driven the design of electrochemical nano/microsensors, sensing interface engineering, and signal/data processing. An outlook for the future frontline in this realm will also be provided.
Collapse
Affiliation(s)
- Fei Wu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
34
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023; 192:114636. [PMID: 36481291 DOI: 10.1016/j.addr.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Collapse
Affiliation(s)
- Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
36
|
Biomass-derived carbon nanomaterials for sensor applications. J Pharm Biomed Anal 2023; 222:115102. [DOI: 10.1016/j.jpba.2022.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
37
|
Dong Z, Du F, Barkae TH, Ji K, Liu F, Snizhko D, Guan Y, Xu G. Luminol electrochemiluminescence by combining cathodic reduction and anodic oxidation at regenerable cobalt phthalocyanine modified carbon paste electrode for dopamine detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Rantataro S, Ferrer Pascual L, Laurila T. Ascorbic acid does not necessarily interfere with the electrochemical detection of dopamine. Sci Rep 2022; 12:20225. [PMID: 36418489 PMCID: PMC9684410 DOI: 10.1038/s41598-022-24580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
It is widely stated that ascorbic acid (AA) interferes with the electrochemical detection of neurotransmitters, especially dopamine, because of their overlapping oxidation potentials on typical electrode materials. As the concentration of AA is several orders of magnitude higher than the concentration of neurotransmitters, detection of neurotransmitters is difficult in the presence of AA and requires either highly stable AA concentration or highly selective neurotransmitter sensors. In contrast to the common opinion, we show that AA does not always interfere electrochemical detection of neurotransmitters. The decay of AA is rapid in cell culture medium, having a half-time of 2.1 hours, according to which the concentration decreases by 93% in 8 hours and by 99.75% in 18 hours. Thus, AA is eventually no longer detected by electrodes and the concentration of neurotransmitters can be effectively monitored. To validate this claim, we used unmodified single-wall carbon nanotube electrode to measure dopamine at physiologically relevant concentration range (25-1000 nM) from human midbrain organoid medium with highly linear response. Finally, AA is known to affect dopamine oxidation current through regeneration of dopamine, which complicates precise detection of small amounts of dopamine. By designing experiments as described here, this complication can be completely eliminated.
Collapse
Affiliation(s)
- Samuel Rantataro
- grid.5373.20000000108389418Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Laura Ferrer Pascual
- grid.5373.20000000108389418Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Tomi Laurila
- grid.5373.20000000108389418Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland ,grid.5373.20000000108389418Department of Chemistry and Materials Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
39
|
Zhe Y, Wang J, Zhao Z, Ren G, Du J, Li K, Lin Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens Bioelectron 2022; 220:114893. [DOI: 10.1016/j.bios.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
40
|
Guo C, He L, Liu S. Accelerating the peroxidase- and glucose oxidase-like activity of Au nanoparticles by seeded growth strategy and their applications for colorimetric detection of dopamine and glucose. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Pan Y, Zhang K, Wei H, Xiong T, Liu Y, Mao L, Yu P. Double-Barreled Micropipette Enables Neuron-Compatible In Vivo Analysis. Anal Chem 2022; 94:15671-15677. [DOI: 10.1021/acs.analchem.2c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yifei Pan
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing100190, China
- School of Chemical Science, University of Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Kailin Zhang
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing100190, China
- School of Chemical Science, University of Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Huan Wei
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing100190, China
- College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Tianyi Xiong
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing100190, China
- School of Chemical Science, University of Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Ying Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing100190, China
- School of Chemical Science, University of Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing100190, China
- School of Chemical Science, University of Chinese Academy of Sciences (CAS), Beijing100190, China
| |
Collapse
|
42
|
Kaur H, Siwal SS, Saini RV, Singh N, Thakur VK. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS NANOSCIENCE AU 2022; 3:1-27. [PMID: 37101467 PMCID: PMC10125382 DOI: 10.1021/acsnanoscienceau.2c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, United Kingdom
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|
43
|
Downs AM, Plaxco KW. Real-Time, In Vivo Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges. ACS Sens 2022; 7:2823-2832. [PMID: 36205360 PMCID: PMC9840907 DOI: 10.1021/acssensors.2c01428] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The continuous, real-time measurement of specific molecules in situ in the body would greatly improve our ability to understand, diagnose, and treat disease. The vast majority of continuous molecular sensing technologies, however, either (1) rely on the chemical or enzymatic reactivity of their targets, sharply limiting their scope, or (2) have never been shown (and likely will never be shown) to operate in the complex environments found in vivo. Against this background, here we review electrochemical aptamer-based (EAB) sensors, an electrochemical approach to real-time molecular monitoring that has now seen 15 years of academic development. The strengths of the EAB platform are significant: to date it is the only molecular measurement technology that (1) functions independently of the chemical reactivity of its targets, and is thus general, and (2) supports in vivo measurements. Specifically, using EAB sensors we, and others, have already reported the real-time, seconds-resolved measurements of multiple, unrelated drugs and metabolites in situ in the veins and tissues of live animals. Against these strengths, we detail the platform's remaining weaknesses, which include still limited measurement duration (hours, rather than the more desirable days) and the difficulty in obtaining sufficiently high performance aptamers against new targets, before then detailing promising approaches overcoming these hurdles. Finally, we close by exploring the opportunities we believe this potentially revolutionary technology (as well as a few, possibly competing, technologies) will create for both researchers and clinicians.
Collapse
Affiliation(s)
- Alex M. Downs
- Sandia National Laboratories, Albuquerque, NM 87106, USA
| | - Kevin W. Plaxco
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA,Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA,Corresponding author:
| |
Collapse
|
44
|
Li X, Jin Y, Zhu F, Liu R, Jiang Y, Jiang Y, Mao L. Electrochemical Conjugation of Aptamers on a Carbon Fiber Microelectrode Enables Highly Stable and Selective In Vivo Neurosensing. Angew Chem Int Ed Engl 2022; 61:e202208121. [DOI: 10.1002/anie.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Li
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ying Jin
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Fenghui Zhu
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ran Liu
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yan Jiang
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ying Jiang
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Lanqun Mao
- College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
45
|
Li X, Jin Y, Zhu F, Liu R, Jiang Y, Jiang Y, Mao L. Electrochemical Conjugation of Aptamers on Carbon Fiber Microelectrode Enables Highly Stable and Selective In Vivo Neurosensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Li
- Beijing Normal University College of Chemistry CHINA
| | - Ying Jin
- Beijing Normal University College of Chemistry CHINA
| | - Fenghui Zhu
- Beijing Normal University College of Chemistry CHINA
| | - Ran Liu
- Beijing Normal University College of Chemistry CHINA
| | - Yan Jiang
- Beijing Normal University College of Chemistry CHINA
| | - Ying Jiang
- Beijing Normal University College of Chemistry CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry No.19, Xinjiekouwai St, Haidian District 100875 Beijing CHINA
| |
Collapse
|
46
|
Billa S, Yanamadala Y, Hossain I, Siddiqui S, Moldovan N, Murray TA, Arumugam PU. Brain-Implantable Multifunctional Probe for Simultaneous Detection of Glutamate and GABA Neurotransmitters: Optimization and In Vivo Studies. MICROMACHINES 2022; 13:1008. [PMID: 35888825 PMCID: PMC9316119 DOI: 10.3390/mi13071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Imbalances in levels of glutamate (GLU) and gamma-aminobutyric acid (GABA) and their sub-second signaling dynamics occur in several brain disorders including traumatic brain injury, epilepsy, and Alzheimer's disease. The present work reports on the optimization and in vivo testing of a silicon (Si) multifunctional biosensor probe for sub-second simultaneous real-time detection of GLU and GABA. The Si probe features four surface-functionalized platinum ultramicroelectrodes (UMEs) for detection of GLU and GABA, a sentinel site, and integrated microfluidics for in-situ calibration. Optimal enzyme concentrations, size-exclusion phenylenediamine layer and micro spotting conditions were systematically investigated. The measured GLU sensitivity for the GLU and GABA sites were as high as 219 ± 8 nA μM-1 cm-2 (n = 3). The measured GABA sensitivity was as high as 10 ± 1 nA μM-1 cm-2 (n = 3). Baseline recordings (n = 18) in live rats demonstrated a useful probe life of at least 11 days with GLU and GABA concentrations changing at the levels of 100's and 1000's of μM and with expected periodic bursts or fluctuations during walking, teeth grinding and other activities and with a clear difference in the peak amplitude of the sensor fluctuations between rest (low) and activity (higher), or when the rat was surprised (a reaction with no movement). Importantly, the probe could improve methods for large-scale monitoring of neurochemical activity and network function in disease and injury, in live rodent brain.
Collapse
Affiliation(s)
- Sanjeev Billa
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272, USA; (S.B.); (I.H.)
| | - Yaswanthi Yanamadala
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (T.A.M.)
| | - Imran Hossain
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272, USA; (S.B.); (I.H.)
| | - Shabnam Siddiqui
- Department of Chemistry and Physics, Louisiana State University Shreveport, Shreveport, LA 71115, USA;
| | | | - Teresa A. Murray
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (T.A.M.)
| | - Prabhu U. Arumugam
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272, USA; (S.B.); (I.H.)
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (T.A.M.)
| |
Collapse
|
47
|
Wang Q, Zheng K, Zhang W, Li MJ. A sensitive photoluminescent sensor based on highly charged monoruthenium(II) complexes for dopamine detection. J Inorg Biochem 2022; 234:111902. [PMID: 35763905 DOI: 10.1016/j.jinorgbio.2022.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022]
Abstract
A sensitive and selective photoluminescent sensor based on the highly charged monoruthenium(II) complex was designed to detect dopamine (DA) in aqueous samples. Two novel highly charged cationic ruthenium(II) complexes [Ru(bpy)2(bpy-N)]X4 (bpy = 2,2'-bipyridine, bpy-N = 4,4'-bis[N,N,N-triethyl-(methylamino)]-2,2'-bipyridine, X- = [PF6]- (1a) or Cl- (1b) and [Ru(bpy)(bpy-N)2]X6 (X- = [PF6]- (2a) or Cl-(2b)) can be assembled with anionic surfactant sodium dodecylbenzene sulfonate (SDBS), leading to an enhancement of photoluminescence intensity. Upon addition of DA to the system, the photoluminescence intensity of the assembled system was quenched due to the energy transfer effect. It exhibited a wide linear range (0.1-50 μM) and low detection limit (10 nM). The sensor demonstrated a high selectivity toward DA, especially in the presence of adrenaline (Adr) and norepinephrine (NE), whose structures are similar to DA in biological systems. With the merits of simple operation, obvious phenomenon and fast response speed, the sensor had a potential application prospect in human urine sample.
Collapse
Affiliation(s)
- Qingqing Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Kai Zheng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Wanqing Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
48
|
Chen Z, Fu L, Liu XA, Yang Z, Li W, Li F, Luo Q. Real-time effects of nicotine exposure and withdrawal on neurotransmitter metabolism of hippocampal neuronal cells by microfluidic chip-coupled LC-MS. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution. Proc Natl Acad Sci U S A 2022; 119:e2202842119. [PMID: 35613050 DOI: 10.1073/pnas.2202842119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SignificanceThe neurotransmitter dopamine controls normal behavior and dopaminergic dysfunction is prevalent in multiple brain diseases. To reach a detailed understanding of how dopamine release and signaling are regulated at the subcellular level, we developed a near infrared fluorescent dopamine nanosensor 'paint' (AndromeDA) to directly image dopamine release and its spatiotemporal characteristics. With AndromeDA, we can ascribe discrete DA release events to defined axonal varicosities, directly assess the heterogeneity of DA release events across such release sites, and determine the molecular components of the DA release machinery. AndromeDA thus provides a new method for gaining fundamental insights into the core mechanisms of dopamine release, which with greatly benefit our knowledge of dopamine biology and pathobiology.
Collapse
|
50
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|