1
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Zabielski P, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Błachnio-Zabielska AU. Silencing the glycerol-3-phosphate acyltransferase-1 gene in the liver of mice fed a high-fat diet, enhances insulin sensitivity and glucose metabolism by promoting fatty acid beta-oxidation. Biomed Pharmacother 2024; 180:117531. [PMID: 39383732 DOI: 10.1016/j.biopha.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial β-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes β-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
3
|
Lee RG, Rudler DL, Rackham O, Filipovska A. Interorganelle phospholipid communication, a house not so divided. Trends Endocrinol Metab 2024; 35:872-883. [PMID: 38972781 DOI: 10.1016/j.tem.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
The presence of membrane-bound organelles with specific functions is one of the main hallmarks of eukaryotic cells. Organelle membranes are composed of specific lipids that govern their function and interorganelle communication. Discoveries in cell biology using imaging and omic technologies have revealed the mechanisms that drive membrane remodeling, organelle contact sites, and metabolite exchange. The interplay between multiple organelles and their interdependence is emerging as the next frontier for discovery using 3D reconstruction of volume electron microscopy (vEM) datasets. We discuss recent findings on the links between organelles that underlie common functions and cellular pathways. Specifically, we focus on the metabolism of ether glycerophospholipids that mediate organelle dynamics and their communication with each other, and the new imaging techniques that are powering these discoveries.
Collapse
Affiliation(s)
- Richard G Lee
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Danielle L Rudler
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Oliver Rackham
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Aleksandra Filipovska
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
4
|
Zhou L, Li S, Ren J, Wang D, Yu R, Zhao Y, Zhang Q, Xiao X. Circulating exosomal circRNA-miRNA-mRNA network in a familial partial lipodystrophy type 3 family with a novel PPARG frameshift mutation c.418dup. Am J Physiol Endocrinol Metab 2024; 327:E357-E370. [PMID: 39017680 DOI: 10.1152/ajpendo.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruiqi Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuxing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Wang JX, Luo Y, Limbu SM, Qian YC, Zhang YY, Li RX, Zhou WH, Qiao F, Chen LQ, Zhang ML, Du ZY. Inhibiting mitochondrial citrate shuttling induces hepatic triglyceride deposition in Nile tilapia (Oreochromis niloticus) through lipid anabolic remodeling. J Nutr Biochem 2024; 131:109678. [PMID: 38844080 DOI: 10.1016/j.jnutbio.2024.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024]
Abstract
The solute carrier family 25 member 1 (Slc25a1)-dependent mitochondrial citrate shuttle is responsible for exporting citrate from the mitochondria to the cytoplasm for supporting lipid biosynthesis and protein acetylation. Previous studies on Slc25a1 concentrated on pathological models. However, the importance of Slc25a1 in maintaining metabolic homeostasis under normal nutritional conditions remains poorly understood. Here, we investigated the mechanism of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis in male Nile tilapia (Oreochromis niloticus). To achieve the objective, we blocked the mitochondrial citrate shuttle by inhibiting Slc25a1 under normal nutritional conditions. Slc25a1 inhibition was established by feeding Nile tilapia with 250 mg/kg 1,2,3-benzenetricarboxylic acid hydrate for 6 weeks or intraperitoneal injecting them with dsRNA to knockdown slc25a1b for 7 days. The Nile tilapia with Slc25a1 inhibition exhibited an obesity-like phenotype accompanied by fat deposition, liver damage and hyperglycemia. Moreover, Slc25a1 inhibition decreased hepatic citrate-derived acetyl-CoA, but increased hepatic triglyceride levels. Furthermore, Slc25a1 inhibition replenished cytoplasmic acetyl-CoA through enhanced acetate pathway, which led to hepatic triglycerides accumulation. However, acetate-derived acetyl-CoA caused by hepatic Slc25a1 inhibition did not activate de novo lipogenesis, but rather modified protein acetylation. In addition, hepatic Slc25a1 inhibition enhanced fatty acids esterification through acetate-derived acetyl-CoA, which increased Lipin1 acetylation and its protein stability. Collectively, our results illustrate that inhibiting mitochondrial citrate shuttle triggers lipid anabolic remodeling and results in lipid accumulation, indicating the importance of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Jun-Xian Wang
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Yu-Cheng Qian
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan-Yu Zhang
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-Xin Li
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wen-Hao Zhou
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, Department of Zoology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Akiki P, Delamotte P, Montagne J. Lipid Metabolism in Relation to Carbohydrate Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39192070 DOI: 10.1007/5584_2024_821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.
Collapse
Affiliation(s)
- Perla Akiki
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Reis LG, de Azevedo Ruiz VL, Massami Kitamura SM, Furugen Cesar Andrade A, de Oliveira Bussiman F, Daiana Poleti M, Coelho da Silveira J, Fukumasu H, Faccioli LH, Marzocchi-Machado CM, de Francisco Strefezzi R, Neves Garcia E, Casey T, Netto AS. Feeding sows milk biofortified with n-6 and n-3 modulates immune status of sows and drives positive transgenerational effects. PLoS One 2024; 19:e0306707. [PMID: 39190668 PMCID: PMC11349115 DOI: 10.1371/journal.pone.0306707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024] Open
Abstract
The risk of chronic diseases such as cardiovascular disease, cancer, inflammation, obesity, and autoimmune disease is linked to the quality of dietary fats, with lower intake of saturated and higher intake of n-6 and n-3 polyunsaturated fatty acids (PUFA) considered beneficial to health. This study investigated the effect of supplementing sows' diets with cow's milk biofortified with n-6 or n-3 PUFA, at varying n-6/n-3 ratios (8.26, 7.92, and 2.72) during their growing phase and throughout gestation and lactation on their reproductive performance and immune-inflammatory status. Specifically, we analyzed circulating cholesterol and fatty acid profiles of serum, colostrum and milk, sow body weight, and neonate colostrum intake, Apgar scores, muscle composition, and embryo viability. Analysis of circulating immunoglobulins (Ig), interleukins, and eicosanoids and complement system hemolytic activity were used to evaluate inflammatory and immune responses of sows and piglets. Expression of lipolysis and lipogenic genes in the liver were investigated in sows and piglets, with additional investigation of hypothalamus genes regulating appetite in sows. Feeding sows milk biofortified with n-6 and n-3 PUFA altered serum fatty acid profiles, reduced triglycerides (TG), increased embryo total number, increased early gestation backfat, and reduced colostrum IgG. Piglets of biofortified sow had higher circulating IgA, IgM and TNF-α, and lower IL-10. Sows fed n-3 biofortified milk had higher very low-density lipoproteins (VLDL) and TNF-α in circulation. Offspring from sows fed n-6 versus n-3 biofortified milk had lower IL-10 and expression levels of SREBP-1. N-3 versus n-6 also lowered arachidonic acid (ARA) levels in sow's milk and piglet viability 1. Findings offer insights into the potential health benefits of dietary supplementation with biofortified milk in swine, which serve as good model of diet-nutrition studies of humans, and therefore can potentially be considered in dietary recommendations both human and animal populations.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Vera Letticie de Azevedo Ruiz
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Simone Maria Massami Kitamura
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - André Furugen Cesar Andrade
- Department of Animal Reproduction, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | | | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cleni Mara Marzocchi-Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo de Francisco Strefezzi
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Edna Neves Garcia
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Arlindo Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
10
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
11
|
Xue X, Wang L, Wu R, Li Y, Liu R, Ma Z, Jia K, Zhang Y, Li X. Si-Wu-Tang alleviates metabolic dysfunction-associated fatty liver disease by inhibiting ACSL4-mediated arachidonic acid metabolism and ferroptosis in MCD diet-fed mice. Chin Med 2024; 19:79. [PMID: 38844978 PMCID: PMC11157816 DOI: 10.1186/s13020-024-00953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver disease worldwide. Si-Wu-Tang (SWT), a traditional Chinese medicine decoction has shown therapeutic effects on various liver diseases. However, the hepatoprotective effects and underlying mechanism of SWT on MAFLD remain unclear. METHODS First, a methionine-choline-deficient (MCD) diet-fed mice model was used and lipidomic analysis and transcriptomic analysis were performed. The contents of total iron ions, ferrous ions, and lipid peroxidation were detected and Prussian blue staining was performed to confirm the protective effects of SWT against ferroptosis. Finally, chemical characterization and network pharmacological analysis were employed to identify the potential active ingredients. RESULTS Serological and hepatic histopathological findings indicated SWT's discernible therapeutic impact on MCD diet-induced MAFLD. Lipidomic analysis revealed that SWT improved intrahepatic lipid accumulation by inhibiting TG synthesis and promoting TG transport. Transcriptomic analysis suggested that SWT ameliorated abnormal FA metabolism by inhibiting FA synthesis and promoting FA β-oxidation. Then, ferroptosis phenotype experiments revealed that SWT could effectively impede hepatocyte ferroptosis, which was induced by long-chain acyl-CoA synthetase 4 (ACSL4)-mediated esterification of arachidonic acid (AA). Finally, chemical characterization and network pharmacological analysis identified that paeoniflorin and other active ingredients might be responsible for the regulative effects against ferroptosis and MAFLD. CONCLUSION In conclusion, our study revealed the intricate mechanism through which SWT improved MCD diet-induced MAFLD by targeting FA metabolism and ferroptosis in hepatocytes, thus offering a novel therapeutic approach for the treatment of MAFLD and its complications.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
12
|
Lin Y, Huang H, Cao J, Zhang K, Chen R, Jiang J, Yi X, Feng S, Liu J, Zheng S, Ling Q. An integrated proteomics and metabolomics approach to assess graft quality and predict early allograft dysfunction after liver transplantation: a retrospective cohort study. Int J Surg 2024; 110:3480-3494. [PMID: 38502860 PMCID: PMC11175820 DOI: 10.1097/js9.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Early allograft dysfunction (EAD) is a common complication after liver transplantation (LT) and is associated with poor prognosis. Graft itself plays a major role in the development of EAD. We aimed to reveal the EAD-specific molecular profiles to assess graft quality and establish EAD predictive models. METHODS A total of 223 patients who underwent LT were enrolled and divided into training ( n =73) and validation ( n =150) sets. In the training set, proteomics was performed on graft biopsies, together with metabolomics on paired perfusates. Differential expression, enrichment analysis, and protein-protein interaction network were used to identify the key molecules and pathways involved. EAD predictive models were constructed using machine learning and verified in the validation set. RESULTS A total of 335 proteins were differentially expressed between the EAD and non-EAD groups. These proteins were significantly enriched in triglyceride and glycerophospholipid metabolism, neutrophil degranulation, and the MET-related signaling pathway. The top 12 graft proteins involved in the aforementioned processes were identified, including GPAT1, LPIN3, TGFB1, CD59, and SOS1. Moreover, downstream metabolic products, such as lactate dehydrogenase, interleukin-8, triglycerides, and the phosphatidylcholine/phosphorylethanolamine ratio in the paired perfusate displayed a close relationship with the graft proteins. To predict the occurrence of EAD, an integrated model using perfusate metabolic products and clinical parameters showed areas under the curve of 0.915 and 0.833 for the training and validation sets, respectively. It displayed superior predictive efficacy than that of currently existing models, including donor risk index and D-MELD scores. CONCLUSIONS We identified novel biomarkers in both grafts and perfusates that could be used to assess graft quality and provide new insights into the etiology of EAD. Herein, we also offer a valid tool for the early prediction of EAD.
Collapse
Affiliation(s)
- Yimou Lin
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaying Cao
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ke Zhang
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xuewen Yi
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shi Feng
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Shusen Zheng
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, Hangzhou, China
| | - Qi Ling
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, Hangzhou, China
| |
Collapse
|
13
|
Zhu T, Zhao H, Chao Y, Gao S, Dong X, Wang Z. Olanzapine-induced weight gain and lipid dysfunction in mice between different gender. Biomed Chromatogr 2024; 38:e5864. [PMID: 38551083 DOI: 10.1002/bmc.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/21/2024]
Abstract
As one of the most common antipsychotics, olanzapine may cause metabolic-related adverse effects, but it is still unknown how olanzapine alters lipid metabolism. In this study, we found that olanzapine-treated mice showed varying degrees of dyslipidemia, which was particularly pronounced in female mice. Based on ultra-performance liquid chromatography-quadrupole time-of-flight-MS (UPLC-Q-TOF-MS) technology and lipid metabolomics, we mapped the changes in lipid metabolism in olanzapine-treated mice and then compared the changes in lipid metabolism between male and female mice. There were 98 metabolic differentiators between the olanzapine-treated and control groups in females and 79 in males. These metabolites were glycerolipids, glycerophospholipids, fatty amides, and sphingolipids, which are involved in glycerolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. These results suggest that olanzapine-induced changes in the levels of lipid metabolites are closely associated with disturbances in lipid metabolic pathways, which may underlie lipemia. This lipidome profiling study not only visualizes changes in lipid metabolism in liver tissue but also provides a foundation for understanding the regulatory pathways and mechanisms involved in olanzapine-induced lipid metabolism disorders. Furthermore, this study demonstrates differences in lipid metabolism between males and females, providing a reference for clinical treatment regimen selection.
Collapse
Affiliation(s)
- Tong Zhu
- School of Medicine, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Zuowei Wang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, China
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
14
|
Liu C, Lin Y, Wang Y, Lin S, Zhou J, Tang H, Yi X, Ma Z, Xia T, Jiang B, Tian F, Ju Z, Liu B, Gu X, Yang Z, Wang W. HuR promotes triglyceride synthesis and intestinal fat absorption. Cell Rep 2024; 43:114238. [PMID: 38748875 DOI: 10.1016/j.celrep.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.
Collapse
Affiliation(s)
- Cihang Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yunping Lin
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Shuyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Central China Fuwai Hospital and Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan 450003, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China
| | - Bin Jiang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Zhongzhou Yang
- Medical School, Nanjing University, Nanjing 210093, China.
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China; Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranostics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| |
Collapse
|
15
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
16
|
Liu H, Yao M, Ren J. Codonopsis pilosula-derived glycopeptide dCP1 promotes the polarization of tumor-associated macrophage from M2-like to M1 phenotype. Cancer Immunol Immunother 2024; 73:128. [PMID: 38743074 PMCID: PMC11093951 DOI: 10.1007/s00262-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China
| | - Maojin Yao
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Kostecka LG, Mendez S, Li M, Khare P, Zhang C, Le A, Amend SR, Pienta KJ. Cancer cells employ lipid droplets to survive toxic stress. Prostate 2024; 84:644-655. [PMID: 38409853 DOI: 10.1002/pros.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Lipid reprogramming is a known mechanism to increase the energetic demands of proliferating cancer cells to drive and support tumorigenesis and progression. Elevated lipid droplets (LDs) are a well-known alteration of lipid reprogramming in many cancers, including prostate cancer (PCa), and are associated with high tumor aggressiveness as well as therapy resistance. The mechanism of LD accumulation and specific LD functions are still not well understood; however, it has been shown that LDs can form as a protective mechanism against lipotoxicity and lipid peroxidation in the cell. METHODS This study investigated the significance of LDs in PCa. This was done by staining, imaging, image quantification, and flow cytometry analysis of LDs in PCa cells. Additionally, lipidomics and metabolomics experiments were performed to assess the difference of metabolites and lipids in control and treatment surviving cancer cells. Lastly, to assess clinical significance, multiple publicly available datasets were mined for LD-related data. RESULTS Our study demonstrated that prostate and breast cancer cells that survive 72 h of chemotherapy treatment have elevated LDs. These LDs formed in tandem with elevated reactive oxygen species levels to sequester damaged and excess lipids created by oxidative stress, which promoted cell survival. Additionally, by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) (which catalyzes triglyceride synthesis into LDs) and treating with chemotherapy simultaneously, we were able to decrease the overall amount of LDs and increase cancer cell death compared to treating with chemotherapy alone. CONCLUSIONS Overall, our study proposes a potential combination therapy of DGAT1 inhibitors and chemotherapy to increase cancer cell death.
Collapse
Affiliation(s)
- Laurie G Kostecka
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sabrina Mendez
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
| | - Melvin Li
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pratik Khare
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Cissy Zhang
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anne Le
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah R Amend
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Araújo AM, Marques SI, Guedes de Pinho P, Carmo H, Carvalho F, Silva JP. Identification of key neuronal mechanisms triggered by dimethyl fumarate in SH-SY5Y human neuroblastoma cells through a metabolomic approach. Arch Toxicol 2024; 98:1151-1161. [PMID: 38368281 PMCID: PMC10944387 DOI: 10.1007/s00204-024-03683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Dimethyl fumarate (DMF) is an old drug used for psoriasis treatment that has recently been repurposed to treat relapse-remitting multiple sclerosis, mostly due to its neuro- and immunomodulatory actions. However, mining of a pharmacovigilance database recently ranked DMF as the second pharmaceutical most associated with cognitive adverse events. To our best knowledge, the signaling mechanisms underlying its therapeutic and neurotoxic outcomes remain mostly undisclosed. This work thus represents the first-hand assessment of DMF-induced metabolic changes in undifferentiated SH-SY5Y human neuroblastoma cells, through an untargeted metabolomic approach using gas chromatography-mass spectrometry (GC-MS). The endometabolome was analyzed following 24 h and 96 h of exposure to two pharmacologically relevant DMF concentrations (0.1 and 10 μM). None of these conditions significantly reduced metabolic activity (MTT reduction assay). Our data showed that 24 h-exposure to DMF at both concentrations tested mainly affected metabolic pathways involved in mitochondrial activity (e.g., citric acid cycle, de novo triacylglycerol biosynthesis), and the synthesis of catecholamines and serotonin by changing the levels of their respective precursors, namely phenylalanine (0.68-fold decrease for 10 μM DMF vs vehicle), and tryptophan (1.36-fold increase for 0.1 μM DMF vs vehicle). Interestingly, taurine, whose levels can be modulated via Nrf2 signaling (DMF's primary target), emerged as a key mediator of DMF's neuronal action, displaying a 3.86-fold increase and 0.27-fold decrease for 10 μM DMF at 24 h and 96 h, respectively. A 96 h-exposure to DMF seemed to mainly trigger pathways associated with glucose production (e.g., gluconeogenesis, glucose-alanine cycle, malate-aspartate shuttle), possibly related to the metabolism of DMF into monomethyl fumarate and its further conversion into glucose via activation of the citric acid cycle. Overall, our data contribute to improving the understanding of the events associated with neuronal exposure to DMF.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Sandra I Marques
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
19
|
Zhang C, Xu X, Zhang S, Xiao M, Liu Y, Li J, Du G, Lv X, Chen J, Liu L. Detection and analysis of triacylglycerol regioisomers via electron activated dissociation (EAD) tandem mass spectrometry. Talanta 2024; 270:125552. [PMID: 38118324 DOI: 10.1016/j.talanta.2023.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Triacylglycerols (TGs) are important components of human diet. The positional distribution of fatty acids (FAs) on the glycerol backbone affects the chemistry and physical properties of fats. Especially for infants, the structure of TGs plays an important role in the growth and development. However, limited by detecting technology, accurately identifying regioisomers of ABA/AAB and BAC/ABC/ACB type TGs is a significant challenge for human milk utilization and the development of infant formula. For this, we exploit a novel method for identifying the regioisomers of ABA/AAB and BAC/ABC/ACB type TGs within complex lipid mixtures, via used electron activated dissociation (EAD) tandem mass spectrometry. The distribution information of acyl chains at the sn-2 and sn-1/3 positions of glycerol backbone and double bonds in unsaturated FAs can be easily obtained by fragmenting TG ions with energetic electrons (15 eV). Then, the standard curve was established by correlating the peak area intensity of sn-2 characteristic product ion with the content of TG regioisomers standard. These analytical methods successfully enabled the identification and quantification of TG regioisomers in human milk, cow milk, infant formula, palm oil, and sunflower oil. Additionally, the distribution of the double-bond positions of unsaturated FAs in these samples was also identified. Compared to traditional methods, this approach eliminates the need for complex processing and analysis procedures, enabling rapid structural characterization of ABA/AAB and BAC/ABC/ACB type TGs within 17 min. Hence, we provide a rapid and convenient methodology for detecting and analyzing ABA/AAB and BAC/ABC/ACB type TG regioisomers, thereby offering valuable assistance in the development of specialized formulations and facilitating effective process control for ensuring the quality of edible oils and fats.
Collapse
Affiliation(s)
- Chenyang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | | | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
20
|
Zhang C, Steadman M, Santos HP, Shaikh SR, Xavier RM. GPAT1 Activity and Abundant Palmitic Acid Impair Insulin Suppression of Hepatic Glucose Production in Primary Mouse Hepatocytes. J Nutr 2024; 154:1109-1118. [PMID: 38354952 PMCID: PMC11007742 DOI: 10.1016/j.tjnut.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glycerol-3-phosphate acyltransferase (GPAT) activity is correlated with obesity and insulin resistance in mice and humans. However, insulin resistance exists in people with normal body weight, and individuals with obesity may be metabolically healthy, implying the presence of complex pathophysiologic mechanisms underpinning insulin resistance. OBJECTIVE We asked what conditions related to GPAT1 must be met concurrently for hepatic insulin resistance to occur. METHODS Mouse hepatocytes were overexpressed with GPATs via adenoviral infection or exposed to high or low concentrations of glucose. Glucose production by the cells and phosphatidic acid (PA) content in the cells were assayed, GPAT activity was measured, relative messenger RNA expressions of sterol-regulatory element-binding protein 1c (SREBP1c), carbohydrate response element-binding protein (ChREBP), and GPAT1 were analyzed, and insulin signaling transduction was examined. RESULTS Overexpressing GPAT1 in mouse hepatocytes impaired insulin's suppression of glucose production, together with an increase in both N-ethylmaleimide-resistant GPAT activity and the content of di-16:0 PA. Akt-mediated insulin signaling was inhibited in hepatocytes that overexpressed GPAT1. When the cells were exposed to high-glucose concentrations, insulin suppression of glucose production was impaired, and adding palmitic acid exacerbated this impairment. High-glucose exposure increased the expression of SREBP1c, ChREBP, and GPAT1 by ∼2-, 5-, and 5.7-fold, respectively. The addition of 200 mM palmitic acid or linoleic acid to the culture media did not change the upregulation of expression of these genes by high glucose. High-glucose exposure increased di-16:0 PA content in the cells, and adding palmitic acid further increased di-16:0 PA content. The effect was specific to palmitic acid because linoleic acid did not show these effects. CONCLUSION These data demonstrate that high-GPAT1 activity, whether induced by glucose exposure or acquired by transfection, and abundant palmitic acid can impair insulin's ability to suppress hepatic glucose production in primary mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Mathew Steadman
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hudson P Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Saame R Shaikh
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rose Mary Xavier
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
21
|
Gupta A, Das D, Taneja R. Targeting Dysregulated Lipid Metabolism in Cancer with Pharmacological Inhibitors. Cancers (Basel) 2024; 16:1313. [PMID: 38610991 PMCID: PMC11010992 DOI: 10.3390/cancers16071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic plasticity is recognised as a hallmark of cancer cells, enabling adaptation to microenvironmental changes throughout tumour progression. A dysregulated lipid metabolism plays a pivotal role in promoting oncogenesis. Oncogenic signalling pathways, such as PI3K/AKT/mTOR, JAK/STAT, Hippo, and NF-kB, intersect with the lipid metabolism to drive tumour progression. Furthermore, altered lipid signalling in the tumour microenvironment contributes to immune dysfunction, exacerbating oncogenesis. This review examines the role of lipid metabolism in tumour initiation, invasion, metastasis, and cancer stem cell maintenance. We highlight cybernetic networks in lipid metabolism to uncover avenues for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
| | | | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Singapore
| |
Collapse
|
22
|
Liu Y, Xu Y, Xu Y, Zhao Z, Cheng GJ, Ren R, Chiang YC. Identifying Residues for Substrate Recognition in Human GPAT4 by Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:3729. [PMID: 38612541 PMCID: PMC11011501 DOI: 10.3390/ijms25073729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4-substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4-substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors.
Collapse
Affiliation(s)
- Yulan Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yunong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yinuo Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhihao Zhao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Gui-Juan Cheng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
23
|
Cremaschi A, De Iorio M, Kothandaraman N, Yap F, Tint MT, Eriksson J. Joint modeling of association networks and longitudinal biomarkers: An application to childhood obesity. Stat Med 2024; 43:1135-1152. [PMID: 38197220 DOI: 10.1002/sim.9994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
The prevalence of chronic non-communicable diseases such as obesity has noticeably increased in the last decade. The study of these diseases in early life is of paramount importance in determining their course in adult life and in supporting clinical interventions. Recently, attention has been drawn to approaches that study the alteration of metabolic pathways in obese children. In this work, we propose a novel joint modeling approach for the analysis of growth biomarkers and metabolite associations, to unveil metabolic pathways related to childhood obesity. Within a Bayesian framework, we flexibly model the temporal evolution of growth trajectories and metabolic associations through the specification of a joint nonparametric random effect distribution, with the main goal of clustering subjects, thus identifying risk sub-groups. Growth profiles as well as patterns of metabolic associations determine the clustering structure. Inclusion of risk factors is straightforward through the specification of a regression term. We demonstrate the proposed approach on data from the Growing Up in Singapore Towards healthy Outcomes cohort study, based in Singapore. Posterior inference is obtained via a tailored MCMC algorithm, involving a nonparametric prior with mixed support. Our analysis has identified potential key pathways in obese children that allow for the exploration of possible molecular mechanisms associated with childhood obesity.
Collapse
Affiliation(s)
| | - Maria De Iorio
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Statistical Science, University College London, London, UK
| | | | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Mya Thway Tint
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Johan Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
24
|
Yu H, Yu S, Guo J, Wang J, Mei C, Abbas Raza SH, Cheng G, Zan L. Comprehensive Analysis of Transcriptome and Metabolome Reveals Regulatory Mechanism of Intramuscular Fat Content in Beef Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2911-2924. [PMID: 38303491 DOI: 10.1021/acs.jafc.3c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The intramuscular fat (IMF) content of beef determined the meat quality, and the market value of beef varies with different breeds. To provide some new approaches for improving meat quality and cattle breed improvement, 24-month-old Qinchuan cattle (Q, n = 6), Nanyang cattle (N, n = 6), and Japanese black cattle (J, n = 6) were selected. IMF content of the J group (16.92 ± 1.08%) is remarkably higher than that of indigenous Chinese cattle (Q, 13.38 ± 1.08%, and N, 12.35 ± 1.22%). Monounsaturated fatty acids and polyunsaturated fatty acids in the J group are higher than the Q and creatine, lysine, and glutamine are the three most abundant amino acids in beef, which contribute to the flavor formation. Similarly, IMF content-related genes were enriched in four vital KEGG pathways, including fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty acid elongation, and insulin resistance. Moreover, weighted genes coexpression network analysis (WGCNA) revealed that ITGB1 is the critical gene associated with the IMF content. This study compares transcriptome and metabolome of local and high-IMF cattle breeds, providing data for native cattle breeding and improvement of beef quality.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
- National Beef Cattle Improvement Center, Yangling 712100, China
| |
Collapse
|
25
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
26
|
Maio G, Smith M, Bhawal R, Zhang S, Baskin JM, Li J, Lin H. Interactome Analysis Identifies the Role of BZW2 in Promoting Endoplasmic Reticulum-Mitochondria Contact and Mitochondrial Metabolism. Mol Cell Proteomics 2024; 23:100709. [PMID: 38154691 PMCID: PMC10835002 DOI: 10.1016/j.mcpro.2023.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023] Open
Abstract
Understanding the molecular functions of less-studied proteins is an important task of life science research. Despite reports of basic leucine zipper and W2 domain-containing protein 2 (BZW2) promoting cancer progression first emerging in 2017, little is known about its molecular function. Using a quantitative proteomic approach to identify its interacting proteins, we found that BZW2 interacts with both endoplasmic reticulum (ER) and mitochondrial proteins. We thus hypothesized that BZW2 localizes to and promotes the formation of ER-mitochondria contact sites and that such localization would promote calcium transport from ER to the mitochondria and promote ATP production. Indeed, we found that BZW2 localized to ER-mitochondria contact sites and that BZW2 knockdown decreased ER-mitochondria contact, mitochondrial calcium levels, and ATP production. These findings provide key insights into molecular functions of BZW2, the potential role of BZW2 in cancer progression, and highlight the utility of interactome data in understanding the function of less-studied proteins.
Collapse
Affiliation(s)
- George Maio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Mike Smith
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jenny Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, New York, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
27
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Gasch K, Hykollari A, Habe M, Haubensak P, Painer-Gigler J, Smith S, Stalder G, Arnold W. Summer fades, deer change: Photoperiodic control of cellular seasonal acclimatization of skeletal muscle. iScience 2024; 27:108619. [PMID: 38155774 PMCID: PMC10753075 DOI: 10.1016/j.isci.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.
Collapse
Affiliation(s)
- Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Alba Hykollari
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Manuela Habe
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Patricia Haubensak
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Johanna Painer-Gigler
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
29
|
Cui H, Wang Y, Zhou T, Qu L, Zhang X, Wang Y, Han M, Yang S, Ren X, Wang G, Gang X. Targeting DGAT1 inhibits prostate cancer cells growth by inducing autophagy flux blockage via oxidative stress. Oncogene 2024; 43:136-150. [PMID: 37973951 DOI: 10.1038/s41388-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.
Collapse
Affiliation(s)
- Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, 130021, Jilin Province, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yingdi Wang
- Department of Urology, Jilin Oncological Hospital, Changchun, 130021, Jilin Province, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shuo Yang
- Department of Clinical Nutrition, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
30
|
Pan K, Zhu B, Wang L, Guo Q, Shu-Chien AC, Wu X. Expression pattern of AGPATs isoforms indicate different functions during the triacylglyceride synthesis in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111535. [PMID: 37852318 DOI: 10.1016/j.cbpa.2023.111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The 1-acylglycerol-3-phosphate acyltransferase (AGPAT) acts as a crucial enzyme in the process of triacylglycerol (TAG) synthesis, enabling the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA). In order to decode the distinctive roles of AGPAT isoforms in the TAG production pathway, three AGPAT isoforms were detected for the first time in the Chinese mitten crab Eriocheir sinensis (Es-agpat2, Es-agpat3, and Es-agpat4). The mRNA levels of Es-agpat2 and Es-agpat4 demonstrated a conspicuous presence in the hepatopancreas, with subsequent high levels in the heart, muscle, and thoracic ganglion. On the other hand, the thoracic ganglion exhibited abundant levels of Es-agpat3, while other tissues recorded relatively low expression levels. Observing the molting cycle of E. sinensis, the hepatopancreas showed minimum expression levels of Es-agpat2 and Es-agpat4 at stage A/B. A peak at stage C was noted, which was then followed by a gradual drop until stage E. For the ovarian development cycle, stage II witnessed the maximum expression level of Es-agpat2 and Es-agpat4, succeeded by a sharp fall in stage III. After this, there was an increasing trend from stage III up to stage V. Expression of Es-agpat3 in the hepatopancreas was consistently lower than Es-agpat2 and Es-agpat4 during either the molting or ovarian development. However, in terms of ovarian expression, Es-agpat3 outperformed Es-agpat2 and Es-agpat4. It exhibited a steep increase in expression, peaking at stage II and subsequently diminishing. In situ hybridization (ISH) revealed that in stages II and IV hepatopancreas, Es-agpat4-mRNA was primarily located in fibrillar cells (F cell) and resorptive cells (R cell), with no signal from Es-agpat3. During stage II of ovarian development, both Es-agpat3-mRNA and Es-agpat4-mRNA were located in the cytoplasm of previtellogenic oocyte (PRO) and endogenous vitellogenic oocyte (EN), with no expression at stage IV. Additionally, the silencing of Es-agpat2 and Es-agpat4 caused a downward trend in the expression levels of all subsequent genes in the E. sinensis TAG synthesis pathway. To sum up, these findings suggest that the three Es-agpats may have unique functions in TAG synthesis during either the molting process or ovarian maturation of E. sinensis.
Collapse
Affiliation(s)
- Kewu Pan
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Boxiang Zhu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Lin Wang
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Guo
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, University Sains Malaysia, Minden, 11800, Penang, Malaysia; Center for Chemical Biology, University Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
31
|
Tracz-Gaszewska Z, Sowka A, Dobrzyn P. Stearoyl-CoA desaturase 1 inhibition impairs triacylglycerol accumulation and lipid droplet formation in colorectal cancer cells. J Cell Physiol 2023; 238:2888-2903. [PMID: 37814830 DOI: 10.1002/jcp.31137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
32
|
Sun Z, Wu K, Feng C, Lei XG. Selenium-dependent glutathione peroxidase 1 regulates transcription of elongase 3 in murine tissues. Free Radic Biol Med 2023; 208:708-717. [PMID: 37726091 DOI: 10.1016/j.freeradbiomed.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
We have previously shown dysregulated lipid metabolism in tissues of glutathione peroxidase 1 (GPX1) overexpressing (OE) or deficient (KO) mice. This study explored underlying mechanisms of GPX1 in regulating tissue fatty acid (FA) biosynthesis. GPX1 OE, KO, and wild-type (WT) mice (n = 5, male, 3-6 months old) were fed a Se-adequate diet (0.3 mg/kg) and assayed for liver and adipose tissue FA profiles and mRNA levels of key enzymes of FA biosynthesis and redox-responsive transcriptional factors (TFs). These three genotypes of mice (n = 5) were injected intraperitoneally with diquat, ebselen, and N-acetylcysteine (NAC) at 10, 50, and 50 mg/kg of body weight, respectively, and killed at 0 and 12 h after the injections to detect mRNA levels of FA elongases and desaturases and the TFs in the liver and adipose tissue. A luciferase reporter assay with targeted deletions of mouse Elovl3 promoter was performed to determine transcriptional regulations of the gene by GPX1 mimic ebselen in HEK293T cells. Compared with WT, GPX1 OE and KO mice had 9-42% lower (p < 0.05) and 36-161% higher (p < 0.05) concentrations of C20:0, C22:0, and C24:0 in these two tissues, respectively, along with reciprocal increases and decreases (p < 0.05) of Elovl3 transcripts. Ebselen and NAC decreased (p < 0.05), whereas diquat decreased (p < 0.05), Elovl3 transcripts in the two tissues. Overexpression and knockout of GPX1 decreased (p < 0.05) and increased (p < 0.05) ELOVL3 levels in the two tissues, respectively. Three TFs (GABP, SP1, and DBP) were identified to bind the Elovl3 promoter (-1164/+33 base pairs). Deletion of DBP (-98/-86 base pairs) binding domain in the promoter attenuated (13%, p < 0.05) inhibition of ebselen on Elovl3 promoter activation. In summary, GPX1 overexpression down-regulated very long-chain FA biosynthesis via transcriptional inhibition of the Elovl3 promoter activation.
Collapse
Affiliation(s)
- Ziqiao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kun Wu
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chenhan Feng
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
33
|
Farooq S, Rana S, Siddiqui AJ, Iqbal A, Bhatti AA, Musharraf SG. Association of lipid metabolism-related metabolites with overweight/obesity based on the FTO rs1421085. Mol Omics 2023; 19:697-705. [PMID: 37540205 DOI: 10.1039/d3mo00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Globally, obesity is a severe health issue. A more precise and practical approach is required to enhance clinical care and drug development. The FTO (fat mass and obesity-associated) gene variant rs1421085 is strongly associated with an increased susceptibility to obesity in numerous populations; however, the precise mechanism behind this association concerning metabolomics is still not understood. This study aims to examine the association between metabolites and obesity-related anthropometric traits based on the variant FTO rs1421085. This study was based on a case-control design involving a total of 542 participants including overweight/obese cases and healthy controls. The blood samples were collected from all the participants. The isolated serum samples were subjected to untargeted metabolomics using GC-MS. The isolated DNA samples were genotyped for the FTO rs1421085 variant. Initially, a total of 42 metabolites were identified on GC-MS, which were subjected to further association analyses. The study observed a significant association of two metabolites, glycerol and 2,3-dihydroxypropyl stearate with FTO gene variant rs1421085 and obesity-related anthropometric traits including % BF, WHtR, WC, and HC. The CT genotype of FTO rs1421085 may greatly increase the risk of overweight/obesity by changing the lipid metabolism-related metabolites. Therefore, this study highlights the significance of biochemical networks in the progression of obesity in carriers of the FTO rs1421085 risk genotype.
Collapse
Affiliation(s)
- Sabiha Farooq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Sobia Rana
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Ayesha Iqbal
- Department of Biomedical and Biological Sciences, Sohail University, Karachi 74000, Pakistan
| | - Adil Anwar Bhatti
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
34
|
Jovičić EJ, Janež AP, Eichmann TO, Koren Š, Brglez V, Jordan PM, Gerstmeier J, Lainšček D, Golob-Urbanc A, Jerala R, Lambeau G, Werz O, Zimmermann R, Petan T. Lipid droplets control mitogenic lipid mediator production in human cancer cells. Mol Metab 2023; 76:101791. [PMID: 37586657 PMCID: PMC10470291 DOI: 10.1016/j.molmet.2023.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids and precursors of oxygenated lipid mediators with diverse functions, including the control of cell growth, inflammation and tumourigenesis. However, the molecular pathways that control the availability of PUFAs for lipid mediator production are not well understood. Here, we investigated the crosstalk of three pathways in the provision of PUFAs for lipid mediator production: (i) secreted group X phospholipase A2 (GX sPLA2) and (ii) cytosolic group IVA PLA2 (cPLA2α), both mobilizing PUFAs from membrane phospholipids, and (iii) adipose triglyceride lipase (ATGL), which mediates the degradation of triacylglycerols (TAGs) stored in cytosolic lipid droplets (LDs). METHODS We combined lipidomic and functional analyses in cancer cell line models to dissect the trafficking of PUFAs between membrane phospholipids and LDs and determine the role of these pathways in lipid mediator production, cancer cell proliferation and tumour growth in vivo. RESULTS We demonstrate that lipid mediator production strongly depends on TAG turnover. GX sPLA2 directs ω-3 and ω-6 PUFAs from membrane phospholipids into TAG stores, whereas ATGL is required for their entry into lipid mediator biosynthetic pathways. ATGL controls the release of PUFAs from LD stores and their conversion into cyclooxygenase- and lipoxygenase-derived lipid mediators under conditions of nutrient sufficiency and during serum starvation. In starving cells, ATGL also promotes the incorporation of LD-derived PUFAs into phospholipids, representing substrates for cPLA2α. Furthermore, we demonstrate that the built-up of TAG stores by acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is required for the production of mitogenic lipid signals that promote cancer cell proliferation and tumour growth. CONCLUSION This study shifts the paradigm of PLA2-driven lipid mediator signalling and identifies LDs as central lipid mediator production hubs. Targeting DGAT1-mediated LD biogenesis is a promising strategy to restrict lipid mediator production and tumour growth.
Collapse
Affiliation(s)
- Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Špela Koren
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Vesna Brglez
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Anja Golob-Urbanc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, University of Graz, Graz, Austria
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Stevenson ER, Smith LC, Wilkinson ML, Lee SJ, Gow AJ. Etiology of lipid-laden macrophages in the lung. Int Immunopharmacol 2023; 123:110719. [PMID: 37595492 PMCID: PMC10734282 DOI: 10.1016/j.intimp.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Uniquely positioned as sentinel cells constantly exposed to the environment, pulmonary macrophages are vital for the maintenance of the lung lining. These cells are responsible for the clearance of xenobiotics, pathogen detection and clearance, and homeostatic functions such as surfactant recycling. Among the spectrum of phenotypes that may be expressed by macrophages in the lung, the pulmonary lipid-laden phenotype is less commonly studied in comparison to its circulatory counterpart, the atherosclerotic lesion-associated foam cell, or the acutely activated inflammatory macrophage. Herein, we propose that lipid-laden macrophage formation in the lung is governed by lipid acquisition, storage, metabolism, and export processes. The cellular balance of these four processes is critical to the maintenance of homeostasis and the prevention of aberrant signaling that may contribute to lung pathologies. This review aims to examine mechanisms and signaling pathways that are involved in lipid-laden macrophage formation and the potential consequences of this phenotype in the lung.
Collapse
Affiliation(s)
- E R Stevenson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - L C Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT, United States
| | - M L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - S J Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - A J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
36
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
37
|
Un Nisa M, Gillani SQ, Nabi N, Sarwar Z, Reshi I, Bhat SA, Andrabi S. Lipin-1 stability and its adipogenesis functions are regulated in contrasting ways by AKT1 and LKB1. J Cell Commun Signal 2023; 17:689-704. [PMID: 36380131 PMCID: PMC10409976 DOI: 10.1007/s12079-022-00708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Lipin-1 is a protein that plays a critical role in many cellular functions. At molecular level, it acts as a phosphatidic acid phosphohydrolase and a transcriptional coactivator. The functions of lipin-1 are largely dependent upon its subcellular localization, post-translational modifications like phosphorylation and acetylation, and also on its interaction with other proteins such as 14-3-3. However, the kinases and phosphatases that are responsible for these post translational modifications are not entirely known. Using bioinformatics and other biochemical approaches, we demonstrate lipin-1 as a novel target for AKT1 and LKB1. While AKT1 stabilizes lipin-1, LKB1 causes its degradation. Interestingly, our findings further show that lipin-1 enhances AKT1 activity as can be seen by increased phosphorylation of the substrates of AKT1. Taken together, our results suggest that lipin-1 plays an important role in the regulation of PI3K-AKT-mTOR pathway, which is dysregulated in majority of cancers. Therefore, understating the role of lipin-1 may provide new and important insights into the regulation and functions of the PI3K-mTOR pathway, which is one of the major targets for anti-cancer drug development strategies.
Collapse
Affiliation(s)
- Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Irfana Reshi
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Sameer Ahmed Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
38
|
Camdzic M, Aga DS, Atilla-Gokcumen GE. Cellular Lipidome Changes during Retinoic Acid (RA)-Induced Differentiation in SH-SY5Y Cells: A Comprehensive In Vitro Model for Assessing Neurotoxicity of Contaminants. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:110-120. [PMID: 37614295 PMCID: PMC10443778 DOI: 10.1021/envhealth.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 08/25/2023]
Abstract
The SH-SY5Y, neuroblastoma cell line, is a common in vitro model used to study physiological neuronal function and the neuronal response to different stimuli, including exposure to toxic chemicals. These cells can be differentiated to neuron-like cells by administration of various reagents, including retinoic acid or phorbol-12-myristate-13-acetate. Despite their common use, there is an incomplete understanding of the molecular changes that occur during differentiation. Therefore, there is a critical need to fully understand the molecular changes that occur during differentiation to properly study neurotoxicity in response to various environmental exposures. Previous studies have investigated the proteome and transcriptome during differentiation; however, the regulation of the cellular lipidome in this process is unexplored. In this work, we conducted liquid chromatography-mass spectrometry (LC-MS)-based untargeted lipidomics in undifferentiated and differentiated SH-SY5Y cells, induced by retinoic acid. We show that there are global differences between the cellular lipidomes of undifferentiated and differentiated cells. Out of thousands of features detected in positive and negative electrospray ionization modes, 44 species were identified that showed significant differences (p-value ≤0.05, fold change ≥2) in differentiated cells. Identification of these features combined with targeted lipidomics highlighted the accumulation of phospholipids, sterols, and sphingolipids during differentiation while triacylglycerols were depleted. These results provide important insights into lipid-related changes that occur during cellular differentiation of SH-5YSY cells and emphasize the need for the detailed characterization of biochemical differences that occur during differentiation while using this in vitro model for assessing ecological impacts of environmental pollutants.
Collapse
Affiliation(s)
- Michelle Camdzic
- Department of Chemistry, University at Buffalo, The State University of New
York (SUNY), Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New
York (SUNY), Buffalo, New York 14260, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New
York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
39
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
40
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
41
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
42
|
Han L, Huang D, Wu S, Liu S, Wang C, Sheng Y, Lu X, Broxmeyer HE, Wan J, Yang L. Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism. Nat Cell Biol 2023; 25:1033-1046. [PMID: 37264180 PMCID: PMC10344779 DOI: 10.1038/s41556-023-01162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Lipid droplets (LDs) are cellular organelles critical for lipid homeostasis, with intramyocyte LD accumulation implicated in metabolic disorder-associated heart diseases. Here we identify a human long non-coding RNA, Lipid-Droplet Transporter (LIPTER), essential for LD transport in human cardiomyocytes. LIPTER binds phosphatidic acid and phosphatidylinositol 4-phosphate on LD surface membranes and the MYH10 protein, connecting LDs to the MYH10-ACTIN cytoskeleton and facilitating LD transport. LIPTER and MYH10 deficiencies impair LD trafficking, mitochondrial function and survival of human induced pluripotent stem cell-derived cardiomyocytes. Conditional Myh10 deletion in mouse cardiomyocytes leads to LD accumulation, reduced fatty acid oxidation and compromised cardiac function. We identify NKX2.5 as the primary regulator of cardiomyocyte-specific LIPTER transcription. Notably, LIPTER transgenic expression mitigates cardiac lipotoxicity, preserves cardiac function and alleviates cardiomyopathies in high-fat-diet-fed and Leprdb/db mice. Our findings unveil a molecular connector role of LIPTER in intramyocyte LD transport, crucial for lipid metabolism of the human heart, and hold significant clinical implications for treating metabolic syndrome-associated heart diseases.
Collapse
Affiliation(s)
- Lei Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dayang Huang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shiyong Wu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lei Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
43
|
Sun R, Jiang L, Chen W, Xu Y, Yi X, Zhong G. Azadirachtin exposure inhibit ovary development of Spodoptera litura (Lepidoptera: Noctuidae) by altering lipids metabolism event and inhibiting insulin signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115151. [PMID: 37356396 DOI: 10.1016/j.ecoenv.2023.115151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Lipids are main energy source for insects reproduction, which are becoming emerging target for pest management. Azadirachtin (AZA) is a multi-targeted and promising botanical insecticide, but its reproduction toxicity mechanism related to lipids metabolism is poorly understood. Here, we applied lipidomic and transcriptomic to provide a comprehensive resource for describing the effect of AZA on lipids remodeling in ovary of Spodoptera litura. The results showed that AZA exposure obviously altered the contents of 130 lipids subclasses (76 upregulated and 54 downregulated). In detail, AZA exposure changed the length and saturation degrees of fatty acyl chain of most glycerolipid, phospholipid and sphingolipid as well as the expression of genes related to biosynthesis of unsaturated fatty acids and fatty acids elongation. Besides, following the abnormal lipids metabolism, western blot analysis suggested that AZA induce insulin resistance-like phenotypes by inhibiting insulin receptor substrates (IRS) /PI3K/AKT pathway, which might be responsible for the ovary abnormalities of S. litura. Collectively, our study provided insights into the lipids metabolism event in S. litura underlying AZA exposure, these key metabolites and genes identified in this study would also provide important reference for pest control in future.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Liwei Jiang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlong Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
44
|
Zhang Y, Szramowski M, Sun S, Henderson GC. Combining albumin deficiency and acute exercise reduces hepatic lipid droplet size in mice. Lipids Health Dis 2023; 22:78. [PMID: 37344835 PMCID: PMC10286408 DOI: 10.1186/s12944-023-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatic lipid droplets (LDs) are implicated in ectopic lipid accumulation. The core of LDs, triacylglycerol (TAG), is synthesized from the esterification of fatty acids to a glycerol-3-phosphate (G-3-P) backbone. Albumin transports plasma free fatty acids, and previously albumin knockout (Alb-/-) mice were shown to exhibit lower hepatic TAG levels than wildtype (WT). Exercise is a beneficial strategy to alter hepatic metabolism, but its impacts on reducing hepatic lipids are far from satisfactory. The aim of this study was to investigate the combined effect of albumin deficiency and acute exercise on hepatic LDs. Eight-week-old male Alb-/- and WT mice were divided into sedentary and exercise groups. Exercised mice performed a 30-min high-intensity exercise bout. Results showed that sedentary Alb-/- mice had smaller hepatic LDs (P < 0.0001), associated with mitochondria, while WT mice exhibited larger LDs, surrounded by glycogen granules. Following acute exercise, hepatic LDs in Alb-/- mice reduced by 40% in size, while in WT increased by 14% (P < 0.0001). The maintenance of WT hepatic LDs was associated with elevated G-3-P level (P < 0.05), potentially derived from glycogen (R = -0.32, %change in glycogen versus LD content, P < 0.05). The reduction in Alb-/- mice LDs after exercise was possibly due to their low glycogen level. In conclusion, Alb-/- mice exhibited an enhanced capacity for reducing hepatic LD size and content in response to exercise. These findings suggest that modulating albumin's functions combined with exercise could be a potential strategy to reduce ectopic lipid deposition in the liver.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Blvd., West Lafayette, IN, 47907, USA
| | - Mirandia Szramowski
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Blvd., West Lafayette, IN, 47907, USA
| | - Shuhan Sun
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Blvd., West Lafayette, IN, 47907, USA
| | - Gregory C Henderson
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Blvd., West Lafayette, IN, 47907, USA.
| |
Collapse
|
45
|
Najt CP, Adhikari S, Heden TD, Cui W, Gansemer ER, Rauckhorst AJ, Markowski TW, Higgins L, Kerr EW, Boyum MD, Alvarez J, Brunko S, Mehra D, Puchner EM, Taylor EB, Mashek DG. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism. Cell Rep 2023; 42:112435. [PMID: 37104088 PMCID: PMC10278152 DOI: 10.1016/j.celrep.2023.112435] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/09/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Organelle interactions play a significant role in compartmentalizing metabolism and signaling. Lipid droplets (LDs) interact with numerous organelles, including mitochondria, which is largely assumed to facilitate lipid transfer and catabolism. However, quantitative proteomics of hepatic peridroplet mitochondria (PDM) and cytosolic mitochondria (CM) reveals that CM are enriched in proteins comprising various oxidative metabolism pathways, whereas PDM are enriched in proteins involved in lipid anabolism. Isotope tracing and super-resolution imaging confirms that fatty acids (FAs) are selectively trafficked to and oxidized in CM during fasting. In contrast, PDM facilitate FA esterification and LD expansion in nutrient-replete medium. Additionally, mitochondrion-associated membranes (MAM) around PDM and CM differ in their proteomes and ability to support distinct lipid metabolic pathways. We conclude that CM and CM-MAM support lipid catabolic pathways, whereas PDM and PDM-MAM allow hepatocytes to efficiently store excess lipids in LDs to prevent lipotoxicity.
Collapse
Affiliation(s)
- Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Erica R Gansemer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Evan W Kerr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Boyum
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jonas Alvarez
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Brunko
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Huang Y, Kong Y, Li B, Zhao C, Loor JJ, Tan P, Yuan Y, Zeng F, Zhu X, Qi S, Zhao B, Wang J. Effects of perinatal stress on the metabolites and lipids in plasma of dairy goats. STRESS BIOLOGY 2023; 3:11. [PMID: 37676623 PMCID: PMC10441998 DOI: 10.1007/s44154-023-00088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/13/2023] [Indexed: 09/08/2023]
Abstract
Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Duong LK, Corbali HI, Riad TS, Ganjoo S, Nanez S, Voss T, Barsoumian HB, Welsh J, Cortez MA. Lipid metabolism in tumor immunology and immunotherapy. Front Oncol 2023; 13:1187279. [PMID: 37205182 PMCID: PMC10185832 DOI: 10.3389/fonc.2023.1187279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Lipids are a diverse class of biomolecules that have been implicated in cancer pathophysiology and in an array of immune responses, making them potential targets for improving immune responsiveness. Lipid and lipid oxidation also can affect tumor progression and response to treatment. Although their importance in cellular functions and their potential as cancer biomarkers have been explored, lipids have yet to be extensively investigated as a possible form of cancer therapy. This review explores the role of lipids in cancer pathophysiology and describes how further understanding of these macromolecules could prompt novel treatments for cancer.
Collapse
Affiliation(s)
- Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tiffany Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
48
|
Wieder N, Fried JC, Kim C, Sidhom EH, Brown MR, Marshall JL, Arevalo C, Dvela-Levitt M, Kost-Alimova M, Sieber J, Gabriel KR, Pacheco J, Clish C, Abbasi HS, Singh S, Rutter JC, Therrien M, Yoon H, Lai ZW, Baublis A, Subramanian R, Devkota R, Small J, Sreekanth V, Han M, Lim D, Carpenter AE, Flannick J, Finucane H, Haigis MC, Claussnitzer M, Sheu E, Stevens B, Wagner BK, Choudhary A, Shaw JL, Pablo JL, Greka A. FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. Cell Metab 2023; 35:887-905.e11. [PMID: 37075753 PMCID: PMC10257950 DOI: 10.1016/j.cmet.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.
Collapse
Affiliation(s)
- Nicolas Wieder
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurology with Experimental Neurology and Berlin Institute of Health, Charité, 10117 Berlin, Germany
| | - Juliana Coraor Fried
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Carlos Arevalo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Moran Dvela-Levitt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Jonas Sieber
- Department of Endocrinology, Metabolism and Cardiovascular Systems, University of Fribourg, Fribourg, Switzerland
| | | | - Julian Pacheco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Shantanu Singh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Justine C Rutter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aaron Baublis
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Renuka Subramanian
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjan Devkota
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonnell Small
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vedagopuram Sreekanth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Myeonghoon Han
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Donghyun Lim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hilary Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Mass General Hospital, Boston, MA 02114, USA
| | - Marcia C Haigis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Bridget K Wagner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amit Choudhary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Wieder N, Fried JC, Kim C, Sidhom EH, Brown MR, Marshall JL, Arevalo C, Dvela-Levitt M, Kost-Alimova M, Sieber J, Gabriel KR, Pacheco J, Clish C, Abbasi HS, Singh S, Rutter J, Therrien M, Yoon H, Lai ZW, Baublis A, Subramanian R, Devkota R, Small J, Sreekanth V, Han M, Lim D, Carpenter AE, Flannick J, Finucane H, Haigis MC, Claussnitzer M, Sheu E, Stevens B, Wagner BK, Choudhary A, Shaw JL, Pablo JL, Greka A. FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529127. [PMID: 36865221 PMCID: PMC9979987 DOI: 10.1101/2023.02.19.529127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cellular exposure to free fatty acids (FFA) is implicated in the pathogenesis of obesity-associated diseases. However, studies to date have assumed that a few select FFAs are representative of broad structural categories, and there are no scalable approaches to comprehensively assess the biological processes induced by exposure to diverse FFAs circulating in human plasma. Furthermore, assessing how these FFA- mediated processes interact with genetic risk for disease remains elusive. Here we report the design and implementation of FALCON (Fatty Acid Library for Comprehensive ONtologies) as an unbiased, scalable and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids (MUFAs) with a distinct lipidomic profile associated with decreased membrane fluidity. Furthermore, we developed a new approach to prioritize genes that reflect the combined effects of exposure to harmful FFAs and genetic risk for type 2 diabetes (T2D). Importantly, we found that c-MAF inducing protein (CMIP) protects cells from exposure to FFAs by modulating Akt signaling and we validated the role of CMIP in human pancreatic beta cells. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism. Highlights FALCON (Fatty Acid Library for Comprehensive ONtologies) enables multimodal profiling of 61 free fatty acids (FFAs) to reveal 5 FFA clusters with distinct biological effectsFALCON is applicable to many and diverse cell typesA subset of monounsaturated FAs (MUFAs) equally or more toxic than canonical lipotoxic saturated FAs (SFAs) leads to decreased membrane fluidityNew approach prioritizes genes that represent the combined effects of environmental (FFA) exposure and genetic risk for diseaseC-Maf inducing protein (CMIP) is identified as a suppressor of FFA-induced lipotoxicity via Akt-mediated signaling.
Collapse
Affiliation(s)
- Nicolas Wieder
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
- Department of Neurology with Experimental Neurology, Charité, Berlin, Germany
| | - Juliana Coraor Fried
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
| | - Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
| | | | | | | | - Moran Dvela-Levitt
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Jonas Sieber
- Department of Endocrinology, Metabolism and Cardiovascular Systems, University of Fribourg, Fribourg, Switzerland
| | | | | | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, USA
| | | | | | - Justine Rutter
- Broad Institute of MIT and Harvard, Cambridge, USA
- Harvard Medical School, Boston, USA
| | | | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston MA 02115 USA
| | - Aaron Baublis
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston MA 02115 USA
| | - Renuka Subramanian
- Laboratory for Surgical and Metabolic Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ranjan Devkota
- Broad Institute of MIT and Harvard, Cambridge, USA
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonnell Small
- Broad Institute of MIT and Harvard, Cambridge, USA
- Harvard Medical School, Boston, USA
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vedagopuram Sreekanth
- Broad Institute of MIT and Harvard, Cambridge, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Donghyun Lim
- Broad Institute of MIT and Harvard, Cambridge, USA
| | | | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, USA
- Harvard Medical School, Boston, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
| | - Hilary Finucane
- Broad Institute of MIT and Harvard, Cambridge, USA
- Analytic and Translational Genetics Unit, Mass General Hospital, Boston, MA, USA
| | - Marcia C. Haigis
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, USA
- Harvard Medical School, Boston, USA
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, USA
- Harvard Medical School, Boston, USA
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Bridget K. Wagner
- Broad Institute of MIT and Harvard, Cambridge, USA
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Choudhary
- Broad Institute of MIT and Harvard, Cambridge, USA
- Harvard Medical School, Boston, USA
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
- Lead Contact
| |
Collapse
|
50
|
Südfeld C, Kiyani A, Wefelmeier K, Wijffels RH, Barbosa MJ, D’Adamo S. Expression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica. Microb Cell Fact 2023; 22:12. [PMID: 36647076 PMCID: PMC9844033 DOI: 10.1186/s12934-022-01987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.
Collapse
Affiliation(s)
- Christian Südfeld
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| | - Aamna Kiyani
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands ,grid.412621.20000 0001 2215 1297Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Katrin Wefelmeier
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| | - René H. Wijffels
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands ,grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Maria J. Barbosa
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| | - Sarah D’Adamo
- grid.4818.50000 0001 0791 5666Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands
| |
Collapse
|