1
|
Ghai V, Mishra AA, Huang E, Ngaloy R, Dash SP, Matic A, Kádár R. Halbach Array Induced Magnetic Field Alignment in Boron Nitride Nanocomposites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408532. [PMID: 39716871 DOI: 10.1002/advs.202408532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Thermal conductivity enhancement in polymers is vital for advanced applications. This study introduces a novel method to align hexagonal boron nitride (hBN) nanosheets within polydimethylsiloxane (PDMS) matrices using a Halbach array to create a highly uniform magnetic field. This technique achieves significant improvements in thermal conductivity by effectively aligning hBN nanosheets. This research shows that hBN nanosheets, when aligned, can drastically enhance thermal conductivity in PDMS composites. Specifically, 10 wt.% vertically aligned hBN nanosheets in a rotating magnetic field achieve a thermal conductivity of 3.58 W mK-1, an impressive 1950% increase over pure PDMS. Additionally, the study explores the effects of orientation on dielectric properties, finding that the orientation of hBN nanosheets also improves electrical insulation and increases the dielectric constant while maintaining extremely low dielectric losses. For a vertically oriented sample, the dielectric constant reaches ≈14, and dielectric losses are as low as 0.0049 at 100 Hz, highlighting their potential for energy storage capacitors. This approach not only enhances thermal management but also maintains or improves electrical insulation, offering promising advances for polymer composites in various technological applications.
Collapse
Affiliation(s)
- Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Ases Akas Mishra
- Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Enling Huang
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Roselle Ngaloy
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Aleksandar Matic
- Department of Physics, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, 41296, Sweden
| |
Collapse
|
2
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
3
|
Umecky T. Time-domain nuclear magnetic resonance for serum analysis. ANAL SCI 2024; 40:2099-2100. [PMID: 39585606 DOI: 10.1007/s44211-024-00679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Affiliation(s)
- Tatsuya Umecky
- Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan.
| |
Collapse
|
4
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Abhyankar N, Catterton MA, Cooksey GA, Szalai VA. Microfluidic-Integrated Chip Resonators for Electron Spin Sensing in Submicromolar, Submicroliter Solutions. Anal Chem 2024; 96:17071-17077. [PMID: 39405519 PMCID: PMC11555861 DOI: 10.1021/acs.analchem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Planar or chip microresonators decrease the sample volume required for magnetic resonance spectroscopies to the nanoliter scale. However, the interrogation of nanoliter-scale solution samples on planar sensors is hindered by the lack of microfluidic devices that can simultaneously provide a small total volume and long-term sample stability. Here, we report microfluidic devices that decrease the total required sample volume to the submicroliter scale and also provide long-term physical stability and storability. We also report a 3D-printed microfluidic with a self-contained actuation mechanism, which allows the sample to be retracted from the microresonator surface for storage. The microfluidic devices are fabricated easily by laser cutting or 3D printing and are integrable with a broad range of planar sensors. We use planar inverse anapole (PIA) microresonators to obtain continuous wave (CW) electron paramagnetic resonance (EPR) spectra of natural-isotopic-abundance nitroxide radicals, which are ubiquitously used as reporters of biomolecular dynamics. We provide experimental evidence for a concentration sensitivity of 330 ± 40 nmol L-1, a concentration sensitivity limit of 800 ± 100 nmol L-1/mT√Hz, and an active volume no greater than 30 nL. Together, these developments represent an advance not only in the sensitivity of EPR spectroscopy but also in the design of microfluidics for stable, dead-volume-free placement of nanoliter-scale volumes of solutions on planar sensors.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Megan A. Catterton
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Gregory A. Cooksey
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Veronika A. Szalai
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
6
|
Chowdhury MRH, Ahmed F, Oladun C, Adelabu I, Abdurraheem A, Nantogma S, Birchall JR, Gafar TA, Chekmenev YA, Nikolaou P, Barlow MJ, Goodson BM, Shcherbakov A, Chekmenev EY. Low-Cost Purpose-Built Ultra-Low-Field NMR Spectrometer. Anal Chem 2024; 96:16724-16734. [PMID: 39378166 PMCID: PMC11506762 DOI: 10.1021/acs.analchem.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Low-field NMR has emerged as a new analytical technique for the investigation of molecular structure and dynamics. Here, we introduce a highly integrated ultralow-frequency NMR spectrometer designed for the purpose of ultralow-field NMR polarimetry of hyperpolarized contrast media. The device measures 10 cm × 10 cm × 2.0 cm and weighs only 370 g. The spectrometer's aluminum enclosure contains all components, including an RF amplifier. The device has four ports for connecting to a high-impedance RF transmit-receive coil, a trigger input, a USB port for connectivity to a PC computer, and an auxiliary RS-485/24VDC port for system integration with other devices. The NMR spectrometer is configured for a pulse-wait-acquire-recover pulse sequence, and key sequence parameters are readily controlled by a graphical user interface (GUI) of a Windows-based PC computer. The GUI also displays the time-domain and Fourier-transformed NMR signal and allows autosaving of NMR data as a CSV file. Alternatively, the RS485 communication line allows for operating the device with sequence parameter control and data processing directly on the spectrometer board in a fully automated and integrated manner. The NMR spectrometer, equipped with a 250 ksamples/s 17-bit analog-to-digital signal converter, can perform acquisition in the 1-125 kHz frequency range. The utility of the device is demonstrated for NMR polarimetry of hyperpolarized 129Xe gas and [1-13C]pyruvate contrast media (which was compared to the 13C polarimetry using a more established technology of benchtop 13C NMR spectroscopy, and yielded similar results), allowing reproducible quantification of polarization values and relaxation dynamics. The cost of the device components is only ∼$200, offering a low-cost integrated NMR spectrometer that can be deployed as a plug-and-play device for a wide range of applications in hyperpolarized contrast media production─and beyond.
Collapse
Affiliation(s)
- Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Firoz Ahmed
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Jonathan R. Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Tobi Abdulbasit Gafar
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Anton Shcherbakov
- XeUS Technologies LTD, Nicosia 2312, Cyprus
- Custom Medical Systems (CMS) LTD, Nicosia 2312, Cyprus
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Pigliapochi R, Peyear T, Ruan T, Keshari KR. Hyperpolarized Nano-NMR Platform for Quantification of Mass Limited Samples. Anal Chem 2024:10.1021/acs.analchem.4c02378. [PMID: 39034921 PMCID: PMC11751133 DOI: 10.1021/acs.analchem.4c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Metabolic flux analysis of live cells using NMR enables the study of cancer metabolism and response to treatment. However, conventional NMR platforms require often prohibitively high numbers of cells to achieve significant resolution. In this work, we present a double 1H/13C resonance NMR probe consisting of a solenoid coil with a less than 100 nL sensitive region. In-solution robustness is demonstrated through measurement of decaying hyperpolarized signals. A suspension of live cells and hyperpolarized (HP) [1-13C]pyruvate is loaded in the coil, and dynamic changes in pyruvate and lactate concentrations by fractions of femtomoles are detected from just 2000 live cells at a time, in seconds. Through an integrated microfluidic channel, the probe is used as high-throughput platform to perform nondestructive quantitative analysis of metabolic flux of different leukemia cell lines with sensitivity to detect on target treatment response. This approach platform provides an approach to study mass-limited samples and living cells with dramatically enhanced sensitivity in real time.
Collapse
Affiliation(s)
- Roberta Pigliapochi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
| | - Thasin Peyear
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Weill Cornell Medical College, Cornell University, New York City, New York 10065, United States
| | - Thomas Ruan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Weill Cornell Medical College, Cornell University, New York City, New York 10065, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, New York 10065, United States
- Weill Cornell Medical College, Cornell University, New York City, New York 10065, United States
| |
Collapse
|
8
|
Grimes MI, Cheeks M, Smith J, Zurlo F, Mantle MD. Decoupling Protein Concentration and Aggregate Content Using Diffusion and Water NMR. Anal Chem 2024; 96:11155-11162. [PMID: 38943616 PMCID: PMC11256015 DOI: 10.1021/acs.analchem.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Protein-based biopharmaceutical drugs, such as monoclonal antibodies, account for the majority of the best-selling drugs globally in recent years. For bioprocesses, key performance indicators are the concentration and aggregate level for the product being produced. In water NMR (wNMR), the use of the water transverse relaxation rate [R2(1H2O)] has been previously used to determine protein concentration and aggregate level; however, it cannot be used to separate between them without using an additional technique. This work shows that it is possible to "decouple" these two key characteristics by recording the water diffusion coefficient [D(1H2O)] in conjunction with R2(1H2O), even in the event of overlap in either D(1H2O) or R2(1H2O). This method is demonstrated on three different systems, following appropriate D(1H2O) or R2(1H2O) calibration data acquisition for a protein of interest. Our method highlights the potential use of benchtop NMR as an at-line process analytical technique.
Collapse
Affiliation(s)
- Mark I. Grimes
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Matthew Cheeks
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Jennifer Smith
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Fabio Zurlo
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Mick D. Mantle
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
9
|
Pellizzari J, Soong R, Downey K, Biswas RG, Kock FC, Steiner K, Goerling B, Haber A, Decker V, Busse F, Simpson M, Simpson A. Slice through the water-Exploring the fundamental challenge of water suppression for benchtop NMR systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:463-473. [PMID: 38282484 DOI: 10.1002/mrc.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in 1H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.
Collapse
Affiliation(s)
| | - Ronald Soong
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katelyn Downey
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Flavio C Kock
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | | | - Myrna Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andre Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Bornemann-Pfeiffer M, Meyer K, Lademann J, Kraume M, Maiwald M. Contributions towards variable temperature shielding for compact NMR instruments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:259-268. [PMID: 37438985 DOI: 10.1002/mrc.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature.
Collapse
Affiliation(s)
- Martin Bornemann-Pfeiffer
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
- Chair of Chemical and Process Engineering, Technical University Berlin, Berlin, Germany
| | - Klas Meyer
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Jeremy Lademann
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Matthias Kraume
- Chair of Chemical and Process Engineering, Technical University Berlin, Berlin, Germany
| | - Michael Maiwald
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| |
Collapse
|
11
|
Yang L, Chen F, Chen L, Zhang Z, Chen J, Wang J, Cheng X, Feng J, Bao Q, Liu C. An easy-built Halbach magnet for LF-NMR with high homogeneity using optimized target-field passive shimming method. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107582. [PMID: 37950959 DOI: 10.1016/j.jmr.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
The aim of this work is to develop a Halbach magnet that possesses characteristics such as easy-built, low cost and high homogeneity for use in a portable low-field NMR (LF-NMR) system. Considering portability, a 4-ring Halbach magnet was designed through simulation and mechanical modelling, which was successfully constructed in a general laboratory setting. The obtained field strength (B0) was 0.169 T, with an initial homogeneity of 8204 ppm within a sphere with a diameter of 20 mm. To enhance robustness, efficiency and effectiveness of shimming, an optimized target-field passive shimming method was proposed. Subsequently, the homemade spectrometer was used to run NMR experiments on the Halbach magnet. The 1H NMR linewidths of water samples became significantly narrower after passive shimming, e.g., the linewidth of a sample with a diameter of 3 mm and a length of 3 mm reduced from 452.3 Hz (62.5 ppm) to 12.9 Hz (1.8 ppm), which was much less than 102 Hz. The NMR results demonstrate that the proposed passive shimming method can achieve high homogeneity, and the developed Halbach magnet is capable of satisfying numerous LF-NMR applications.
Collapse
Affiliation(s)
- Lize Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Optics Valley Laboratory, Wuhan 430074, China.
| |
Collapse
|
12
|
Galvan D, de Aguiar LM, Bona E, Marini F, Killner MHM. Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Anal Chim Acta 2023; 1273:341495. [PMID: 37423658 DOI: 10.1016/j.aca.2023.341495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Low-field nuclear magnetic resonance (NMR) has three general modalities: spectroscopy, imaging, and relaxometry. In the last twelve years, the modality of spectroscopy, also known as benchtop NMR, compact NMR, or just low-field NMR, has undergone instrumental development due to new permanent magnetic materials and design. As a result, benchtop NMR has emerged as a powerful analytical tool for use in process analytical control (PAC). Nevertheless, the successful application of NMR devices as an analytical tool in several areas is intrinsically linked to its coupling with different chemometric methods. This review focuses on the evolution of benchtop NMR and chemometrics in chemical analysis, including applications in fuels, foods, pharmaceuticals, biochemicals, drugs, metabolomics, and polymers. The review also presents different low-resolution NMR methods for spectrum acquisition and chemometric techniques for calibration, classification, discrimination, data fusion, calibration transfer, multi-block and multi-way.
Collapse
Affiliation(s)
- Diego Galvan
- Chemistry Institute, Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil; Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Campo Mourão, 87301-899, Campo Mourão, PR, Brazil; Post-Graduation Program of Chemistry (PPGQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, 80230-901, Curitiba, PR, Brazil
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mário Henrique M Killner
- Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil
| |
Collapse
|
13
|
Song Z, Ohnishi Y, Osada S, Gan L, Jiang J, Hu Z, Kumeta H, Kumaki Y, Yokoi Y, Nakamura K, Ayabe T, Yamauchi K, Aizawa T. Application of Benchtop NMR for Metabolomics Study Using Feces of Mice with DSS-Induced Colitis. Metabolites 2023; 13:metabo13050611. [PMID: 37233652 DOI: 10.3390/metabo13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics, which comprehensively measures metabolites in biological systems and investigates their response to various perturbations, is widely used in research to identify biomarkers and investigate the pathogenesis of underlying diseases. However, further applications of high-field superconducting NMR for medical purposes and field research are restricted by its high cost and low accessibility. In this study, we applied a low-field, benchtop NMR spectrometer (60 MHz) employing a permanent magnet to characterize the alterations in the metabolic profile of fecal extracts obtained from dextran sodium sulfate (DSS)-induced ulcerative colitis model mice and compared them with the data acquired from high-field NMR (800 MHz). Nineteen metabolites were assigned to the 60 MHz 1H NMR spectra. Non-targeted multivariate analysis successfully discriminated the DSS-induced group from the healthy control group and showed high comparability with high-field NMR. In addition, the concentration of acetate, identified as a metabolite with characteristic behavior, could be accurately quantified using a generalized Lorentzian curve fitting method based on the 60 MHz NMR spectra.
Collapse
Affiliation(s)
- Zihao Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | | | - Li Gan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Jiaxi Jiang
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Zhiyan Hu
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Hiroyuki Kumeta
- Advanced NMR Facility, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Yasuhiro Kumaki
- High-Resolution NMR Laboratory, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kazuo Yamauchi
- Instrumental Analysis Section, Okinawa Institute of Science and Technology, Onna 904-0495, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
- Advanced NMR Facility, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
14
|
Yang Y, Li Y. Perspective Chapter: Novel Diagnostics Methods for SARS-CoV-2. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence has given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests such as PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the various novel diagnostics methods including SERS, SPR, electrochemical, magnetic detection of SARS-CoV-2. All sensing and biosensing methods based on nanotechnology developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system.
Collapse
|
15
|
Wu Y, Jiang X, Chen Y, Liu T, Ni Z, Yi H, Lu R. Rapid estimation approach for glycosylated serum protein of human serum based on the combination of deep learning and TD-NMR technology. ANAL SCI 2023; 39:957-968. [PMID: 36897540 DOI: 10.1007/s44211-023-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Rapid and precise estimation of glycosylated serum protein (GSP) of human serum is of great importance for the treatment and diagnosis of diabetes mellitus. In this study, we propose a novel method for estimation of GSP level based on the combination of deep learning and time domain nuclear magnetic resonance (TD-NMR) transverse relaxation signal of human serum. Specifically, a principal component analysis (PCA)-enhanced one-dimensional convolutional neural network (1D-CNN) is proposed to analyze the TD-NMR transverse relaxation signal of human serum. The proposed algorithm is proved by accurate estimation of GSP level for the collected serum samples. Furthermore, the proposed algorithm is compared with 1D-CNN without PCA, long short-term memory network (LSTM) and some conventional machine learning algorithms. The results indicate that PCA-enhanced 1D-CNN (PC-1D-CNN) has the minimum error. This study proves that proposed method is feasible and superior to estimate GSP level of human serum using TD-NMR transverse relaxation signals.
Collapse
Affiliation(s)
- Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Tingyu Liu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
17
|
Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device. Sci Rep 2023; 13:3102. [PMID: 36813850 PMCID: PMC9947018 DOI: 10.1038/s41598-023-30180-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Small interfering RNAs (siRNAs) knockdown the expression of target genes by causing mRNA degradation and are a promising therapeutic modality. In clinical practice, lipid nanoparticles (LNPs) are used to deliver RNAs, such as siRNA and mRNA, into cells. However, these artificial nanoparticles are toxic and immunogenic. Thus, we focused on extracellular vesicles (EVs), natural drug delivery systems, for the delivery of nucleic acids. EVs deliver RNAs and proteins to specific tissues to regulate various physiological phenomena in vivo. Here, we propose a novel method for the preparation siRNAs encapsulated in EVs using a microfluidic device (MD). MDs can be used to generate nanoparticles, such as LNPs, by controlling flow rate to the device, but the loading of siRNAs into EVs using MDs has not been reported previously. In this study, we demonstrated a method for loading siRNAs into grapefruit-derived EVs (GEVs), which have gained attention in recent years for being plant-derived EVs developed using an MD. GEVs were collected from grapefruit juice using the one-step sucrose cushion method, and then GEVs-siRNA-GEVs were prepared using an MD device. The morphology of GEVs and siRNA-GEVs was observed using a cryogenic transmission electron microscope. Cellular uptake and intracellular trafficking of GEVs or siRNA-GEVs to human keratinocytes were evaluated by microscopy using HaCaT cells. The prepared siRNA-GEVs encapsulated 11% of siRNAs. Moreover, intracellular delivery of siRNA and gene suppression effects in HaCaT cells were achieved using these siRNA-GEVs. Our findings suggested that MDs can be used to prepare siRNA-EV formulations.
Collapse
|
18
|
Araneda JF, Baumgarte M, Lange M, Maier AFG, Riegel SD. Identification of seven psychedelic 2,5-dimethoxy-phenylethyl-amine-based designer drugs via benchtop 1 H nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:66-72. [PMID: 34404110 DOI: 10.1002/mrc.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The dissemination of spectral information of new psychoactive substances (NPS) acquired on benchtop nuclear magnetic resonance (NMR) spectrometers is of high importance considering the emerging application of such portable and accessible instruments in forensic analyses. Seven members of the 2C-X series (2C-B, 2C-C, 2C-D, 2C-E, 2C-P, 2C-T2, and 2C-T7) of NPS were analyzed via 60 MHz 1 H benchtop NMR spectroscopy and their molecular structural relations are discussed with respect to the observed proton NMR spectra.
Collapse
Affiliation(s)
- Juan F Araneda
- Application Chemistry, Nanalysis Corp., Calgary, Alberta, Canada
| | - Marion Baumgarte
- Forensic Science Institute, State Criminal Police Office of Lower Saxony, Hanover, Germany
| | - Marie Lange
- Forensic Science Institute, State Criminal Police Office of Lower Saxony, Hanover, Germany
| | | | - Susanne D Riegel
- Application Chemistry, Nanalysis Corp., Calgary, Alberta, Canada
| |
Collapse
|
19
|
Polishchuk D, Gardeniers H. A compact permanent magnet for microflow NMR relaxometry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107364. [PMID: 36599254 DOI: 10.1016/j.jmr.2022.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
We design and demonstrate a compact, robust, and simple to assemble and tune permanent magnet suitable for NMR relaxometry measurements of microfluidic flows. Soft-magnetic stainless-steel plates, incorporated inside the magnet airgap, are key for obtaining substantially improved and tunable field homogeneity. The design is scalable for different NMR probe sizes with the region of suitable field homogeneity, less than 200 ppm, achievable in a capillary length of about 50 % of the total magnet length. The built physical prototype, having 3.5x3.5x8.0 cm3 in size and 5 mm high airgap, provides a field strength of 0.5 T and sufficient field homogeneity for NMR relaxometry measurements in capillaries up to 1.6 mm i.d. and 20 mm long. The magnet was used for test flow rate measurements in a wide range, from 0.001 ml/min to 20 ml/min.
Collapse
Affiliation(s)
- Dmytro Polishchuk
- Mesoscale Chemical Systems Group, University of Twente, 7500 AE Enschede, the Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, University of Twente, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
20
|
Plata M, Sharma M, Utz M, Werner JM. Fully Automated Characterization of Protein-Peptide Binding by Microfluidic 2D NMR. J Am Chem Soc 2023; 145:3204-3210. [PMID: 36716203 PMCID: PMC9912330 DOI: 10.1021/jacs.2c13052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We demonstrate an automated microfluidic nuclear magnetic resonance (NMR) system that quantitatively characterizes protein-ligand interactions without user intervention and with minimal sample needs through protein-detected heteronuclear 2D NMR spectroscopy. Quantitation of protein-ligand interactions is of fundamental importance to the understanding of signaling and other life processes. As is well-known, NMR provides rich information both on the thermodynamics of binding and on the binding site. However, the required titrations are laborious and tend to require large amounts of sample, which are not always available. The present work shows how the analytical power of NMR detection can be brought in line with the trend of miniaturization and automation in life science workflows.
Collapse
Affiliation(s)
- Marek Plata
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom,Email
for M.U.:
| | - Jörn M. Werner
- School
for Biological Sciences, University of Southampton, B85 Life Science Building, University
Rd, SouthamptonSO17 1BJ, United Kingdom,Email for J.M.W.:
| |
Collapse
|
21
|
Pokochueva EV, Svyatova AI, Burueva DB, Koptyug IV. Chemistry of nuclear spin isomers of the molecules: from the past of the Universe to emerging technologies. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
22
|
Merchant A, Smith MR, Windt CW. In situ pod growth rate reveals contrasting diurnal sensitivity to water deficit in Phaseolus vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3774-3786. [PMID: 35323925 PMCID: PMC9162186 DOI: 10.1093/jxb/erac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of reproductive tissues determines plant fecundity and yield. Loading of resources into the developing reproductive tissue is thought to be under the co-limiting effects of source and sink strength. The dynamics of this co-limitation are unknown, largely due to an inability to measure the flux of resources into a developing sink. Here we use nuclear magnetic resonance (NMR) sensors to measure sink strength by quantifying rates of pod dry matter accumulation (pod loading) in Phaseolus vulgaris at 13-min intervals across the diel period. Rates of pod loading showed contrasting variation across light and dark periods during the onset of water deficit. In addition, rates of pod loading appeared decoupled from net photosynthetic rates when adjusted to the plant scale. Combined, these observations illustrate that the rate of pod development varies under water limitation and that continuous, non-invasive methodologies to measure sink strength provide insight into the governing processes that determine the development of reproductive tissues.
Collapse
Affiliation(s)
| | - Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
23
|
Goralczyk A, Mayoussi F, Sanjaya M, Corredor SF, Bhagwat S, Song Q, Schwenteck S, Warmbold A, Pezeshkpour P, Rapp BE. On‐Chip Chemical Synthesis Using One‐Step 3D Printed Polyperfluoropolyether. CHEM-ING-TECH 2022; 94:975-982. [PMID: 35915768 PMCID: PMC9322562 DOI: 10.1002/cite.202200013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
Three‐dimensional (3D) printing has already shown its high relevance for the fabrication of microfluidic devices in terms of precision manufacturing cycles and a wider range of materials. 3D‐printable transparent fluoropolymers are highly sought after due to their high chemical and thermal resistance. Here, we present a simple one‐step fabrication process via stereolithography of perfluoropolyether dimethacrylate. We demonstrate successfully printed microfluidic mixers with 800 µm circular channels for chemistry‐on‐chip applications. The printed chips show chemical, mechanical, and thermal resistance up to 200 °C, as well as high optical transparency. Aqueous and organic reactions are presented to demonstrate the wide potential of perfluoropolyether dimethacrylate for chemical synthesis.
Collapse
Affiliation(s)
- Andreas Goralczyk
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Fadoua Mayoussi
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Mario Sanjaya
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Santiago Franco Corredor
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Sagar Bhagwat
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Qingchuan Song
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Sarah Schwenteck
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Andreas Warmbold
- University of Freiburg Freiburg Materials Research Center (FMF) Stefan-Meier-Straße 21 79104 Freiburg im Breisgau Germany
| | - Pegah Pezeshkpour
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Bastian E. Rapp
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
- University of Freiburg Freiburg Materials Research Center (FMF) Stefan-Meier-Straße 21 79104 Freiburg im Breisgau Germany
- University of Freiburg FIT Freiburg Center of Interactive Materials and Bioinspired Technologies Georges-Köhler-Allee 105 79110 Freiburg im Breisgau Germany
| |
Collapse
|
24
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
25
|
Lu R, Bao C, Chen L, Yu Q, Wu Y, Jiang X, Wu Z, Ni Z, Yi H. A novel inversion method of 2D TD-NMR signals based on realizing unconstrained maximization of objective function. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107168. [PMID: 35202918 DOI: 10.1016/j.jmr.2022.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The inversion of time-domain nuclear magnetic resonance (TD-NMR) signals is an ill-posed problem, which presents enormous challenges for the inversion algorithm. We propose a novel inversion method that converts conventional minimum objective function with non-negative constraints into an unconstrained maximization problem in the inversion of TD-NMR signals. Hence, the objective function becomes a differentiable concave function that can be solved more easily. The validity of the proposed method was verified by the uncertainty estimation of NMR inversion spectra with different signal-to-noise ratios (SNR). Through the inversion of simulated 2D D-T2 and T1-T2 signals under different SNR, the proposed method was proved to be less sensitive to noise than the conventional inversion method. We use the proposed method to study the migrations of oil and water in shales, the components change in shale could be identified and quantified according to the 2D T1-T2 inversion spectra. The proposed method was also used to analyze the hydration process of cement. The 2D T1-T2 inversion spectra could distinctly present the component of tiny volume with short relaxation time, and the migration regularity of capillary water, gel water, and bound water could also be found. In conclusion, the proposed method could be a reliable method to invert TD-NMR signals, especially the identification of the 2D NMR signals with a short relaxation time in low SNR.
Collapse
Affiliation(s)
- Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China; National Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China.
| | - Chong Bao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Lang Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Qiaoming Yu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Zhengxiu Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China; National Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; School of Mechanical Engineering, Southeast University, Nanjing 211189, China; National Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
26
|
Guo X, Lin H, Xu S, He L. Recent Advances in Spectroscopic Techniques for the Analysis of Microplastics in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1410-1422. [PMID: 35099960 DOI: 10.1021/acs.jafc.1c06085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastic pollution has become a worldwide concern in aquatic and terrestrial environments. Microplastics could also enter the food chain, causing potential harm to human health. To facilitate the risk assessment of microplastics to humans, it is critically important to have a reliable analytical technique to detect, quantify, and identify microplastics of various materials, sizes, and shapes from environmental, agricultural, and food matrices. Spectroscopic techniques, mainly vibrational spectroscopy (Raman and infrared), are commonly used techniques for microplastic analysis. This review focuses on recent advances of these spectroscopic techniques for the analysis of microplastics in food. The fundamental, recent technical advances of the spectroscopic techniques and their advantages and limitations were summarized. The food sample pretreatment methods and recent applications for detecting and quantifying microplastics in different types of food were reviewed. In addition, the current technical challenges and future research directions were discussed. It is anticipated that the advances in instrument development and methodology innovation will enable spectroscopic techniques to solve critical analytical challenges in microplastic analysis in food, which will facilitate the reliable risk assessment.
Collapse
Affiliation(s)
- Xin Guo
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Helen Lin
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theorical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
28
|
Chen Y, Jiang X, Wang J, Wu Z, Wu Y, Ni Z, Yi H, Lu R. Sensitive Oxidation of Sorbitol-Mediated Fe 2+ by H 2O 2: A Reliable TD-NMR Method for Clinical Blood Glucose Detection. Anal Chem 2021; 93:14153-14160. [PMID: 34637275 DOI: 10.1021/acs.analchem.1c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical challenge of high-accuracy blood glucose detection schemes is to overcome the detection error caused by the background interferences in different individuals. H2O2 as the specific product of glucose oxidation can be involved in the Fe2+/Fe3+ conversion and detected by the time-domain nuclear magnetic resonance (TD-NMR) method sensitively. But, in clinical applications, the oxidation of Fe2+ is susceptible to the complex sample substrates. In this work, we sorted out two kinds of possible interference mechanisms of Fe2+ oxidation in the NMR blood glucose detection method and proposed a feasible scheme that uses sorbitol to weaken the adverse effects of interference. We found that sorbitol-mediated Fe2+ can greatly enhance the sensitivity of the T2 value to H2O2. The chain reaction caused by sorbitol can significantly amplify the efficiency of Fe2+ oxidation at the same concentration of H2O2. Thereby, we can achieve the higher dilution multiple of serum samples to reduce the amount of interfering substances involved in the Fe2+/Fe3+ conversion. We justified the accuracy and availability of our method by successfully detecting and confirming the correlation between the T2 decrease and glucose concentration of the serum samples collected from 16 subjects. The sorbitol-Fe2+ glucose detection method with high sensitivity can be further combined with miniature NMR analyzers to satisfy the calibration requirements of glucose monitoring in diabetic patients instead of frequent medical visits.
Collapse
Affiliation(s)
- Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Junnan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhengxiu Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.,National Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
29
|
Abstract
Benchtop nuclear magnetic resonance (NMR) spectroscopy uses small permanent magnets to generate magnetic fields and therefore offers the advantages of operational simplicity and reasonable cost, presenting a viable alternative to high-field NMR spectroscopy. In particular, the use of benchtop NMR spectroscopy for rapid in-field analysis, e.g., for quality control or forensic science purposes, has attracted considerable attention. As benchtop NMR spectrometers are sufficiently compact to be operated in a fume hood, they can be efficiently used for real-time reaction and process monitoring. This review introduces the recent applications of benchtop NMR spectroscopy in diverse fields, including food science, pharmaceuticals, process and reaction monitoring, metabolomics, and polymer materials.
Collapse
|
30
|
Fakhrutdinov AN, Karlinskii BY, Minyaev ME, Ananikov VP. Unusual Effect of Impurities on the Spectral Characterization of 1,2,3-Triazoles Synthesized by the Cu-Catalyzed Azide-Alkyne Click Reaction. J Org Chem 2021; 86:11456-11463. [PMID: 34310134 DOI: 10.1021/acs.joc.1c00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The analysis of products synthesized by Cu-catalyzed click reactions can be complicated due to the presence of metal impurities in isolated substances, which may "selectively" distort some signals in NMR spectra. Such a pronounced impurity effect was found in both 1H and 13C NMR spectra for a number of 1,4-substituted 1,2,3-triazoles. Recording of the full undistorted spectra is possible with additional product treatment, with more thorough purification, or by recording the spectra at low temperatures. The reasons for the distortion and disappearance of signals have been thoroughly studied; it was shown that impurities of paramagnetic metal ions in small amounts lead to this effect. Here, we want to deliver a warning message to the community: when all NMR signals in a spectrum are distorted, this situation is easy to detect. However, if only a few signals are "selectively" removed by impurities and the rest of the spectrum appears normal, this situation is much harder to notice. Therefore, incorrect conclusions about chemical structure may be obtained. Here, we demonstrated the example of Cu2+ ions, but one may anticipate a similar effect for other paramagnetic metal contaminants if the organic molecule has a functional group capable of coordination (heteroatom or a multiple bond).
Collapse
Affiliation(s)
- Artem N Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Bogdan Ya Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Mikhail E Minyaev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| |
Collapse
|
31
|
Screening Metal-Organic Frameworks for Separation of Binary Solvent Mixtures by Compact NMR Relaxometry. Molecules 2021; 26:molecules26123481. [PMID: 34201035 PMCID: PMC8228364 DOI: 10.3390/molecules26123481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/18/2023] Open
Abstract
Metal–organic frameworks (MOFs) have great potential as an efficient alternative to current separation and purification procedures of a large variety of solvent mixtures—a critical process in many applications. Due to the huge number of existing MOFs, it is of key importance to identify high-throughput analytical tools, which can be used for their screening and performance ranking. In this context, the present work introduces a simple, fast, and inexpensive approach by compact low-field proton nuclear magnetic resonance (NMR) relaxometry to investigate the efficiency of MOF materials for the separation of a binary solvent mixture. The mass proportions of two solvents within a particular solvent mixture can be quantified before and after separation with the help of a priori established correlation curves relating the effective transverse relaxation times T2eff and the mass proportions of the two solvents. The new method is applied to test the separation efficiency of powdered UiO-66(Zr) for various solvent mixtures, including linear and cyclic alkanes and benzene derivate, under static conditions at room temperature. Its reliability is demonstrated by comparison with results from 1H liquid-state NMR spectroscopy.
Collapse
|
32
|
Kelz JI, Uribe JL, Martin RW. Reimagining magnetic resonance instrumentation using open maker tools and hardware as protocol. JOURNAL OF MAGNETIC RESONANCE OPEN 2021; 6-7:100011. [PMID: 34085051 PMCID: PMC8171197 DOI: 10.1016/j.jmro.2021.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the course of its history, the field of nuclear magnetic resonance spectroscopy has been characterized by alternating periods of intensive instrumentation development and rapid expansion into new chemical application areas. NMR is now both a mainstay of routine analysis for laboratories at all levels of education and research. On the other hand, new instrumentation and methodological advances promise expanded functionality in the future. At the core of this success is a community fundamentally dedicated to sharing ideas and collaborative advancements, as exemplified by the extensive remixing and repurposing of pulse sequences. Recent progress in modularity, automation, and 3D printing have reignited the tinkering spirit and demonstrate great promise to mature into a maker space that will enable similarly facile sharing of new applications and broader access to magnetic resonance.
Collapse
Affiliation(s)
- Jessica I. Kelz
- Department of Chemistry, University of California, Irvine 92697-2025
| | - Jose L. Uribe
- Department of Chemistry, University of California, Irvine 92697-2025
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine 92697-2025
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900
| |
Collapse
|
33
|
Plata M, Hale W, Sharma M, Werner JM, Utz M. Microfluidic platform for serial mixing experiments with in operando nuclear magnetic resonance spectroscopy. LAB ON A CHIP 2021; 21:1598-1603. [PMID: 33662071 DOI: 10.1039/d0lc01100b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a microfluidic platform that allows in operando nuclear magnetic resonance (NMR) observation of serial mixing experiments. Gradually adding one reagent to another is a fundamental experimental modality, widely used to quantify equilibrium constants, for titrations, and in chemical kinetics studies. NMR provides a non-invasive means to quantify concentrations and to follow structural changes at the molecular level as a function of exchanged volume. Using active pneumatic valving on the microfluidic device directly inside an NMR spectrometer equipped with a transmission-line NMR microprobe, the system allows injection of aliquots and in situ mixing in a sample volume of less than 10 μL.
Collapse
Affiliation(s)
- Marek Plata
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - William Hale
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| | | | - Jörn M Werner
- Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
34
|
Blümich B, Anders J. When the MOUSE leaves the house. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:149-160. [PMID: 37904756 PMCID: PMC10539780 DOI: 10.5194/mr-2-149-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/10/2021] [Indexed: 11/01/2023]
Abstract
Change is inherent to time being transient. With the NMR-MOUSE (MObile Universal Surface Explorer) having matured into an established NMR tool for nondestructive testing of materials, this forward-looking retrospective assesses the challenges the NMR-MOUSE faced when deployed outside a protected laboratory and how its performance quality can be maintained and improved when operated under adverse conditions in foreign environments. This work is dedicated to my dear colleague and friend Geoffrey Bodenhausen on the occasion of his crossing an honorable timeline in appreciation of his ever-continuing success of fueling the dynamics of magnetic resonance.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen
University, 52159 Roetgen, Germany
| | - Jens Anders
- Institute of Smart Sensors, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
35
|
Chen J, You X, Sun H, Tian J, Fang H, Xie J, Huang Y, Chen Z. Optimization of twin parallel microstrips based nuclear magnetic resonance probe for measuring the kinetics in molecular assembly in ultra-small samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033106. [PMID: 33820024 DOI: 10.1063/5.0030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We present the design, fabrication, characterization, and optimization of a TPM (twin parallel microstrip)-based nuclear magnetic resonance (NMR) probe, produced by using a low-loss Teflon PTFE F4B high frequency circuit board. We use finite element analysis to optimize the radio frequency (RF) homogeneity and sensitivity of the TPM probe jointly for various sample volumes. The RF homogeneity of this TPM planar probe is superior to that of only a single microstrip probe. The optimized TPM probe properties such as RF homogeneity and field strength are characterized experimentally and discussed in detail. By combining this TPM based NMR probe with microfluidic technology, the sample amount required for kinetic study using NMR spectroscopy was minimized. This is important for studying costly samples. The TPM NMR probes provide high sensitivity to analysis of 5 µl samples with 2 mM concentrations within 10 min. The miniaturized microfluidic NMR probe plays an important role in realizing down to seconds timescale for kinetic monitoring.
Collapse
Affiliation(s)
- Jiahe Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xueqiu You
- School of Information Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - Huijun Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiaqin Tian
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hongxun Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junyao Xie
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
36
|
Abstract
Nuclear magnetic resonance at low field strength is an insensitive spectroscopic technique, precluding portable applications with small sample volumes, such as needed for biomarker detection in body fluids. Here we report a compact double resonant chip stack system that implements in situ dynamic nuclear polarisation of a 130 nL sample volume, achieving signal enhancements of up to - 60 w.r.t. the thermal equilibrium level at a microwave power level of 0.5 W. This work overcomes instrumental barriers to the use of NMR detection for point-of-care applications.
Collapse
|
37
|
Rudszuck T, Nirschl H, Guthausen G. Perspectives in process analytics using low field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106897. [PMID: 33518174 DOI: 10.1016/j.jmr.2020.106897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Low field NMR is a powerful analytical tool which creates an enormous added value in process analytics. Based on specific applications in process analytics and perspectives for low field NMR in form of spectroscopy, relaxation, diffusion, and imaging in quality control, diverse applications and technical realizations like spectrometers, time domain NMR, mobile NMR sensors and MRI will be discussed.
Collapse
Affiliation(s)
- T Rudszuck
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | - H Nirschl
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | - G Guthausen
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany; Engler-Bunte Institut, Water Science and Technology, KIT, 76131 Karlsruhe, Germany
| |
Collapse
|
38
|
Microfluidics in Biotechnology: Quo Vadis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:355-380. [PMID: 33495924 DOI: 10.1007/10_2020_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements.
Collapse
|
39
|
Biller JR, McPeak JE. EPR Everywhere. APPLIED MAGNETIC RESONANCE 2021; 52:1113-1139. [PMID: 33519097 PMCID: PMC7826499 DOI: 10.1007/s00723-020-01304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
This review is inspired by the contributions from the University of Denver group to low-field EPR, in honor of Professor Gareth Eaton's 80th birthday. The goal is to capture the spirit of innovation behind the body of work, especially as it pertains to development of new EPR techniques. The spirit of the DU EPR laboratory is one that never sought to limit what an EPR experiment could be, or how it could be applied. The most well-known example of this is the development and recent commercialization of rapid-scan EPR. Both of the Eatons have made it a point to remain knowledgeable on the newest developments in electronics and instrument design. To that end, our review touches on the use of miniaturized electronics and applications of single-board spectrometers based on software-defined radio (SDR) implementations and single-chip voltage-controlled oscillator (VCO) arrays. We also highlight several non-traditional approaches to the EPR experiment such as an EPR spectrometer with a "wand" form factor for analysis of the OxyChip, the EPR-MOUSE which enables non-destructive in situ analysis of many non-conforming samples, and interferometric EPR and frequency swept EPR as alternatives to classical high Q resonant structures.
Collapse
Affiliation(s)
| | - Joseph E. McPeak
- University of Denver, Denver, CO 80210 USA
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPINS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
40
|
Wagner L, Zargar M, Kalli C, Fridjonsson EO, Ling NN, May EF, Zhen J, Johns ML. Solid-Phase Extraction Nuclear Magnetic Resonance (SPE-NMR): Prototype Design, Development, and Automation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lisabeth Wagner
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Masoumeh Zargar
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Christopher Kalli
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Einar Orn Fridjonsson
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicholas N.A. Ling
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Eric F. May
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John Zhen
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michael L. Johns
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
41
|
Wu K, Saha R, Su D, Krishna VD, Liu J, Cheeran MCJ, Wang JP. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS APPLIED NANO MATERIALS 2020; 3:9560-9580. [PMID: 37556271 PMCID: PMC7526334 DOI: 10.1021/acsanm.0c02048] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 05/02/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is a threat to the global healthcare system and economic security. As of July 2020, no specific drugs or vaccines are yet available for COVID-19; a fast and accurate diagnosis for SARS-CoV-2 is essential in slowing the spread of COVID-19 and for efficient implementation of control and containment strategies. Magnetic nanosensing is an emerging topic representing the frontiers of current biosensing and magnetic areas. The past decade has seen rapid growth in applying magnetic tools for biological and biomedical applications. Recent advances in magnetic nanomaterials and nanotechnologies have transformed current diagnostic methods to nanoscale and pushed the detection limit to early-stage disease diagnosis. Herein, this review covers the literature of magnetic nanosensors for virus and pathogen detection before COVID-19. We review popular magnetic nanosensing techniques including magnetoresistance, magnetic particle spectroscopy, and nuclear magnetic resonance. Magnetic point-of-care diagnostic kits are also reviewed aiming at developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak as well as preventing future epidemics. In addition, other platforms that use magnetic nanomaterials as auxiliary tools for enhanced pathogen and virus detection are also covered. The goal of this review is to inform the researchers of diagnostic and surveillance platforms for SARS-CoV-2 and their performances.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department of Chemical Engineering and
Material Science, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population
Medicine, University of Minnesota, St.
Paul, Minnesota 55108, United States
| | - Jinming Liu
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Maxim C.-J. Cheeran
- Department of Veterinary Population
Medicine, University of Minnesota, St.
Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - James Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - John W. Blanchard
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
| | - Antoine Garcon
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Román Picazo‐Frutos
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Dmitry Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
- University of California Berkeley Berkeley CA 94720 USA
| |
Collapse
|
43
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020; 59:17026-17032. [PMID: 32510813 PMCID: PMC7540358 DOI: 10.1002/anie.202006266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/28/2022]
Abstract
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - James Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - John W. Blanchard
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
| | - Antoine Garcon
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Román Picazo‐Frutos
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Dmitry Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
- University of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
44
|
Görges A, Benders S, Greferath M, Küppers M, Adams M, Blümich B. Selective magnetic resonance signal suppression by colored Frank excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 317:106776. [PMID: 32622240 DOI: 10.1016/j.jmr.2020.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Inspired by the growing interest in miniaturized NMR devices and their applications in material science as well as in chemical and biological research, low power rf excitation is explored. 1H NMR spectra have been measured with low power Frank excitation and are compared to spectra obtained by single-pulse excitation. Frank excitation consists of a large number of phase-modulated, constant-amplitude rf-pulses. A Frank sequence is divided into packages of discrete phase wavelets that correspond to a scan across a spectral frequency range. The largely coherent excitation is found experimentally to require less power than white noise excitation. The package structure suggests that individual wavelets can be omitted to skip individual frequency regions in the excitation, converting the white Frank excitation into colored Frank excitation. This work explores different approaches of colored, selective Frank excitation for spectroscopy and imaging. It is motivated by the aim to eliminate the rf amplifier from the NMR spectrometer so as to enable further miniaturization of NMR instruments. Colored Frank excitation bears promise as a low-power modality for solvent signal suppression in spectroscopy and motion tagging in magnetic resonance imaging.
Collapse
Affiliation(s)
- Alexander Görges
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Stefan Benders
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Marcus Greferath
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Markus Küppers
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Michael Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|
45
|
Abstract
With the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories. One aspect of this transformation is the progressing implementation of electronics and computer science in chemistry research. In the past decade, numerous chemistry-oriented studies have benefited from the implementation of electronic modules, including microcontroller boards (MCBs), single-board computers (SBCs), professional grade control and data acquisition systems, as well as field-programmable gate arrays (FPGAs). In particular, MCBs and SBCs provide good value for money. The application areas for electronic modules in chemistry research include construction of simple detection systems based on spectrophotometry and spectrofluorometry principles, customizing laboratory devices for automation of common laboratory practices, control of reaction systems (batch- and flow-based), extraction systems, chromatographic and electrophoretic systems, microfluidic systems (classical and nonclassical), custom-built polymerase chain reaction devices, gas-phase analyte detection systems, chemical robots and drones, construction of FPGA-based imaging systems, and the Internet-of-Chemical-Things. The technology is easy to handle, and many chemists have managed to train themselves in its implementation. The only major obstacle in its implementation is probably one's imagination.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
46
|
Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G. Single-Chip Dynamic Nuclear Polarization Microsystem. Anal Chem 2020; 92:9782-9789. [PMID: 32530638 PMCID: PMC9559634 DOI: 10.1021/acs.analchem.0c01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Integration
of the sensitivity-relevant electronics of nuclear
magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers
on a single chip is a promising approach to improve the limit of detection,
especially for samples in the nanoliter and subnanoliter range. Here,
we demonstrate the cointegration on a single silicon chip of the front-end
electronics of NMR and ESR detectors. The excitation/detection planar
spiral microcoils of the NMR and ESR detectors are concentric and
interrogate the same sample volume. This combination of sensors allows
one to perform dynamic nuclear polarization (DNP) experiments using
a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR
experiments on liquid samples having a volume of about 1 nL performed
at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are
achieved on TEMPOL/H2O solutions at room temperature. The
use of state-of-the-art submicrometer integrated circuit technologies
should allow the future extension of the single-chip DNP microsystem
approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding
to the strongest static magnetic fields currently available. Particularly
interesting is the possibility to create arrays of such sensors for
parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter
samples.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Grisi
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alessandro V. Matheoud
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Gualco
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Boero
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Friebel A, von Harbou E, Münnemann K, Hasse H. Online process monitoring of a batch distillation by medium field NMR spectroscopy. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Li G, Ma M, Wang G, Wang X, Lei X. Efficient Enantiodifferentiation of Carboxylic Acids Using BINOL-Based Amino Alcohol as a Chiral NMR Solvating Agent. Front Chem 2020; 8:336. [PMID: 32432082 PMCID: PMC7213237 DOI: 10.3389/fchem.2020.00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
A new optically active BINOL-amino alcohol has been designed and synthesized in a good yield and applied as chiral nuclear magnetic resonance (NMR) solvating agent for enantioselective recognition. Analysis by 1H NMR spectroscopy demonstrated that it has excellent enantiodifferentiation properties toward carboxylic acids and non-steroidal anti-inflammatory drugs (14 examples). The non-equivalent chemical shifts (up to 0.641 ppm) of various mandelic acids were evaluated by the reliable peak of well-resolved 1H NMR signals. In addition, enantiomeric excesses of the ortho-chloro-mandelic acid with different enantiomeric ratio were calculated based on integration of proton well-separated splitting signals.
Collapse
Affiliation(s)
- Gaowei Li
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Minshan Ma
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Guifang Wang
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| |
Collapse
|
49
|
Moroni L, Barbaro F, Caiment F, Coleman O, Costagliola S, Di Conza G, Elviri L, Giselbrecht S, Krause C, Mota C, Nazzari M, Pennington SR, Ringwald A, Sandri M, Thomas S, Waddington J, Toni R. SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. Int J Mol Sci 2020; 21:E3648. [PMID: 32455722 PMCID: PMC7279272 DOI: 10.3390/ijms21103648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: 1) a 3D organoid based on stem cell-derived thyrocytes, 2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and 3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce "magnetic cells" to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the "Adverse Outcome Pathway" concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.
Collapse
Affiliation(s)
- Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229ET Maastricht, The Netherlands;
| | - Fulvio Barbaro
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
| | - Florian Caiment
- Toxicogenomics, Maastricht University, 6229ET Maastricht, The Netherlands; (F.C.); (M.N.)
| | - Orla Coleman
- Atturos Ltd., c/o Conway Research Institute, University College Dublin, Dublin 4, Ireland; (O.C.); (S.R.P.)
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Giusy Di Conza
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
| | - Lisa Elviri
- Food and Drug Department, University of Parma, 43121 Parma, Italy;
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instruct Biomaterials Engineering, Maastricht University, 6229ET Maastricht, The Netherlands;
| | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229ET Maastricht, The Netherlands;
| | - Marta Nazzari
- Toxicogenomics, Maastricht University, 6229ET Maastricht, The Netherlands; (F.C.); (M.N.)
| | - Stephen R. Pennington
- Atturos Ltd., c/o Conway Research Institute, University College Dublin, Dublin 4, Ireland; (O.C.); (S.R.P.)
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | | | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy (ISTEC-CNR), 48018 Faenza, Italy;
| | - Simon Thomas
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK;
| | - James Waddington
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Roberto Toni
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
- Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center - Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
50
|
Jin L, Li T, Wu B, Yang T, Zou D, Liang X, Hu L, Huang G, Zhang J. Rapid detection of Salmonella in milk by nuclear magnetic resonance based on membrane filtration superparamagnetic nanobiosensor. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|