1
|
Watanabe-Matsui M, Kadoya S, Segawa K, Shima H, Nakagawa T, Nagasawa Y, Hayashi S, Matsumoto M, Ikeda M, Muto A, Ochiai K, Nguyen LC, Doh-Ura K, Shirouzu M, Nakayama K, Murayama K, Igarashi K. Heme regulates protein interactions and phosphorylation of BACH2 intrinsically disordered region in humoral response. iScience 2025; 28:111529. [PMID: 39758820 PMCID: PMC11699347 DOI: 10.1016/j.isci.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2023] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1). TBK1 inactivated BACH2 by phosphorylation of its IDR, whereas BACH2 repressed TBK1 gene expression. BACH2 phosphorylation by TBK1 inhibited its interaction with the co-repressor NCOR1 and promoted plasma cell differentiation. Heme also induced BACH2 binding to ubiquitin E3 ligase adaptor FBXO22, which polyubiquitinated BACH2 only in the presence of heme in vitro. Mutations of some of the TBK1-mediated phosphorylation sites promoted BACH2-FBXO22 interaction, while additional mutations abrogated their interaction, suggesting that TBK1 can both inhibit and promote BACH2-FBXO22 interaction. Therefore, heme regulates phosphorylation of BACH2 IDR by TBK1 and its interaction with NCOR1 and FBXO22, leading to de-repression of BACH2 target genes in humoral immunity.
Collapse
Affiliation(s)
- Miki Watanabe-Matsui
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Shun Kadoya
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Segawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Hayashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Long C. Nguyen
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Fu S, Pan X, Lu M, Dong J, Yan Z. Human TMC1 and TMC2 are mechanically gated ion channels. Neuron 2024:S0896-6273(24)00834-1. [PMID: 39674179 DOI: 10.1016/j.neuron.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.1 and subsequent point mutations, we successfully identified membrane-localized mouse TMC1/2 mutants, demonstrating that they are mechanically gated in heterologous cells. Further, whole-genome CRISPRi screening enabled wild-type human TMC1/2 localization in the plasma membrane, where they responded robustly to poking stimuli. In addition, wild-type human TMC1/2 showed stretch-activated currents and clear single-channel current activities. Deafness-related TMC1 mutations altered the reversal potential of TMC1, indicating that TMC1/2 are pore-forming mechanotransduction channels. In summary, our study provides evidence that human TMC1/2 are pore-forming, mechanically activated ion channels, supporting their roles as mechanotransduction channels in hair cells.
Collapse
Affiliation(s)
- Songdi Fu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xueqi Pan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Mingshun Lu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianying Dong
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Zhiqiang Yan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
3
|
Wang J, Zhang Y, Liu J, Wu J, Liang Y, Xu C, Ma J, Liang J, Zhao Y, Zhang X, Li Y, Wang D, Zheng L, Wang D, Jin X, Song H, Zhu X, Cheng Q, Lin L, Gao J, Tong J, Shi L. TMEM56 deficiency impairs the haem metabolism and cell cycle progression during human erythropoiesis. Br J Haematol 2024; 205:2008-2021. [PMID: 39344568 DOI: 10.1111/bjh.19801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
TMEM56, a gene coding a transmembrane protein, is abundantly expressed in erythroid cells. Despite this, its role in erythropoiesis has not been well characterized. In this study, we sought to clarify the function of TMEM56 in erythroid development, focusing specifically on its involvement in haem biosynthesis and cell cycle progression. To do this, we used CD34+ haematopoietic stem cells derived from umbilical cord blood and differentiated them into erythroid cells in an ex vivo model. Our results indicate that the loss of TMEM56 disrupts haem biosynthesis and impairs erythroid differentiation. Furthermore, deletion of Tmem56 in the erythroid lineage in murine models using erythropoietin receptor (EpoR)-Cre revealed defects in erythroid progenitors within the bone marrow under both normal conditions and during haemolytic anaemia. These observations underscore the regulatory role of TMEM56 in maintaining erythroid lineage homeostasis. Taken together, our results unveil a previously unrecognized function of TMEM56 in erythroid differentiation and suggest its potential as an unfounded target for therapeutic strategies in the treatment of erythropoietic disorders.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
4
|
Patnaik PK, Nady N, Barlit H, Gülhan A, Labunskyy VM. Lifespan regulation by targeting heme signaling in yeast. GeroScience 2024; 46:5235-5245. [PMID: 38809391 PMCID: PMC11335709 DOI: 10.1007/s11357-024-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here, we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to a significant extension of yeast replicative lifespan. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology, and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Praveen K Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Nour Nady
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Vyacheslav M Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
5
|
Belot A, Puy H, Hamza I, Bonkovsky HL. Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy. Liver Int 2024; 44:2235-2250. [PMID: 38888238 PMCID: PMC11625177 DOI: 10.1111/liv.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.
Collapse
Affiliation(s)
- Audrey Belot
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Herve Puy
- Centre Français des Porphyries, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, INSERM U1149, Paris, France
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Herbert L. Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Ping FLY, Vahsen T, Brault A, Néré R, Labbé S. The flavohemoglobin Yhb1 is a new interacting partner of the heme transporter Str3. Mol Microbiol 2024; 122:29-49. [PMID: 38778742 DOI: 10.1111/mmi.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.
Collapse
Affiliation(s)
- Florie Lo Ying Ping
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Raphaël Néré
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| |
Collapse
|
7
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Wang Z, Dong Z, Li Y, Jiao X, Liu Y, Chang H, Gan Y. Verapamil Attenuates the Severity of Tendinopathy by Mitigating Mitochondrial Dysfunction through the Activation of the Nrf2/HO-1 Pathway. Biomedicines 2024; 12:904. [PMID: 38672259 PMCID: PMC11048132 DOI: 10.3390/biomedicines12040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Tendinopathy is a prevalent condition in orthopedics patients, exerting a profound impact on tendon functionality. However, its underlying mechanism remains elusive and the efficacy of pharmacological interventions continues to be suboptimal. Verapamil is a clinically used medicine with anti-inflammation and antioxidant functions. This investigation aimed to elucidate the impact of verapamil in tendinopathy and the underlying mechanisms through which verapamil ameliorates the severity of tendinopathy. In in vitro experiments, primary tenocytes were exposed to interleukin-1 beta (IL-1β) along with verapamil at a concentration of 5 μM. In addition, an in vivo rat tendinopathy model was induced through the localized injection of collagenase into the Achilles tendons of rats, and verapamil was injected into these tendons at a concentration of 5 μM. The in vitro findings highlighted the remarkable ability of verapamil to attenuate extracellular matrix degradation and apoptosis triggered by inflammation in tenocytes stimulated by IL-1β. Furthermore, verapamil was observed to significantly suppress the inflammation-related MAPK/NFκB pathway. Subsequent investigations revealed that verapamil exerts a remediating effect on mitochondrial dysfunction, which was achieved through activation of the Nrf2/HO-1 pathway. Nevertheless, the protective effect of verapamil was nullified with the utilization of the Nrf2 inhibitor ML385. In summary, the in vivo and in vitro results indicate that the administration of verapamil profoundly mitigates the severity of tendinopathy through suppression of inflammation and activation of the Nrf2/HO-1 pathway. These findings suggest that verapamil is a promising therapeutic agent for the treatment of tendinopathy, deserving further and expanded research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaokai Gan
- Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Huangpu District, Shanghai 200011, China; (Z.W.); (Z.D.); (Y.L.); (X.J.); (Y.L.); (H.C.)
| |
Collapse
|
9
|
Ramos S, Jeney V, Figueiredo A, Paixão T, Sambo MR, Quinhentos V, Martins R, Gouveia Z, Carlos AR, Ferreira A, Pais TF, Lainé H, Faísca P, Rebelo S, Cardoso S, Tolosano E, Penha-Gonçalves C, Soares MP. Targeting circulating labile heme as a defense strategy against malaria. Life Sci Alliance 2024; 7:e202302276. [PMID: 38307624 PMCID: PMC10837040 DOI: 10.26508/lsa.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Severe presentations of malaria emerge as Plasmodium (P.) spp. parasites invade and lyse red blood cells (RBC), producing extracellular hemoglobin (HB), from which labile heme is released. Here, we tested whether scavenging of extracellular HB and/or labile heme, by haptoglobin (HP) and/or hemopexin (HPX), respectively, counter the pathogenesis of severe presentations of malaria. We found that circulating labile heme is an independent risk factor for cerebral and non-cerebral presentations of severe P. falciparum malaria in children. Labile heme was negatively correlated with circulating HP and HPX, which were, however, not risk factors for severe P. falciparum malaria. Genetic Hp and/or Hpx deletion in mice led to labile heme accumulation in plasma and kidneys, upon Plasmodium infection This was associated with higher incidence of mortality and acute kidney injury (AKI) in ageing but not adult Plasmodium-infected mice, and was corroborated by an inverse correlation between heme and HPX with serological markers of AKI in P. falciparum malaria. In conclusion, HP and HPX act in an age-dependent manner to prevent the pathogenesis of severe presentation of malaria in mice and presumably in humans.
Collapse
Affiliation(s)
- Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Maria Rosário Sambo
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Vatúsia Quinhentos
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Ana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Hugo Lainé
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sofia Rebelo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | |
Collapse
|
10
|
Zhang Y, Hao H, Song L, Wang H, Li D, Bongiovanni D, Zhan J, Xiu Z, Song D, Tang L, Morandotti R, Chen Z. Nonlinear optical response of heme solutions. OPTICS EXPRESS 2024; 32:5760-5769. [PMID: 38439294 DOI: 10.1364/oe.510714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Heme is the prosthetic group for cytochrome that exists in nearly all living organisms and serves as a vital component of human red blood cells (RBCs). Tunable optical nonlinearity in suspensions of RBCs has been demonstrated previously, however, the nonlinear optical response of a pure heme (without membrane structure) solution has not been studied to our knowledge. In this work, we show optical nonlinearity in two common kinds of heme (i.e., hemin and hematin) solutions by a series of experiments and numerical simulations. We find that the mechanism of nonlinearity in heme solutions is distinct from that observed in the RBC suspensions where the nonlinearity can be easily tuned through optical power, concentration, and the solution properties. In particular, we observe an unusual phenomenon wherein the heme solution exhibits negative optical nonlinearity and render self-collimation of a focused beam at specific optical powers, enabling shape-preserving propagation of light to long distances. Our results may have potential applications in optical imaging and medical diagnosis through blood.
Collapse
|
11
|
Patnaik PK, Nady N, Barlit H, Gülhan A, Labunskyy VM. Lifespan regulation by targeting heme signaling in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576446. [PMID: 38293148 PMCID: PMC10827197 DOI: 10.1101/2024.01.20.576446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to significant lifespan extension in yeast. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Praveen K. Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Nour Nady
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vyacheslav M. Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Farvardin A, Llorens E, Liu-Xu L, Sánchez-Giménez L, Wong A, Biosca EG, Pedra JM, Falomir E, Camañes G, Scalschi L, Vicedo B. Solanum lycopersicum heme-binding protein 2 as a potent antimicrobial weapon against plant pathogens. Sci Rep 2023; 13:20336. [PMID: 37990046 PMCID: PMC10663603 DOI: 10.1038/s41598-023-47236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
The rise in antibiotic-resistant bacteria caused by the excessive use of antibiotics has led to the urgent exploration of alternative antimicrobial solutions. Among these alternatives, antimicrobial proteins, and peptides (Apps) have garnered attention due to their wide-ranging antimicrobial effects. This study focuses on evaluating the antimicrobial properties of Solanum lycopersicum heme-binding protein 2 (SlHBP2), an apoplastic protein extracted from tomato plants treated with 1-Methyl tryptophan (1-MT), against Pseudomonas syringae pv. tomato DC3000 (Pst). Computational studies indicate that SlHBP2 is annotated as a SOUL heme-binding family protein. Remarkably, recombinant SlHBP2 demonstrated significant efficacy in inhibiting the growth of Pst within a concentration range of 3-25 μg/mL. Moreover, SlHBP2 exhibited potent antimicrobial effects against other microorganisms, including Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), and Botrytis cinerea. To understand the mechanism of action employed by SlHBP2 against Pst, various techniques such as microscopy and fluorescence assays were employed. The results revealed that SlHBP2 disrupts the bacterial cell wall and causes leakage of intracellular contents. To summarize, the findings suggest that SlHBP2 has significant antimicrobial properties, making it a potential antimicrobial agent against a wide range of pathogens. Although further studies are warranted to explore the full potential of SlHBP2 and its suitability in various applications.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Luisa Liu-Xu
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Lorena Sánchez-Giménez
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Aloysius Wong
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang, China
| | - Elena G Biosca
- Department of Microbiology and Ecology, Universitat de Valencia, E-46100, Valencia, Spain
| | - José M Pedra
- Central Service of Scientific Instrumentation, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Gemma Camañes
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Loredana Scalschi
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain.
| | - Begonya Vicedo
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| |
Collapse
|
13
|
Vahsen T, Brault A, Mourer T, Labbé S. A novel role of the fission yeast sulfiredoxin Srx1 in heme acquisition. Mol Microbiol 2023; 120:608-628. [PMID: 37644673 DOI: 10.1111/mmi.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The transporter Str3 promotes heme import in Schizosaccharomyces pombe cells that lack the heme receptor Shu1 and are deficient in heme biosynthesis. Under microaerobic conditions, the peroxiredoxin Tpx1 acts as a heme scavenger within the Str3-dependent pathway. Here, we show that Srx1, a sulfiredoxin known to interact with Tpx1, is essential for optimal growth in the presence of hemin. The expression of Srx1 is induced in response to low iron and repressed under iron repletion. Coimmunoprecipitation and bimolecular fluorescence complementation experiments show that Srx1 interacts with Str3. Although the interaction between Srx1 and Str3 is weakened, it is still observed in tpx1Δ mutant cells or when Str3 is coexpressed with a mutant form of Srx1 (mutD) that cannot bind Tpx1. Further analysis by absorbance spectroscopy and hemin-agarose pull-down assays confirms the binding of Srx1 to hemin, with an equilibrium constant value of 2.56 μM. To validate the Srx1-hemin association, we utilize a Srx1 mutant (mutH) that fails to interact with hemin. Notably, when Srx1 binds to hemin, it partially shields hemin from degradation caused by hydrogen peroxide. Collectively, these findings elucidate an additional function of the sulfiredoxin Srx1, beyond its conventional role in oxidative stress defense.
Collapse
Affiliation(s)
- Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thierry Mourer
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
14
|
Chen C, Hamza I. Notes from the Underground: Heme Homeostasis in C. elegans. Biomolecules 2023; 13:1149. [PMID: 37509184 PMCID: PMC10377359 DOI: 10.3390/biom13071149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in various biological processes, including oxygen transport, electron transport, signal transduction, and catalysis. However, free heme is hydrophobic and potentially toxic to cells. Organisms have evolved specific pathways to safely transport this essential but toxic macrocycle within and between cells. The bacterivorous soil-dwelling nematode Caenorhabditis elegans is a powerful animal model for studying heme-trafficking pathways, as it lacks the ability to synthesize heme but instead relies on specialized trafficking pathways to acquire, distribute, and utilize heme. Over the past 15 years, studies on this microscopic animal have led to the identification of a number of heme-trafficking proteins, with corresponding functional homologs in vertebrates. In this review, we provide a comprehensive overview of the heme-trafficking proteins identified in C. elegans and their corresponding homologs in related organisms.
Collapse
Affiliation(s)
- Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Rathod DC, Vaidya SM, Hopp MT, Kühl T, Imhof D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023; 13:1031. [PMID: 37509066 PMCID: PMC10377097 DOI: 10.3390/biom13071031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.
Collapse
Affiliation(s)
- Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Sonali M Vaidya
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, D-56070 Koblenz, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
16
|
Tsiftsoglou SA. Heme Interactions as Regulators of the Alternative Pathway Complement Responses and Implications for Heme-Associated Pathologies. Curr Issues Mol Biol 2023; 45:5198-5214. [PMID: 37367079 DOI: 10.3390/cimb45060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Heme (Fe2+-protoporphyrin IX) is a pigment of life, and as a prosthetic group in several hemoproteins, it contributes to diverse critical cellular processes. While its intracellular levels are tightly regulated by networks of heme-binding proteins (HeBPs), labile heme can be hazardous through oxidative processes. In blood plasma, heme is scavenged by hemopexin (HPX), albumin and several other proteins, while it also interacts directly with complement components C1q, C3 and factor I. These direct interactions block the classical pathway (CP) and distort the alternative pathway (AP). Errors or flaws in heme metabolism, causing uncontrolled intracellular oxidative stress, can lead to several severe hematological disorders. Direct interactions of extracellular heme with alternative pathway complement components (APCCs) may be implicated molecularly in diverse conditions at sites of abnormal cell damage and vascular injury. In such disorders, a deregulated AP could be associated with the heme-mediated disruption of the physiological heparan sulphate-CFH coat of stressed cells and the induction of local hemostatic responses. Within this conceptual frame, a computational evaluation of HBMs (heme-binding motifs) aimed to determine how heme interacts with APCCs and whether these interactions are affected by genetic variation within putative HBMs. Combined computational analysis and database mining identified putative HBMs in all of the 16 APCCs examined, with 10 exhibiting disease-associated genetic (SNPs) and/or epigenetic variation (PTMs). Overall, this article indicates that among the pleiotropic roles of heme reviewed, the interactions of heme with APCCs could induce differential AP-mediated hemostasis-driven pathologies in certain individuals.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
17
|
Edinoff AN, Wu NW, Parker K, Dudossat E, Linquest L, Flanagan CJ, Dharani A, Patel H, Willett O, Cornett EM, Kaye AM, Kaye AD. Proton Pump Inhibitors, Kidney Damage, and Mortality: An Updated Narrative Review. Adv Ther 2023; 40:2693-2709. [PMID: 37140707 PMCID: PMC10157135 DOI: 10.1007/s12325-023-02476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 05/05/2023]
Abstract
Since their approval by the Food and Drug Administration (FDA) in 1989, proton pump inhibitors (PPIs) have become one of the most highly utilized drugs in the United States, assuming a position as one of the top 10 most prescribed medications in the country. The purpose of PPIs is to limit the amount of gastric acid secreted by the parietal cells via irreversible inhibition of the H+/K+-ATPase pump, therefore maintaining an elevated gastric acid pH of greater than 4 for 15-21 h. Even though PPIs have many clinical uses, they are not without their adverse effects, mimicking achlorhydria. Besides electrolyte abnormalities and vitamin deficiencies, long-term use of PPIs has been linked to acute interstitial nephritis, bone fractures, poor COVID-19 infection outcomes, pneumonia, and possibly an increase in all-cause mortality. The causality between PPI use and increased mortality and disease risk can be questioned since most studies are observational. Confounding variables can greatly affect an observational study and explain the wide-ranging associations with the use of PPIs. Patients on PPIs are generally older, obese, sicker with a higher number of baseline morbidities, and on more medications than the compared PPI non-users. These findings suggest that PPI users are at a higher risk of mortality and complications based on pre-existing conditions. This narrative review aims to update readers on the concerning effects that proton pump inhibitor use can have on patients and give providers a resource to create informed decisions on appropriate PPI use.
Collapse
Affiliation(s)
- Amber N. Edinoff
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114 USA
| | - Natalie W. Wu
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103 USA
| | - Katelyn Parker
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103 USA
| | - Edwin Dudossat
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103 USA
| | - Lauren Linquest
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103 USA
| | - Chelsi J. Flanagan
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, USA
| | - Anam Dharani
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, USA
| | - Hirni Patel
- Louisiana State University Health Sciences Center at Shreveport, LSU New Orleans, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, 71103 USA
| | - Olga Willett
- Louisiana State University Health Sciences Center at Shreveport, LSU New Orleans, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, 71103 USA
| | - Elyse M. Cornett
- Louisiana State University Health Sciences Center at Shreveport, LSU New Orleans, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, 71103 USA
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211 USA
| | - Alan D. Kaye
- Louisiana State University Health Sciences Center at Shreveport, LSU New Orleans, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, 71103 USA
| |
Collapse
|
18
|
Hatalová T, Erhart J, Kopáček P, Perner J. On the haem auxotrophy of the soft tick Ornithodoros moubata. Ticks Tick Borne Dis 2023; 14:102170. [PMID: 36958097 DOI: 10.1016/j.ttbdis.2023.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Genomes of ticks display reductions, to various extents, in genetic coding for enzymes of the haem biosynthetic pathway. Here, we mined available transcriptomes of soft tick species and identified transcripts encoding only half of the enzymes involved in haem biosynthesis. Transcripts identified across most species examined were those coding for porphobilinogen synthase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase. Genomic retention of porphobilinogen synthase seems to be soft tick-restricted as no such homologue has been identified in any hard tick species. Bioinformatic mining is thus strongly indicative of the lack of biochemical capacity for de novo haem biosynthesis, suggesting a requirement for dietary haem. In the hard tick Ixodes ricinus, depletion of dietary haem, i.e. serum feeding, leads to oviposition of haem-free eggs, with no apparent embryogenesis and larvae formation. In this work, we show that serum-fed Ornithodoros moubata females, unlike those of I. ricinus, laid haem-containing eggs similarly to blood-fed controls, but only by a small proportion of the serum-fed females. To enhance the effect of dietary haem depletion, O. moubata ticks were serum-fed consecutively as last nymphal instars and females. These females laid eggs with profoundly reduced haem deposits, confirming the host origin of the haem. These data confirm the ability of soft ticks to take up and allocate host haem to their eggs in order to drive reproduction of the ticks.
Collapse
Affiliation(s)
- Tereza Hatalová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jan Erhart
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
19
|
Kim H, Moore CM, Mestre-Fos S, Hanna DA, Williams LD, Reddi AR, Torres MP. Depletion assisted hemin affinity (DAsHA) proteomics reveals an expanded landscape of heme-binding proteins in the human proteome. Metallomics 2023; 15:6994529. [PMID: 36669767 PMCID: PMC10022665 DOI: 10.1093/mtomcs/mfad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Heme b (iron protoporphyrin IX) plays important roles in biology as a metallocofactor and signaling molecule. However, the targets of heme signaling and the network of proteins that mediate the exchange of heme from sites of synthesis or uptake to heme dependent or regulated proteins are poorly understood. Herein, we describe a quantitative mass spectrometry (MS)-based chemoproteomics strategy to identify exchange labile hemoproteins in human embryonic kidney HEK293 cells that may be relevant to heme signaling and trafficking. The strategy involves depleting endogenous heme with the heme biosynthetic inhibitor succinylacetone (SA), leaving putative heme-binding proteins in their apo-state, followed by the capture of those proteins using hemin-agarose resin, and finally elution and identification by MS. By identifying only those proteins that interact with high specificity to hemin-agarose relative to control beaded agarose in an SA-dependent manner, we have expanded the number of proteins and ontologies that may be involved in binding and buffering labile heme or are targets of heme signaling. Notably, these include proteins involved in chromatin remodeling, DNA damage response, RNA splicing, cytoskeletal organization, and vesicular trafficking, many of which have been associated with heme through complementary studies published recently. Taken together, these results provide support for the emerging role of heme in an expanded set of cellular processes from genome integrity to protein trafficking and beyond.
Collapse
Affiliation(s)
- Hyojung Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Santi Mestre-Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amit R Reddi
- Correspondence: Amit R. Reddi, School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Dr. Atlanta, GA 30033. E-mail:
| | - Matthew P Torres
- Correspondence: Matthew P. Torres, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr. Atlanta, GA 30033. E-mail:
| |
Collapse
|
20
|
Liu Q, Gao J, Zhang Y, Liu X, Zhang X, Lin Q, Zeng W, Zhou Z. A trans-ortho asymmetrically di-strapped metalloporphyrin integrating three key structural features of ligand in heme. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
21
|
Schiebelhut LM, Grosberg RK, Stachowicz JJ, Bay RA. Genomic responses to parallel temperature gradients in the eelgrass Zostera marina in adjacent bays. Mol Ecol 2023; 32:2835-2849. [PMID: 36814144 DOI: 10.1111/mec.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The extent of parallel genomic responses to similar selective pressures depends on a complex array of environmental, demographic, and evolutionary forces. Laboratory experiments with replicated selective pressures yield mixed outcomes under controlled conditions and our understanding of genomic parallelism in the wild is limited to a few well-established systems. Here, we examine genomic signals of selection in the eelgrass Zostera marina across temperature gradients in adjacent embayments. Although we find many genomic regions with signals of selection within each bay there is very little overlap in signals of selection at the SNP level, despite most polymorphisms being shared across bays. We do find overlap at the gene level, potentially suggesting multiple mutational pathways to the same phenotype. Using polygenic models we find that some sets of candidate SNPs are able to predict temperature across both bays, suggesting that small but parallel shifts in allele frequencies may be missed by independent genome scans. Together, these results highlight the continuous rather than binary nature of parallel evolution in polygenic traits and the complexity of evolutionary predictability.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, California, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Rachael A Bay
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
22
|
McGuire MR, Espenshade PJ. PGRMC1: An enigmatic heme-binding protein. Pharmacol Ther 2023; 241:108326. [PMID: 36463977 PMCID: PMC9839567 DOI: 10.1016/j.pharmthera.2022.108326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a heme-binding protein that has been implicated in a wide range of cell and tissue functions, including cytochromes P450 activity, heme homeostasis, cancer, female reproduction, and protein quality control. Despite an extensive body of literature, a relative lack of mechanistic insight means that how PGRMC1 functions in these different aspects of biology is largely unknown. This review provides an overview of the PGRMC1 literature, highlighting what information is rigorously supported by experimental evidence and where additional investigation is warranted. The central role of PGRMC1 in supporting cytochrome P450 activity is discussed at length. Building on existing models of PGRMC1 function, a speculative model is proposed using the reviewed literature in which PGRMC1 functions as a heme chaperone to shuttle heme from its site of synthesis in the mitochondrion to other subcellular compartments. By spotlighting knowledge gaps, this review will motivate investigators to better understand this enigmatic protein.
Collapse
Affiliation(s)
- Meredith R McGuire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Physiology 107B, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Miniero DV, Gambacorta N, Spagnoletta A, Tragni V, Loizzo S, Nicolotti O, Pierri CL, De Palma A. New Insights Regarding Hemin Inhibition of the Purified Rat Brain 2-Oxoglutarate Carrier and Relationships with Mitochondrial Dysfunction. J Clin Med 2022; 11:7519. [PMID: 36556135 PMCID: PMC9785169 DOI: 10.3390/jcm11247519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A kinetic analysis of the transport assays on the purified rat brain 2-oxoglutarate/malate carrier (OGC) was performed starting from our recent results reporting about a competitive inhibitory behavior of hemin, a physiological porphyrin derivative, on the OGC reconstituted in an active form into proteoliposomes. The newly provided transport data and the elaboration of the kinetic equations show evidence that hemin exerts a mechanism of partially competitive inhibition, coupled with the formation of a ternary complex hemin-carrier substrate, when hemin targets the OGC from the matrix face. A possible interpretation of the provided kinetic analysis, which is supported by computational studies, could indicate the existence of a binding region responsible for the inhibition of the OGC and supposedly involved in the regulation of OGC activity. The proposed regulatory binding site is located on OGC mitochondrial matrix loops, where hemin could establish specific interactions with residues involved in the substrate recognition and/or conformational changes responsible for the translocation of mitochondrial carrier substrates. The regulatory binding site would be placed about 6 Å below the substrate binding site of the OGC, facing the mitochondrial matrix, and would allow the simultaneous binding of hemin and 2-oxoglutarate or malate to different regions of the carrier. Overall, the presented experimental and computational analyses help to shed light on the possible existence of the hemin-carrier substrate ternary complex, confirming the ability of the OGC to bind porphyrin derivatives, and in particular hemin, with possible consequences for the mitochondrial redox state mediated by the malate/aspartate shuttle led by the mitochondrial carriers OGC and AGC.
Collapse
Affiliation(s)
- Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Anna Spagnoletta
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, Km 419,500, 75026 Rotondella (MT), Italy
| | - Vincenzo Tragni
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Stefano Loizzo
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Environment, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
24
|
Donegan RK. The role of host heme in bacterial infection. Biol Chem 2022; 403:1017-1029. [PMID: 36228088 DOI: 10.1515/hsz-2022-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.
Collapse
Affiliation(s)
- Rebecca K Donegan
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
25
|
Sun F, Zhao Z, Willoughby MM, Shen S, Zhou Y, Shao Y, Kang J, Chen Y, Chen M, Yuan X, Hamza I, Reddi AR, Chen C. HRG-9 homologues regulate haem trafficking from haem-enriched compartments. Nature 2022; 610:768-774. [PMID: 36261532 PMCID: PMC9810272 DOI: 10.1038/s41586-022-05347-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2022] [Indexed: 02/05/2023]
Abstract
Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes1-3. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood2,3. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells. Loss of Caenorhabditis elegans hrg-9 and its paralogue hrg-10 results in the accumulation of haem in lysosome-related organelles, the haem storage site in worms. Similarly, deletion of the hrg-9 homologue TANGO2 in yeast and mammalian cells induces haem overload in mitochondria, the site of haem synthesis. We demonstrate that TANGO2 binds haem and transfers it from cellular membranes to apo-haemoproteins. Notably, homozygous tango2-/- zebrafish larvae develop pleiotropic symptoms including encephalopathy, cardiac arrhythmia and myopathy, and die during early development. These defects partially resemble the symptoms of human TANGO2-related metabolic encephalopathy and arrhythmias, a hereditary disease caused by mutations in TANGO24-8. Thus, the identification of HRG-9 as an intracellular haem chaperone provides a biological basis for exploring the aetiology and treatment of TANGO2-related disorders.
Collapse
Affiliation(s)
- Fengxiu Sun
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenzhen Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuaiqi Shen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhou
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiyan Shao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengying Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Yuan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Iqbal Hamza
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Abstract
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.
Collapse
Affiliation(s)
- Sohini Dutt
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
27
|
Onukwufor JO, Dirksen RT, Wojtovich AP. Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11040692. [PMID: 35453377 PMCID: PMC9027385 DOI: 10.3390/antiox11040692] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating progressive neurodegenerative disease characterized by neuronal dysfunction, and decreased memory and cognitive function. Iron is critical for neuronal activity, neurotransmitter biosynthesis, and energy homeostasis. Iron accumulation occurs in AD and results in neuronal dysfunction through activation of multifactorial mechanisms. Mitochondria generate energy and iron is a key co-factor required for: (1) ATP production by the electron transport chain, (2) heme protein biosynthesis and (3) iron-sulfur cluster formation. Disruptions in iron homeostasis result in mitochondrial dysfunction and energetic failure. Ferroptosis, a non-apoptotic iron-dependent form of cell death mediated by uncontrolled accumulation of reactive oxygen species and lipid peroxidation, is associated with AD and other neurodegenerative diseases. AD pathogenesis is complex with multiple diverse interacting players including Aβ-plaque formation, phosphorylated tau, and redox stress. Unfortunately, clinical trials in AD based on targeting these canonical hallmarks have been largely unsuccessful. Here, we review evidence linking iron dysregulation to AD and the potential for targeting ferroptosis as a therapeutic intervention for AD.
Collapse
Affiliation(s)
- John O. Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Correspondence:
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
| | - Andrew P. Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022; 11:cells11060976. [PMID: 35326427 PMCID: PMC8946885 DOI: 10.3390/cells11060976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The maturation of hemeprotein dictates that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. Studies on chaperon Hsp90 has revealed that it drives functional heme maturation of inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) hemoglobin (Hb) and myoglobin (Mb) along with other proteins including GAPDH, while globin heme maturations also need an active sGC. In all these cases, Hsp90 interacts with the heme-free or apo-protein and then drives the heme maturation by an ATP dependent process before dissociating from the heme-replete proteins, suggesting that it is a key player in such heme-insertion processes. As the studies on globin maturation also need an active sGC, it connects the globin maturation to the NO-sGC (Nitric oxide-sGC) signal pathway, thereby constituting a novel NO-sGC-Globin axis. Since many aggressive cancer cells make Hbβ/Mb to survive, the dependence of the globin maturation of cancer cells places the NO-sGC signal pathway in a new light for therapeutic intervention. Given the ATPase function of Hsp90 in heme-maturation of client hemeproteins, Hsp90 inhibitors often cause serious side effects and this can encourage the alternate use of sGC activators/stimulators in combination with specific Hsp90 inhibitors for better therapeutic intervention.
Collapse
|
29
|
Essentiality of Trace Elements in Pregnancy, Fertility, and Gynecologic Cancers-A State-of-the-Art Review. Nutrients 2021; 14:nu14010185. [PMID: 35011060 PMCID: PMC8746721 DOI: 10.3390/nu14010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Gynecological neoplasms pose a serious threat to women's health. It is estimated that in 2020, there were nearly 1.3 million new cases worldwide, from which almost 50% ended in death. The most commonly diagnosed are cervical and endometrial cancers; when it comes to infertility, it affects ~48.5 million couples worldwide and the number is continually rising. Ageing of the population, environmental factors such as dietary habits, environmental pollutants and increasing prevalence of risk factors may affect the reproductive potential in women. Therefore, in order to identify potential risk factors for these issues, attention has been drawn to trace elements. Trace mineral imbalances can be caused by a variety of causes, starting with hereditary diseases, finishing with an incorrect diet or exposure to polluted air or water. In this review, we aimed to summarize the current knowledge regarding trace elements imbalances in the case of gynecologic cancers as well as female fertility and during pregnancy.
Collapse
|
30
|
Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM, Fleischhacker AS, Hamza I, Ragsdale SW, Reddi AR. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 2021; 298:101549. [PMID: 34973332 PMCID: PMC8808069 DOI: 10.1016/j.jbc.2021.101549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.
Collapse
Affiliation(s)
- David A. Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iramofu M. Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA,For correspondence: Amit R. Reddi
| |
Collapse
|
31
|
Abstract
Abstract
Various (metallo)porphyrins and related compounds have been intensively investigated by different research groups due to their extremely important role in living organisms along with their versatile applications in technology. The design of novel porphyrinoids by core-modification, or substitution of pyrrole nitrogens, with the elements of other groups of the Periodic Table has been considered as a highly promising methodology for tuning structures and properties of porphyrinoids and thus opening new possible applications for them. Much effort has been given to the modifications of the porphyrin core with elements of the main groups, namely O, S, Se (chalcogens), and the heavier congener of nitrogen, phosphorus. In general, the porphyrin core modification by replacing nitrogens with heteroatoms is a promising and effective strategy for obtaining new compounds with unusual structures and properties (optical, electrochemical, coordinating, etc.) as well as reactivity. These novel molecules can also be employed as promising building or construction blocks in various applications in the nanotechnology area.
Collapse
Affiliation(s)
- Aleksey E. Kuznetsov
- Departamento de Química , Universidad Técnica Federico Santa María , Av. Santa María 6400 , Vitacura , Santiago 7660251 , Chile
| |
Collapse
|
32
|
Diepeveen L, Roelofs R, Grebenchtchikov N, van Swelm R, Kautz L, Swinkels D. Differentiating iron-loading anemias using a newly developed and analytically validated ELISA for human serum erythroferrone. PLoS One 2021; 16:e0254851. [PMID: 34283879 PMCID: PMC8291690 DOI: 10.1371/journal.pone.0254851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/03/2021] [Indexed: 12/26/2022] Open
Abstract
Erythroferrone (ERFE), the erythroid regulator of iron metabolism, inhibits hepcidin to increase iron availability for erythropoiesis. ERFE plays a pathological role during ineffective erythropoiesis as occurs in X-linked sideroblastic anemia (XLSA) and β-thalassemia. Its measurement might serve as an indicator of severity for these diseases. However, for reliable quantification of ERFE analytical characterization is indispensable to determine the assay’s limitations and define proper methodology. We developed a sandwich ELISA for human serum ERFE using polyclonal antibodies and report its extensive analytical validation. This new assay showed, for the first time, the differentiation of XLSA and β-thalassemia major patients from healthy controls (p = 0.03) and from each other (p<0.01), showing the assay provides biological plausible results. Despite poor dilution linearity, parallelism and recovery in patient serum matrix, which indicated presence of a matrix effect and/or different immunoreactivity of the antibodies to the recombinant standard and the endogenous analyte, our assay correlated well with two other existing ERFE ELISAs (both R2 = 0.83). Nevertheless, employment of one optimal dilution of all serum samples is warranted to obtain reliable results. When adequately performed, the assay can be used to further unravel the human erythropoiesis-hepcidin-iron axis in various disorders and assess the added diagnostic value of ERFE.
Collapse
Affiliation(s)
- Laura Diepeveen
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| | - Rian Roelofs
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicolai Grebenchtchikov
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rachel van Swelm
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leon Kautz
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM U1220, Institut National de la Recherche Agronomique (INRA) U1416, École Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France
| | - Dorine Swinkels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Tennessen JA, Duraisingh MT. Three Signatures of Adaptive Polymorphism Exemplified by Malaria-Associated Genes. Mol Biol Evol 2021; 38:1356-1371. [PMID: 33185667 PMCID: PMC8042748 DOI: 10.1093/molbev/msaa294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host-parasite coevolutionary dynamics.
Collapse
|
34
|
Sun HN, Ren CX, Gong YX, Xie DP, Kwon T. Regulatory function of peroxiredoxin I on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer development. Oncol Lett 2021; 21:465. [PMID: 33907575 PMCID: PMC8063228 DOI: 10.3892/ol.2021.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Smoking is a major cause of lung cancer, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important carcinogens in cigarette smoke. NNK modulates the expression of peroxiredoxin (Prdx) I in lung cancer. Prdx1 is upregulated in lung squamous cell carcinoma and lung adenocarcinoma, and considered a potential biomarker for lung cancer. The current article reviewed the role and regulatory mechanisms of Prdx1 in NNK-induced lung cancer cells. Prdx1 protects erythrocytes and DNA from NNK-induced oxidative damage, prevents malignant transformation of cells and promotes cytotoxicity of natural killer cells, hence suppressing tumor formation. In addition, Prdx1 has the ability to prevent NNK-induced lung tumor metabolic activity and generation of large amount of reactive oxygen species (ROS) and ROS-induced apoptosis, thus promoting tumor cell survival. In contrast to this, Prdx1, together with NNK, can promote the epithelial-mesenchymal transition and migration of lung tumor cells. The signaling pathways associated with NNK and Prdx1 in lung cancer cells have been discussed in present review; however, numerous potential pathways are yet to be studied. To develop novel methods for treating NNK-induced lung cancer, and improve the survival rate of patients with lung cancer, further research is needed to understand the complete mechanism associated with NNK.
Collapse
Affiliation(s)
- Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi-Xi Gong
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
35
|
Hisamatsu Y, Otani K, Takase H, Umezawa N, Higuchi T. Fluorescence Response and Self-Assembly of a Tweezer-Type Synthetic Receptor Triggered by Complexation with Heme and Its Catabolites. Chemistry 2021; 27:6489-6499. [PMID: 33026121 DOI: 10.1002/chem.202003872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Indexed: 11/11/2022]
Abstract
There is increasing interest in the development and applications of synthetic receptors that recognize target biomolecules in aqueous media. We have developed a new tweezer-type synthetic receptor that gives a significant fluorescence response upon complexation with heme in aqueous solution at pH 7.4. The synthetic receptor consists of a tweezer-type heme recognition site and sulfo-Cy5 as a hydrophilic fluorophore. The receptor-heme complex exhibits a supramolecular amphiphilic character that facilitates the formation of self-assembled aggregates, and both the tweezer moiety and the sulfo-Cy5 moiety are important for this property. The synthetic receptor also exhibits significant fluorescence responses to biliverdin and bilirubin, but shows very weak fluorescence responses to flavin mononucleotide, folic acid, and nicotinamide adenine dinucleotide, which contain smaller π-scaffolds.
Collapse
Affiliation(s)
- Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koki Otani
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiroshi Takase
- Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
36
|
Kuznetsov AE. Comparison of P- and As-core-modified porphyrins with the parental porphyrin: a computational study. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The first comparative DFT (B3LYP/6-31G*) study of the Zn-porphyrin and its two derivatives, ZnP(P)4 and ZnP(As)4, is reported. For all three species studied, ZnP, ZnP(P)4 and ZnP(As)4, the singlet was calculated to be the lowest-energy structure and singlet-triplet gap was found to decrease from ca. 41—42 kcal/mol for N to ca. 17—18 kcal/mol for P and to ca. 10 kcal/mol for As. Both ZnP(P)4 and ZnP(As)4 were calculated to attain very pronounced bowl-like shapes. The frontier molecular orbitals (MOs) of the core-modified porphyrins are quite similar to the ZnP frontier MOs. For the HOMO-2 of the core-modified porphyrins due to the ZnP(P)4/ZnP(As)4 bowl-like shapes we might suppose the existence of “internal” electron delocalization inside the ZnP(P)4/ZnP(As)4 “bowls”. Noticeable reduction of the HOMO/LUMO gaps was calculated for ZnP(P)4 and ZnP(As)4, by ca. 1.10 and 1.47 eV, respectively, compared to ZnP. The core-modification of porphyrins by P and especially by As was found to result in significant decrease of the charge on Zn-centers, by ca. 0.61—0.67e for P and by ca. 0.69—0.76e for As. Charges on P- and As-centers were computed to have large positive values, ca. 0.41—0.45e and ca. 0.43—0.47e, for P and As, respectively, compared to significant negative values, ca. −0.65 to −0.66e for N. The porphyrin core-modification by heavier N congeners, P and As, can noticeably modify the structures, electronic, and optical properties of porphyrins, thus affecting their reactivity and potential applications.
Collapse
Affiliation(s)
- Aleksey E. Kuznetsov
- Department of Chemistry , Universidad Técnica Federico Santa María , Av. Santa Maria 6400 , Vitacura 7660251 , Santiago , Chile
| |
Collapse
|
37
|
Chambers IG, Willoughby MM, Hamza I, Reddi AR. One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118881. [PMID: 33022276 PMCID: PMC7756907 DOI: 10.1016/j.bbamcr.2020.118881] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Heme, as a hydrophobic iron-containing organic ring, is lipid soluble and can interact with biological membranes. The very same properties of heme that nature exploits to support life also renders heme potentially cytotoxic. In order to utilize heme, while also mitigating its toxicity, cells are challenged to tightly control the concentration and bioavailability of heme. On the bright side, it is reasonable to envision that, analogous to other transition metals, a combination of membrane-bound transporters, soluble carriers, and chaperones coordinate heme trafficking to subcellular compartments. However, given the dual properties exhibited by heme as a transition metal and lipid, it is compelling to consider the dark side: the potential role of non-proteinaceous biomolecules including lipids and nucleic acids that bind, sequester, and control heme trafficking and bioavailability. The emergence of inter-organellar membrane contact sites, as well as intracellular vesicles derived from various organelles, have raised the prospect that heme can be trafficked through hydrophobic channels. In this review, we aim to focus on heme delivery without deliverers - an alternate paradigm for the regulation of heme homeostasis through chaperone-less pathways for heme trafficking.
Collapse
Affiliation(s)
- Ian G Chambers
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America.
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America.
| |
Collapse
|
38
|
Abstract
One candidate for the cytosolic labile iron pool is iron(II)glutathione. There is also a widely held opinion that an equivalent cytosolic labile heme pool exists and that this pool is important for the intracellular transfer of heme. Here we describe a study designed to characterise conjugates that form between heme and glutathione. In contrast to hydrated iron(II), heme reacts with glutathione, under aerobic conditions, to form the stable hematin-glutathione complex, which contains iron(III). Thus, glutathione is clearly not the cytosolic ligand for heme, indeed we demonstrate that the rate of heme degradation is enhanced in the presence of glutathione. We suggest that the concentration of heme in the cytosol is extremely low and that intracellular heme transfer occurs via intracellular membrane structures. Should any heme inadvertently escape into the cytosol, it would be rapidly conjugated to glutathione thereby protecting the cell from the toxic effects of heme.
Collapse
|
39
|
Normant V, Brault A, Avino M, Mourer T, Vahsen T, Beaudoin J, Labbé S. Hemeprotein Tpx1 interacts with cell-surface heme transporter Str3 in Schizosaccharomyces pombe. Mol Microbiol 2020; 115:699-722. [PMID: 33140466 DOI: 10.1111/mmi.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/30/2022]
Abstract
Str3 is a transmembrane protein that mediates low-affinity heme uptake in Schizosaccharomyces pombe. Under iron-limiting conditions, Str3 remains at the cell surface in the presence of increasing hemin concentrations. Using a proximity-dependent biotinylation approach coupled to mass spectrometry and coimmunoprecipitation assays, we report that the peroxiredoxin Tpx1 is a binding partner of Str3. Under microaerobic conditions, cells deficient in heme biosynthesis and lacking the heme receptor Shu1 exhibit poor hemin-dependent growth in the absence of Tpx1. Analysis of membrane protein preparations from iron-starved hem1Δ shu1Δ str3Δ tpx1Δ cells coexpressing Str3-GFP and TAP-Tpx1 showed that TAP-Tpx1 is enriched in membrane protein fractions in response to hemin. Bimolecular fluorescence complementation assays brought additional evidence that an interaction between Tpx1 and Str3 occurs at the plasma membrane. Results showed that Tpx1 exhibits an equilibrium constant value of 0.26 μM for hemin. The association of Tpx1 with hemin protects hemin from degradation by H2 O2 . The peroxidase activity of hemin is lowered when it is bound to Tpx1. Taken together, these results revealed that Tpx1 is a novel interacting partner of Str3. Our data are the first example of an interaction between a cytoplasmic heme-binding protein and a cell-surface heme transporter.
Collapse
Affiliation(s)
- Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mariano Avino
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Pran Babu SPS, White D, Corson TW. Ferrochelatase regulates retinal neovascularization. FASEB J 2020; 34:12419-12435. [PMID: 32716567 PMCID: PMC7726024 DOI: 10.1096/fj.202000964r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023]
Abstract
Ferrochelatase (FECH) is the terminal enzyme in heme biosynthesis. We previously showed that FECH is required for endothelial cell growth in vitro and choroidal neovascularization in vivo. But FECH has not been explored in retinal neovascularization, which underlies diseases like proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the inhibition of FECH using genetic and chemical approaches in the oxygen-induced retinopathy (OIR) mouse model. In OIR mice, FECH expression is upregulated and co-localized with neovascular tufts. Partial loss-of-function Fechm1Pas mutant mice showed reduced retinal neovascularization and endothelial cell proliferation in OIR. An intravitreal injection of the FECH inhibitor N-methyl protoporphyrin had similar effects. Griseofulvin is an antifungal drug that inhibits FECH as an off-target effect. Strikingly, intravitreal griseofulvin decreased both pathological tuft formation and areas of vasoobliteration compared to vehicle, suggesting potential as a FECH-targeting therapy. Ocular toxicity studies revealed that intravitreal injection of griseofulvin in adult mice does not disrupt retinal vasculature, function, or morphology. In sum, mutation and chemical inhibition of Fech reduces retinal neovascularization and promotes physiological angiogenesis, suggesting a dual effect on vascular repair upon FECH inhibition, without ocular toxicity. These findings suggest that FECH inhibitors could be repurposed to treat retinal neovascularization.
Collapse
Affiliation(s)
- Sardar Pasha Sheik Pran Babu
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Darcy White
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
41
|
Kornitzer D, Roy U. Pathways of heme utilization in fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118817. [PMID: 32777371 DOI: 10.1016/j.bbamcr.2020.118817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Iron acquisition is challenging in most environments. As an alternative to elemental iron, organisms can take up iron-protoporphyrin IX, or heme. Heme can be found in decaying organic matter and is particularly prevalent in animal hosts. Fungi have evolved at least three distinct endocytosis-mediated heme uptake systems, which have been studied in detail in the organisms Candida albicans, Cryptococcus neoformans and Schizosaccharomyces pombe. Here we summarize the known molecular details of these three uptake systems that enable parasitic and saprophytic fungi to take advantage of external heme as either cellular iron or heme sources.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Udita Roy
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
42
|
Hopp MT, Schmalohr BF, Kühl T, Detzel MS, Wißbrock A, Imhof D. Heme Determination and Quantification Methods and Their Suitability for Practical Applications and Everyday Use. Anal Chem 2020; 92:9429-9440. [PMID: 32490668 DOI: 10.1021/acs.analchem.0c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many research institutions, clinical diagnostic laboratories, and blood banks are desperately searching for a possibility to identify and quantify heme in different physiological and pathological settings as well as various research applications. The reasons for this are the toxicity of the heme and the fact that it acts as a hemolytic and pro-inflammatory molecule. Heme only exerts these severe and undesired effects when it is not incorporated in hemoproteins. Upon release from the hemoproteins, it enters a biologically available state (labile heme), in which it is loosely associated with proteins, lipids, nucleic acids, or other molecules. While the current methods and procedures for quantitative determination of heme have been used for many years in different settings, their value is limited by the challenging chemical properties of heme. A major cause of inadequate quantification is the separation of labile and permanently bound heme and its high aggregation potential. Thus, none of the current methods are utilized as a generally applicable, standardized approach. The aim of this Feature is to describe and summarize the most common and frequently used chemical, analytical, and biochemical methods for the quantitative determination of heme. Based on this overview, the most promising approaches for future solutions to heme quantification are highlighted.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Benjamin F Schmalohr
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Milena S Detzel
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
43
|
Anderson NS, Haynes CM. Folding the Mitochondrial UPR into the Integrated Stress Response. Trends Cell Biol 2020; 30:428-439. [PMID: 32413314 PMCID: PMC7230072 DOI: 10.1016/j.tcb.2020.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells must accurately monitor the integrity of the mitochondrial network to overcome environmental insults and respond to physiological cues. The mitochondrial unfolded protein response (UPRmt) is a mitochondrial-to-nuclear signaling pathway that maintains mitochondrial proteostasis, mediates signaling between tissues, and regulates organismal aging. Aberrant UPRmt signaling is associated with a wide spectrum of disorders, including congenital diseases as well as cancers and neurodegenerative diseases. Here, we review recent research into the mechanisms underlying UPRmt signaling in Caenorhabditis elegans and discuss emerging connections between the UPRmt signaling and a translational regulation program called the 'integrated stress response'. Further study of the UPRmt will potentially enable development of new therapeutic strategies for inherited metabolic disorders and diseases of aging.
Collapse
Affiliation(s)
- Nadine S Anderson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
Chiabrando D, Bertino F, Tolosano E. Hereditary Ataxia: A Focus on Heme Metabolism and Fe-S Cluster Biogenesis. Int J Mol Sci 2020; 21:ijms21113760. [PMID: 32466579 PMCID: PMC7312568 DOI: 10.3390/ijms21113760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Heme and Fe-S clusters regulate a plethora of essential biological processes ranging from cellular respiration and cell metabolism to the maintenance of genome integrity. Mutations in genes involved in heme metabolism and Fe-S cluster biogenesis cause different forms of ataxia, like posterior column ataxia and retinitis pigmentosa (PCARP), Friedreich's ataxia (FRDA) and X-linked sideroblastic anemia with ataxia (XLSA/A). Despite great efforts in the elucidation of the molecular pathogenesis of these disorders several important questions still remain to be addressed. Starting with an overview of the biology of heme metabolism and Fe-S cluster biogenesis, the review discusses recent progress in the understanding of the molecular pathogenesis of PCARP, FRDA and XLSA/A, and highlights future line of research in the field. A better comprehension of the mechanisms leading to the degeneration of neural circuity responsible for balance and coordinated movement will be crucial for the therapeutic management of these patients.
Collapse
|
45
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
46
|
Machinery for fungal heme acquisition. Curr Genet 2020; 66:703-711. [PMID: 32185489 DOI: 10.1007/s00294-020-01067-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Iron is essential for nearly all aerobic organisms. One source of iron in nature is in the form of heme. Due to its critical physiological importance as a cofactor for several enzymes, organisms have evolved various means to secure heme for their needs. In the case of heme prototrophs, these organisms possess a highly conserved eight-step biosynthetic pathway. Another means used by many organisms is to acquire heme from external sources. As opposed to the knowledge of enzymes responsible for heme biosynthesis, the nature of the players and mechanisms involved in the acquisition of exogenous heme is limited. This review focuses on a description of newly discovered proteins that have novel functions in heme assimilation in the model organism Schizosaccharomyces pombe. This tractable model allows the use of the power of genetics to selectively block heme biosynthesis, setting conditions to investigate the mechanisms by which external heme is taken up by the cells. Studies have revealed that S. pombe possesses two independent heme uptake systems that require Shu1 and Str3, respectively. Heme-bound iron is captured by Shu1 at the cell surface, triggering its internalization to the vacuole with the aid of ubiquitinated proteins and the ESCRT machinery. In the case of the plasma membrane transporter Str3, it promotes cellular heme import in cells lacking Shu1. The discovery of these two pathways may contribute to gain novel insights into the mechanisms whereby fungi assimilate heme, which is an essentially biological process for their ability to invade and colonize new niches.
Collapse
|
47
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
48
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Zhou JR, Bu DR, Zhao XF, Wu F, Chen XQ, Shi HZ, Yao CQ, Du AF, Yang Y. Hc-hrg-2, a glutathione transferase gene, regulates heme homeostasis in the blood-feeding parasitic nematode Haemonchus contortus. Parasit Vectors 2020; 13:40. [PMID: 31996262 PMCID: PMC6988263 DOI: 10.1186/s13071-020-3911-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/15/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Haemonchus contortus, a blood-feeding parasite, is constantly surrounded by large quantities of heme released from the catabolism of host red blood cells. To cope with the toxicity of free heme, H. contortus needs to uptake and detoxify the heme, a process believed to be paramount for parasite survival. METHODS A heme-responsive gene Hc-hrg-2 was identified which is the homologue of Ce-hrg-2. The transcriptional levels in all developmental stages and heme-responsive ability of Hc-hrg-2 were analyzed by qRT-PCR. Immunofluorescence analysis and cell transfections were performed to analyze the expression pattern of Hc-HGR-2. Statistical analyses were performed with GraghPad Prism 6.0 using Student's t-test. RESULTS To investigate the heme homeostasis of H. contortus, we first identified a heme-responsive gene Hc-hrg-2, a homolog of Ce-hrg-2 that is involved in heme transport in the hypodermis of Caenorhabditis elegans. Using qRT-PCR, we showed that Hc-hrg-2 mRNA was expressed throughout all life-cycle stages of H. contortus with the highest level in the third-stage larvae (L3s). Notably, transcription of Hc-hrg-2 in the exsheathed L3s was significantly upregulated in the presence of high concentration of heme. We found that Hc-HRG-2 protein was mainly located in the hypodermal tissues of adult H. contortus in vivo and the endoplasmic reticulum in the transfected mammalian cells. Our in vitro assay demonstrated that Hc-HRG-2 is a heme-binding protein with glutathione S-transferase activity and heme had a significant effect on its enzymatic activity when a model substrate 1-chloro-2, 4-dinitrobenzene (CDNB) was used. CONCLUSIONS Hc-hrg-2 is a heme-responsive gene and engaged in heme homeostasis regulation in hypodermal tissues during the free-living stages of H. contortus.
Collapse
Affiliation(s)
- Jing-Ru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Dan-Ru Bu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xian-Feng Zhao
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, Guangdong, 518045, People's Republic of China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xue-Qiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Heng-Zhi Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chao-Qun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis
| | - Ai-Fang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
50
|
He Z, Zhao X, Gao Y, Keyhani NO, Wang H, Deng J, Lu Z, Kan Y, Luo Z, Zhang Y. The fungal mitochondrial membrane protein, BbOhmm, antagonistically controls hypoxia tolerance. Environ Microbiol 2020; 22:2514-2535. [DOI: 10.1111/1462-2920.14910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Zhangjiang He
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
- Biochemical Engineering Center of Guizhou ProvinceGuizhou University Guiyang 50025 China
| | - Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Yifei Gao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell ScienceUniversity of Florida Gainesville FL 32611 USA
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Juan Deng
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Yanze Kan
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural SciencesSouthwest University Chongqing 400715 China
| |
Collapse
|