1
|
Inui H, Minic Z, Hüttmann N, Fujita K, Stoykova P, Karadžić I. Cucurbita pepo contains characteristic proteins without a signal peptide in the xylem sap. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154038. [PMID: 37413840 DOI: 10.1016/j.jplph.2023.154038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Xylem sap is a fluid that transfers water and nutrients from the rhizosphere. This sap contains relatively low concentrations of proteins that originate from the extracellular space among the root cells. One of the characteristic proteins in the xylem sap of the Cucurbitaceae family, which includes cucumber and zucchini, is a major latex-like protein (MLP). MLPs are responsible for crop contamination through the transport of hydrophobic pollutants from the roots. However, detailed information on the content of MLPs in the xylem sap is not available. Proteomic analysis of root and xylem sap proteins from the Cucurbita pepo cultivars Patty Green (PG) and Raven (RA) showed that the xylem sap of cv. RA, a high accumulator of hydrophobic pollutants, contained four MLPs that accounted for over 85% of the total xylem sap proteins in this cultivar. The xylem sap of PG, a low accumulator, mainly contained an uncharacterized protein. The amount of each root protein between the PG and RA cultivars was significantly and positively correlated in spite of being with and without a signal peptide (SP). However, the amount of xylem sap proteins without an SP was not correlated. These results suggest that cv. RA is characterized by MLPs in the xylem sap.
Collapse
Affiliation(s)
- Hideyuki Inui
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Zoran Minic
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5, Ottawa, ON, Canada
| | - Nico Hüttmann
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5, Ottawa, ON, Canada
| | - Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Petya Stoykova
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; AgroBioInstitute, 8 "Dragan Tsankov" Blvd, 1164, Sofia, Bulgaria
| | - Ivanka Karadžić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| |
Collapse
|
2
|
Affholder MC, Cohen GJV, Gombert-Courvoisier S, Mench M. Inter and intraspecific variability of dieldrin accumulation in Cucurbita fruits: New perspectives for food safety and phytomanagement of contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160152. [PMID: 36395833 DOI: 10.1016/j.scitotenv.2022.160152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to past agricultural practices, it is common to identify arable soils contaminated with persistent and potentially toxic organochlorine pesticides (OCPs). Occurrence of OCPs, including dieldrin, in vegetables can lead to chronic exposure of the consumers. Some market vegetables, particularly the Cucurbitaceae, are known to accumulate high OCP concentrations. Dieldrin concentration in Cucurbita fruits can exceed the Maximal Residue Limit (MRL) resulting in cultivation and sale restrictions for market gardeners. To assess the intra- and interspecific variability of Cucurbitaceae species for low dieldrin concentration in fruits could be a solution. Here, 24 varieties from seven Cucurbitaceae species were cultivated outdoors in large pots, until fruiting, in soils historically contaminated with dieldrin. More than 330 fruits were harvested and analyzed for determining the inter and intraspecific variability of dieldrin accumulation. Significant interspecific differences occurred with mean fruit concentration ranging between 4.2 ± 7.0 and 85.0 ± 19.4 μg dieldrin kg-1 fresh weigh (FW) in watermelons (C. lanatus L.) and cucumbers (C. sativus L.), respectively. Intraspecific differences only occurred for Cucurbita pepo L. with mean concentration ranging between 4.9 ± 1.1 and 70.3 ± 3.6 μg dieldrin kg-1 FW for the varieties Noire maraîchère and Orélia, respectively. For this plant species, the influence of soil concentration, plant exposure time and biomass on fruit dieldrin concentration depended mainly on varieties.
Collapse
Affiliation(s)
- M-C Affholder
- Univ. Bordeaux/Bordeaux-INP, CNRS, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France; Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 cedex Pessac, France.
| | - G J V Cohen
- Univ. Bordeaux/Bordeaux-INP, CNRS, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France
| | - S Gombert-Courvoisier
- Univ. Bordeaux-Montaigne, Univ. Bordeaux, Ecole Nationale Supérieure d'Architecture et de Paysage de Bordeaux, CNRS, PASSAGES UMR 5319, Pessac, France
| | - M Mench
- Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 cedex Pessac, France
| |
Collapse
|
3
|
Wang Q, Zhao H, Bekele TG, Qu B, Chen J. Citric acid can enhance the uptake and accumulation of organophosphate esters (OPEs) in Suaeda salsa rhizosphere: Potential for phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130169. [PMID: 36257113 DOI: 10.1016/j.jhazmat.2022.130169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Bioaccumulation of organophosphate esters (OPEs) by plants has been widely studied, but how root exudates influence their bioavailability to plants is poorly understood. Here, we examined whether root exudates could promote desorption of OPEs, thereby enhancing bioavailability and subsequent accumulation potential. Root exudate components exert great influences on the sorption/desorption isotherms of OPEs in soils, resulting in activating OPEs and enhanced bioavailability. Among root exudate components, citric acid was confirmed to play a crucial role in driving OPEs, with 77.7-90.3 % attribution. Citric acid at rhizosphere levels (0.01-0.4 mM) can successfully reduce OPEs sorption to soils by decreasing electrostatic interaction, ligand exchange, and hydrophobic force. Pot experiments indicated that the addition of citric acid can significantly increase OPEs dissolution and bioaccumulation from the rhizosphere soil to Suaeda salsa. A higher level of citric acid in rhizosphere soil resulted in a higher accumulation of OPEs in Suaeda salsa, which was partly attributed to the enhanced OPEs mobility, and the increased root lengths (13.4-29.0 %) and tip numbers (60.2-120 %), promoting OPEs uptake by roots. Our findings suggest the activation process of OPEs in soils by citric acid at rhizosphere levels and provide insights into designing LMWOAs-enhanced phytoremediation techniques in natural environment.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Assessment of an NDL-PCBs Sequestration Strategy in Soil Using Contrasted Carbonaceous Materials through In Vitro and Cucurbita pepo Assays. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The present study aims to assess the respective efficiency of Biochars (BCs) and activated carbons (ACs) to limit PCB 101, 138, 153 and 180 transfer to plants. A set of 6 high carbon materials comprising 3 BCs and 3 ACs was tested and used to amend a soil at 2% rate. Then, the two most efficient carbonaceous materials were used as an amendment of an historically contaminated soil sampled in the St Cyprien vicinity (Loire, France). An environmental availability assessment was performed using the ISO/DIS 16751 Part A assay (n = 3). For the in vivo part, Cucurbita pepo were grown for 12 weeks. Significant decreases of transfer were found for both assays notably for powdered ACs (up to 98%). By contrast, significantly lower levels of transfer reduction were observed when BCs amendments were performed, ranging from 27 to 80% for environmental availability assessment and 0 to 36% for C. pepo. Reduction factors above 90% for the 2 selected materials were found from amended historically contaminated soils. Present results led to consider such a sequestering strategy as valuable to ensure plant production on non-dioxin-like polychlorobiphenyls (NDL-PCBs) contaminated soils.
Collapse
|
5
|
Mierzejewska E, Urbaniak M, Zagibajło K, Vangronsveld J, Thijs S. The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on Soil, Rhizosphere, and Plant Endosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:882228. [PMID: 35712561 PMCID: PMC9195007 DOI: 10.3389/fpls.2022.882228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 05/07/2023]
Abstract
The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Elżbieta Mierzejewska,
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Zagibajło
- Food Safety Laboratory, Research Institute of Horticulture, Skierniewice, Poland
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
6
|
Korucu MK, Elibol PS, Isleyen M. An environmental risk assessment for a DDX-contaminated agricultural area in Turkey: soil vs. plant or human vs. animal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50127-50140. [PMID: 33948847 DOI: 10.1007/s11356-021-14154-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
This study is the first research attempt to assess the environmental risks of an agricultural area contaminated with the p,p'-DDT and its metabolites (DDX) on human and terrestrial species through exposure to soil and agricultural products, simultaneously. The study was carried out for a DDX-contaminated agricultural area in Turkey. Soil samples obtained in two different harvest applications were analyzed in terms of DDX levels. Similarly, stem, leaf, and fruit samples of an agricultural product grown on the same soils were analyzed. Using the results of these analyses, DDX intake values were calculated for 5 different human receptor groups, 4 different bird species, and 4 different mammal species, and the risk values were calculated by using a stochastic approach based on a Monte Carlo simulation. Findings indicated a substantial level of carcinogenic risk in the human receptor groups. Furthermore, a significant risk of reproductive toxicity was determined for the birds and mammals. The findings prominently showed that these risks can develop not only through exposure to DDX-contaminated soils but also through the consumption of plants grown on these soils.
Collapse
Affiliation(s)
- Mahmut Kemal Korucu
- Department of Environmental Engineering, Bursa Technical University, Mimar Sinan Campus, Mimar Sinan Boulevard, Eflak Street, 16310, Bursa, Turkey.
| | - Pınar Sevim Elibol
- Department of Environmental Engineering, Duzce University, Duzce, Turkey
| | - Mehmet Isleyen
- Department of Environmental Engineering, Bursa Technical University, Mimar Sinan Campus, Mimar Sinan Boulevard, Eflak Street, 16310, Bursa, Turkey
| |
Collapse
|
7
|
Akpinar A, Cansev A, Isleyen M. Effects of the lichen Peltigera canina on Cucurbita pepo spp. pepo grown in soil contaminated by DDTs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14576-14585. [PMID: 33211293 DOI: 10.1007/s11356-020-11665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Lichens consisting of a symbiotic association of green algae or cyanobacteria and fungi are found in a variety of environmental conditions worldwide. Terricolous lichens, located in soils, affect the living and lifeless environment of the soil due to their effective secondary metabolite and enzymatic content. Terricolous lichens can increase the biological, chemical, and physical usefulness of soil. However, their effects in ensuring the bioavailability of contaminated soil are not known, especially on soil pollution caused by DDTs (p,p'-DDE, p,p'-DDD, p,p'-DDT). This research focuses on the effect of terricolous lichens on zucchini (Cucurbita pepo spp. pepo) grown in soil contaminated by DDTs, utilizing their secondary metabolite and enzymatic contents. Firstly, Peltigera canina, a terricolous lichen species, was added to soil contaminated by DDTs as powdered and intact thallus. After lichen addition to soil, zucchini was planted in. The oxidative stress and antioxidative enzyme activities of zucchini were measured. According to the results, P. canina treatments have a positive effect on the growth and development of zucchini, although oxidative stress was observed. Also, it was determined that powdered application had more effective results than intact thallus application.
Collapse
Affiliation(s)
- Aysegul Akpinar
- Vocational School of Higher Education, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey.
| | - Asuman Cansev
- Horticulture Department, Faculty of Agriculture, Bursa Uludag University, 16059, Bursa, Turkey
| | - Mehmet Isleyen
- Department of Environmental Engineering, Bursa Technical University, 16130, Bursa, Turkey
| |
Collapse
|
8
|
Inui H, Katte N, Goto J, Iwabuchi A. High temperatures promote the uptake of hydrophobic pollutants by Cucurbita pepo via altered gene expression levels of major latex-like proteins. JOURNAL OF PESTICIDE SCIENCE 2020; 45:75-80. [PMID: 32508513 PMCID: PMC7251200 DOI: 10.1584/jpestics.d19-065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/28/2019] [Indexed: 05/30/2023]
Abstract
Cucurbitaceae family members are accumulators of hydrophobic pollutants. Such pollutants have been detected in cucurbits at levels above the maximum residue limit. Since major latex-like proteins (MLPs) are involved in hydrophobic pollutant uptake, changes in MLP expression can increase or decrease contamination. MLP expression levels were altered in the roots of Cucurbita pepo 'Magda,' and MLP-PG1 was detected in the xylem sap of Magda when cultivated at a high temperature (35°C). Day length also influenced MLP expression levels but only induced minor changes in the amount of MLPs. The concentration of pyrene, a hydrophobic pollutant, significantly increased with increasing MLP levels in the xylem sap of Magda when cultivated at 35°C. Thus, high temperatures promote the pollution of cucurbits by hydrophobic pollutants. These results can be used to develop novel techniques to reduce crop contamination and establish efficient phytoremediation.
Collapse
Affiliation(s)
- Hideyuki Inui
- Biosignal Research Center, Kobe University, 1–1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657–8501, Japan
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657–8501, Japan
| | - Nonoka Katte
- Faculty of Agriculture, Kobe University, 1–1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657–8501, Japan
| | - Junya Goto
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657–8501, Japan
| | - Aya Iwabuchi
- Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657–8501, Japan
| |
Collapse
|
9
|
Iwabuchi A, Katte N, Suwa M, Goto J, Inui H. Factors regulating the differential uptake of persistent organic pollutants in cucurbits and non-cucurbits. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153094. [PMID: 31862647 DOI: 10.1016/j.jplph.2019.153094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Contamination with persistent organic pollutants (POPs) has become a worldwide concern owing to their the toxicity to humans and wildlife. Pumpkin, cucumber, and squash (Cucurbitaceae) accumulate POPs in their shoots in concentrations higher than those in non-cucurbits; to elucidate the underlying molecular mechanisms of this accumulation, POP transporters were analyzed in the xylem sap of cucurbits and non-cucurbits. The 17-kDa xylem sap proteins detected in all cucurbits but not in non-cucurbits readily bound polychlorinated biphenyl (PCB) in all tested cucurbits, except in cucumber and loofah, and to dieldrin in all tested cucurbits. Ten genes encoding major latex-like proteins (MLPs) responsible for the accumulation of PCBs in zucchini plants were cloned from cucurbits. Phylogenetic analysis using MLP sequences identified two separate clades, one containing Cucurbitaceae MLPs and the other containing those of non-cucurbit members. Recombinant MLPs bound PCB and dieldrin. Western blotting with anti-MLP antibodies identified translocatable and non-translocatable MLPs between root and stem xylem vessels. Translocation of MLPs from the root to stem xylem vessels and POP-binding ability of MLPs are important for selective accumulation of MLPs in cucurbits. This study provides basic knowledge about phytoremediation through overexpression of MLP genes and for breeding cucurbits that accumulate less contaminants.
Collapse
Affiliation(s)
- Aya Iwabuchi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nonoka Katte
- Faculty of Agriculture, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Mizuki Suwa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Junya Goto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
10
|
Grgić M, Maletić S, Beljin J, Isakovski MK, Rončević S, Tubić A, Agbaba J. Lindane and hexachlorobenzene sequestration and detoxification in contaminated sediment amended with carbon-rich sorbents. CHEMOSPHERE 2019; 220:1033-1040. [PMID: 33395789 DOI: 10.1016/j.chemosphere.2019.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 06/12/2023]
Abstract
Sediment represents a sink for toxic and persistent chemicals such as hexachlorobenzene (HCB) and lindane (γ-HCH). This paper investigates the possibility of reducing the risks associated with the presence of these pollutants in sediments by amending the sediment with carbon-rich materials (activated carbon (AC) and humus (HC)) to sequester the contaminants and render them biologically unavailable. The effects of the dose and contact time between the sediment and the carbon-rich amendments on the effectiveness of the detoxification are estimated. Four doses of carbon-rich amendments (0.5-10%) and four equilibration contact times (14-180 days) were investigated. Results have shown that the bioavailable fraction of γ-HCH and HCB decreased significantly in comparison to the unamended sediment. Regarding the AC amendments, almost 100% for both compounds; and for HC amendments around 95% for γ-HCH, and 75% for HCB. Aging caused further reductions in the bioavailable fraction, compared to the untreated sediment. Phytotoxicity tests showed that Zea mays accumulated significantly higher amount of γ-HCH and HCB from unamended sediment, comparing to Cucurbita pepo and Lactuca sativa. Toxicity of HC and AC amended sediment assessed by Vibrio fischeri luminescence inhibition test and by measuring Zea mays germination and biomass yield was significantly reduced in the amended sediment samples. γ-HCH and HCB accumulation in the Zea mays biomass in the unamended sediment were a significantly higher than in the all HC and AC amended sediment. Both sorbents show potential to be used as remediation agents for organically contaminated sediment, but AC exhibited the better performance.
Collapse
Affiliation(s)
- Marko Grgić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | | | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Aleksandra Tubić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Jasmina Agbaba
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
11
|
Doucette WJ, Shunthirasingham C, Dettenmaier EM, Zaleski RT, Fantke P, Arnot JA. A review of measured bioaccumulation data on terrestrial plants for organic chemicals: Metrics, variability, and the need for standardized measurement protocols. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:21-33. [PMID: 28976607 DOI: 10.1002/etc.3992] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 05/13/2023]
Abstract
Quantifying the transfer of organic chemicals from the environment into terrestrial plants is essential for assessing human and ecological risks, using plants as environmental contamination biomonitors, and predicting phytoremediation effectiveness. Experimental data describing chemical uptake by plants are often expressed as ratios of chemical concentrations in the plant compartments of interest (e.g., leaves, shoots, roots, xylem sap) to those in the exposure medium (e.g., soil, soil porewater, hydroponic solution, air). These ratios are generally referred to as "bioconcentration factors" but have also been named for the specific plant compartment sampled, such as "root concentration factors," "leaf concentration factors," or "transpiration stream (xylem sap) concentrations factors." We reviewed over 350 articles to develop a database with 7049 entries of measured bioaccumulation data for 310 organic chemicals and 112 terrestrial plant species. Various experimental approaches have been used; therefore, interstudy comparisons and data-quality evaluations are difficult. Key exposure and plant growth conditions were often missing, and units were often unclear or not reported. The lack of comparable high-confidence data also limits model evaluation and development. Standard test protocols or, at a minimum, standard reporting guidelines for the measurement of plant uptake data are recommended to generate comparable, high-quality data that will improve mechanistic understanding of organic chemical uptake by plants. Environ Toxicol Chem 2018;37:21-33. © 2017 SETAC.
Collapse
Affiliation(s)
| | | | | | - Rosemary T Zaleski
- ExxonMobil Biomedical Sciences, Occupational and Public Health, Annandale, New Jersey, USA
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Jon A Arnot
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Morillo E, Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:576-597. [PMID: 28214125 DOI: 10.1016/j.scitotenv.2017.02.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The occurrence of pesticides in soil has become a highly significant environmental problem, which has been increased by the vast use of pesticides worldwide and the absence of remediation technologies that have been tested at full-scale. The aim of this review is to give an overview on technologies really studied and/or developed during the last years for remediation of soils contaminated by pesticides. Depending on the nature of the decontamination process, these techniques have been included into three categories: containment-immobilization, separation or destruction. The review includes some considerations about the status of emerging technologies as well as their advantages, limitations, and pesticides treated. In most cases, emerging technologies, such as those based on oxidation-reduction or bioremediation, may be incorporated into existing technologies to improve their performance or overcome limitations. Research and development actions are still needed for emerging technologies to bring them for full-scale implementation.
Collapse
Affiliation(s)
- E Morillo
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Av. Reina Mercedes, 10, Sevilla E-41012, Spain.
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Av. Reina Mercedes, 10, Sevilla E-41012, Spain
| |
Collapse
|
13
|
Wyrwicka A, Urbaniak M. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application. PLoS One 2016; 11:e0157782. [PMID: 27327659 PMCID: PMC4915677 DOI: 10.1371/journal.pone.0157782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022] Open
Abstract
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Collapse
Affiliation(s)
- Anna Wyrwicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Lodz, Poland
| | - Magdalena Urbaniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Applied Ecology, Lodz, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
14
|
Lin Q, Yang X, Huang X, Wang S, Chao Y, Qiu R. Subcellular distribution and uptake mechanism of di-n-butyl phthalate in roots of pumpkin (Cucurbita moschata) seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:329-337. [PMID: 26304812 DOI: 10.1007/s11356-015-5247-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Phthalate acid esters (PAEs) are of particular concern due to their potential environmental risk to human and nonhuman organisms. Although uptake of PAEs by plants has been reported by several researchers, information about the intracellular distribution and uptake mechanisms of PAEs is still lacking. In this study, a series of hydroponic experiments using intact pumpkin (Cucurbita moschata) seedlings was conducted to investigate how di-n-butyl phthalate (DnBP), one of the most frequently identified PAEs in the environment, enters and is distributed in roots. DnBP was transported into subcellular tissues rapidly in the initial uptake period (<12 h). More than 80% of DnBP was detected in the cell walls and organelles, which suggests that DnBP is primarily accumulated in these two fractions due to their high affinity to DnBP. The kinetics of DnBP uptake were fitted well with the Michaelis-Menten equation, suggesting that a carrier-mediated process was involved. The application of 2,4-dinitrophenol and sodium vanadate reduced the uptake of DnBP by 37 and 26%, respectively, while aquaporin inhibitors, silver and glycerol, had no effect on DnBP uptake. These data demonstrated that the uptake of DnBP included a carrier-mediated and energy-dependent process without the participation of aquaporins.
Collapse
Affiliation(s)
- Qingqi Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Xiuhong Yang
- Experimental Teaching Center, Sun Yat-sen University, Zhuhai Campus, Tangjiawan Town, Zhuhai, 519082, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China.
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China.
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China.
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, D604, Dihuan Building, 135 Xingang Xi Road, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Paul S, Rutter A, Zeeb BA. Phytoextraction of DDT-Contaminated Soil at Point Pelee National Park, Leamington, ON, Using Cultivar Howden and Native Grass Species. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1201-1209. [PMID: 26437101 DOI: 10.2134/jeq2014.11.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A field investigation was conducted at three dichlorodiphenyltrichloroethane (DDT)-contaminated areas in Point Pelee National Park (PPNP), Leamington, ON. cultivar Howden and three native grass species, (Michx.) Nash (little bluestem), L. (switchgrass), and (Torr.) A. Gray (sand dropseed) were grown at three different sites in the PPNP having low (291 ng/g), moderate (5083 ng/g), and high (10,192 ng/g) soil DDT contamination levels. A threshold soil DDT concentration was identified at ∼5000 ng/g where the DDT uptake into was maximized, resulting in plant shoot and root DDT concentrations of 16,600 and 45,000 ng/g, respectively. Two native grass species ( and ) were identified as potential phytoextractors, with higher shoot extraction capabilities than that of the known phytoextractor when optimal planting density was taken into account.
Collapse
|
16
|
Garvin N, Doucette WJ, White JC. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. CHEMOSPHERE 2015; 130:98-102. [PMID: 25537866 DOI: 10.1016/j.chemosphere.2014.11.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/03/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement.
Collapse
Affiliation(s)
- Naho Garvin
- Aqua Engineering, 533 W 2600 S Suite 275, Bountiful, UT 84010, USA.
| | - William J Doucette
- Utah Water Research Laboratory, Utah State University, 8200 Old Main Hill, Logan, UT 84322, USA.
| | - Jason C White
- Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06504, USA.
| |
Collapse
|
17
|
Inui H, Hirota M, Goto J, Yoshihara R, Kodama N, Matsui T, Yamazaki K, Eun H. Zinc finger protein genes from Cucurbita pepo are promising tools for conferring non-Cucurbitaceae plants with ability to accumulate persistent organic pollutants. CHEMOSPHERE 2015; 123:48-54. [PMID: 25532761 DOI: 10.1016/j.chemosphere.2014.11.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/02/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
Some cultivars of cucumbers, melons, pumpkins, and zucchini, which are members of the Cucurbitaceae family, are uniquely subject to contamination by hydrophobic pollutants such as the organohalogen insecticides DDT. However, the molecular mechanisms for the accumulation of these pollutants in cucurbits have not been determined. Here, cDNA subtraction analysis of Cucurbita pepo cultivars that are low and high accumulators of hydrophobic contaminants revealed that a gene for zinc finger proteins (ZFPs) are preferentially expressed in high accumulators. The cloned CpZFP genes were classified into 2 types: (1) the PBG type, which were expressed in C. pepo cultivars Patty Green, Black Beauty, and Gold Rush, and (2) the BG type, which were expressed in Black Beauty and Gold Rush. Expression of these CpZFP genes in transgenic tobacco plants carrying an aryl hydrocarbon receptor-based inducible gene expression system significantly induced β-glucuronidase activity when the plants were treated with a polychlorinated biphenyl (PCB) compound, indicating that highly hydrophobic PCBs accumulated in the plants. In transgenic tobacco plants carrying CpZFPs, accumulation of dioxins and dioxin-like compounds increased in their aerial parts when they were cultivated in the dioxin-contaminated soil. In summary, we propose that addition of CpZFP genes is a promising tool for conferring noncucurbits with the ability to accumulate hydrophobic contaminants.
Collapse
Affiliation(s)
- Hideyuki Inui
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Matashi Hirota
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Junya Goto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryouhei Yoshihara
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Noriko Kodama
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tomomi Matsui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kiyoshi Yamazaki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Heesoo Eun
- Chemical Analysis Research Center, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
18
|
Sallach JB, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:269-277. [PMID: 25483595 DOI: 10.1016/j.envpol.2014.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce.
Collapse
Affiliation(s)
- J Brett Sallach
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA
| | - Yuping Zhang
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA
| | - Laurie Hodges
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, 377N PLSH, Lincoln, NE 68583-0724, USA.
| | - Daniel Snow
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE 68583-0844, USA.
| | - Xu Li
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA.
| | - Shannon Bartelt-Hunt
- University of Nebraska-Lincoln, Department of Civil Engineering, 203B Peter Kiewit Institute, Omaha, NE 68182-0178, USA.
| |
Collapse
|
19
|
Congener Specificity in the Accumulation of Dioxins and Dioxin-Like Compounds in Zucchini Plants Grown Hydroponically. Biosci Biotechnol Biochem 2014; 75:705-10. [DOI: 10.1271/bbb.100833] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Mathews S, Henderson S, Reinhold D. Uptake and accumulation of antimicrobials, triclocarban and triclosan, by food crops in a hydroponic system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6025-6033. [PMID: 24464075 DOI: 10.1007/s11356-013-2474-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Commonly used in personal care products, triclocarban (TCC) and triclosan (TCS) are two chemicals with antimicrobial properties that have recently been recognized as environmental contaminants with the potential to adversely affect human health. The objective of the study described herein was to evaluate the potential of food crops to uptake TCC and TCS. Eleven food crops, grown in hydroponic nutrient media, were exposed to a mixture of 500 μg L(-1) TCC and TCS. After 4 weeks of exposure, roots accumulated 86-1,350 mg kg(-1) of antimicrobials and shoots had accumulated 0.33-5.35 mg kg(-1) of antimicrobials. Translocation from roots to shoots was less than 1.9 % for TCC and 3.7 % for TCS, with the greatest translocation for TCC observed for pepper, celery, and asparagus and for TCS observed for cabbage, broccoli, and asparagus. For edible tuber- or bulb-producing crops, the concentrations of both TCC and TCS were lower in the tubers than in the roots. Exposure calculations using national consumption data indicated that the average exposure to TCC and TCS from eating contaminated crops was substantially less than the exposure expected to cause adverse effects, but exceeded the predicted exposure from drinking water. Exposure to antimicrobials through food crops would be substantially reduced through limiting consumption of beets and onions.
Collapse
Affiliation(s)
- Shiny Mathews
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, East Lansing, MI, 48824, USA,
| | | | | |
Collapse
|
21
|
Eggen T, Heimstad ES, Stuanes AO, Norli HR. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4520-31. [PMID: 23250727 PMCID: PMC3695667 DOI: 10.1007/s11356-012-1363-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/22/2012] [Indexed: 04/15/2023]
Abstract
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log Kow 2.59), triethyl-chloro-phosphate (TCEP) (log Kow 1.44), tributyl phosphate (TBP) (log Kow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log Kow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log Kow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6-1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10-20 and 1.7-4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015-0.110). Despite that DEET and NBBS have log Kow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.
Collapse
Affiliation(s)
- Trine Eggen
- Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Postveien 213, 4353 Klepp St., Norway.
| | | | | | | |
Collapse
|
22
|
Inui H, Sawada M, Goto J, Yamazaki K, Kodama N, Tsuruta H, Eun H. A major latex-like protein is a key factor in crop contamination by persistent organic pollutants. PLANT PHYSIOLOGY 2013; 161:2128-35. [PMID: 23404917 PMCID: PMC3613481 DOI: 10.1104/pp.112.213645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/09/2013] [Indexed: 05/22/2023]
Abstract
This is the first report, to our knowledge, to reveal important factors by which members of the Cucurbitaceae family, such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita pepo), squash (C. pepo), and zucchini (C. pepo), are selectively polluted with highly toxic hydrophobic contaminants, including organochlorine insecticides and dioxins. Xylem sap of C. pepo ssp. pepo, which is a high accumulator of hydrophobic compounds, solubilized the hydrophobic compound pyrene into the aqueous phase via some protein(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of xylem sap of two C. pepo subspecies revealed that the amount of 17-kD proteins in C. pepo ssp. pepo was larger than that in C. pepo ssp. ovifera, a low accumulator, suggesting that these proteins may be related to the translocation of hydrophobic compounds. The protein bands at 17 kD contained major latex-like proteins (MLPs), and the corresponding genes MLP-PG1, MLP-GR1, and MLP-GR3 were cloned from the C. pepo cultivars Patty Green and Gold Rush. Expression of the MLP-GR3 gene in C. pepo cultivars was positively correlated with the band intensity of 17-kD proteins and bioconcentration factors toward dioxins and dioxin-like compounds. Recombinant MLP-GR3 bound polychlorinated biphenyls immobilized on magnetic beads, whereas recombinant MLP-PG1 and MLP-GR1 did not. These results indicate that the high expression of MLP-GR3 in C. pepo ssp. pepo plants and the existence of MLP-GR3 in their xylem sap are related to the efficient translocation of hydrophobic contaminants. These findings should be useful for decreasing the contamination of fruit of the Cucurbitaceae family as well as the phytoremediation of hydrophobic contaminants.
Collapse
Affiliation(s)
- Hideyuki Inui
- Research Center for Environmental Genomics, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC. Impact of Ag nanoparticle exposure on p,p'-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:718-25. [PMID: 23252415 DOI: 10.1021/es3041829] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of nanoparticle (NP), bulk, or ionic Ag exposure on dichlorodiphenyldichloroethylene (p,p'-DDE; DDT metabolite) accumulation by Glycine max L. (soybean) and Cucurbita pepo L. (zucchini) was investigated. The plants were grown in 125-mL jars of vermiculite amended with 500 or 2000 mg/L of bulk or NP Ag; ion controls at 5 and 20 mg/L were established. During 19 d of growth, plants were amended with solution containing 100 ng/mL of p,p'-DDE. Total shoot p,p'-DDE levels in non-Ag exposed G. max and C. pepo were 500 and 970 ng, respectively; total root DDE content was 13,700 and 20,300 ng, respectively. Ag decreased the p,p'-DDE content of G. max tissues by up to 40%, with NP exposure resulting in less contaminant uptake than bulk Ag. Total Ag content of exposed G. max ranged from 50.5 to 373 μg; NP-exposed plants had 1.9-2.2 times greater overall Ag than corresponding bulk particle treatments and also significantly greater relative Ag transport to shoot tissues. Bulk and NP Ag at 500 mg/L suppressed DDE uptake by C. pepo by 21-29%, although Ag exposure at 2000 mg/L had no impact on contaminant uptake. Similar to G. max , C. pepo whole plant Ag content ranged from 50.5 to 182 μg, with tissue element content generally being greater for NP exposed plants. These findings show that the Ag may significantly alter the accumulation and translocation of cocontaminants in agricultural systems. Notably, the cocontaminant interactions vary both with Ag particle size (NP vs bulk) and plant species. Future investigations will be needed to clarify the mechanisms responsible for the cocontaminant interactions and assess the impact on overall exposure and risk.
Collapse
Affiliation(s)
- Roberto De La Torre-Roche
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Isleyen M, Sevim P, Hawthorne J, Berger W, White JC. Inheritance profile of weathered chlordane and p,p'-DDTs accumulation by Cucurbita pepo hybrids. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2013; 15:861-876. [PMID: 23819281 DOI: 10.1080/15226514.2012.760519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cucurbita pepo ssp pepo (zucchini) accumulates significant levels of persistent organic pollutants in its roots, followed by unexpectedly high contaminant translocation to the stems. Most other plant species, including the closely related C. pepo ssp ovifera (squash), do not have this ability. To investigate the mechanism of contaminant accumulation, two cultivars each of parental zucchini and squash, as well as previously created first filial (F1) hybrids and F1 backcrosses (BC) of those parental cultivars, were grown under field conditions in a soil contaminated with weathered chlordane (2.29 microg/g) and DDX residues (0.30 microg/g; sum of DDT, DDE, DDD). The parental zucchini had stem-to-soil bioconcentration factors (BCF, contaminant ratio of stem to soil) for chlordane and DDX of 6.23 and 3.10; these values were 2.2 and 3.7 times greater than the squash, respectively. Chlordane and DDX translocation factors, the ratio of contaminant content in the stems to that in the root, were 2.1 and 3.2 times greater for zucchini than for squash. The parental zucchini and squash also differed significantly in chlordane component ratios (relative amounts of trans-nonachlor [TN], cis-chlordane [CC], trans-chlordane [TC]) and enantiomer fractions for the chiral CC and TC. Hybridization of the parental squash and zucchini resulted in significant differences in contaminant uptake. For both the three separate component ratios (CR) and two sets of enantiomer fraction (EF) values, subspecies specific differences in the parental generation became statistically equivalent in the F1 hybrid zucchini and squash. When backcrossed (BC) with the original parental plants, the zucchini and squash F1 BC cultivars reverted to the statistically distinct CR and EF patterns. This pattern of trait segregation upon hybridization suggests either single gene or single locus control for persistent organic pollutant (POP) uptake ability by C. pepo ssp pepo.
Collapse
Affiliation(s)
- Mehmet Isleyen
- Sakarya University, Department of Environmental Engineering, Esentepe Campus, Sakarya, Turkey.
| | | | | | | | | |
Collapse
|
25
|
Isleyen M, Sevim P, White JC. Accumulation of weathered p,p'-DDTs in hybridized Cucurbita pepo cultivars. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1699-1704. [PMID: 22610730 DOI: 10.1002/etc.1887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 06/01/2023]
Abstract
Cucurbita pepo spp pepo (zucchini) is known as an exceptional weathered dichlorodiphenyldichloroethylene (DDE) accumulator, whereas Cucurbita pepo ssp ovifera (squash) is termed a nonaccumulator. Experiments were conducted with hybridized zucchini and squash to assess the inheritance pattern of DDX (the sum of p,p'-dichlorodiphenyltrichloroethane [p,p'-DDT], p,p'-dichlorodiphenyldichloroethane [p,p'-DDD], and p,p'-dichlorodiphenyldichloroethylene [p,p'-DDE]) accumulation potential in xylem sap and tissues of parental, F1 hybrids, and F1 backcross (BC) generations of plants. Plants were grown in pots containing soil with weathered DDX at 732 to 1,130 ng/g soil or under field conditions in soil with 322 to 2,700 ng/g. The DDX stem bioconcentration factors and xylem sap values showed differences between parental and hybridized plants of squash and zucchini. For squash grown in greenhouse conditions, the DDX flow rate in the xylem sap was 17.3, 121, and 40.8 ng/h in parental, F1 hybrids, and F1 BC plants, respectively. Similarly, the stem DDX content of parental, F1, and F1 BC squash was 11, 253, and 96 ng/g (dry wt), respectively. A similar inheritance pattern for squash was observed when the plants were grown under field conditions. The DDX flow rates in the xylem sap of pot-grown parental, F1, and F1 BC zucchini cultivars were 100, 8.5, and 26 ng/hr, respectively, and the stem DDX content was 191, 102, and 142 ng/g, respectively. Again, similar trends in accumulation potential were observed for hybridized zucchini grown under field conditions. The DDX concentrations in parental plants matched the expected pattern, with hybrids midway between the two species, and the backcross being more like the parent again for both species. This inheritance pattern of contaminant accumulation and translocation ability follows classical Mendelian segregation and suggests single-gene or single-locus control.
Collapse
Affiliation(s)
- Mehmet Isleyen
- Sakarya University, Department of Environmental Engineering, Sakarya, Turkey.
| | | | | |
Collapse
|
26
|
Isleyen M, Sevim P. Accumulation of weathered pp'-DDE in xylem sap of grafted watermelon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:403-414. [PMID: 22567720 DOI: 10.1080/15226514.2011.620655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Movement of weathered p,p'-dichlorodiphenyldichloroethane (p,p'-DDE) from contaminated soil to the rhizosphere pore water to the xylem sap of grafted watermelon was studied under green house conditions. p,p'-DDE concentrations in pore water and xylem sap was compared in intact plants, homografted, and compatible heterografts of Cucurbita pepo spp. pepo and Citrullus lanatus plants. An average p,p'-DDE concentrations in pore water of contaminated soil ranged from 0.36 microg/L to 0.55 microg/L and there were no statistically significant among the cultivars. Conversely, the xylem sap p,p'-DDE concentration of heterografted watermelon having a zucchini rootstock and watermelon scion was 71 microg/L and it was greater than intact watermelon plants (0.49 microg/L) but less than that of intact plants of zucchini (141 microg/L). Homografting showed no effect on xylem sap p,p'-DDE concentrations of the identical cultivars. The bio-concentration factors (BCFs) which is an average p,p'-DDE concentration in xylem sap over average p,p'-DDE in pore water were 344, 325, 197, 1.28, and 0.89 for intact plant of zucchini, homografted zucchini, heterografted watermelon, homografted watermelon, and intact plant of watermelon, respectively. Xylem sap p,p'-DDE concentrations of the heterografted watermelon plants were clearly influenced by plant phylogeny and enhanced by the zucchini rootstock compared to intact watermelon plants.
Collapse
Affiliation(s)
- Mehmet Isleyen
- Sakarya University, Department of Environmental Engineering, Sakarya, Turkey.
| | | |
Collapse
|
27
|
Isleyen M, Sevim P, White JC. Accumulation of weathered p,p'-DDTs in grafted watermelon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1113-1121. [PMID: 22224752 DOI: 10.1021/jf204150s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The grafting of melon plants onto cucurbit rootstocks is a common commercial practice in many parts of the world. However, certain cucurbits have been shown to accumulate large quantities of weathered persistent organic pollutants from the soil, and the potential contamination of grafted produce has not been thoroughly evaluated. Large pot and field experiments were conducted to assess the effect of grafting on accumulation of weathered DDX (the sum of p,p'-DDT, p,p'-DDD, and p,p'-DDE) from soils. Intact squash (Cucurbita maxima × moschata) and watermelon (Citrullus lanatus), their homografts, and compatible heterografts were grown in pots containing soil with weathered DDX at 1480-1760 ng/g soil or under field conditions in soil at 150-300 ng/g DDX. Movement of DDX through the soil-plant system was investigated by determining contaminant levels in the bulk soil and in the xylem sap, roots, stems, leaves, and fruit of the grafted and nongrafted plants. In all plants, the highest DDX concentrations were detected in the roots, followed by decreasing amounts in the stems, leaves, and fruit. Dry weight concentrations of DDX in the roots ranged from 7900 ng/g (intact watermelon) to 30100 ng/g (heterografted watermelon) in the pot study and from 650 ng/g (intact watermelon) to 2430 ng/g (homografted squash) in the field experiment. Grafting watermelon onto squash rootstock significantly increased contaminant uptake into the melon shoot system. In the pot and field studies, the highest stem DDX content was measured in heterografted watermelon at 1220 and 244 ng/g, respectively; these values are 140 and 19 times greater than contaminant concentrations in the intact watermelon, respectively. The xylem sap DDX concentrations of pot-grown plants were greatest in the heterografted watermelon (6.10 μg/L). The DDX contents of the leaves and fruit of watermelon heterografts were 3-12 and 0.53-8.25 ng/g, respectively, indicating that although the heterografted watermelon accumulated greater pollutant levels, the resulting contamination is not likely a food safety concern.
Collapse
Affiliation(s)
- Mehmet Isleyen
- Department of Environmental Engineering, Sakarya University, Sakarya, Turkey.
| | | | | |
Collapse
|
28
|
Zhao M, Zhang S, Wang S, Huang H. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize. J Environ Sci (China) 2012; 24:402-409. [PMID: 22655352 DOI: 10.1016/s1001-0742(11)60748-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Uptake, translocation and debromination of three polybrominated diphenyl ethers (PBDEs), BDE-28, -47 and -99, in maize were studied in a hydroponic experiment. Roots took up most of the PBDEs in the culture solutions and more highly brominated PBDEs had a stronger uptake capability. PBDEs were detected in the stems and leaves of maize after exposure but rarely detected in the blank control plants. Furthermore, PBDE concentrations decreased from roots to stems and then to leaves, and a very clear decreasing gradient was found in segments upwards along the stem. These altogether provide substantiating evidence for the acropetal translocation of PBDEs in maize. More highly brominated PBDEs were translocated with more difficulty. Radial translocation of PBDEs from nodes to sheath inside maize was also observed. Both acropetal and radial translocations were enhanced at higher transpiration rates, suggesting that PBDE transport was probably driven by the transpiration stream. Debromination of PBDEs occurred in all parts of the maize, and debromination patterns of different parent PBDEs and in different parts of a plant were similar but with some differences. This study for the first time provides direct evidence for the acropetal translocation of PBDEs within plants, elucidates the process of PBDE transport and clarifies the debromination products of PBDEs in maize.
Collapse
Affiliation(s)
- Moming Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | |
Collapse
|
29
|
Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang XE. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. BIORESOURCE TECHNOLOGY 2011; 102:11034-8. [PMID: 21993327 DOI: 10.1016/j.biortech.2011.09.067] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/11/2011] [Accepted: 09/15/2011] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) or its metabolite residues are frequently detected in agricultural soils and food, posing a threat to human health. The objective of this study was to compare the ability of 23 genotypes of Ricinus communis in mobilizing and uptake of Cd and DDTs (p,p'-DDT, o,p'-DDT, p,p'-DDD and p,p'-DDE) in the co-contaminated soil. The plant genotypes varied largely in the uptake and accumulation of DDTs and Cd, with mean concentrations of 0.37, 0.43 and 70.51 for DDTs, and 1.22, 2.27 and 37.63 mg kg(-1) dw for Cd in leaf, stem and root, respectively. The total uptake of DDTs and Cd varied from 83.1 to 267.8 and 66.0 to 155.1 μg per pot, respectively. These results indicate that R. communis has great potential for removing DDTs and Cd from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for both DDTs and Cd.
Collapse
Affiliation(s)
- Huagang Huang
- Ministry of Education Key Laboratory of Polluted Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aryal N, Reinhold DM. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure. WATER RESEARCH 2011; 45:5545-5552. [PMID: 21903237 DOI: 10.1016/j.watres.2011.08.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
Triclocarban and triclosan, two antimicrobials widely used in consumer products, can adversely affect ecosystems and potentially impact human health. The application of biosolids to agricultural fields introduces triclocarban and triclosan to soil and water resources. This research examined the phytoaccumulation of antimicrobials, effects of plant growth on migration of antimicrobials to water resources, and relevance of phytoaccumulation in human exposure to antimicrobials. Pumpkin, zucchini, and switch grass were grown in soil columns to which biosolids were applied. Leachate from soil columns was assessed every other week for triclocarban and triclosan. At the end of the trial, concentrations of triclocarban and triclosan were determined for soil, roots, stems, and leaves. Results indicated that plants can reduce leaching of antimicrobials to water resources. Pumpkin and zucchini growth significantly reduced soil concentrations of triclosan to less than 0.001 mg/kg, while zucchini significantly reduced soil concentrations of triclocarban to 0.04 mg/kg. Pumpkin, zucchini, and switch grass accumulated triclocarban and triclosan in mg per kg (dry) concentrations. Potential human exposure to triclocarban from consumption of pumpkin or zucchini was substantially less than exposure from product use, but was greater than exposure from drinking water consumption. Consequently, research indicated that pumpkin and zucchini may beneficially impact the fate of antimicrobials in agricultural fields, while presenting minimal acute risk to human health.
Collapse
Affiliation(s)
- Niroj Aryal
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
31
|
Ficko SA, Rutter A, Zeeb BA. Phytoextraction and uptake patterns of weathered polychlorinated biphenyl-contaminated soils using three perennial weed species. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1870-1877. [PMID: 22031570 DOI: 10.2134/jeq2011.0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three promising phytoextracting perennial weed species [ L. (ox-eye daisy), L. (curly dock), and L. (Canada goldenrod)] were planted in monoculture plots at two polychlorinated biphenyl (PCB)-contaminated sites in southern Ontario and followed over 2 yr to investigate the effects of plant age, contaminant characteristics, and species-specific properties on PCB uptake and accumulation patterns in plant tissues. Results from this study indicate that, for each of these weed species, shoot contaminant concentrations and total biomass are dependent on plant age and life cycle (vegetative and reproductive stages), which affects the total amount of PCBs phytoextracted on a per-plant basis. Even at suboptimal planting densities of 3 to 5 plants m, all three weed species extracted a greater quantity of PCBs per unit area (4800-10,000 μg m) than the known PCB-accumulator L. ssp (cv Howden pumpkins) (1500-2100 μg m) at one of the two sites. Calculated PCB extractions based on theoretical optimal planting densities were significantly higher at both sites and illustrate the potential of these weeds for site remediation. This study also demonstrates that plants may accumulate PCBs along the stem length in a similar manner as plants.
Collapse
Affiliation(s)
- Sarah A Ficko
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | | | | |
Collapse
|
32
|
Nanasato Y, Konagaya KI, Okuzaki A, Tsuda M, Tabei Y. Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers. PLANT CELL REPORTS 2011; 30:1455-64. [PMID: 21400224 PMCID: PMC3135834 DOI: 10.1007/s00299-011-1054-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 05/08/2023]
Abstract
An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige-Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T(0) generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T(1) seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T(1) generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use.
Collapse
Affiliation(s)
- Yoshihiko Nanasato
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Ken-ichi Konagaya
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Present Address: Forest Bio-Research Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301 Japan
| | - Ayako Okuzaki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Mai Tsuda
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Yutaka Tabei
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
33
|
A Case Study: Uptake and Accumulation of Persistent Organic Pollutants in Cucurbitaceae Species. PLANT ECOPHYSIOLOGY 2011. [DOI: 10.1007/978-90-481-9852-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Zhu L, Lu L, Zhang D. Mitigation and remediation technologies for organic contaminated soils. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11783-010-0253-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Chhikara S, Paulose B, White JC, Dhankher OP. Understanding the physiological and molecular mechanism of persistent organic pollutant uptake and detoxification in cucurbit species (zucchini and squash). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7295-7301. [PMID: 20507062 DOI: 10.1021/es100116t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cucurbita pepo ssp pepo (zucchini) roots phytoextract significant amounts of persistent organic pollutants (POPs) from soil, followed by effective translocation to aboveground tissues. The closely related C. pepo ssp ovifera (squash) does not have this ability. In a DDE-contaminated field soil, zucchini roots and stems contained 3.6 and 6.6-fold greater contaminant than did squash tissues, respectively, and zucchini phytoextracted 12-times more DDE from soil than squash. In batch hydroponics, squash was significantly more sensitive to DDE (2-20 mg/L) exposure; 4 mg/L DDE significantly reduced squash biomass (14%) whereas for zucchini, biomass reductions were observed at 20 mg/L (20%). PCR select Suppression Subtraction Hybridization was used to identify differentially expressed genes in DDE treated zucchini relative to DDE treated squash or non-treated zucchini. After differential screening to eliminate false positives, unique cDNA clones were sequenced. Out of 40 shoot cDNA sequences, 34 cDNAs have homology to parts of phloem filament protein 1 (PP1). Out of 6 cDNAs from the root tissue, two cDNAs are similar to cytochrome P450 like proteins, and one cDNA matches a putative senescence associated protein. From the DDE exposed zucchini seedlings cDNA library, out of 22 differentially expressed genes, 14 cDNAs were found to have homology with genes involved in abiotic stresses, signaling, lipid metabolism, and photosynthesis. A large number of cDNA sequences were found to encode novel unknown proteins that may be involved in uncharacterized pathways of DDE metabolism in plants. A semiquantitative RT-PCR analysis of isolated genes confirmed up-regulation in response to DDE exposure.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, Massachusetts 01002, USA
| | | | | | | |
Collapse
|
36
|
Slizovskiy IB, White JC, Kelsey JW. Technical note: evaluation of extraction methodologies for the determination of an organochlorine pesticide residue in vegetation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:820-832. [PMID: 21166351 DOI: 10.1080/15226510903390445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Numerous extraction methodologies are used to quantify pesticide levels in vegetation. Sample availability, resource use, efficiency, time consumption, space allocation, and cost vary considerably among the commonly employed techniques. A study was conducted to compare the efficiency of microwave assisted extraction (MAE), blender homogenized extraction (BE), Soxhlet extraction (SE), the QuEChERS ("Quick, Easy, Cheap, Effective, Rugged, and Safe") method, and a simple oven assisted extraction (OAE), to recover p,p'-DDE from the tissues of Cucurbita pepo. A hot-solvent soak of stem or root tissues in a 2-propanol/hexane mixture, OAE yields recoveries that are statistically equivalent to the other procedures. The method recovered 1800 +/- 190 ng g(-1) and 8100 +/- 900 ng g(-1) (BCF = 87 +/- 9.7) p,p'-DDE from stem and root tissue, respectively. Recoveries for the other methods ranged from 1400-2200 ng g(-1) for the stems and 3600-7200 ng g(-1) for the roots. Statistical analyses for stem and root extraction indicate that there is no significant difference among the variances of each method. Given its simplicity, precision, and efficiency, OAE appears to be suitable for the extraction of an organic pollutant such as p,p'-DDE from plant tissues and for use in phytotechnology development and risk assessment.
Collapse
Affiliation(s)
- Ilya B Slizovskiy
- Program in Environmental Science, Department of Chemistry, Muhlenberg College, Allentown, PA 18104, USA
| | | | | |
Collapse
|
37
|
Murano H, Otani T, Seike N. Dieldrin-dissolving abilities of the xylem saps of several plant families, particularly Cucurbita pepo L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2269-2277. [PMID: 20872691 DOI: 10.1002/etc.288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The uptake ability of hydrophobic organic chemicals by plants and the nature of xylem sap of the plants were studied. The plants were grown in soil contaminated with dieldrin. High amounts of dieldrin were detected in the shoots of Cucurbita pepo and Cucumis sativus, but little was seen in the shoots of Brassica oleracea var. italica, Solanum lycopersicum, Glycine max, Zea mays, and Helianthus annuus. The xylem saps of C. pepo and C. sativus leached dieldrin adsorbed on C8 granules, but those of the other plants did not. The xylem saps of C. pepo and C. sativus eluted high amounts of dieldrin from the size-exclusion chromatography column near the fractions of RNase A (13.7 kDa) after Aprotinin (6.5 kDa), which has a larger molecular weight than dieldrin (381). The enhancement of dieldrin solubility by xylem sap was reduced by proteinase and heating. It was suspected that the protein-like materials in the xylem sap delivered dieldrin from the roots to the shoots.
Collapse
Affiliation(s)
- Hirotatsu Murano
- Organochemicals Division, National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan
| | | | | |
Collapse
|
38
|
White JC. Inheritance of p,p'-DDE phytoextraction ability in hybridized Cucurbita pepo cultivars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5165-5169. [PMID: 20507162 DOI: 10.1021/es100706t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cucurbita pepo ssp pepo (zucchini) has been shown to uniquely phytoextract percent level amounts of dichlorodiphenyldichloroethylene (DDE) and other organic contaminants from soil. Since C. pepo ssp ovifera (squash) does not have this ability, a three-year field trial was conducted to follow the inheritance pattern of DDE accumulation for cross pollinated C. pepo cultivars. Parental zucchini and squash cultivars (3 each) had stem-to-soil bioconcentration factors (BCF, contaminant ratio of stem to soil) of 16 and 1.7, respectively, and phytoextracted 1.8 and 0.18% of the DDE from soil. The 18 possible first filial (F1) hybrids of zucchini and squash accumulated significantly different DDE levels than the respective parents. The zucchini F1 hybrid (zucchini pollinated with squash) stem BCFs and percent phytoextraction values were 10 and 0.96, respectively, or 36% and 47% less than the parental zucchini. The squash F1 hybrid (squash pollinated with zucchini) stem BCFs and percent phytoextraction values were 8.3 and 0.68, respectively, or 490% and 370% greater than the parental squash. When backcrossed (BC) with the original parent, the nine zucchini F1 BC cultivars did not regain the capability to take up DDE; stem BCFs and percent phytoextraction values were equivalent to those of the F1 generation. However, the nine squash F1 BC cultivars lost much of the DDE uptake capability of the F1 generation; stem BCFs and percent phytoextraction values were intermediate but closer to those of the parental squash. The inheritance patterns suggest single locus control for persistent organic pollutant (POP) uptake ability in C. pepo ssp pepo.
Collapse
Affiliation(s)
- Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA.
| |
Collapse
|
39
|
Lunney AI, Rutter A, Zeeb BA. Effect of organic matter additions on uptake of weathered DDT by Cucurbita pepo ssp. pepo cv. Howden. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:404-417. [PMID: 20734916 DOI: 10.1080/15226510903051773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Greenhouse studies were conducted to assess the impact of organic matter additions on plant uptake of DDT [2,2-bis(chlorophenyl)-1,1,1-trichloroethane] from weathered soil. Cucurbita pepo ssp. pepo cv. Howden pumpkins were grown in 100 g of DDT contaminated soil ([DDT] - 1100 ng/g) mixed with equal volumes of either clean soil, perlite, vermiculite, peat, potting soil, or granular activated carbon (GAC) to give total organic carbon contents of 2.4%, 2.5%, 2.6%, 11.5%, 12.2%, and 27.3%, respectively. As in other studies, root DDT concentrations were significantly lower in soils with high organic matter. Root bioaccumulation factors (BAF = [DDT]root/[DDT]soil) approximated this trend. Root concentrations correlated with organic matter concentrations and not with soil DDT concentrations. Conversely, shoot DDT concentrations, shoot BAFs and translocation factors (TLF = BAF(shoot)/BAF(root)) were not significantly different between treatment groups, except for plants grown in GAC/DDT soil. This suggests that amendments with a range of organic matter contents may be added to improve soil conditions at industrial sites without significant adverse effects on phytoextraction potential of C. pepo ssp. pepo.
Collapse
Affiliation(s)
- Alissa I Lunney
- Department of Chemistry & Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | | | | |
Collapse
|
40
|
Low JE, Whitfield Aslund ML, Rutter A, Zeeb BA. Effect of plant age on PCB accumulation by Cucurbita pepo ssp. pepo. JOURNAL OF ENVIRONMENTAL QUALITY 2010; 39:245-250. [PMID: 20048312 DOI: 10.2134/jeq2009.0169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A greenhouse experiment was conducted to investigate polychlorinated biphenyl (PCB) uptake and translocation from soil over time in pumpkin plants (Cucurbita pepo ssp. pepo cv. Howden). Plants were grown in weathered soil collected from a former industrial site contaminated with Aroclor 1248 (mean [PCB](soil) = 6.5 mg kg(-1)). Plants were harvested five times over 42 d and analyzed for total PCB concentration in the root and shoot tissues. The concentration of PCBs in the root was not significantly different between harvests (mean [PCB](root) = 21.5 mg kg(-1)). The concentration of PCBs in the shoots was also relatively stable over time (mean [PCB](shoot) = 3.5 mg kg(-1)) despite increases in shoot biomass (fresh weight of 4.3 g at Day 12 to 59 g at Day 42). This suggests that PCBs were continuously accumulated throughout the growth period. The trends found in this study indicate the optimal time to harvest C. pepo ssp pepo plants to maximize PCB phytoextraction is when the plant shoot has reached its maximum biomass.
Collapse
Affiliation(s)
- Jennifer E Low
- Dep. of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, Canada K7K 7B4
| | | | | | | |
Collapse
|
41
|
Zhang H, Chen J, Ni Y, Zhang Q, Zhao L. Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants. CHEMOSPHERE 2009; 76:740-6. [PMID: 19541345 DOI: 10.1016/j.chemosphere.2009.05.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/02/2009] [Accepted: 05/25/2009] [Indexed: 05/21/2023]
Abstract
Root uptake and subsequent translocation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in 12 agricultural crops were comparatively investigated. All crop plants were exposed hydroponically to a mixture of three kinds of dioxin congeners over 4d. The root concentration factor (RCF) of dioxin showed a logarithmic correlation with extractable lipid content in plant root. On the assumption that the dioxin escaping via gas phase from nutrient solution in the closed container can evenly diffuse in the air and equally absorb onto the shoot tissues of the dioxin-exposed plant and their nearby blank control plant, the amount of translocated dioxin was estimated by subtracting dioxin content in the shoot tissues of the blank control plant from that of the dioxin-exposed plant, and then the transpiration stream concentration factor (TSCF) of dioxin was calculated. The TSCF values of PCDD/Fs largely varied according to the plant species, and the TSCF values of 2,4,8-TrCDF were a little higher than those for 1,3,6,8-TeCDD expect for zucchini. For 1,3,6,8-TeCDD, zucchini had the highest TSCF value of 0.0089, followed by pumpkin (0.0064) towel gourd (0.0027), and cucumber (0.0010), verifying plants of the genus Cucurbita have the higher abilities of dioxin translocation. The TSCF values of 1,3,6,8-TeCDD for wheat and sorghum were 0.0013 and 0.0012, respectively. For maize, soybean, rice, Chinese cabbage, tomato and garland chrysanthemum, translocation was an insignificant mechanism of dioxin contamination in shoot tissues.
Collapse
Affiliation(s)
- Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | |
Collapse
|
42
|
Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol 2009; 84:205-16. [DOI: 10.1007/s00253-009-2094-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
43
|
|
44
|
Inui H, Wakai T, Gion K, Kim YS, Eun H. Differential uptake for dioxin-like compounds by zucchini subspecies. CHEMOSPHERE 2008; 73:1602-7. [PMID: 18835616 DOI: 10.1016/j.chemosphere.2008.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/01/2008] [Accepted: 08/12/2008] [Indexed: 05/23/2023]
Abstract
The zucchini (Cucurbita pepo) cultivars 'Patty Green', 'Black Beauty', and 'Gold Rush' were cultivated on weathered dioxin-contaminated soil in pots, and concentrations of the 29 dioxin-like compounds that were assigned WHO-TEFs, three non-toxic polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), and two non-dioxin-like polychlorinated biphenyls (PCBs) were analyzed. Toxic equivalent (TEQ) values accumulated in 'Black Beauty' and 'Gold Rush' were about 180 times higher than those in 'Patty Green'. The bioconcentration factor (BCF) based on total mass concentration of the twelve dioxin-like PCBs was higher than those of the seven PCDDs and ten PCDFs in all the cultivars. The BCFs for PCDD and PCDF congeners were negatively correlated with octanol-water partition coefficients in all the plants. No correlations were observed in PCB congeners in the high accumulators, although in 'Patty Green' the BCFs for PCB congeners were significantly correlated with octanol-water partition coefficients. Our findings suggest that the high accumulators had unknown, unique mechanisms for uptake of PCBs, whereas PCDDs and PCDFs were absorbed based on their physicochemical properties.
Collapse
Affiliation(s)
- Hideyuki Inui
- Research Center for Environmental Genomics, Kobe University, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
45
|
Kobayashi T, Navarro RR, Tatsumi K, Iimura Y. Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 404:1-9. [PMID: 18632137 DOI: 10.1016/j.scitotenv.2008.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
The dissolved organic matter (DOM) fraction of soil organic matter (SOM) may positively contribute to polycyclic aromatic hydrocarbons (PAHs) bioavailability. This work investigated the effects of DOM-rich and PAHs-free compost amendment on the plant uptake of pyrene. Two subspecies of Cucurbita pepo (ssp. pepo cv. Raven and ssp. texana cv. Sunray) were grown for three weeks in a spiked soil containing 83.9 mg kg(-1) pyrene under four different treatments; inorganic fertilizer (IF) alone, 15% (v/v) mixed gardening compost with IF (MX15%+IF), MX30% alone, and no fertilization (NF). Equilibrium pyrene desorptions from a spiked soil (104 mg kg(-1)) under different concentrations (35-590 mg-C L(-1)) of DOM extracts derived from two types of composts including MX and cow manure were also conducted. After harvest, the decrease in the pyrene concentration of the soil ranged from 46-65% for the different treatments. The total dry biomass for both plants was highest under MX15%+IF. The bioconcentration factors of pyrene for both also tended to decrease with increasing MX dose from 15% to 30%. However, the total uptakes of pyrene with IF and MX15%+IF were not statistically different (36.7 and 33.7 microg for Raven, and 5.20 and 7.90 microg for Sunray, respectively). These values were around 100% higher than that with NF (17.4 microg for Raven and 2.0 microg for Sunray). The pyrene desorption data confirmed the ability of DOM to associate with pyrene as indicated by its increase in apparent water solubility. On the basis of these results, MX application at 15% (v/v) does not significantly reduce the phytoextraction of pyrene due to the enhancement of plant growth as well as the possible contribution of DOM fractions to pyrene bioavailability. The application of compost may not pose serious concerns regarding the efficiency of phytoremediation of PAHs-polluted soil.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | |
Collapse
|
46
|
Fruhwirth GO, Hermetter A. Production technology and characteristics of Styrian pumpkin seed oil. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700257] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Chapter 10 Organic contaminant speciation and bioavailability in the terrestrial environment. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-2481(07)32010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Fruhwirth GO, Hermetter A. Seeds and oil of the Styrian oil pumpkin: Components and biological activities. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200700105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Cofield N, Schwab AP, Banks MK. Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:355-70. [PMID: 18246723 DOI: 10.1080/15226510701603858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phytoremediation has been demonstrated to be a viable cleanup alternative for soils contaminated with petroleum products. This study evaluated the application of phytoremediation to soil from a manufactured gas plant (MGP) site with high concentrations of recalcitrant, polycyclic aromatic hydrocarbons (PAHs). Two greenhouse studies investigated the potential dissipation and plant translocation of PAHs by fescue (Festuca arundinacea) and switchgrass (Panicum virgatum) in the first experiment and zucchini (Curcubita pepo Raven) in the second. The MGP soil was highly hydrophobic and initially inhibited plant growth. Two unplanted controls were established with and without fertilization. In the first experiment, concentrations of PAHs decreased significantly in all treatments after 12 mo. Plant biomass and microbial numbers were statistically equivalent among plant species. PAH concentrations in plant biomass were negligible for fescue and switchgrass. In the second experiment, zucchini enhanced the dissipation of several PAHs after 90 d of treatment when compared to the unvegetated soil. Plant tissue concentrations of PAHs were not elevated in the zucchini roots and shoots, and PAHs were not detectable in the fruit.
Collapse
Affiliation(s)
- Naressa Cofield
- School of Civil Engineering, Purdue University, Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
50
|
Cofield N, Schwab AP, Williams P, Banks MK. Phytoremediation of polycyclic hydrocarbon contaminated soil: part II. Impact on ecotoxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:371-84. [PMID: 18246724 DOI: 10.1080/15226510701603866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Several biological assays were used to evaluate the toxic effects of contaminants in soil after phytoremediation. During the treatment process, significant decreases in overall toxicity were observed. Specifically, earthworm survivability and lettuce germination increased over the study period. Microbial respiration improved, but only in planted treatments. Toxicity and total polycyclic aromatic hydrocarbon concentrations showed some correlation, but the relationships generally were not significant. Soil moisture was less of a predictor for biological responses. The presence of plants did not provide a clear advantage for improving toxicity compared to unplanted treatments.
Collapse
Affiliation(s)
- Naressa Cofield
- School of Civil Engineering, Purdue University, Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|