1
|
Yang KH, Hung HS, Huang WH, Hsieh CY, Chen TC. Multiphase Partitioning of Estrogens in a River Impacted by Feedlot Wastewater Discharge. TOXICS 2024; 12:671. [PMID: 39330599 PMCID: PMC11436132 DOI: 10.3390/toxics12090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Estrogens in river systems can significantly impact aquatic ecosystems. This study aimed to investigate the multiphase partitioning of estrogens in Wulo Creek, Taiwan, which receives animal feedlot wastewater, to understand their distribution and potential environmental implications. Water samples were separated into suspended particulate matter (SPM), colloidal, and soluble phases using centrifugation and cross-flow ultrafiltration. Concentrations of estrone (E1), 17β-estradiol (E2), and estriol (E3) in each phase were analyzed using LC/MS/MS. Partition coefficients were calculated to assess estrogen distribution among phases. Estrogens were predominantly found in the soluble phase (85.8-87.3%). The risk assessment of estrogen equivalent (EEQ) values suggests that estrogen concentration in water poses a higher risk compared to SPM, with a majority of the samples indicating a high risk to aquatic organisms. The colloidal phase contained 12.7-14.2% of estrogens. The log KCOC values (4.72-4.77 L/kg-C) were significantly higher than the log KOC and log KPOC values (2.02-3.40 L/kg-C) for all estrogens. Colloids play a critical role in estrogen distribution in river systems, potentially influencing their fate, transport, and biotoxicity. This finding highlights the importance of considering colloidal interactions in assessing estrogen behavior in aquatic environments.
Collapse
Affiliation(s)
- Kuo-Hui Yang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hao-Shen Hung
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wei-Hsiang Huang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Disaster Prevention and Mitigation Technology Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chi-Ying Hsieh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Disaster Prevention and Mitigation Technology Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
2
|
Bajda T, Grela A, Pamuła J, Kuc J, Klimek A, Matusik J, Franus W, Alagarsamy SKK, Danek T, Gara P. Using Zeolite Materials to Remove Pharmaceuticals from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3848. [PMID: 39124512 PMCID: PMC11313275 DOI: 10.3390/ma17153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Pharmaceutical drugs, including antibiotics and hormonal agents, pose a significant threat to environmental and public health due to their persistent presence in aquatic environments. Colistin (KOL), fluoxetine (FLUO), amoxicillin (AMO), and 17-alpha-ethinylestradiol (EST) are pharmaceuticals (PhCs) that frequently exceed regulatory limits in water and wastewater. Current removal methods are mainly ineffective, necessitating the development of more efficient techniques. This study investigates the use of synthetic zeolite (NaP1_FA) and zeolite-carbon composites (NaP1_C), both derived from fly ash (FA), for the removal of KOL, FLUO, AMO, and EST from aquatic environments. Batch adsorption experiments assessed the effects of contact time, adsorbent dosage, initial concentration, and pH on the removal efficiency of the pharmaceuticals. The results demonstrated that NaP1_FA and NaP1_C exhibited high removal efficiencies for all tested pharmaceuticals, achieving over 90% removal within 2 min of contact time. The Behnajady-Modirshahla-Ghanbary (BMG) kinetic model best described the adsorption processes. The most effective sorption was observed with a sorbent dose of 1-2 g L-1. Regarding removal efficiency, the substances ranked in this order: EST was the highest, followed by AMO, KOL, and FLUO. Sorption efficiency was influenced by the initial pH of the solutions, with optimal performance observed at pH 2-2.5 for KOL and FLUO. The zeolite-carbon composite NaP1_C, due to its hydrophobic nature, showed superior sorption efficiency for hydrophobic pharmaceuticals like FLUO and EST. The spectral analysis reveals that the primary mechanism for immobilizing the tested PhCs on zeolite sorbents is mainly due to physical sorption. This study underscores the potential of utilizing inexpensive, fly ash-derived zeolites and zeolite-carbon composites to remove pharmaceuticals from water effectively. These findings contribute to developing advanced materials for decentralized wastewater treatment systems, directly addressing pollution sources in various facilities.
Collapse
Affiliation(s)
- Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Agnieszka Grela
- Faculty of Environmental and Power Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland; (A.G.); (J.P.)
| | - Justyna Pamuła
- Faculty of Environmental and Power Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland; (A.G.); (J.P.)
| | - Joanna Kuc
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland;
| | - Agnieszka Klimek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Jakub Matusik
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Wojciech Franus
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland;
| | | | - Tomasz Danek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Paweł Gara
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
3
|
Song X, Li Y, Zhang Z, Wen Y, Wang Y. Natural mineral colloids facilitated transport of EE2 in saturated porous media: Effects of humic acid and conjugate form. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104387. [PMID: 38896908 DOI: 10.1016/j.jconhyd.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Steroid estrogens have posed significant ecological risks to aquatic organisms due to their potent endocrine-disrupting effects. The role of natural mineral colloids in facilitating the transport of hydrophobic organic pollutants in the environment has been confirmed, but the control mechanisms of colloids on 17α-Ethinylestradiol (EE2) migration in the subsurface environment are often still not well understood. This study combined the batch sorption equilibrium experiments and dynamic transport simulations to reveal the interface interactions and co-transport characteristics between illite colloids and EE2 at both macroscopic and microscopic levels. The existing form changes of EE2 and the influence of coexisting humic acid (HA) during transport in porous media were also specifically investigated. The batch experiments demonstrated that the primary mechanisms governing EE2 sorption onto illite colloids involved surface sorption and hydrogen bonding. The coexistence of HA could load onto the surface of illite colloids, thereby enhancing the colloidal sorption capacity for EE2. Transport experiments demonstrated that the migratory ability of EE2 in silty clay was limited, but illite colloids could significantly promote its penetration, with the peak penetration content (Ct/C0) increasing from 0.64 to 0.77. In the absence of HA, EE2 primarily transported in a dissolved form, accounting for 62.86% of the total concentrations. When HA concentrations were increased to 10 mg/L and 20 mg/L, the proportion of colloidal conjugate EE2 in the effluents reached 52.13% and 54.49%, respectively. The enhanced transport of EE2 by HA was primarily attributed to the improved migration ability of illite colloids and the increased proportion of illite-EE2 conjugate, resulting in a maximum Ct/C0 value of 0.94. The validity of these results was further confirmed by employing calculations based on the Derjaguin-Landau-Verwey-Overbeek and Colloidal Filtration Theory. This study provides new insights of understanding the transport of EE2 in subsurface environment.
Collapse
Affiliation(s)
- Xiaoming Song
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China
| | - Yingjun Li
- Qinghai 906 Engineering Survey and Design Institute Co. LTD, Xining 810001, China; Bureau of Qinghai Environmental Geological Prospecting, Xining 810001, China.
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Chengdu 610031, China
| | - Yujuan Wen
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China.
| | - Yunlong Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China
| |
Collapse
|
4
|
Wang Y, Deng Y, Yao L, Yang X. Colloid-bound radicals formed in NOM-enhanced Fe(III)/peroxymonosulfate process accelerate the degradation of trace organic contaminants in water. WATER RESEARCH 2024; 248:120880. [PMID: 38007886 DOI: 10.1016/j.watres.2023.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
The omnipresence of natural organic matter (NOM) in water bodies traditionally hinders the degradation of trace organic contaminants (TrOCs) in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). This study elucidates the positive role of NOM in enhancing the degradation of TrOCs through the Fe(III)/PMS process. During this process, NOM reduces Fe(III), yielding semiquinone-like radical (NOM•) and concurrently forming NOM-Fe(III) colloids. In addition to the Fe(II)-mediated activation pathway, Fe(III) sites on NOM-Fe(III) colloids effectively transfer electrons from NOM• or some redox-active moieties to PMS, resulting in the generation of long-lived colloid-bound SO4•-, which can readily undergo hydrolysis to produce HO•. The stabilization of SO4•- and HO• by NOM-Fe(III) colloids, combined with their moderate adsorption of TrOCs, results in surface-confined reactions that significantly enhance TrOC removal, despite the presence of concurrent quenching reactions between radicals and NOM. Further, the significant positive correlation between the phenolic contents of eight NOM types and TrOC degradation kinetics suggests phenolic moieties as the primary electron source for PMS activation. By in-situ utilizing NOM in raw water, a PMS-amended iron coagulation process with 0.2 mM Fe(III) and PMS effectively removes 90-100 % of six coexisting TrOCs. This study unveils the previously unrecognized role of colloid-bound radicals in decontamination processes, offering valuable insights into harnessing NOM's influence in advanced oxidation water treatment processes.
Collapse
Affiliation(s)
- Yu Wang
- College of Resources and Environment, Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Yanchun Deng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Griffith DR, Carolan M, Gutierrez MM, Romig A, Garcia-Diaz N, Hutchinson CP, Zayas RL. Microbial Degradation of Free and Halogenated Estrogens in River Water-Sediment Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428977 PMCID: PMC10373497 DOI: 10.1021/acs.est.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Halogenated estrogens are formed during chlorine-based wastewater disinfection and have been detected in wastewater treatment plant effluent; however, very little is known about their susceptibility to biodegradation in natural waters. To better understand the biodegradation of free and halogenated estrogens in a large river under environmentally relevant conditions, we measured estrogen kinetics in aerobic microcosms containing water and sediment from the Willamette River (OR, USA) at two concentrations (50 and 1250 ng L-1). Control microcosms were used to characterize losses due to sorption and other abiotic processes, and microbial dynamics were monitored using 16S rRNA gene sequencing and ATP. We found that estrogen biodegradation occurred on timescales of hours to days and that in river water spiked at 50 ng L-1 half-lives were significantly shorter for 17β-estradiol (t1/2,bio = 42 ± 3 h) compared to its monobromo (t1/2,bio = 49 ± 5 h), dibromo (t1/2,bio = 88 ± 12 h), and dichloro (t1/2,bio = 98 ± 16 h) forms. Biodegradation was also faster in microcosms with high initial estrogen concentrations as well as those containing sediment. Free and halogenated estrone were important transformation products in both abiotic and biotic microcosms. Taken together, our findings suggest that biodegradation is a key process for removing free estrogens from surface waters but likely plays a much smaller role for the more highly photolabile halogenated forms.
Collapse
Affiliation(s)
- David R Griffith
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - MacKayla Carolan
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Anya Romig
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Nathan Garcia-Diaz
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Rosa León Zayas
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| |
Collapse
|
6
|
Wang Y, Zhong L, Song X, Adeel M, Yang Y. Natural colloids facilitated transport of steroidal estrogens in saturated porous media: Mechanism and processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120315. [PMID: 36216178 DOI: 10.1016/j.envpol.2022.120315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Steroid estrogens (SEs) as typical endocrine disrupting compounds (EDCs) are widely detected in terrestrial environment, whilst the transport of SEs in groundwater remains unwell understood. Specifically, the effects of ubiquitous natural colloids on the SEs transport are unclear in subsurface environment, especially in aquifer systems. Here, the influence of inorganic colloids (i.e. silica and illite) and organic colloids, i.e. Humic acid (HA), on the transport of estrone (E1) and estradiol (E2) in saturated porous media was studied utilizing laboratory scale column experiments. Characterization on the colloids and porous aquifer material was conducted to provide a basis for interpretation of the experimental findings. Results showed that the transport of SEs was clearly affected by the natural colloids migrating through the saturated porous media. About 38.5% of E1 and 24.6% of E2 were retained in the column when colloids were absent in the system. When transporting with silica colloids, illite colloids, and HA colloids, the transport of E1 was enhanced by 15.64%, 11.17% and 25.60%, respectively; whilst the transport of E2 was improved by 19.56%, 23.06% and 36.40%, respectively. The SEs transport enhancement by colloids depended upon not only the mobility of the colloids but also their geochemical characteristics. The organic colloids showed 1.5-2.5 times greater ability on promoting the transport of SEs than the inorganic ones tested in this study. The proposed mechanisms of nature colloids facilitated transport of SEs including competing for adsorption sites on the sand surfaces by the colloids resulting mobilization of adsorbed SEs from solid matrix, and transport of colloids as carriers for SEs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China
| | - Lirong Zhong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiaoming Song
- Key Lab of Eco-restoration of Region Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519085, China
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Key Lab of Eco-restoration of Region Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China.
| |
Collapse
|
7
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Rizzuto S, Baho DL, Jones KC, Zhang H, Leu E, Nizzetto L. Binding of waterborne pharmaceutical and personal care products to natural dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147208. [PMID: 34088045 DOI: 10.1016/j.scitotenv.2021.147208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Information on how key environmental conditions such as natural dissolved organic matter (DOM) and water pH alter the possible risks posed by pharmaceuticals (PPCPs) is still scarce. In our previous study, the presence of natural DOM at high pH reduced the toxicity of a mix of waterborne PPCPs to algae. DOM-complexation and pH effect on speciation of the more hydrophobic and neutral compounds of the mix was suggested to be driving this behaviour. However, the study design did not allow the verification of this hypothesis. Here, the DOM- PPCPs interaction at different pH was investigated for 6 PPCPs through equilibrium dialysis, under the same conditions of DOM and pH as our previous study. Association with DOM was confirmed for the more hydrophobic PPCPs at high pH. The results suggest the binding was driven by i) the presence of carboxylic groups of PPCPs, ii) high pH shifting the structural configuration of DOM, making it more suited to bind some of the PPCPs. A non-linear change of binding capacity with increasing DOM concentration was also observed among the tested PPCPs.
Collapse
Affiliation(s)
- Simone Rizzuto
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Didier L Baho
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Eva Leu
- Akvaplan-niva, CIENS, Science Park, Gaustadalléen 21, 0349 Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway; RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Dey S, Patra P, Pal S. Functionalized polysaccharide-based flocculants for solid liquid separation of wastewater. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Sorption Constant of Bisphenol A and Octylphenol Onto Size-Fractioned Dissolved Organic Matter Using a Fluorescence Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031102. [PMID: 33513677 PMCID: PMC7908396 DOI: 10.3390/ijerph18031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Dissolved organic matter (DOM) is a complex and heterogeneous mixture ubiquitously present in aquatic systems. DOM affects octylphenol (OP) and bisphenol A (BPA) distribution, transport, bioavailability, and toxicity. This study investigated OP and BPA sorption constants, log KCOC, with three size-fractioned DOM. The molecular weights of the sized fractions were low molecular weight DOM (LDOM, <1 kDa), middle molecular weight DOM (MDOM, 1–10 kDa), and high molecular weight DOM (HDOM, 10 kDa–0.45 μm). The log KCOC ranged from 5.34 to 6.14 L/kg-C for OP and from 5.59 to 6.04 L/kg-C for BPA. The OP and BPA log KCOC values were insignificantly different (p = 0.37) and had a strong positive correlation (r = 0.85, p < 0.001). The OP and BPA LDOM log KCOC was significantly higher than the HDOM and MDOM log KCOC (p = 0.012 for BPA, p = 0.023 for OP). The average specific ultraviolet absorption (SUVA254) values were 32.0 ± 5.4, 13.8 ± 1.0, and 17.9 ± 2.8 L/mg-C/m for LDOM, MDOM, and HDOM, respectively. The log KCOC values for both OP and BPA had a moderately positive correlation with the SUVA254 values (r = 0.79–0.84, p < 0.002), which suggested the aromatic group content in the DOM had a positive impact on sorption behavior.
Collapse
|
11
|
Casey FXM, Hakk H, DeSutter TM. Free and conjugated estrogens detections in drainage tiles and wells beneath fields receiving swine manure slurry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113384. [PMID: 31677876 DOI: 10.1016/j.envpol.2019.113384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Although livestock manure, such as from swine (Sus scrofa domestica), have high capacity to introduce endocrine-disrupting free estrogens into the environment, the frequency of estrogen detections from reconnaissance studies suggest that these compounds are ubiquitous in the environment, perhaps resulting from historic manure inputs (e.g. cattle grazing residues, undocumented historic manure applications) or uncontrolled natural sources. Compared to free estrogens, conjugates of estrogens are innocuous but have greater mobility in the environment. Estrogen conjugates can also hydrolyze to re-form the potent free estrogens. The objective of this study was to identify the transport of free and conjugated estrogens to subsurface tile drains and groundwater beneath fields treated with swine manure slurry. Three field treatments were established, two receiving swine lagoon manure slurry and one with none. Manure slurry was injected into soils at a shallow depth (∼8 cm) and water samples from tile drains and shallow wells were sampled periodically for three years. Glucuronide and sulfate conjugates of 17β-estradiol (E2) and estrone (E1) were the only estrogen compounds detected in the tile drains (total detects = 31; 5% detection frequency; conc. range = 3.9-23.1 ng L-1), indicating the important role conjugates played in the mobility of estrogens. Free estrogens and estrogen conjugates were more frequently detected in the wells compared to the tile drains (total detects = 70; 11% detection frequency; conc. range = 4.0-1.6 × 103 ng L-1). No correlations were found between estrogen compound detections and dissolved or colloidal organic carbon (OC) fractions or other water quality parameters. Estrogenic compounds were detected beneath both manure treated and non-treated plots; furthermore, the total potential estrogenic equivalents (i.e. estrogenicity of hydrolyzed conjugates + free estrogens) were similar between treated and non-treated plots.
Collapse
Affiliation(s)
- Francis X M Casey
- Department of Soil Science, School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Heldur Hakk
- USDA-ARS, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Blvd, Fargo, ND 58102-2765, USA
| | - Thomas M DeSutter
- Department of Soil Science, School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
12
|
Levine RE, Zhang Y, Leng Y, Snow DD, Cassada D, Durso LM, Li X. Microbial Transformation of A Sulfonamide Antibiotic Under Various Background Nutrient Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:808-813. [PMID: 31602500 DOI: 10.1007/s00128-019-02727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Certain microbes can biotransform antibiotics. Little is known about these microbes or the biotransformation processes. The objective of this study was to determine the effects of background nutrient conditions on a sulfonamide degrading culture and on its biotransformation of sulfadiazine (SDZ) with respect to transformation kinetics and transformation products. The mixed culture capable of degrading SDZ consisted primarily of three genera, Brevibacterium, Castellaniella and Leucobacter. The maximum biotransformation rate was 4.55 mg L-1 d-1 in the absence of background nutrients. Among the three background nutrient conditions tested, diluted R2A medium lead to the highest maximum SDZ biotransformation rates, followed by humic acid and glucose. 2-aminopyrimidine was the major SDZ biotransformation product under the background nutrient conditions tested, while another previously reported biotransformation product, sulfanilic acid, was further degraded by the mixed culture. The findings from this study can help improve our estimation of the fate of antibiotics in the environment.
Collapse
Affiliation(s)
- Rachel E Levine
- Department of Civil Engineering, University of Nebraska-Lincoln, 844 N. 16th St., N117 SEC Link, Lincoln, NE, 68588-6105, USA
| | - Yuping Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, 844 N. 16th St., N117 SEC Link, Lincoln, NE, 68588-6105, USA
| | - Yifei Leng
- Department of Civil Engineering, University of Nebraska-Lincoln, 844 N. 16th St., N117 SEC Link, Lincoln, NE, 68588-6105, USA
| | - Daniel D Snow
- Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David Cassada
- Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lisa M Durso
- Agricultural Research Service, U.S. Department of Agriculture, Washington, D.C., USA
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, 844 N. 16th St., N117 SEC Link, Lincoln, NE, 68588-6105, USA.
| |
Collapse
|
13
|
Huang Y, Xie X, Zhou LJ, Ji X, Gao B, Xu GZ, Li A. Multi-phase distribution and risk assessment of endocrine disrupting chemicals in the surface water of the Shaying River, -Huai River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:45-53. [PMID: 30763810 DOI: 10.1016/j.ecoenv.2019.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Herein we investigated the multi-phase distribution and estrogenic effects of endocrine disrupting chemicals (EDCs) in suspended particulate matter (SPM), colloids, and soluble phases from the Shaying River to assess the composition of estrogenic compounds and associated estrogenic risk. The yeast two hybrid (YES) method, cross-flow ultrafiltration (CFUF), and LC-MS/MS were employed. Risk quotient (RQ) values ranged from 0.72 to 3.88, revealing that the Shaying River posed high estrogenic risk to aquatic organisms. The contribution ratios of the target EDCs to the EEQYES ranged from 62.7% to 92.5%, indicating that these chemicals were major contributors of estrogenic effects in the Shaying River. Further, 54.0-77.8% of the detected EDCs were distributed in the soluble phase, 15.1-31.7% were bound to colloidal substances, and 3.90-19.4% EDCs were associated with SPM. Significant correlation between total EDC abundance and COD contents was detected, and the concentrations of endogenous estrogens (E1, E2, and E3) were positively correlated with total nitrogen (TN) and total phosphorus (TP). In addition, the in-situ SPM-soluble (Kpoc) and colloid-soluble partition (Kcoc) coefficients were calculated. The log Kpoc values of target compounds varied from 4.10 to 5.19, while log Kcoc values ranged from 4.25 to 5.56. Their Kcoc values were larger than the Kpoc values, indicating that organic colloids were the most important carriers of EDCs in the aquatic environment.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, PR China; Jiangsu Industrial Technology Research Institute, Yancheng, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, PR China; Jiangsu Industrial Technology Research Institute, Yancheng, PR China.
| | - Li Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China
| | - Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Gui Zhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, PR China; Jiangsu Industrial Technology Research Institute, Yancheng, PR China.
| |
Collapse
|
14
|
Vitale CM, Di Guardo A. A review of the predictive models estimating association of neutral and ionizable organic chemicals with dissolved organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1022-1032. [PMID: 30970469 DOI: 10.1016/j.scitotenv.2019.02.340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Dissolved organic carbon (DOC) plays a key role in environmental transport, fate and bioavailability of organic chemicals in terrestrial and aquatic ecosystems. Predicting the association of contaminants to DOC is therefore crucial in modelling chemical exposure and risk assessment. The models proposed so far to describe interaction mechanisms between chemicals and DOC and the most influential variables have been reviewed. The single-parameter linear free energy relationships (sp-LFERs) and the poly-parameter linear free energy relationships (pp-LFERs) in the form of linear solvation energy relationships (LSERs) currently available in literature for estimating dissolved organic carbon/water partition (KDOC) and distribution (DDOC) coefficients for organic chemicals were discussed, and limits of the existing approaches explored. For neutral chemicals many predictive equations are currently available in literature, but the quality of the input data on which they are based is often questionable, due to the lack of an unequivocal definition of DOC among different references and to the different and often unreliable KDOC measurement method. For ionizable chemicals instead there is a substantial lack of predictive approaches that need to be fulfilled since just few models are nowadays available to predict DDOC of ionized species. This paper reviews the current approaches for neutral and ionizable chemicals proposing guidelines to select conditions for obtaining reliable data and predictive equations for an improved estimation of KDOC and DDOC.
Collapse
Affiliation(s)
- Chiara Maria Vitale
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
15
|
Bai L, Zhang Q, Wang C, Yao X, Zhang H, Jiang H. Effects of natural dissolved organic matter on the complexation and biodegradation of 17α-ethinylestradiol in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:782-789. [PMID: 30623834 DOI: 10.1016/j.envpol.2018.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Natural dissolved organic matter (DOM) produced in algal blooms and overgrowths of macrophyte changes the elimination and ecotoxicity of estrogens in freshwater lakes. The complexation of 17α-ethinylestradiol (EE2) and various DOMs, including the water- and sediment-derived DOMs from the algal-dominant zone in Lake Taihu (TW and TS, respectively) and the macrophyte-dominant zone in Poyang Lake (PW and PS, respectively), and the humic acid (HA), was investigated along with the subsequent effects on EE2 biodegradation. Dialysis equilibrium experiments showed that binding to DOM significantly decreased the freely soluble concentrations of EE2. The binding capacity of the five DOMs followed the order of PW < TW < PS ≈ TS < HA. A negative correlation was found between the organic-carbon-normalized sorption coefficient (logKDOC) and the absorption ratio (E2/E3) of DOM, indicating that the large sized, aromatic molecules were involved in the complexation. The reduced freely soluble concentrations of EE2 did not inhibit its biodegradation by an EE2-degrading strain, Rhodobacter blasticus. Conversely, the autochthonous-dominated water-derived DOMs stimulated a more extensive biodegradation of EE2 than the sediment-derived DOMs, and the existence of HA resulted in the smallest increase in EE2 biodegradation. The promoting effect was associated with the increased concentration, activity, and transforming rate of R. blasticus by the bioavailable components in DOM. The present study suggests that the significant impact of natural DOM should be fully considered when assessing the fate and ecological risks of estrogens in eutrophic waters.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
16
|
Huang Y, Li W, Qin L, Xie X, Gao B, Sun J, Li A. Distribution of endocrine-disrupting chemicals in colloidal and soluble phases in municipal secondary effluents and their removal by different advanced treatment processes. CHEMOSPHERE 2019; 219:730-739. [PMID: 30557730 DOI: 10.1016/j.chemosphere.2018.11.201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
In this work, the partition of endocrine-disrupting chemicals (EDCs) in colloid-bound and truly dissolved phases in municipal wastewater before and after advanced treatment processes was determined. The effluents, which were filtered using a 0.45 μm membrane, were further separated with the 1 kDa cross-flow ultrafiltration system into two phases, namely, colloidal phase (0.45 μm-1 kDa) and soluble phase (<1 kDa), and the partition coefficients of typical EDCs to colloids (Kcoc) were calculated. The removal of typical EDCs and their estrogenic activity in secondary effluent by coagulation sedimentation (CS), granular activated carbon (GAC) adsorption, magnetic ion exchange resin (NDMP), and ozone processes was compared. Results show that the percentages of colloid-bound EDCs were noteworthy and ranged between 7.8% and 44.3% in secondary effluents. The reduction in EDCs resulting from the GAC adsorption process was positively correlated to their logKcoc, thus suggesting that the adsorption of EDCs onto granular activated carbon and colloids exhibited a similar phenomenal character. Ozone oxidation was most effective in removing both colloidal phase and soluble phase EDCs, whereas CS displayed a relatively adequate performance in reducing colloidal EDCs. EDCs with lower Kow values exhibited higher removal by ion exchange resin. The combination of modified NDMP and ozonation processes achieved the best performance in reducing estrogenic activity and satisfying the predicted no-effect concentration (PNEC).
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Long Qin
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| |
Collapse
|
17
|
Ma L, Yates SR. Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:529-542. [PMID: 29874629 DOI: 10.1016/j.scitotenv.2018.05.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
This review summarizes the characterization and quantification of interactions between dissolved organic matter (DOM) and estrogens as well as the effects of DOM on aquatic estrogen removal. DOM interacts with estrogens via binding or sorption mechanisms like π-π interaction and hydrogen bonding. The binding affinity is evaluated in terms of organic-carbon-normalized sorption coefficient (Log KOC) which varies with types and composition of DOM. DOM has been suggested to be a more efficient sorbent compared with other matrices, such as suspended particulate matter, sediment and soil; likely associated with its large surface area and concentrated carbon content. As a photosensitizer, DOM enhanced estrogen photodegradation when the concentration of DOM was below a threshold value, and when above, the acceleration effect was not observed. DOM played a dual role in affecting biodegradation of estrogens depending on the recalcitrance of the DOM and the nutrition status of the degraders. DOM also acted as an electron shuttle (redox mediator) mediating the degradation of estrogens. DOM hindered enzyme-catalyzed removal of estrogens while enhanced their transformation during the simultaneous photo-enzymatic process. Membrane rejection of estrogens was pronounced for hydrophobic DOM with high aromaticity and phenolic moiety content. Elimination of estrogens via photolysis, biodegradation, enzymolysis and membrane rejection in the presence of DOM is initiated by sorption, accentuating the role of DOM as a mediator in regulating aquatic estrogen removal.
Collapse
Affiliation(s)
- Li Ma
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States; Contaminant Fate and Transport Unit, Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, Riverside, California 92507, United States
| | - Scott R Yates
- Contaminant Fate and Transport Unit, Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, Riverside, California 92507, United States.
| |
Collapse
|
18
|
Zhang F, Yang L, Liu X, Li Y, Fang H, Wang X, Alharbi NS, Li J. Sorption of 17β-estradiol to the dissolved organic matter from animal wastes: effects of composting and the role of fulvic acid-like aggregates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16875-16884. [PMID: 29619641 DOI: 10.1007/s11356-018-1402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Steroid estrogens, such as 17β-estradiol (E2), in animal manure pose a potential threat to the aquatic environment. The transport and estrogenicity of estrogens influence the sorption of estrogens to dissolved organic matter (DOM) in animal manure, and composting treatment alters the structure and composition of the manure. The objectives of the present study were to identify the contribution of the molecular composition of DOM of composted manure to the sorption of E2 and then elucidate the dominant mechanisms involved in the interaction of E2 with manure-derived DOM. The excitation-emission matrix (EEM) spectra and atomic force microscopy (AFM) showed that composting significantly altered the chemical composition and structure of DOM. A decrease in the atomic ratios of oxygen (O)/carbon (C) occurred in conjunction with the formation of DOM aggregates in the composted manure, indicating that the hydrophilicity and polarity of the DOM decreased after composting. Composting increased the sorption coefficients (KDOC-E2) for E2 to DOM, and KDOC-E2 was positively correlated with the proportion of the fulvic acid (FA)-like fraction and molecular weight (MW) fractions of the DOM (range of 1.0 × 103-7.0 × 103 Da and 7.0 × 103-1.4 × 104 Da). Specifically, E2 showed a tendency for sorption to medium-sized FA-like molecules of DOM aggregates in composted manure. Hydrophobic forces and π-π binding appeared to be the main mechanisms underlying the aforementioned interaction.
Collapse
Affiliation(s)
- Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Liu
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huajun Fang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Njud S Alharbi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jiaxing Li
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
19
|
Casey FXM, Shappell NW, Hakk H. Halogenated 17β-Estradiol Surrogates: Synthesis, Estrogenic Activity, and Initial Investigations of Fate in Soil/Water Systems. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:802-810. [PMID: 28783794 DOI: 10.2134/jeq2017.02.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
17β-Estradiol (E2), a natural, endocrine-disrupting, steroid hormone, is excreted by all vertebrates and can enter the environment from domestic animal and wildlife wastes. Multiple field studies using livestock manures as E2 sources suggest significant background concentrations of E2 (e.g., wildlife sources, hydrolysis of E2 conjugates, previous inputs). To accurately understand field fate and transport processes of E2, it is necessary to address the issue of background detections. In this study, two fluorinated and three brominated surrogate compounds of E2 were synthesized and compared to native E2 using soil/water batch experiments and for estrogenic activity. Analytical difficulties presented by the two fluorinated congeners deemed these compounds to be unsuitable surrogates of E2, and further assessment was abandoned. However, the brominated congeners proved promising, with log( ) values that fell within the range previously reported for E2. Batch studies yielded similar relative aqueous concentrations and linear sorption isotherms across time for E2 and 2-bromo-17β-estradiol; however, the relative aqueous concentrations and linear sorption isotherms of 4-bromo-17β-estradiol and 2,4-dibromo-17β-estradiol were different from E2 but similar to one another. All three brominated congeners possessed estrogenic activity by E-Screen assay, albeit three orders of magnitude less than native E2, putatively due to steric interference introduced by the large bromine atom on the phenolic ring, the group that mediates interaction with the estrogen receptor. The data suggest that 2-bromo-17β-estradiol may serve as a suitable surrogate for E2 in planned field scale tracer studies designed to distinguish between antecedent and de novo inputs.
Collapse
|
20
|
Guney G, Sponza DT. Comparison of biological and advanced treatment processes for ciprofloxacin removal in a raw hospital wastewater. ENVIRONMENTAL TECHNOLOGY 2016; 37:3151-3167. [PMID: 27087394 DOI: 10.1080/09593330.2016.1179348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The treatability of ciprofloxacin (CIP) antibiotic was investigated using a single aerobic, a single anaerobic, an anaerobic/aerobic sequential reactor system, a sonicator and a photocatalytic reactor with TiO2 nanoparticles in a raw hospital wastewater in Izmir, Turkey. The effects of increasing organic loading on the performance of all biological systems were investigated, while the effects of power and time on the yields of sonication and photocatalysis were determined. The maximum COD and CIP yields were 95% and 83% in anaerobic/aerobic sequential reactor system at an HRT of 10 days and at an OLR of 0.19 g COD/L × day after 50 days of incubation, respectively. The maximum CH4 gas production was 580 mL day(-1) at an HRT of 6.7 days. The maximum COD and CIP yields were 95% and 81% after 45 min sonication time at a power of 640 W and a frequency of 35 kHz while the maximum yield of COD and CIP were 98% and 88% after 45 min UV irradiation time with a UV power of 210 W using 0.5 g L(-1) TiO2. Among the aforementioned treatment processes, it was found that the highest treatment yields for COD (98%) and CIP (88%) pollutants were obtained with the photocatalytic process due to high OH((●)) radical productions.
Collapse
Affiliation(s)
- Gokce Guney
- a Engineering Faculty, Environmental Engineering Department , Dokuz Eylul University , Buca, Izmir , Turkey
| | - Delia Teresa Sponza
- a Engineering Faculty, Environmental Engineering Department , Dokuz Eylul University , Buca, Izmir , Turkey
| |
Collapse
|
21
|
Gong J, Duan D, Yang Y, Ran Y, Chen D. Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:735-741. [PMID: 27431692 DOI: 10.1016/j.envpol.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/15/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) were seasonally investigated in surface water, suspended particulate matter, and sediments of the Pearl River Delta (PRD), South China. EDC concentrations in the surface water were generally higher in the summer than in winter. The surface water in the investigated rivers was heavily contaminated by the phenolic xenoestrogens. Moreover, the in-situ log Ksoc and log Kpoc values and their regression with log Kow in the field experiments suggest that binding mechanisms other than hydrophobic interaction are present for the sedimentary organic carbon and particulate organic carbon (SOC/POC). The logKsoc-logKow and logKpoc-logKow regression analyses imply that higher complexity of nonhydrophobic interactions with EDCs is present on the SOC samples comparing with the POC samples, which is related to their different sources.
Collapse
Affiliation(s)
- Jian Gong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Radionuclide Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Ministry of Education Key Laboratory of Safety and Protection of the Pearl River Delta Water Quality, Guangzhou University, Guangzhou 510006, China
| | - Dandan Duan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yu Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclide Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Ministry of Education Key Laboratory of Safety and Protection of the Pearl River Delta Water Quality, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
22
|
Gong J, Huang Y, Huang W, Ran Y, Chen D. Multiphase partitioning and risk assessment of endocrine-disrupting chemicals in the Pearl River, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2474-2482. [PMID: 26945932 DOI: 10.1002/etc.3419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Multiphase partitioning of endocrine-disrupting chemicals (EDCs) in the Pearl River (China) were investigated. The colloidal concentrations for 4-tert-octylphenol, 4-nonylphenol, bisphenol A (BPA), and estrone (E1) were in the ranges of 0.2 ng/L to 0.8 ng/L, 23.2 ng/L to 108 ng/L, 2.3 ng/L to 97.6 ng/L, and not detectable (nd) to 0.32 ng/L, respectively; for truly dissolved concentrations, the ranges were 0.5 ng/L to 5.4 ng/L, 39 ng/L to 319 ng/L, 13.7 ng/L to 91.2 ng/L, and nd to 1.2 ng/L, respectively. Positive correlations of EDCs with colloidal organic carbon (COC) were observed. The in situ COC normalized partitioning coefficients (log KCOC ) for 4-tert-octylphenol (5.35 ± 0.42), 4-nonylphenol (5.69 ± 0.50), and BPA (5.51 ± 0.77) were within the ranges reported by other studies, whereas they were 1 to 2 orders of magnitude higher than their particulate/truly dissolved phase partition coefficients (log KOCint), revealing much strong sorption of EDCs by aquatic colloids. Moreover, colloid-bound percentages of 4-tert-octylphenol, 4-nonylphenol, and BPA ranged, respectively, from 6.9% to 36.4%, from 16.7% to 63.1%, and from 3.6% to 52.4%; their estimated mass fractions were 0.29 ± 0.21, 0.38 ± 0.26, and 0.39 ± 0.33, respectively. Obviously the colloid-bound fractions are significant. Furthermore, a medium risk of estrogenic effects was estimated from the truly dissolved concentrations of EDCs in the Pearl River, which was lower than the estimated high risk according to the conventionally dissolved concentrations. It is suggested that the presence of colloids be incorporated into future water quality prediction and ecological risk assessment. Environ Toxicol Chem 2016;35:2474-2482. © 2016 SETAC.
Collapse
Affiliation(s)
- Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclide Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- Ministry of Education Key Laboratory of Safety and Protection of the Pearl River Delta Water Quality, Guangzhou University, Guangzhou, China
| | - Youda Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclide Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- Ministry of Education Key Laboratory of Safety and Protection of the Pearl River Delta Water Quality, Guangzhou University, Guangzhou, China
| |
Collapse
|
23
|
Hamilton LA, Tremblay LA, Northcott GL, Boake M, Lim RP. The impact of variations of influent loading on the efficacy of an advanced tertiary sewage treatment plant to remove endocrine disrupting chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 560-561:101-109. [PMID: 27096490 DOI: 10.1016/j.scitotenv.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The impact of changes in influent load on the removal of endocrine disrupting chemicals (EDCs) by sewage treatment has not been fully characterised. This study assessed the efficacy of an advanced tertiary sewage treatment plant (STP) to remove EDCs during normal and peak flow events of sewage influent using trace chemical analysis of selected EDCs and four estrogenic in vitro bioassays. During the summer holiday season, influent volume increased by 68%, nutrient concentrations by at least 26% and hydraulic retention time was reduced by 40% compared with base flow conditions. Despite these pressures on the treatment system the concentrations and mass loading of estrone, 17β-estradiol, estriol, Bisphenol A, 4-t-octylphenol and technical nonylphenol were not significantly higher (p>0.05) during the peak flow conditions compared with base flow conditions. Chemical analysis and in vitro bioassays showed that the efficacy of the STP in removing EDCs was not affected by the different loadings between baseline and peak flow regimes. This study demonstrates that large flow variations within the design capacity of advanced multi-stage STPs should not reduce the removal efficacy of EDCs.
Collapse
Affiliation(s)
- Lisa A Hamilton
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, (UTS), PO Box 123, Broadway NSW, 2007, Australia
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Michael Boake
- Veolia Water Australia, Level 4, Bay Centre, 65 Pirrama Road, Pyrmont, NSW 2009, Australia
| | - Richard P Lim
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, (UTS), PO Box 123, Broadway NSW, 2007, Australia
| |
Collapse
|
24
|
Schröder P, Helmreich B, Škrbić B, Carballa M, Papa M, Pastore C, Emre Z, Oehmen A, Langenhoff A, Molinos M, Dvarioniene J, Huber C, Tsagarakis KP, Martinez-Lopez E, Pagano SM, Vogelsang C, Mascolo G. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12835-66. [PMID: 27023823 PMCID: PMC4912981 DOI: 10.1007/s11356-016-6503-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/28/2016] [Indexed: 05/05/2023]
Abstract
Present technologies for wastewater treatment do not sufficiently address the increasing pollution situation of receiving water bodies, especially with the growing use of personal care products and pharmaceuticals (PPCP) in the private household and health sector. The relevance of addressing this problem of organic pollutants was taken into account by the Directive 2013/39/EU that introduced (i) the quality evaluation of aquatic compartments, (ii) the polluter pays principle, (iii) the need for innovative and affordable wastewater treatment technologies, and (iv) the identification of pollution causes including a list of principal compounds to be monitored. In addition, a watch list of 10 other substances was recently defined by Decision 2015/495 on March 20, 2015. This list contains, among several recalcitrant chemicals, the painkiller diclofenac and the hormones 17β-estradiol and 17α-ethinylestradiol. Although some modern approaches for their removal exist, such as advanced oxidation processes (AOPs), retrofitting most wastewater treatment plants with AOPs will not be acceptable as consistent investment at reasonable operational cost. Additionally, by-product and transformation product formation has to be considered. The same is true for membrane-based technologies (nanofiltration, reversed osmosis) despite of the incredible progress that has been made during recent years, because these systems lead to higher operation costs (mainly due to higher energy consumption) so that the majority of communities will not easily accept them. Advanced technologies in wastewater treatment like membrane bioreactors (MBR) that integrate biological degradation of organic matter with membrane filtration have proven a more complete elimination of emerging pollutants in a rather cost- and labor-intensive technology. Still, most of the presently applied methods are incapable of removing critical compounds completely. In this opinion paper, the state of the art of European WWTPs is reflected, and capacities of single methods are described. Furthermore, the need for analytical standards, risk assessment, and economic planning is stressed. The survey results in the conclusion that combinations of different conventional and advanced technologies including biological and plant-based strategies seem to be most promising to solve the burning problem of polluting our environment with hazardous emerging xenobiotics.
Collapse
Affiliation(s)
- P Schröder
- Research Unit Microbe-Plant Interactions (EGEN), German Research Center for Health and Environment GmbH, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - B Helmreich
- Chair of Urban Water Systems Engineering, Technische Universität München, Munich, Germany
| | - B Škrbić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - M Carballa
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Papa
- Department of Civil Environmental Architectural Engineering & Mathematics, University of Brescia, Brescia, Italy
| | - C Pastore
- CNR-Istituto di Ricerca Sulle Acque, Bari, Italy
| | - Z Emre
- Turkish Atomic Energy Authority, Ankara, Turkey
| | - A Oehmen
- Departamento de Química, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
| | - A Langenhoff
- Sub-department of Environmental Technology, Wageningen University of Agrotechnology & Food Sciences, Wageningen, The Netherlands
| | - M Molinos
- University of Valencia, Valencia, Spain
| | | | - C Huber
- Research Unit Microbe-Plant Interactions (EGEN), German Research Center for Health and Environment GmbH, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - K P Tsagarakis
- Business and Environmental Economics Technology Lab (BETECO), Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | | | | | - C Vogelsang
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - G Mascolo
- CNR-Istituto di Ricerca Sulle Acque, Bari, Italy
| |
Collapse
|
25
|
Sun K, Luo Q, Gao Y, Huang Q. Laccase-catalyzed reactions of 17β-estradiol in the presence of humic acid: Resolved by high-resolution mass spectrometry in combination with (13)C labeling. CHEMOSPHERE 2016; 145:394-401. [PMID: 26692517 DOI: 10.1016/j.chemosphere.2015.11.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
The widespread presence of estrogens in natural waters poses potential threats to the aquatic organisms and human health. It is known that estrogens undergo enzyme-catalyzed oxidative coupling (ECOC) reactions, which may impact their environmental fate and can be used in wastewater treatment to remove estrogens, but little information is available on how natural organic matter (NOM) may influence 17β-estradiol (E2) transformation in ECOC processes. A series of experiments were conducted to examine the transformation of E2 in aqueous solution containing humic acid (HA) as model NOM by laccase-mediated ECOC reactions. The impact of HA on the reaction behaviors and product distribution is systematically characterized. The presence of HA inhibited the extent of E2 self-coupling in laccase-mediated systems, while promoted cross-coupling between E2 and HA. Reconfiguration of humic molecules was also observed and characterized by changes in absorbance at 275 nm and the ratios between A250 nm/A365 nm. In particular, experiments were conducted with un-labeled E2 mixed with (13)C3-labeled E2 at a set ratio, with the products probed using high-resolution mass spectrometry (HRMS). The high m/z accuracy of HRMS enabled the use of isotope ratio as a tracer to identify possible cross-coupling products between E2 and HA. Such a method combining HRMS and isotope labeling provides a novel means for identification of products in a reaction system involving NOM or other complex matrices. These findings provide a basis for optimization of ECOC reactions for estrogen removal, and also help to understand the environmental transformation of estrogens.
Collapse
Affiliation(s)
- Kai Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Qi Luo
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|
26
|
Liu N, Xie X, Jiang H, Yang F, Yu C, Liu J. Characteristics of estrogenic/antiestrogenic activities during the anoxic/aerobic biotreatment process of simulated textile dyeing wastewater. RSC Adv 2016. [DOI: 10.1039/c5ra25991f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HOA and HON were key fractions involved in increasing antiestrogenic activity and humic/fulvic acid in them could mask estrogenic activity.
Collapse
Affiliation(s)
- Na Liu
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
| | - Xuehui Xie
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
| | - Hong Jiang
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
| | - Fang Yang
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
| | - Chengzhi Yu
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
| | - Jianshe Liu
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
| |
Collapse
|
27
|
Li J, Wang Y, Kong D, Wang J, Teng Y, Li N. Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:724. [PMID: 26519078 DOI: 10.1007/s10661-015-4933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yafei Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Na Li
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Li X, Teske S, Conroy-Ben O. Estrogen mimics induce genes encoding chemical efflux proteins in gram-negative bacteria. CHEMOSPHERE 2015; 128:327-331. [PMID: 25754012 DOI: 10.1016/j.chemosphere.2015.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/02/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Escherichia coli and Pseudomonas aeruginosa are gram-negative bacteria found in wastewater and biosolids. Spanning the inner and outer membrane are resistance-nodulation-cell division superfamily (RND) efflux pumps responsible for detoxification of the cell, typically in response to antibiotics and other toxicity inducing substrates. Here, we show that estrogenic endocrine disruptors, common wastewater pollutants, induce genes encoding chemical efflux proteins. Bacteria were exposed to environmental concentrations of the synthetic estrogen 17α-ethynylestradiol, the surfactant nonylphenol, and the plasticizer bisphenol-A, and analyzed for RND gene expression via q-PCR. Results showed that the genes acrB and yhiV were over-expressed in response to the three chemicals in E. coli, and support previous findings that these two transporters export hormones. P. aeruginosa contains 12 RND efflux pumps, which were differentially expressed in response to the three chemicals: 17α-ethynylestradiol, bisphenol-A, and nonylphenol up-regulated mexD and mexF, while nonylphenol and bisphenol-A positively affected transcription of mexK, mexW, and triC. Gene expression via q-PCR of RND genes may be used to predict the interaction of estrogen mimics with RND genes. One bacterial response to estrogen mimic exposure is to induce gene expression of chemical efflux proteins, which leads to the expulsion of the contaminant from the cell.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Civil and Environmental Engineering, 110 S. Central Campus Dr., Room 2000, Salt Lake City, UT 84112, United States
| | - Sondra Teske
- Department of Civil and Environmental Engineering, 110 S. Central Campus Dr., Room 2000, Salt Lake City, UT 84112, United States
| | - Otakuye Conroy-Ben
- Department of Civil and Environmental Engineering, 110 S. Central Campus Dr., Room 2000, Salt Lake City, UT 84112, United States.
| |
Collapse
|
29
|
Dong MM, Trenholm R, Rosario-Ortiz FL. Photochemical degradation of atenolol, carbamazepine, meprobamate, phenytoin and primidone in wastewater effluents. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:216-23. [PMID: 24798495 DOI: 10.1016/j.jhazmat.2014.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 05/25/2023]
Abstract
The photochemical degradation of five pharmaceuticals was examined in two secondary wastewater effluents. The compounds, which included atenolol, carbamazepine, meprobamate, phenytoin and primidone, were evaluated for both direct and sensitized photolysis. In the two wastewaters, direct photolysis did not lead to significant compound degradation; however, sensitized photolysis was an important removal pathway for the five pharmaceuticals. Upon solar irradiation, hydroxyl radical (HO) was quantified using the hydroxylation of benzene and singlet oxygen ((1)O2) formation was monitored following the degradation of furfuryl alcohol. Degradation via sensitized photolysis was observed following five-day exposures for atenolol (69-91%), carbamazepine (67-98%), meprobamate (16-52%), phenytoin (44-85%), and primidone (34-88%). Varying removal is likely a result of the differences in reactivity with transient oxidants. Averaged steady state HO concentrations ranged from 1.2 to 4.0×10(-16)M, whereas the concentrations of (1)O2 were 6.0-7.6×10(-14)M. Partial removal due to presence of HO indicates it was not the major sink for most compounds examined. Other transient oxidants, such as (1)O2 and triplet state effluent organic matter, are likely to play important roles in fates of these compounds.
Collapse
Affiliation(s)
- Mei Mei Dong
- Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309, USA; Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Rebecca Trenholm
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Fernando L Rosario-Ortiz
- Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
30
|
Polesel F, Lehnberg K, Dott W, Trapp S, Thomas KV, Plósz BG. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications. CHEMOSPHERE 2015; 119:105-111. [PMID: 24972177 DOI: 10.1016/j.chemosphere.2014.05.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP.
Collapse
Affiliation(s)
- Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - Kai Lehnberg
- Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Dott
- Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Kevin V Thomas
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
31
|
Jones GD, Benchetler PV, Tate KW, Kolodziej EP. Surface and subsurface attenuation of trenbolone acetate metabolites and manure-derived constituents in irrigation runoff on agro-ecosystems. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2507-2516. [PMID: 25308255 DOI: 10.1039/c4em00385c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although studies have evaluated the ecotoxicity and fate of trenbolone acetate (TBA) metabolites, namely 17α-trenbolone (17α-TBOH), 17β-trenbolone (17β-TBOH), and trendione (TBO), their environmental transport processes remain poorly characterized with little information available to guide agricultural runoff management. Therefore, we evaluated TBA metabolite transport in representative agricultural systems with concurrent assessment of other manure-derived constituents. Leachate generated using manure from TBA-implanted cattle was applied to a subsurface infiltration plot (4 m) and surface vegetative filter strips (VFSs; 3, 4, and 5 m). In the subsurface experiment, 17α-TBOH leachate concentrations were 36 ng L(-1) but decreased to 12 ng L(-1) in initial subsurface discharge. Over 75 minutes, concentrations linearly increased to 23 ng L(-1) (C/Co = 0.32-0.64). In surface experiments (n = 4), 17α-TBOH leachate concentrations ranged from 11-150 ng L(-1), remained nearly constant with time, but were attenuated by ∼70-90% after VFS treatment with no statistical dependence on the VFS length. While attenuation clearly occurred, the observations of a highly mobile fraction of all constituents in both surface runoff and subsurface discharge suggest that these treatment strategies may not always be capable of achieving threshold discharge concentrations. To attain no observed adverse effect levels (NOAELs) in receiving waters, concurrent assessment of leachate concentrations and available dilution capacities can be used to guide target treatment performance levels for runoff management. Dilution is usually necessary to achieve NOAELs, and receiving waters with less than 70-100 fold dilution capacity are at the highest risk for steroidal endocrine disruption.
Collapse
Affiliation(s)
- Gerrad D Jones
- Department of Civil and Environmental Engineering, University of Nevada-Reno, MS 0258, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
32
|
Chambers KB, Casey FXM, Hakk H, DeSutter TM, Shappell NW. Potential bioactivity and association of 17β-estradiol with the dissolved and colloidal fractions of manure and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 494-495:58-64. [PMID: 25029505 DOI: 10.1016/j.scitotenv.2014.06.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
The dissolved (DF) and colloidal fractions (CF) of soil and manure play an important role in the environmental fate and transport of steroidal estrogens. The first objective of this study was to quantify the association of 17β-estradiol (E2) with the DF and CF isolated from (i) liquid swine manure (LSM), (ii) a soil:water mixture (soil), and (iii) a LSM:soil:water mixture (Soil+LSM). The appropriate CF and DF size fractions of the Soil, Soil+LSM, and LSM media were obtained by first filtering through a 0.45 μm filter, which provided the combined DF and CF (DF/CF). The DF/CF from the three media was spiked with carbon-14 ([(14)C]) radiolabeled E2 ([(14)C]-E2), and then ultrafiltered to isolate the CF (<0.45 μm and >1 kDa) from the DF (<1 kDa). The average recoveries of the [(14)C] associated with the DF were 67%-72%, 67%-79%, and 76%-78% for the Soil, Soil+LSM and LSM, respectively. For the CF that was retained on the 1 kDa filter, organic carbon and [(14)C]-E2 were dislodged with subsequent water rinses the Soil+LSM and LSM, but not the Soil. The second objective was to evaluate whether the E2 associated with the various fractions of the different media could still bind the estrogen receptor using an E2 receptor (17β-ER) competitor assay, which allowed E2 equivalent concentrations to be determined. The estrogen receptor assay results indicated that E2 present in the DF of the Soil and Soil+LSM solutions could still bind the estrogen receptor. Results from this study indicated that E2 preferentially associated with the DF of soil and manure, which may enhance its dissolved advective transport in surface and subsurface water. Furthermore, this study indicated that E2 associated with DF solutions in the environment could potentially induce endocrine responses through its interactions with estrogen receptor.
Collapse
Affiliation(s)
- Katrin B Chambers
- Sierra Cascade Nurseries, 26220 Callahan Rd., Bonanza, OR 97623, USA
| | - Francis X M Casey
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Heldur Hakk
- Animal Metabolism-Agricultural Chemicals Research, USDA-ARS, Fargo, ND, 58102, USA
| | - Thomas M DeSutter
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Nancy W Shappell
- Animal Metabolism-Agricultural Chemicals Research, USDA-ARS, Fargo, ND, 58102, USA
| |
Collapse
|
33
|
Chen TC, Yeh KJC, Kuo WC, Chao HR, Sheu SC. Estrogen degradation and sorption onto colloids in a constructed wetland with different hydraulic retention times. JOURNAL OF HAZARDOUS MATERIALS 2014; 277:62-68. [PMID: 24751297 DOI: 10.1016/j.jhazmat.2014.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Endocrine disrupting compounds are a global concern, owing to their interference with the endocrine system of wildlife. In particular, natural estrogens at concentrations as low as ng/L level can interrupt the endocrine system of many organisms. A constructed wetland is an effective means of removing the residual levels of estrogen. This study investigates the estrogen degradation and sorption on colloids in a constructed wetland at hydraulic retention times (HRTs) of 27.5, 45.9, and 137.5h. Three natural estrogens (i.e. estrone (E1), 17β-estradiol (E2), and estriol (E3)) are analyzed with liquid chromatography/tandem mass spectrometry. At HRT=27.5h, no degradation occurs; at HRT=45.9h, the degradation rates are 0-46.2%; and at HRT=137.5h, the degradation rates are 40-84.3%. Additionally, estrogen sorption coefficients (logKCOC values) range from 3.37 to 4.89. Average logKCOC values are 4.08±0.33, 4.04±0.34, and 4.11±0.28 for E1, E2, and E3, respectively. At different HRTs, values of logKCOC increase with an increasing HRT. Analytical results indicate that constructed wetlands can remove residual natural estrogens. With an increasing HRT, the estrogen degradation rate increases as well as the estrogen sorption on colloids.
Collapse
Affiliation(s)
- Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuei-Jyum C Yeh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Wen-Chien Kuo
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shyang-Chwen Sheu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
34
|
Yeh YL, Yeh KJ, Hsu LF, Yu WC, Lee MH, Chen TC. Use of fluorescence quenching method to measure sorption constants of phenolic xenoestrogens onto humic fractions from sediment. JOURNAL OF HAZARDOUS MATERIALS 2014; 277:27-33. [PMID: 24784898 DOI: 10.1016/j.jhazmat.2014.03.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/22/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Humic substance (HS) in sediment can affect hydrophobic organic compound distribution, transportation, bioavailability, and toxicity. This study investigated the HS (BKHS) extracted from sediment and separated it into low molecular humic (LMHS, <1kDa) and high molecular humic substances (HMHS, 1kDa-0.45μm). Nonylphenol (NP), octylphenol (OP), and bisphenol A (BPA) have a significant sorption capacity for HMHS and BKHS solutions. They are xenoestrogenic endocrine-disrupting compounds that are widely produced and discharged to the environment. The log KHS values of the BKHS and HMHS solutions were between 4.74-5.09Lkg-C(-1) and 4.57-5.09Lkg-C(-1), respectively. However, the three compounds were not sorbed by the LMHS solution. The average values of SUVA254 for HMHS and LMHS were 4.29 and 1.31Lm(-1)mg-C(-1) and the average values of A250-400 for HMHS and LMHS were 18.1 and 4.51nmcm(-1), respectively. The HMHS peak position in the fluorescence excitation/emission matrix at longer wavelengths corresponded to the peak position of LMHS, which indicates that the HMHS had a higher degree of humification than the LMHS. The results suggested that the KHS value's dominant factor was the degree of HS humification.
Collapse
Affiliation(s)
- Yi-Lung Yeh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuei-Jyum Yeh
- Emerging Compounds Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Liang-Fong Hsu
- Department of Applied English, Tainan University of Technology, Tainan City 71002, Taiwan
| | - Wu-Chou Yu
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-His Lee
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ting-Chien Chen
- Emerging Compounds Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
35
|
Zhang Z, Ren N, Kannan K, Nan J, Liu L, Ma W, Qi H, Li Y. Occurrence of endocrine-disrupting phenols and estrogens in water and sediment of the Songhua river, northeastern China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:361-369. [PMID: 24468970 DOI: 10.1007/s00244-014-9998-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Concentrations of six phenolic endocrine-disrupting chemicals [4-tert-octylphenol (OP), 4-t-nonylphenol (4-t-NP), 4-n-nonylphenol (4-n-NP), nonylphenol mono- to di-ethoxylates (NP1EO, NP2EO), and bisphenol A (BPA)] and five estrogens [estrone (E1), β-estradiol (E2), estriol (E3) 17α-ethynylestradiol (EE2), and diethylstilbestrol (DES)] were determined in surface water and sediment samples collected from the Songhua River in northeast China. Concentrations of sum of five alkylphenols and alkylphenol ethoxylates (ΣOP, 4-n-NP, 4-t-NP, NP1EO, NP2EO) were 117-1,030 ng L(-1) (mean 296) in water samples and 25.5-386 ng g(-1) (mean 67.3 ng g(-1) dry weight (dw)) in sediments. Concentrations of BPA in water and sediments were 8.24-263 ng L(-1) (mean 52.0) and 1.60-17.3 ng g(-1) dw (mean 4.90 dw), respectively. Concentrations in water were 0.840-20.8 ng L(-1) (mean 5.03) for the sum of three natural steroidal estrogens (ΣE1, E2, E3) and below detection limit (BDL) at -1.38 ng L(-1) (average 0.200) for the sum of two synthetic estrogens (EE2, ΣDES). Among estrogens, only E1 was detected in all of the sediment samples in the range of 0.100-3.00 ng g(-1) dw. Concentrations of Σphenolic EDCs and Σestrogens in water and sediments and their correlations with total organic carbon indicated that these contaminants originate from similar sources, such as municipal wastewater. In situ [Formula: see text] values and sediment-water fugacity fraction were calculated for the target chemicals, and the results indicated that these chemicals were, in general, supersaturated in sediments relative to those in water.
Collapse
Affiliation(s)
- Zifeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology, Harbin, 150090, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hakk H, Sikora L, Casey FXM, Larsen GL. Fate of 17β-estradiol in anaerobic lagoon digesters. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:701-708. [PMID: 25602671 DOI: 10.2134/jeq2013.06.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The fate of [C]17β-estradiol ([C]E2) was monitored for 42 d in triplicate 10-L anaerobic digesters. Total radioactive residues decreased rapidly in the liquid layer of the digesters and reached a steady-state value of 22 to 26% of the initial dose after 5 d. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses of the liquid layer of the anaerobic digesters indicated a rapid degradation of E2 to estrone (E1), which readily adsorbed to the sludge layer subsequent to its formation. Estrone was the predominant steroid identified under anaerobic digestion in the liquid layer or sorbed to sludge at 42 d. Methane formation represented 11.1 ± 5.7% of the initial E2 fortification with 0.3 to 0.5% of the starting E2 mineralized to carbon dioxide. Maximum [C]methane production appeared between Days 4 and 7. An estimate of estrogenicity of the final product based on reported estrogen equivalents for E1 and E2 was 2% of the original in active digesters. Anaerobic digestion of swine waste has several management benefits; moreover, this study demonstrated that it reduces the potential of environmental release of estrogens, which are known endocrine disruptors.
Collapse
|
37
|
Yost EE, Meyer M, Dietze JE, Meissner BM, Worley-Davis L, Williams CM, Lee B, Kullman SW. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13781-90. [PMID: 24144340 PMCID: PMC3854839 DOI: 10.1021/es4026408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 05/19/2023]
Abstract
In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally toward total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer.
Collapse
Affiliation(s)
- Erin E. Yost
- Department
of Biological Sciences, Environmental and Molecular Toxicology, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27695, United States
| | - Michael
T. Meyer
- Organic
Geochemistry Research Laboratory, U.S. Geological
Survey, 4821 Quail Crest
Place, Lawrence, Kansas 66049, United States
| | - Julie E. Dietze
- Organic
Geochemistry Research Laboratory, U.S. Geological
Survey, 4821 Quail Crest
Place, Lawrence, Kansas 66049, United States
| | - Benjamin M. Meissner
- Organic
Geochemistry Research Laboratory, U.S. Geological
Survey, 4821 Quail Crest
Place, Lawrence, Kansas 66049, United States
| | - Lynn Worley-Davis
- Prestage
Department of Poultry Science, North Carolina
State University, 2711
Founders Drive, Raleigh, North Carolina 27695, United States
| | - C. Michael Williams
- Prestage
Department of Poultry Science, North Carolina
State University, 2711
Founders Drive, Raleigh, North Carolina 27695, United States
| | - Boknam Lee
- Nicholas
School of the Environment, Duke University, 450 Research Drive, Durham, North Carolina 27705, United States
| | - Seth W. Kullman
- Department
of Biological Sciences, Environmental and Molecular Toxicology, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
38
|
Abstract
Yeast two-hybrid system was used to investigate the estrogenic activities of 13 kinds of representative endocrine disrupting chemicals (EDCs) and their combinary effects. Results show that the order of estrogenic potencies for these chemicals is: 17α-ethynylestradiol>diethylstilbestrol >17β-estradiol>estrone>estriol>branchedp-nonylphenol>4-t-octylphenol>bisphenol A>diethyl phthalate>4-n-nonylphenol>di-(2-ethylhexyl) phthalate>dibutyl phthalate>dimethyl phthalate. The mixture effects of multiple EDCs were compared to those obtained from individual chemicals, using the model of concentration addition. Results reveal that the estrogenicities of multicomponent mixtures of more than three (including three) of EDCs follow antagonistic effects, while there is no definite conclusion for binary systems. The less than additive effects were also confirmed in the spiked experiments conducted in the extracts of real water samples.
Collapse
|
39
|
McPhedran KN, Seth R, Drouillard KG. Hydrophobic organic compound (HOC) partitioning behaviour to municipal wastewater colloidal organic carbon. WATER RESEARCH 2013; 47:2222-2230. [PMID: 23473399 DOI: 10.1016/j.watres.2013.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The sorption behaviour of hydrophobic organic compounds (HOCs) 1,2,4,5-tetrachlor-obenzene (TeCB), pentachlorobenzene (PeCB) and hexachlorobenzene (HCB) to Aldrich humic acid (AHA) and municipal wastewater treatment plant (MWTP) influent colloidal organic carbon (COC) was investigated using the gas-stripping technique. Gas stripping assumptions of gas/water equilibrium and a constant volatilization rate were validated prior to calculation of partitioning parameters. The logKCOC coefficients determined for MWTP influent COC were 3.86, 3.89 and 3.19 for TeCB, PeCB and HCB, respectively. Due to the presence of COC, the mass transfer of TeCB, PeCB and HCB with the primary effluent to the secondary biological stage was predicted to increase 8.7%, 9.6% and 1.2%, respectively, based on the measured COC concentration and logKCOC values. The calculated increases in apparent solubility for TeCB, PeCB and HCB in the primary effluent were 14.4%, 22.0% and 6.5%, respectively. This partitioning did not follow the expected trend (TeCB < PeCB < HCB) based on hydrophobicity predicted by octanol/water partitioning. The trend observed differed from the current AHA standard and correlation-based trends derived from natural COCs. More experiments with other HOCs are needed to better understand and predict the magnitude and significance of MWTP influent COCs on the fate and transport of HOCs during the MWTP process.
Collapse
Affiliation(s)
- Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4
| | | | | |
Collapse
|
40
|
Gottschall N, Topp E, Edwards M, Payne M, Kleywegt S, Russell P, Lapen DR. Hormones, sterols, and fecal indicator bacteria in groundwater, soil, and subsurface drainage following a high single application of municipal biosolids to a field. CHEMOSPHERE 2013; 91:275-286. [PMID: 23351486 DOI: 10.1016/j.chemosphere.2012.10.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
A land application of dewatered municipal biosolids (DMB) was conducted on an agricultural field in fall 2008 at a rate of 22Mg dry weight (dw) ha(-1). Pre- and post- application, hormone, sterol and fecal indicator bacteria concentrations were measured in tile drainage water, groundwater (2, 4, 6m depth), surface soil cores, and DMB aggregates incorporated in the soil (∼0.2m depth) for a period of roughly 1year post-application. Hormones and sterols were detected up to 1year post-application in soil and in DMB aggregates. Hormone (androsterone, desogestrel, estrone) contamination was detected briefly in tile water samples (22d and ∼2months post-app), at lowngL(-1) concentrations (2-34ngL(-1)). Hormones were not detected in groundwater. Sterols were detected in tile water throughout the study period post-application, and multiple fecal sterol ratios suggested biosolids as the source. Coprostanol concentrations in tile water peaked at >1000ngL(-1) (22d post-app) and were still >100ngL(-1) at 6months post-application. Fecal indicator bacteria were detected throughout the study period in tile water, groundwater (⩽2m depth), soil and DMB aggregate samples. These bacteria were strongly linearly related to coprostanol in tile water (R(2)>0.92, p<0.05). The limited transport of hormones and sterols to tile drainage networks may be attributed to a combination of the hydrophobicity of these compounds and limited macroporosity of the field soil. This transitory contamination from hormones and sterols is unlikely to result in any significant pulse exposure risk in subsurface drainage and groundwater.
Collapse
Affiliation(s)
- N Gottschall
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6.
| | | | | | | | | | | | | |
Collapse
|
41
|
McPhedran KN, Seth R, Drouillard KG. Investigation of hydrophobic organic carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2548-2553. [PMID: 23294454 DOI: 10.1021/es3043802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Natural organic matter from the aquatic environment passing a 1 kDa filter has been hypothesized to not contribute appreciably to hydrophobic organic compound (HOC) partitioning; however, to our knowledge this limit has not been verified experimentally for any sorbate/sorbent system. Presently, colloidal organic carbon (COC) < 1 kDa approached 70% of the total COC (<1.5 μm) mass in primary effluent (PE) from a municipal wastewater treatment plant. Partitioning of HOCs 1,2,4,5-tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene to COC for both 1.5 μm and 1 kDa filtrates of PE was investigated using the gas-stripping technique. Contrary to the hypothesis, significant HOC-COC partitioning to the 1 kDa filtrate was observed with organic carbon-normalized partitioning coefficients (logKCOC) of 4.30, 4.36, and 3.74 for 1,2,4,5-TeCB, PeCB, and HCB, respectively. Further, partitioning to COC < 1 kDa dominated the overall partitioning of the three chlorobenzenes in the 1.5 μm filtrate, and the partitioning behavior did not follow the trend based on hydrophobicity (KOW). The results show that significant partitioning of HOC may occur to OC < 1 kDa and highlights the need for further experiments with other HOCs and COC characterization to better understand and explain the observed partitioning.
Collapse
Affiliation(s)
- Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| | | | | |
Collapse
|
42
|
Gong J, Ran Y, Chen D, Yang Y, Zeng EY. Association of endocrine-disrupting chemicals with total organic carbon in riverine water and suspended particulate matter from the Pearl River, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2456-2464. [PMID: 22847724 DOI: 10.1002/etc.1961] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/03/2012] [Accepted: 06/28/2012] [Indexed: 06/01/2023]
Abstract
The distribution of endocrine-disrupting chemicals (EDCs) and its relationship with dissolved and particulate organic carbon (DOC and POC) was investigated in selected rivers of the Pearl River Delta, South China. The aqueous concentrations (average; ng/L) and particulate concentrations (average; ng/g, dry wt) for 4-tert-octylphenol (OP), 4-nonylphenol (NP), bisphenol A (BPA), and estrone (E1) were in the ranges of not detectable to 153 (31.8), 276 to 2,457 (1,178), 8.4 to 628 (161), and less than 1.5 to 11.5 (3.2), respectively, and 4.4 to 402 (98.1), 342 to 12,053 (4,922), 12.3 to 758 (128), and not detectable to 14.4, respectively. The highly significant correlation of EDCs with DOC and POC, and the similar regression slopes, implied the critical importance of DOC and POC on the distribution, transport, and fate of EDCs in the aquatic environment. The in situ particle-water partition coefficients (log K(OC)) for OP (4.89 ± 0.41), NP (5.05 ± 0.33), and BPA (4.34 ± 0.50) were close to those reported by other field studies, but one to two orders of magnitude higher than those predicted with n-octanol-water partition coefficient (K(OW)). The higher K(OC) values were attributed to the combined effects of low EDC concentrations, nonlinear sorption, and heterogeneity of POC and DOC. Moreover, a regression between in-situ K(OC) and K(OW) for phenolic xenoestrogens was observed (log K(OC) = 0.625 × log K(OW) + 2.28, r(2) = 0.99), suggesting that hydrophobicity contributed predominantly to the overall sorption of OP, NP, and BPA.
Collapse
Affiliation(s)
- Jian Gong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | |
Collapse
|
43
|
Hernandez-Raquet G. Fate of Emerging Contaminants During Aerobic and Anaerobic Sludge Treatment. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/698_2012_160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
44
|
Yang YY, Gray JL, Furlong ET, Davis JG, Revello RC, Borch T. Steroid hormone runoff from agricultural test plots applied with municipal biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2746-54. [PMID: 22283735 DOI: 10.1021/es203896t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The potential presence of steroid hormones in runoff from sites where biosolids have been used as agricultural fertilizers is an environmental concern. A study was conducted to assess the potential for runoff of seventeen different hormones and two sterols, including androgens, estrogens, and progestogens from agricultural test plots. The field containing the test plots had been applied with biosolids for the first time immediately prior to this study. Target compounds were isolated by solid-phase extraction (water samples) and pressurized solvent extraction (solid samples), derivatized, and analyzed by gas chromatography-tandem mass spectrometry. Runoff samples collected prior to biosolids application had low concentrations of two hormones (estrone <0.8 to 2.23 ng L(-1) and androstenedione <0.8 to 1.54 ng L(-1)) and cholesterol (22.5 ± 3.8 μg L(-1)). In contrast, significantly higher concentrations of multiple estrogens (<0.8 to 25.0 ng L(-1)), androgens (<2 to 216 ng L(-1)), and progesterone (<8 to 98.9 ng L(-1)) were observed in runoff samples taken 1, 8, and 35 days after biosolids application. A significant positive correlation was observed between antecedent rainfall amount and hormone mass loads (runoff). Hormones in runoff were primarily present in the dissolved phase (<0.7-μm GF filter), and, to a lesser extent bound to the suspended-particle phase. Overall, these results indicate that rainfall can mobilize hormones from biosolids-amended agricultural fields, directly to surface waters or redistributed to terrestrial sites away from the point of application via runoff. Although concentrations decrease over time, 35 days is insufficient for complete degradation of hormones in soil at this site.
Collapse
Affiliation(s)
- Yun-Ya Yang
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | | | | | | | | | | |
Collapse
|
45
|
Froehner S, Machado KS, Stefan E, Bleninger T, da Rosa EC, de Castro Martins C. Occurrence of selected estrogens in mangrove sediments. MARINE POLLUTION BULLETIN 2012; 64:75-79. [PMID: 22093257 DOI: 10.1016/j.marpolbul.2011.10.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 05/31/2023]
Abstract
This paper presents results related to the occurrence and distribution of estrogens along the Brazilian coast. Three mangrove areas were chosen to evaluate the presence of estrogens in surface sediments of mangrove forests. The presence of estrogens was observed in all studied sites. 17-α-Ethinylestradiol (EE2), a synthetic estrogen, was the most common and has been found in higher concentration (0.45-129.78 ng/g) compared to 17-β-estradiol (E1) and estrone (E2) (both being natural estrogens). The concentrations of E1 and E2 ranged from 0.02 to 49.27 ng/g and 0.03 to 39.77 ng/g, respectively. Theoretically, under anaerobic conditions EE2 can be reduced to E1 even in environments such as sediments of mangrove forests, which are essentially anaerobic. Even if the concentrations of estrogens seem to be insignificant in some samples, the effects remain uncertain.
Collapse
Affiliation(s)
- Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba - PR 81531-980, Brazil.
| | - Karina Scurupa Machado
- Department of Environmental Engineering, Federal University of Parana, Curitiba - PR 81531-980, Brazil
| | - Elisa Stefan
- Department of Environmental Engineering, Federal University of Parana, Curitiba - PR 81531-980, Brazil
| | - Tobias Bleninger
- Department of Environmental Engineering, Federal University of Parana, Curitiba - PR 81531-980, Brazil
| | | | - César de Castro Martins
- Centro de Estudos do Mar, Federal University of Parana, Pontal do Parana - PR 83255-000, Brazil
| |
Collapse
|
46
|
Lee J, Cho J, Kim SH, Kim SD. Influence of 17β-estradiol binding by dissolved organic matter isolated from wastewater effluent on estrogenic activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1280-1287. [PMID: 21397328 DOI: 10.1016/j.ecoenv.2011.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 02/08/2011] [Accepted: 02/20/2011] [Indexed: 05/30/2023]
Abstract
The aims of this study were to determine the sorption coefficient (LogK(DOC)) of 17β-estradiol (E2), according to the size and composition of dissolved organic matter (DOM) isolated from wastewater effluent using a fluorescence quenching (FQ) method, and to measure the estrogenic changes due to the extent of E2 sorption onto effluent DOM (EfOM) by using an E-screen bioassay. The highest logK(DOC) of E2 for a DOM size fraction less than 0.2 μm was observed by 4.87 ± 1.87 Lkg(-1)(DOC), and its estrogenicity was the lowest among all the size fractions at 1.2 ng-EEQL⁻¹. However, E2 estrogenicity for a DOM size fraction less than 5 kDa was as high as that for the positive control due to the absence of fulvic acid- and protein-like DOM to bind with E2. The estrogenic activity for the hydrophobic fraction bound with E2 was significantly reduced to 1.6 ng-EEQL⁻¹, while that for the hydrophilic fraction having no binding with E2 was 2.6 ng-EEQL⁻¹, which was similar to that of the positive control (i.e., 2.8 ng-EEQL⁻¹). The results support a conclusion that the change in estrogenicity was due to the strong sorption affinity of E2 onto DOM.
Collapse
Affiliation(s)
- Jiho Lee
- Chemical Safety Division, National Academy of Agricultural Science, Seodundong, Gwonseongu, Suwon 441-707, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Zitnick KK, Shappell NW, Hakk H, DeSutter TM, Khan E, Casey FXM. Effects of liquid swine manure on dissipation of 17β-estradiol in soil. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1111-1117. [PMID: 21168958 DOI: 10.1016/j.jhazmat.2010.11.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
17β-estradiol (E2), a natural estrogenic hormone, degrades within hours and bind strongly to soils and sediments; however, estrogens are frequently detected in the environment at concentrations that impact water quality. Colloidal (COC) and dissolved (DOC) organic carbon may enhance the persistence and mobility of E2. Soil batch experiments were used to identify the persistence and sorption of radiolabeled E2 dissolved in solutions of (i) COC/DOC derived from liquid swine manure and (ii) CaCl(2). Estradiol disappeared from the aqueous phase before 7 d in the CaCl(2) solution, yet persisted throughout the duration of the 14 d experiment in the liquid manure solution. There was also concomitant formation of estrone (E1; a metabolite of E2) as E2 dissipated in sterile batch experiments, which was attributed to abiotic oxidation. The liquid manure solution appeared to interact with the estrogen and/or oxidation reaction sites, reducing E2 degradation. Furthermore, the liquid manure solution reduced E2/E1 binding to the soil surface resulting in more E2/E1 in the aqueous layer compared to the CaCl(2) solution. Ultrafiltration results of liquid manure indicated that ∼1/3 of E2 was associated with COC, which may be responsible for the reduced degradation and sorption of E2 in the liquid manure solution.
Collapse
Affiliation(s)
- K K Zitnick
- Department of Plant Pathology, North Dakota State University, Fargo, United States
| | | | | | | | | | | |
Collapse
|
48
|
Khunjar WO, Love NG. Sorption of carbamazepine, 17α-ethinylestradiol, iopromide and trimethoprim to biomass involves interactions with exocellular polymeric substances. CHEMOSPHERE 2011; 82:917-22. [PMID: 21111443 DOI: 10.1016/j.chemosphere.2010.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 05/06/2023]
Abstract
The sorption of carbamazepine (CBZ), iopromide (IOP), trimethoprim (TMP) and 17α-ethinylestradiol (EE2) was evaluated using four biomass types (pure ammonia oxidizing bacterial culture, two heterotrophic enrichment cultures with varying levels of oxygenase activity, and a full-scale nitrifying activated sludge (NAS) culture). CBZ and IOP did not sorb to the four biomass types. EE2 did not sorb to the pure culture but sorbed significantly to the heterotrophic cultures and NAS. TMP sorbed to the heterotrophic cultures and NAS, and was not evaluated for the pure culture. Three floc characteristics (hydrophobicity, median particle size, organic matter content) correlated moderately well with the EE2 organic matter sorption coefficient (KOM,EE2). Zeta potential did not correlate well with KOM,EE2 but did with KOM,TMP, indicating that TMP sorption is more influenced by electrostatic factors than EE2. Once divalent cation-linked exocellular polymeric substances (EPS) were removed from flocs, EE2 and TMP sorption to the non-EPS (cellular) fraction decreased by approximately 50%. The correlation between KOM,EE2 for the non-EPS cellular fraction deteriorated while the correlation between KOM,TMP improved. EE2 seemed to sorb more strongly to EPS protein whereas TMP sorbed equally to polysaccharide and protein EPS. Attempts to develop predictive models were not successful. Pharmaceuticals that sorbed to biomass samples underwent biodegradation whereas those that did not sorb were not biodegraded, suggesting a relationship between sorption and pharmaceutical biotransformation.
Collapse
Affiliation(s)
- Wendell O Khunjar
- Charles E. Via Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 418 Durham Hall (0246), Blacksburg, VA 24061, United States
| | | |
Collapse
|
49
|
Zhang Z, Feng Y, Gao P, Wang C, Ren N. Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP. ACTA ACUST UNITED AC 2011; 13:1366-73. [DOI: 10.1039/c0em00597e] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Combalbert S, Pype ML, Bernet N, Hernandez-Raquet G. Enhanced methods for conditioning, storage, and extraction of liquid and solid samples of manure for determination of steroid hormones by solid-phase extraction and gas chromatography–mass spectrometry. Anal Bioanal Chem 2010; 398:973-84. [DOI: 10.1007/s00216-010-3954-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/09/2010] [Accepted: 06/20/2010] [Indexed: 11/24/2022]
|