1
|
Cerrato A, Holmark T, Emke E, Amato ED, Gargano AFG. Expanding the chemical coverage of polar compounds in water analysis by coupling supercritical fluid with hydrophilic interaction chromatography high-resolution mass spectrometry. Anal Chim Acta 2025; 1341:343672. [PMID: 39880503 DOI: 10.1016/j.aca.2025.343672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC). Unified chromatography (UC), an SFC gradient in which the state of the mobile phase changes continuously from supercritical to liquid at 100 % polar co-solvent, has shown potential for the analysis of compounds in a broad range of polarity, including very polar compounds. RESULTS In the present study, for the first time, a UC-HILIC method coupled with high-resolution mass spectrometry was set up for PMOC analysis in water. SFC and HILIC gradients were run sequentially on the same bare-silica column, with the first separation running to 100 % modifier (UC) followed by a HILIC gradient transitioning to water. The UC and UC-HILIC gradients were previously optimized on a mix of 18 representative PMOC to assess solvent and mobile phase composition and for the instrumental system setup. The final method was employed for the analysis of water samples in comparison with a traditional reversed-phase separation, resulting in a significant increase in the number of annotated polar PMOC, including compounds listed in the Candidate List of substances of very high concern for Authorisation by the European Chemicals Agency. SIGNIFICANCE The proposed approach represents a robust alternative to traditional methods for broadening the chemical space of separation and mass spectrometric detection. The introduction of the HILIC section of the gradient was necessary for the elution of strongly retained compounds on the silica phase, thus also reducing the amount of compounds that would be permanently bound onto the phase of the column, resulting in possible irreproducibility, pressure increase, and loss of efficiency in the compound separation.
Collapse
Affiliation(s)
- A Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - T Holmark
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - E Emke
- KWR Water Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - E D Amato
- KWR Water Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - A F G Gargano
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Onchoke KK, Hamilton JS, Broom AM, Lopez G. Simultaneous quantification of carbaryl, chlorpyrifos, and paraquat in a municipal wastewater treatment plant by SPE-RP-HPLC-PDA-FD method. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:270. [PMID: 39934595 DOI: 10.1007/s10661-025-13704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Three commonly used pesticides, carbaryl, chlorpyrifos, and paraquat, were quantified by using solid-phase extraction (SPE) technique and high-performance liquid chromatography with photodiode-array and fluorescence detectors (HPLC-PDA-FD) in wastewater treatment plant. After solid-phase extraction, separation, and quantification were done using a C18 analytical column, an isocratic mobile phase consisting of acetonitrile/water (70%:30% v/v) at a flow rate of 1 mL/min, and a column oven maintained at 35 °C. Analyte concentrations were detected simultaneously at 230 nm, 254 nm, and 270 nm. PDA detection at 230 nm gave LOD and LOQ values of 0.65 mg/L and 1.98 mg/L, 0.39 mg/L, and 1.17 mg/L, for carbaryl and chlorpyrifos, respectively. Fluorescence emission peaks, λexc (270 nm) and λem (320 nm), were chosen for detection. FD gave LOD and LOQ values of 0.98 mg/L and 2.96 mg/L, 1.57 mg/L, and 4.76 mg/L, for carbaryl and chlorpyrifos, respectively. Calibration curves based on integrated peak area counts gave satisfactory linearity (R2 ≥ 0.9995). Although exhibiting low detector sensitivity for paraquat at 230 nm, this method is deemed best suited for routine analysis in Wastewater Treatment Plants (WWTPs). The developed and validated method using lower-cost dual detectors, PDA-FD, as a substitute for the higher-cost mass spectrometry is suitable for routine quantitative and qualitative analysis of carbaryl, paraquat, and chlorpyrifos in wastewater and environmental samples.
Collapse
Affiliation(s)
- Kefa K Onchoke
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, SFA Station, Box 13006, Nacogdoches, TX, 75962-13006, USA.
| | - Joshua S Hamilton
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, SFA Station, Box 13006, Nacogdoches, TX, 75962-13006, USA
| | - Anthony M Broom
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, SFA Station, Box 13006, Nacogdoches, TX, 75962-13006, USA
| | - Gary Lopez
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, SFA Station, Box 13006, Nacogdoches, TX, 75962-13006, USA
| |
Collapse
|
3
|
Narain Singh D, Pandey P, Shankar Singh V, Kumar Tripathi A. Evidence for high-risk pollutants and emerging microbial contaminants at two major bathing ghats of the river Ganga using high-resolution mass spectrometry and metagenomics. Gene 2025; 933:148991. [PMID: 39389327 DOI: 10.1016/j.gene.2024.148991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An efficient wastewater treatment plant is imperative to limit the entry of emerging pollutants (EPs) and emerging microbial contaminants (EMCs) in the river ecosystem. The detection of emerging EPs in aquatic environments is challenging due to complex sample preparation methods, and the need for sophisticated accurate analytical tools. In Varanasi (India), the river Ganga holds immense significance as a holy river but is consistently polluted with municipal (MWW) and hospital wastewater (HWW). We developed an efficient method for untargeted detection of EPs in the water samples using High-resolution mass spectrometry (HRMS), and identified 577 and 670 chemicals (or chemical components) in the water samples from two major bathing ghats, Assi Ghat (AG) and Dashashwamedh Ghat (DG), respectively. The presence of EPs of different categories viz chemicals from research labs, diagnostic labs, lifestyle and industrial chemicals, toxins, flavor and food additives indicated the unsafe disposal of MWW and HWW or inefficient wastewater treatment plants (WWTPs). Besides, shotgun metagenomic analysis depicted the presence of bacteria associated with MWW viz Cloacibacterium normanse, Sphaerotilus natans (sewage fungi), E. coli, and Prevotella. Also, the presence of human pathogens Arcobacter, Polynucleobacter, Pseudomonas, Klebsiella, Aeromonas, Acinetobacter, Vibrio, and Campylobacter suggests the discharge of HWW. EPs are linked to the development, and transmission of antimicrobial resistance (AMR). Occurrence of antibiotic resistance genes (ARGs), plasmid-borne β-lactamases, aminoglycoside transferases, and ARGs associated with integrons, transposons and plasmids viz mcr-3 gene that confer resistance to colistin, the last resort of antibiotics confirmed the presence of emerging microbial contaminants. Subsequent genome reconstruction studies showed the presence of uncultivable ARB and transmission of ARGs through horizontal gene transfer. This study can be used to monitor the health of aquatic bodies as well as the efficiency of WWTPs and raise an urgent need for efficient WWTPs to safeguard the river, Ganga.
Collapse
Affiliation(s)
- Durgesh Narain Singh
- BioNEST-BHU, INNORESTECH FOUNDATION, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Parul Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vijay Shankar Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Fulke AB, Mamidala S, Nikalje P. Advances in chemical and microbial source tracking (MST) of fecal pollution in coastal waters: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:144. [PMID: 39775284 DOI: 10.1007/s10661-024-13609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Coastal waters are the ultimate destination for both point and non-point sources of contamination. The uncontrolled dicharge of fecal waste into the ocean harms natural resources, marine life, and poses health risks to humans. Regular monitoring of coastal water quality and source tracking is important to prevent disease outbreaks. This review discusses all the fecal source tracking (FST) methods, ranging from traditional enumeration techniques to recent next-generation sequencing approaches, in the light of application on coastal waters. The advantages and disadvantages of the individual markers, method comparisons based on performance, correlation of marker with fecal indicator bacteria, and stability under waste water treatment and in field applications are mainly focused on enlightening the "tool box" approach for the marine environment.
Collapse
Affiliation(s)
- Abhay B Fulke
- Regional Centre, CSIR-National Institute of Oceanography (NIO), Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, 400053, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Srilakshmi Mamidala
- Regional Centre, CSIR-National Institute of Oceanography (NIO), Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, 400053, Maharashtra, India
| | | |
Collapse
|
5
|
Gupta G, Sailwal M, Shukla P. Sustainable Nanotechnology Based Techniques for Mitigating the Pollutants from Pulp and Paper Industry. ACS OMEGA 2024; 9:47904-47919. [PMID: 39676985 PMCID: PMC11635472 DOI: 10.1021/acsomega.4c06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Paper mills inevitably produce various pollutants, including chlorolignin, chlorophenols, chloroguaiacol, furan, cyanide, and heavy metals. These pollutants cause significant threats to aquatic and terrestrial life. The pulp and paper industries are looking for eco-friendly solutions for the disposal of effluents during paper processing. Moreover, environmental management practices are a key concern that may be addressed by removing these effluents using suitable bioremediation techniques. Therefore, we have discussed several eco-friendly nanotechnology based sustainable bioremediation technologies like the use of nanoparticles, nanomaterials, nanocomposites, nanoadsorbents, and several advanced methods such as electrocoagulation and photocatalysis, which may be utilized for the elimination of hazardous pollutants from paper industry effluents. This review finally includes critical insight into the potential use of the above-mentioned nanotechnology based interventions for mitigation of contaminants from the paper industry. Nevertheless, there are a few limitations and challenges toward implementation of such technologies, which are also discussed in this review.
Collapse
Affiliation(s)
- Guddu
Kumar Gupta
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Megha Sailwal
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
7
|
Madesh S, Sudhakaran G, Meenatchi R, Guru A, Arockiaraj J. Interconnected environmental challenges: heavy metal-drug interactions and their impacts on ecosystems. Drug Chem Toxicol 2024; 47:1282-1299. [PMID: 38658397 DOI: 10.1080/01480545.2024.2342956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
8
|
Luo L, Zheng M, Du E, Wang J, Guan X, Guo H. Development of a New Permanganate/Chlorite Process for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16578-16588. [PMID: 39219237 DOI: 10.1021/acs.est.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of new technologies with strong selectivity for target pollutants and low sensitivity toward a water matrix remains challenging. Herein, we introduced a novel strategy that used chlorite as an activator for Mn(VII) at pH 4.8, turning the inert reactivity of the pollutants toward Mn(VII) into a strong reactivity. This paved a new way for triggering reactions in water decontamination. By utilizing sulfamethoxazole (SMX) as a typical pollutant, we proposed coupled pathways involving electron transfer across hydrogen bonds (TEHB) and oxidation by reactive manganese species. The results indicated that a hydrogen bonding complex, SMX-ClO2-*, formed through chlorite binding the amino group of SMX initially in the TEHB route; such a complex exhibited a stronger reduction capability toward Mn(VII). Chlorite, in the hydrogen bonding complex SMX-ClO2-*, can then complex with Mn(VII). Consequently, a new reactive center (SMX-ClO2--Mn(VII)*) was formed, initiating the transfer of electrons across hydrogen bonds and the preliminary degradation of SMX. This is followed by the involvement of the generated Mn(V)-ClO2-/Mn(III) in the reduction process of Mn(VII). Such a process showed pH-dependent degradation, with a removal ratio ranging from 80% to near-stagnation as pH increased from 4.8 to 7. Combining with pKa analysis showed that the predominant forms of contaminants were crucial for the removal efficiency of pollutants by the Mn(VII)/chlorite process. The impact of the water matrix was demonstrated to have few adverse or even beneficial effects. With satisfactory performance against numerous contaminants, this study introduced a novel Mn(VII) synergistic strategy, and a new reactivity pattern focused on reducing the reduction potential of the contaminant, as opposed to increasing the oxidation potential of oxidants.
Collapse
Affiliation(s)
- Liping Luo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Jingquan Wang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Linge KL, Gruchlik Y, Busetti F, Ryan U, Joll CA. Use of micropollutant indicator ratios to characterize wastewater treatment plant efficiency and to identify wastewater impact on groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120822. [PMID: 38599088 DOI: 10.1016/j.jenvman.2024.120822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.
Collapse
Affiliation(s)
- Kathryn L Linge
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Yolanta Gruchlik
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia
| | - Francesco Busetti
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia
| | - Una Ryan
- Harry Butler Institute, College of Science, Health, Education and Engineering, Murdoch University, 90 South Street, Murdoch, Perth, Australia
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia
| |
Collapse
|
10
|
Biales AD, Bencic DC, Flick RW, Toth GP. Effects of Age and Exposure Duration on the Sensitivity of Early Life Stage Fathead Minnow (Pimephales promelas) to Waterborne Propranolol Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:807-820. [PMID: 38146914 PMCID: PMC11683668 DOI: 10.1002/etc.5814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Adam D. Biales
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - David C. Bencic
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert W. Flick
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Gregory P. Toth
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
11
|
Alidoust M, Saito Y, Takada H, Mizukawa K, Karlsson T, Brosché S, Beeler B, Karapanagioti HK. A Unique Monitoring Method for Fecal and Sewage-Derived Chemical Pollution Utilizing International Pellet Watch Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4761-4771. [PMID: 38410842 DOI: 10.1021/acs.est.3c08847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This study established a unique approach to assess fecal contamination by measuring fecal sterols, especially coprostanol (5β-cholestanol-3β-ol, 5β) and cholestanol (5α-cholestan-3β-ol, 5α) and their ratio 5β/(5β + 5α) alongside triclosan (TCS) and methyl-triclosan (MTC) in beached plastic pellets across 40 countries. Coprostanol concentrations ranged from 3.6 to 8190 ng/g pellet with extremely high levels in densely populated areas in African countries. The 5β/(5β + 5α) ratio was not affected by the difference in residence time of pellets in aquatic environments, and their spatial pattern showed a positive correlation with that of sedimentary sterols, demonstrating its reliability as an indicator of fecal contamination. Pellets from populated areas of economically developing countries, i.e., Africa and Asia, with lower coverage of wastewater treatment exhibited higher 5β/(5β + 5α) ratios (∼0.7) corresponding to ∼1% sewage in seawater, while pellets from developed countries, i.e., the USA, Canada, Japan, and Europe, with higher coverage of modern wastewater treatment displayed lower ratios (∼0.5), corresponding to the first contact limit. Triclosan levels were higher in developing countries (0.4-1298 ng/g pellet), whereas developed countries showed higher methyl-triclosan levels (0.5-70 ng/g pellet) due to TCS conversion during secondary treatment. However, some samples from Japan and Europe displayed higher TCS levels, suggesting contributions from combined sewage overflow (CSO). Combination of 5β/(5β + 5α) and MTC/TCS ratios revealed extreme fecal contamination from direct input of raw sewage due to inadequate treatment facilities in some African and South and Southeast Asian countries.
Collapse
Affiliation(s)
- Mona Alidoust
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yu Saito
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Therese Karlsson
- International Pollutants Elimination Network (IPEN), Första Långgatan 18, 413 28 Gothenburg, Sweden
| | - Sara Brosché
- International Pollutants Elimination Network (IPEN), Första Långgatan 18, 413 28 Gothenburg, Sweden
| | - Bjorn Beeler
- International Pollutants Elimination Network (IPEN), Första Långgatan 18, 413 28 Gothenburg, Sweden
| | | |
Collapse
|
12
|
Race AS, Spoelstra J, Parker BL. Wastewater contaminants in a fractured bedrock aquifer and their potential use as enteric virus indicators. Appl Environ Microbiol 2024; 90:e0121323. [PMID: 38231263 PMCID: PMC10880619 DOI: 10.1128/aem.01213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Domestic wastewater is a source of persistent organic pollutants and pathogens to the aquatic environment, including groundwater aquifers. Wastewater contaminants include a variety of personal care products, pharmaceuticals, endocrine disrupters, bacteria, and viruses. Groundwater from 22 wells completed in a semi-confined to confined, fractured Silurian dolostone aquifer in southern Wellington County, Ontario, Canada, was analyzed for 14 organic wastewater contaminants (4 artificial sweeteners, 10 pharmaceuticals) as well as E. coli, total coliforms, and 6 human enteric viruses. Enteric viruses were detected in 8.6% of 116 samples, and at least one organic wastewater contaminant was detected in 82% of the wells (in order of decreasing detection frequency: acesulfame, ibuprofen, sulfamethoxazole, triclosan, carbamazepine, and saccharin). Virus indicator metrics [positive and negative predictive values (PPV, NPV), sensitivity, specificity] were calculated at the sample and well level for the organic wastewater compounds, E. coli, and total coliforms. Fecal bacteria were not good predictors of virus presence (PPV = 0%-8%). Of the potential chemical indicators, triclosan performed the best at the sample level (PPV = 50%, NPV = 100%), and ibuprofen performed the best at the well level (PPV = 60%, NPV = 67%); however, no samples had triclosan or ibuprofen concentrations above their practical quantification limits. Therefore, none of the compounds performed sufficiently well to be considered reliable for assessing the potential threat of enteric viruses in wastewater-impacted groundwater in this bedrock aquifer. Future studies need to evaluate the indicator potential of persistent organic wastewater contaminants in different types of aquifers, especially in fractured rock where heterogeneity is strong.IMPORTANCEAssessing the potential risk that human enteric viruses pose in groundwater aquifers used for potable water supply is complicated by several factors, including: (i) labor-intensive methods for the isolation and quantification of viruses in groundwater, (ii) the temporal variability of these viruses in domestic wastewater, and (iii) their potentially rapid transport in the subsurface, especially in fractured rock aquifers. Therefore, aquifer risk assessment would benefit from the identification of suitable proxy indicators of enteric viruses that are easier to analyze and less variable in wastewater sources. Traditional fecal indicators (e.g., E. coli and coliforms) are generally poor indicators of enteric viruses in groundwater. While many studies have examined the use of pharmaceutical and personal care products as tracers of domestic wastewater and fecal pollution in the environment, there is a paucity of data on the potential use of these chemical tracers as enteric virus indicators, especially in groundwater.
Collapse
Affiliation(s)
- Amy S. Race
- Morwick G360 Groundwater Research Institute, University of Guelph, Guelph, Ontario, Canada
- Now with: Tesla, Spring Creek, Nevada, USA
| | - John Spoelstra
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Beth L. Parker
- Morwick G360 Groundwater Research Institute, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Li E, Saleem F, Edge TA, Schellhorn HE. Assessment of crAssphage as a human fecal source tracking marker in the lower Great Lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168840. [PMID: 38036144 DOI: 10.1016/j.scitotenv.2023.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
CrAssphage or crAss-like phage ranks as the most abundant phage in the human gut and is present in human feces-contaminated environments. Due to its high human specificity and sensitivity, crAssphage is a potentially robust source tracking indicator that can distinguish human fecal contamination from agricultural or wildlife sources. Its suitability in the Great Lakes area, one of the world's most important water systems, has not been well tested. In this study, we tested a qPCR-based quantification method using two crAssphage marker genes (ORF18-mod and CPQ_064) at Toronto recreational beaches along with their adjacent river mouths. Our results showed a 71.4 % (CPQ_064) and 100 % (ORF18-mod) human sensitivity for CPQ_064 and ORF18-mod, and a 100 % human specificity for both marker genes. CrAssphage was present in 57.7 % or 71.2 % of environmental water samples, with concentrations ranging from 1.45 to 5.14 log10 gene copies per 100 mL water. Though concentrations of the two marker genes were strongly correlated, ORF18-mod features a higher human sensitivity and higher positive detection rates in environmental samples. Quantifiable crAssphage was mostly present in samples collected in June and July 2021 associated with higher rainfall. In addition, rivers had more frequent crAssphage presence and higher concentrations than their associated beaches, indicating more frequent and greater human fecal contamination in the rivers. However, crAssphage was more correlated with E. coli and Enterococcus at the beaches than in the rivers, suggesting human fecal sources may be more predominant in driving the increases in E. coli and Enterococcus at the beaches when impacted by river plumes.
Collapse
Affiliation(s)
- Enze Li
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Faizan Saleem
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Thomas A Edge
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Herb E Schellhorn
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada.
| |
Collapse
|
14
|
Dubber D, Brophy L, O'Connell D, Behan P, Danaher M, Evans C, Geary P, Misstear B, Gill L. The use of sterol profiles, supported with other faecal source tracking methods, to apportion septic tanks contamination in rural catchments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122884. [PMID: 37951526 DOI: 10.1016/j.envpol.2023.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Identifying the origin of faecal pollution in water is needed for effective water management decisions to protect both human health and aquatic ecosystems. Traditionally used indicators of faecal contamination, such as E. coli, only indicate pollution from warm-blooded animals and not the specific source of contamination; hence, more source specific tracers are required. The study has focussed on separating the two main sources of contaminants within rural catchments in Ireland, agriculture and on-site wastewater treatment systems (predominantly septic tanks). While human-specific effluent tracers may assist in identifying potential pathways from individual septic tanks to surface waters, it is difficult to quantify the cumulative impact of such systems at a catchment scale. This study has investigated faecal sterols as a method to quantify such an impact on four small catchments in areas of low subsoil permeability with high densities of septic tanks. The results demonstrate the usefulness of faecal sterols which provide a quantitative evaluation of the respective impact between agricultural pasture inputs and on-site effluent showing differences between the four catchments. The study also highlights the need to derive more specific local reference sterol profile databases for specific countries or regions, using local source material of animal faeces and effluent. Two intensive sampling campaigns on the four catchments then used faecal sterols in parallel to fluorescent whitening compounds (FWCs), caffeine, artificial sweeteners and selected pharmaceuticals to gain further insights and confirmation about contamination hotspots as well as providing comparison between the different parameters. The combination of sterols, FWCs, caffeine, acesulfame and cyclamate has proven suitable to provide an estimate of the extent of human contamination in these rural catchments and has yielded additional information about potential pollution pathways and proximity of contamination. Overall, this methodology can help to facilitate a targeted and effective water management in such catchments.
Collapse
Affiliation(s)
- Donata Dubber
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland
| | - Laura Brophy
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland
| | - David O'Connell
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland
| | - Patrice Behan
- School of Chemical and Pharmaceutical Sciences, Technical University of Dublin, Ireland
| | - Martin Danaher
- Teagasc, Agricultural and Food Development Authority, Ashtown Food Research Centre, Dublin, Ireland
| | - Craig Evans
- School of Environmental and Life Sciences, The University of Newcastle, Australia
| | - Phillip Geary
- School of Environmental and Life Sciences, The University of Newcastle, Australia
| | - Bruce Misstear
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland
| | - Laurence Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland.
| |
Collapse
|
15
|
Sieber G, Drees F, Shah M, Stach TL, Hohrenk-Danzouma L, Bock C, Vosough M, Schumann M, Sures B, Probst AJ, Schmidt TC, Beisser D, Boenigk J. Exploring the efficacy of metabarcoding and non-target screening for detecting treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:167457. [PMID: 37777125 DOI: 10.1016/j.scitotenv.2023.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters. We aimed at assessing the impact of introducing 33 % treated wastewater into a triplicated large-scale mesocosm setup during a 10-day exposure period. Discharge of treated wastewater significantly altered the chemical signature as well as the microeukaryotic and prokaryotic diversity of the mesocosms. Non-target screening, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding detected these changes with significant covariation of the detected pattern between methods. The 18S V9 rRNA gene metabarcoding exhibited superior sensitivity immediately following the introduction of treated wastewater and remained one of the top-performing methods throughout the study. Full-length 16S rRNA gene metabarcoding demonstrated sensitivity only in the initial hour, but became insignificant thereafter. The non-target screening approach was effective throughout the experiment and in contrast to the metabarcoding methods the signal to noise ratio remained similar during the experiment resulting in an increasing relative strength of this method. Based on our findings, we conclude that all methods employed for monitoring environmental disturbances from various sources are suitable. The distinguishing factor of these methods is their ability to detect unknown pollutants and organisms, which sets them apart from previously utilized approaches and allows for a more comprehensive perspective. Given their diverse strengths, particularly in terms of temporal resolution, these methods are best suited as complementary approaches.
Collapse
Affiliation(s)
- Guido Sieber
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
| | - Felix Drees
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Manan Shah
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom L Stach
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Lotta Hohrenk-Danzouma
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Maryam Vosough
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Mark Schumann
- Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Bernd Sures
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Alexander J Probst
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| |
Collapse
|
16
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
17
|
Sibiya A, Jeyavani J, Saravanan M, Albeshr MF, Nicoletti M, Govindarajan M, Vaseeharan B. Response of hepatic biochemical parameters and neurotoxicity to carbamazepine and ibuprofen in Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:787-799. [PMID: 36717424 DOI: 10.1007/s10695-023-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Globally, the prevalence and pollution of pharmaceutical drugs in aquatic environments have been steadily increasing. This study sought to evaluate the effects of 14 days of exposure to environmental-relevant doses (ibuprofen 0.5, 5, and 50 µg/L, and carbamazepine 0.005, 1, and 10 µg/L) of the nonsteroidal anti-inflammatory drugs ibuprofen and carbamazepine in the freshwater fish Oreochromis mossambicus. The results showed a significant (P < 0.05) decrease in O. mossambicus superoxide dismutase, catalase, biotransformation enzymes, glutathione-s-transferase, glutathione peroxidase, oxidative stress lipid peroxidation, protein carbonyl activity, cellular damage metallothionine, reduced glutathione, immunological activities, and respiratory burst activity. Consequently, the acquired data revealed that O. mossambicus treated with ibuprofen and carbamazepine shows more significant alterations in metabolic depression, biochemical parameters, and oxidative stress. In addition, increased neurotoxic effects were observed in ibuprofen and carbamazepine treated O. mossambicus.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6thFloor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6thFloor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Manoharan Saravanan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6thFloor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185, Rome, Italy
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6thFloor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
18
|
Rajkamal A, Kim H. Theoretical verification on adsorptive removal of caffeine by carbon and nitrogen-based surfaces: Role of charge transfer, π electron occupancy, and temperature. CHEMOSPHERE 2023; 339:139667. [PMID: 37516324 DOI: 10.1016/j.chemosphere.2023.139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Eliminating an emerging water pollutant, caffeine molecules, from an aqueous solution using carbon and nitrogen-based adsorbents is of significant interest to public health. These adsorbents have been shown to have decent adsorption capacity toward caffeine due to their surface functionality. Therefore, screening various carbon and nitrogen-based surfaces can be a better option for high-performance adsorbents to remove caffeine efficiently from wastewater. Herein, we present combined first principles and molecular dynamics quantification of the adsorption enthalpies of caffeine molecules on the possible active sites of carbon and nitrogen-based adsorbents (graphene, phagraphene, graphdiyne, single-wall carbon nanotube, fullerene, and graphitic carbon nitride) with the incorporation of Van der Waals interactions. From the DFT calculations, N-doped carbon surfaces show the highest adsorption energies of single and dimer CAF compared to pristine carbon-based adsorbents. A charge density difference and Bader charge analysis display that high charge transfer occurs between the caffeine's oxygen and the surface's nitrogen atoms. An abundance of π-electrons from the nitrogen atoms, composed of large electron clouds of aromatic rings on the graphitic carbon surface, tends to favor extensive π-π interactions with the caffeine molecule. The high value of pz electron occupancy (1.445) of N in the hexagonal ring of the graphitic surface transfers additional charge transfer, which leads to strong adsorption energy of CAF than pristine surfaces. Also, the g-C3N4 surface adsorbs the CAF molecule with higher adsorption than other N-doped carbon surfaces due to the high pz_eo (1.5448) of N atoms on the surface. At 310 K, the water molecules' kinetics aids the single and dimer caffeine molecules to adsorb with the highest adsorption energies on the active sites of g-C3N4 surfaces than graphene adsorbent.
Collapse
Affiliation(s)
- Anand Rajkamal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
19
|
Xie H, Yamada K, Tamai S, Shimamoto H, Nukazawa K, Suzuki Y. Disappearance and prevalence of extended-spectrum β-lactamase-producing Escherichia coli and other coliforms in the wastewater treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83950-83960. [PMID: 37351753 DOI: 10.1007/s11356-023-28382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Antibiotic-resistant bacteria (ARBs) can now be detected not only in clinical institutions but also in wastewater treatment plants (WWTPs), extending the range of emergence to residential areas. In this study, we investigated the change of antibiotic-resistant Escherichia coli (E. coli) and other coliforms in each treatment process at WWTPs. Throughout the treatment process, the numbers of E. coli and other coliforms were significantly reduced to less than 5.7 ± 0.5 CFU/100 ml and 2.4 ± 0.0×102 CFU/100 ml, respectively. However, ESBL-producing E. coli and other coliforms were detected in each treatment process (even after chlorination) at 5.6% and 4.8%, compared to the total E. coli and other coliforms counts. Then, ESBL-producing-related genes were identified via PCR analyses, and the most predominant gene was CTX-M-9 in both E. coli (47.2%) and other coliforms (47.3%). Although actual WWTPs greatly reduced the number of bacteria, the relative prevalence of ESBL-producing bacteria was increased, suggesting that ESBL-producing bacteria remain in the effluent at minimal concentrations and could be diffusing to water bodies.
Collapse
Affiliation(s)
- Hui Xie
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kana Yamada
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Soichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Shimamoto
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
20
|
Richards LA, Guo S, Lapworth DJ, White D, Civil W, Wilson GJL, Lu C, Kumar A, Ghosh A, Khamis K, Krause S, Polya DA, Gooddy DC. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121626. [PMID: 37054870 DOI: 10.1016/j.envpol.2023.121626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of emerging organic contaminants (EOCs) in freshwater environments is a key issue in India and globally, particularly due to ecotoxicological and potential antimicrobial resistance concerns. Here we have investigated the composition and spatial distribution of EOCs in surface water along a ∼500 km segment of the iconic River Ganges (Ganga) and key tributaries in the middle Gangetic Plain of Northern India. Using a broad screening approach, in 11 surface water samples, we identified 51 EOCs, comprising of pharmaceuticals, agrochemicals, lifestyle and industrial chemicals. Whilst the majority of EOCs detected were a mixture of pharmaceuticals and agrochemicals, lifestyle chemicals (and particularly sucralose) occurred at the highest concentrations. Ten of the EOCs detected are priority compounds (e.g. sulfamethoxazole, diuron, atrazine, chlorpyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, thiamethoxam, imidacloprid, clothianidin and diclofenac). In almost 50% of water samples, sulfamethoxazole concentrations exceeded predicted no-effect concentrations (PNECs) for ecological toxicity. A significant downstream reduction in EOCs was observed along the River Ganga between Varanasi (Uttar Pradesh) and Begusarai (Bihar), likely reflecting dilution effects associated with three major tributaries, all with considerably lower EOC concentrations than the main Ganga channel. Sorption and/or redox controls were observed for some compounds (e.g. clopidol), as well as a relatively high degree of mixing of EOCs within the river. We discuss the environmental relevance of the persistence of several parent compounds (notably atrazine, carbamazepine, metribuzin and fipronil) and associated transformation products. Associations between EOCs and other hydrochemical parameters including excitation emission matrix (EEM) fluorescence indicated positive, significant, and compound-specific correlations between EOCs and tryptophan-, fulvic- and humic-like fluorescence. This study expands the baseline characterization of EOCs in Indian surface water and contributes to an improved understanding of the potential sources and controls on EOC distribution in the River Ganga and other large river systems.
Collapse
Affiliation(s)
- Laura A Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK.
| | - Shuaizhi Guo
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Debbie White
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Wayne Civil
- Environment Agency, National Laboratory Service, Starcross, Devon, EX6 8FD, UK
| | - George J L Wilson
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Chuanhe Lu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna, 801505, Bihar, India
| | - Kieran Khamis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; LEHNA - Laboratoire D'ecologie des Hydrosystemes Naturels et Anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
21
|
Xing X, Lyu L, Yan Z, Zhang H, Li T, Han M, Li Z, Zhang F, Wang Z, Wang S, Hong Y, Hu C. Self-purification of actual wastewater via microbial-synergy driving of catalyst-surface microelectronic field: A pilot-scale study. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131744. [PMID: 37285789 DOI: 10.1016/j.jhazmat.2023.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
High energy consumption is impedimental for eliminating refractory organics in wastewater by current technologies. Herein, we develop an efficient self-purification process for actual non-biodegradable dyeing wastewater at pilot scale, using N-doped graphene-like (CN) complexed Cu-Al2O3 supported Al2O3 ceramics (HCLL-S8-M) fixed-bed reactor without additional input. About 36% chemical oxygen demand removal was achieved within 20 min empty bed retention time and maintained stability for almost one year. The HCLL-S8-M structure feature and its interface on microbial community structure, functions, and metabolic pathways were analyzed by density-functional theory calculation, X-ray photoelectron spectroscopy, multiomics analysis of metagenome, macrotranscriptome and macroproteome. On the surface of HCLL-S8-M, a strong microelectronic field (MEF) was formed by the electron-rich/poor area due to Cu-π interaction from the complexation between phenolic hydroxy of CN and Cu species, driving the electrons of the adsorbed dye pollutants to the microorganisms through extracellular polymeric substance and the direct transfer of extracellular electrons, causing their degradation into CO2 and intermediates, which was degraded partly via intracellular metabolism. The lower energy feeding for the microbiome produced less adenosine triphosphate, resulting in little sludge throughout reaction. The MEF from electronic polarization is greatly potential to develop low-energy wastewater treatment technology.
Collapse
Affiliation(s)
- Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhen Yan
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Han Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Muen Han
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Fagen Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Huidobro-López B, León C, López-Heras I, Martínez-Hernández V, Nozal L, Crego AL, de Bustamante I. Untargeted metabolomic analysis to explore the impact of soil amendments in a non-conventional wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161890. [PMID: 36731565 DOI: 10.1016/j.scitotenv.2023.161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As non-conventional wastewater treatment, vegetation filters make the most of the natural attenuation processes that occur in soil to remove contaminants, while providing several environmental benefits. However, this practice may introduce contaminants of emerging concern (CECs) and their transformation products (TPs) into the environment. A potential improvement to the system was tested using column experiments containing soil (S) and soil amended with woodchips (SW) or biochar (SB) irrigated with synthetic wastewater that included 11 selected CECs. This study evaluated: i) known CECs attenuation and ii) unknown metabolites formation. Known CECs attenuation was assessed by total mass balance by considering both water and soil media. An untargeted metabolomic strategy was developed to assess the formation of unknown metabolites and to identify them in water samples. The results indicated that SB enhanced CECs attenuation and led to the formation of fewer metabolites. Sorption and biodegradation processes were favored by the bigger surface area of particles in SB column, especially for compounds with negative charges. Incorporating woodchips into soil shortened retention times in the column, which reduced attenuation phenomena and resulted in the formation of significantly more metabolites. Incomplete biodegradation reactions, fostered by shorter retention times in SW column could mainly explain these results.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Carlos León
- Carlos III University, Department of Bioengineering, E-28911 Madrid, Spain
| | | | | | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Antonio L Crego
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, E-28871 Madrid, Spain
| |
Collapse
|
23
|
Digaletos M, Ptacek CJ, Thomas J, Liu Y. Chemical and biological tracers to identify source and transport pathways of septic system contamination to streams in areas with low permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161866. [PMID: 36709906 DOI: 10.1016/j.scitotenv.2023.161866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Septic systems are widely used in rural areas that lack centralized sewage treatment systems. Incomplete removal of domestic wastewater contaminants in septic systems can lead to leaching of nutrients (P and N), bacteria/viruses, and trace contaminants to surrounding groundwater and surface water. This study focuses on delineating the fate of wastewater contaminants in localities where septic systems are installed in moderate to fine-grained overburden materials to assess potential impacts on groundwater and surface water quality in these settings. Nutrients and a suite of anthropogenic tracers, including host-specific fecal indicator bacteria (bovine- and human-specific Bacteroides), pharmaceutical compounds (caffeine, carbamazepine, gemfibrozil, ibuprofen, naproxen, and sulfamethoxazole), and an artificial sweetener (acesulfame-K), were selected to evaluate differences in transport properties. Surface water samples (n = 103) were collected from streams upstream (US) and downstream (DS) of three rural hamlets up to two times monthly over one year. Results indicate the presence of wastewater indicators in the streams, with DS locations showing significantly elevated concentrations of both chemical and biological anthropogenic tracers. Human-specific Bacteroides, caffeine, and acesulfame-K were consistently observed at elevated concentrations at all DS sites. Nutrients exhibited varied concentrations between US and DS locations at three study sites. The occurrence of human-specific Bacteroides in the surface water samples suggests the presence of preferential flow pathways within the silt/clay overburden. These results demonstrate the advantages of using a combined tracer approach, involving a conservative tracer such as acesulfame-K coupled with the human-specific biological indicator Bacteroides (BacHum), to understand not only impacting sources but also potential transport pathways of septic system contamination to nearby streams. Septic systems may be an underappreciated contaminant source in rural hamlets located in fine-grained overburden materials; although, a distinction of specific nutrient sources (septic systems vs. agriculture) remains challenging.
Collapse
Affiliation(s)
- Maria Digaletos
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Janis Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd., Toronto, Ontario M9P 3V6, Canada; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
24
|
Drug Disposal and Ecopharmacovigilance Practices in the Krowor Municipality, Ghana. J Toxicol 2022; 2022:7674701. [PMID: 36619292 PMCID: PMC9822764 DOI: 10.1155/2022/7674701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/26/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction The use of medicines is a ubiquitous practice for the management of healthcare conditions. In the delivery of healthcare, medicines may remain unused and may expire within the various stakeholders in the pharmaceutical value chain. If these unused and expired medicines are not disposed of properly, they may result in the concentration of pharmaceuticals in environmental media contaminating food sources for humans and animals. Implementation of ecopharmacovigilance strategies will reduce the quantities of pharmaceuticals in the environmental media, reduce the potential for inadvertent consumption by humans and animals, and reduce potential pharmacological effects on the environment, humans, and animals. The drug disposal flow diagram (DDFD) provides an effective way of assessing the most cost-effective strategies to reduce environmental contamination. Method A combined method of desk study and questionnaires, both structured and unstructured was used. The desk study reviewed the institutional arrangements for the regulation of disposal of pharmaceutical waste in Krowor. The questionnaires were used to gather information from community members, community pharmacies, and pharmaceutical manufacturers in Krowor. Results The drug disposal flow diagram shows that up to 96% of pharmaceuticals are handled and disposed of in ways that are harmful to the environment with only 4% being handled in ways that are environmentally friendly. Forty-nine percent (49%) of generated pharmaceutical waste ends up in the local and surrounding areas, 21% contaminates the drainage system and 25% is discharged into receiving waters. Discussion. The DDFD for Krowor shows that engagement with community members and institutional healthcare service providers and strategies that result in separation of pharmaceutical waste from general household waste will reduce the quantities of pharmaceuticals that end up in the environmental media. Conclusion The DDFD will support the effective implementation of ecopharmacovigilance (EPV) strategies.
Collapse
|
25
|
Advanced Treatment of Direct Dye Wastewater Using Novel Composites Produced from Hoshanar and Sunny Grey Waste. SEPARATIONS 2022. [DOI: 10.3390/separations9120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present project is designed to investigate the potential of hoshanar and sunny grey marble wastes to remove direct violet 51 dye from wastewater using adsorption process. The effect of different parameters such as pH, adsorbent dose, initial dye concentration, and contact time were studied to optimize the results of adsorption process. Different isothermic models (Temkin, Langmuir isotherm, Freundlich isotherm, Harkin Jura, and Dubinin-Radushkevich models) and kinetic models (pseudo-first order and pseudo-second order) were employed to adsorption data to find out the best fit model, i.e., Langmuir isotherm and pseudo-second order model. Marble waste composites were also characterized by using different techniques such as scanning electron microscopy (SEM) for surface morphology and Fourier transform infrared spectroscopy (FTIR) to determine chemical arrangements, structure, and functional groups of adsorbents. Hoshanar treated with a mixture of potassium ferricyanide, and sodium meta silicate showed maximum adsorption capacity of 105.31 mg/g as compared to untreated hoshanar (67.19.45 mg/g). So, the conversion of HM into HMPS makes it an affordable, efficient, and available adsorbent for wastewater treatment.
Collapse
|
26
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157707. [PMID: 35908692 PMCID: PMC9334864 DOI: 10.1016/j.scitotenv.2022.157707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 05/22/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
27
|
Experimental and theoretical studies of a magnetic mesoporous molecularly imprinted polymer for selective adsorption of estrogens from aqueous solutions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Simultaneous Extraction of Four Antibiotic Compounds from Soil and Water Matrices. SEPARATIONS 2022. [DOI: 10.3390/separations9080200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The incidence of antibiotic resistance is on the rise and becoming a major health concern. Analyzing the presence of antibiotic compounds in the environment is critical for determining the potential health effects for humans, animals, and ecosystems. For this study, methods were developed to simultaneously isolate and quantify four antibiotics important in human medicine (sulfamethoxazole—SMX, trimethoprim—TMP, lincomycin—LIN, and ofloxacin—OFL) in water and soil matrices. For water analysis, different solid phase extraction (SPE) cartridges (Oasis HLB plus and Phenomenex Strata-X) were compared. The Oasis HLB Plus SPE cartridge provided the highest and most consistent recoveries with 118 ± 5%, 86 ± 4%, 83 ± 5%, and 75 ± 1% for SMX, TMP, LIN, and OFL, respectively. For soil analysis, different pre-treatments (grinding and freeze-drying) and soil extraction methodologies (liquid-solid extraction and accelerated solvent extraction (ASE)) were compared. The ASE system resulted in the highest overall recoveries of SMX, TMP, LIN, and OFL with an optimal extracting solution of acetonitrile/water (v/v, 50:50, pH 2.8). When the soil was ground and freeze-dried, trimethoprim recovery increased and when soil was ground, but not freeze-dried, LIN and OFL recoveries increased, while sulfamethoxazole recoveries decreased when soil was ground and freeze-dried. Based on this research, matrix characteristics, especially pH, as well as the pKa’s and functional groups of the antibiotics need to be carefully considered when attempting to extract antibiotic compounds from a water or soil environment.
Collapse
|
29
|
Larson EA, Afolabi A, Zheng J, Ojeda AS. Sterols and sterol ratios to trace fecal contamination: pitfalls and potential solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53395-53402. [PMID: 35287190 DOI: 10.1007/s11356-022-19611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Fecal pollution in surface waters is a major threat to recreational and drinking water resources, with Escherichia coli being a primary concern. The best way to mitigate fecal pollutant loading is to identify the sources and tailor remediation strategies to reduce loading. Tracking E. coli back to its source is notoriously difficult in a mixed-use watershed where input from humans, wildlife, and livestock all contribute to E. coli loading. One proposed tracking method for E. coli contamination is the use of fecal sterols and sterol ratios. This study uses fecal sterol data published globally to assess how well sterol compositions for different species clusters along with the effectiveness of sterol ratios as tracking tools. Hierarchical cluster analysis produces stronger clusters based on sterol ratios than raw sterol concentration, but the global dataset results in clustering of the same species in different levels. The accuracy of the sterol ratios was also compared to understand the rate of false negatives and false positive assignments. Overall, these ratios did not have a high success rate for determining the correct source, which was also reflected in the poor clustering trends observed. Establishing local end-member sterol profiles is essential when using sterol signatures to unravel fecal loading.
Collapse
Affiliation(s)
| | - Ayomide Afolabi
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
30
|
Dang DH, Ma L, Ha QK, Wang W. A multi-tracer approach to disentangle anthropogenic emissions from natural processes in the St. Lawrence River and Estuary. WATER RESEARCH 2022; 219:118588. [PMID: 35605395 DOI: 10.1016/j.watres.2022.118588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The ability to differentiate anthropogenic signatures from natural processes in complex hydrological systems is critical for environmental regulation perspectives, especially to curb pollution and implement effective water management strategies. Here, we report variations in the concentrations of 57 chemical variables, including nutrients, major, trace and ultra-trace elements, as well as the concentrations of Escherichia coli in different water masses along the St. Lawrence River-Estuary continuum. The constant ratios among major elements indicate consistent carbonate and silicate weathering processes in the drainage basins. We also suggest applying Ce anomalies to trace waters of low alkalinity and low complexing capacity as the dominance of Ce3+ free ion could promote Ce oxidation, and thus negative Ce anomalies. Furthermore, the positive Eu anomalies and elevated Tl concentrations could highlight the cation exchange processes on clay particles. In the fluvial and estuarine sections of the St. Lawrence System, we demonstrate significant contributions of wastewater discharge and discuss the suitability of several wastewater tracers, e.g., excess of B, Na, K, as well as Rb/Sr and Gd anomalies. We also highlight the inputs of several minor and trace elements (e.g., Mn, Fe, Cu, Co, Ni) from south-shore tributaries to the St. Lawrence System. However, the complex anthropogenic activities in the watersheds did not allow clear source partitioning. Finally, increased mixing of different river water masses upstream of Quebec City, together with the estuarine salt front and suspended sediments, are also responsible for releasing these minor and trace elements into the aquatic media. The results presented here help support further environmental actions to curb the emission of contaminants in the St. Lawrence System and provide more robust tracers of natural and anthropogenic processes in aquatic environments.
Collapse
Affiliation(s)
- Duc Huy Dang
- School of the Environment, Trent University, Peterborough, Canada; Department of Chemistry and Water Quality Center, Trent University, Peterborough, Canada.
| | - Lan Ma
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Quang Khai Ha
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Wei Wang
- School of the Environment, Trent University, Peterborough, Canada
| |
Collapse
|
31
|
Selak A, Reberski JL, Klobučar G, Grčić I. Ecotoxicological aspects related to the occurrence of emerging contaminants in the Dinaric karst aquifer of Jadro and Žrnovnica springs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153827. [PMID: 35157871 DOI: 10.1016/j.scitotenv.2022.153827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Karst aquifers are globally important source of drinking water and harbor specific ecosystems that are vulnerable to anthropogenic contamination. This paper provides insights into the occurrence and ecotoxicological characterization of 21 emerging contaminants (ECs) detected in the karst catchment of Jadro and Žrnovnica springs (Dinarides, Croatia). Karst springs used for water supply, surface water, and groundwater were sampled during seven campaigns. The ECs concentration levels ranged from 0.3 ng/L (tramadol in Jadro spring) to 372 ng/L (1H-benzotriazole in Cetina River). DEET was the most frequently detected ECs with an average concentration of around 50 ng/L in both surface water and groundwater. To prioritise detected ECs, their persistence (P), bioaccumulation (B), mobility (M) and toxicity (T) were assessed based on in silico strategy for PBT assessment and recently developed REACH PMT guidelines. PBT scores ranging below the threshold of 0.5, indicated non-PBT compounds of expected low concern. However, only 4 out of 21 detected ECs were not assessed as PMT/vPvM. Concerningly, 20 ECs were categorised as very mobile. Karst springs exhibited larger proportions of ECs meeting PMT/vPvM criteria than surface water. To characterise the contamination extent and estimate the incidence of adverse effects of detected ECs, a preliminary environmental risk assessment (ERA) was conducted. Most ECs posed no environmental risk with RQ values predominantly below 0.01. The total risk quotient RQsite accentuated Cetina River as having the highest risk compared to other sampling sites. This is the first study on ECs in Croatian karst, contributing to a growing need to understand the impacts of emerging contaminants in karst aquifers, which are still largely unexplored.
Collapse
Affiliation(s)
- Ana Selak
- HGI-CGS Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia.
| | - Jasmina Lukač Reberski
- HGI-CGS Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia
| | - Göran Klobučar
- PMF Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| | - Ivana Grčić
- GFV Faculty of Geotechnical Engineering, Department of Environmental Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| |
Collapse
|
32
|
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Karimi-Maleh H. A review on magnetic sensors for monitoring of hazardous pollutants in water resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153844. [PMID: 35176366 DOI: 10.1016/j.scitotenv.2022.153844] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Water resources have long been of interest to humans and have become a serious issue in all aspects of human life. The disposal of hazardous pollutants in water resources is one of the biggest global concerns and poses many risks to human health and aquatic life. Therefore, the control of hazardous pollutants in water resources plays an important role, when it comes to evaluating water quality. Due to low toxicity, good electrical conductivity, facile functionalization, and easy preparation, magnetic materials have become a good alternative in recent years to control hazardous pollutants in water resources. In the present study, the idea of using magnetic sensors in controlling and monitoring of pharmaceuticals, pesticides, heavy metals, and organic pollutants have been reviewed. The water pollutants in drinking water, groundwater, surface water, and seawater have been discussed. The toxicology of water hazardous pollutants has also been reviewed. Then, the magnetic materials were discussed as sensors for controlling and monitoring pollutants. Finally, future remarks and perspectives on magnetic nanosensors for controlling hazardous pollutants in water resources and environmental applications were explained.
Collapse
Affiliation(s)
- Akbar Hojjati-Najafabadi
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi 341000, PR China; Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi 341000, PR China
| | - Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, South Africa.
| |
Collapse
|
33
|
Ben Mordechay E, Mordehay V, Tarchitzky J, Chefetz B. Fate of contaminants of emerging concern in the reclaimed wastewater-soil-plant continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153574. [PMID: 35114239 DOI: 10.1016/j.scitotenv.2022.153574] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Reclaimed wastewater irrigation, a common agricultural practice in water-scarce regions, chronically exposes the agricultural environment to a wide range of contaminants of emerging concern (CECs) including pharmaceuticals and personal care products. Here we provide new data and insights into the processes governing the translocation of CECs in the irrigation water-soil-plant continuum based on a comprehensive dataset from 445 commercial fields irrigated with reclaimed wastewater. We report on CEC exposures in irrigation water, soils, and edible produce (leafy greens, carrots, potatoes, bananas, tomatoes, avocados, and citrus fruits). Our data show that CEC concentrations in irrigation water and their physiochemical properties (mainly charge and lipophilicity) are the main factors governing their translocation and accumulation in the soil-plant continuum. CECs exhibiting the highest detection frequency in plants (lamotrigine, venlafaxine, and carbamazepine) showed a reduction in their leaf accumulation factor with increasing soil organic matter content. The higher soil organic matter likely reduced the available CEC concentration in the soil solution due to soil-CEC interactions, leading to reduced uptake. Interestingly, the concentration of carbamazepine in the leaves showed a saturation-like trend when plotted against its concentration in the soils. This probably resulted from steady-state conditions when uptake equals in-planta decomposition. Our data indicate that due to continuous reclaimed wastewater irrigation, the soil acts as a sink for CECs. CECs in the soil reservoir can be desorbed into the soil solution during the rainy season and be taken up by rain-fed crops.
Collapse
Affiliation(s)
- Evyatar Ben Mordechay
- Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Vered Mordehay
- Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Jorge Tarchitzky
- Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
34
|
Spatial and Temporal Evolution of Groundwater Chemistry of Baotu Karst Water System at Northern China. MINERALS 2022. [DOI: 10.3390/min12030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Karst water quality degradation has been a challenge for domestic and industrial water supplies worldwide. To reveal the possible factors response for karst water quality degradation, Baotu karst spring system is studied as an representative example. In this study, a hydrogeochemical investigation and mathematical, statistical, and geochemical modeling was conducted together to identify the major hydrochemical processes involved in the degradation process. It is found that the karst water is normally fresh, neutral-to-slightly alkaline, with calcium and magnesium as the predominant cations, and bicarbonate and sulfate as the predominant anions. The abnormally high chloride (95.05 mg/L) and nitrate concentrations (148.4 mg/L) give clues to the potential source of contamination in some karst water. The main hydrochemical facies of karst water are HCO3-Ca and HCO3 × SO4-Ca, accounting for 76% of water samples. The water hydrochemistry is controlled mainly by the dissolution of carbonate minerals (calcite, dolomite), followed by the dissolution of silicate and gypsum. The dissolution of calcite and dolomite mostly happens in the recharge area. In the discharge area, the karst water is basically in equilibrium with calcite. The negative SI value of gypsum represents that the water–gypsum interaction is dominated by dissolution along the whole flow path. Cation exchange is observed in the karst water in the indirect recharge area. Along the flow path, the contents of chloride, sulfate, nitrate, and TDS (Total dissolved solids, abbreviated TDS, indicates how many milligrams of dissolved solids are dissolved in one liter of water) vary significantly, which is mostly affected by pollution from human industrial and agricultural activities. The concentrations of major ions were maintained at a low level (<20 mg/L) in the 1960s in karst water. The fast elevation of the parameter values has occurred in the past two decades. The temporal elevation of some pollutants in karst water suggest that global changes (acid rain) and human activity (such as overusing fertilizer) are main factors resulting in the degradation of karst water quality in the study area. The results of this paper provide invaluable information for the management and protection of karst water resources in the urban and rural areas.
Collapse
|
35
|
Hachad M, Lanoue M, Vo Duy S, Villlemur R, Sauvé S, Prévost M, Dorner S. Locating illicit discharges in storm sewers in urban areas using multi-parameter source tracking: Field validation of a toolbox composite index to prioritize high risk areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152060. [PMID: 34861306 DOI: 10.1016/j.scitotenv.2021.152060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
In urban areas served by separate sewerage systems, illicit connections to the storm drain system from residences or commercial establishments are frequent whether these misconnections were made accidentally or deliberately. As a result, untreated and contaminated wastewater enters into storm sewers leading to pollution of receiving waters and non-compliance with water quality standards. Typical procedures for detecting illicit connections to the storm sewer system are time consuming and expensive, especially in a highly urbanised area. In this study, we investigated the use of human wastewater micropollutants WWMPs (caffeine, theophylline, and carbamazepine) and advanced DNA molecular markers (human specific Bacteroides HF183 and mitochondrial DNA) as anthropogenic tracers in order to assist identifying potential cross connections. Water samples from storm outfalls and storm sewer pipes in three urban subcatchments were collected in dry weather from 2013 to 2018. All samples contained various concentrations of these markers especially HF183, caffeine and theophylline, suggesting that the storm pipe system studied is widely contaminated by sanitary sewers. None of the traditional indicators or markers tested is sufficient alone to determine the origin of fecal pollution. In a highly urbanised area, the combination of at least three specific human markers was needed in order to locate the residential section with likely misconnections. The human specific Bacteroides HF183, and theophylline appeared to be the most effective markers (along with E. coli) of crossconnections, whereas carbamazepine can provide an indication of contamination through sanitary sewer exfiltration. A composite sewer cross-connection index was developed, and eight misconnected houses were identified and corrected. The index approach enables the reduction of false positives that could lead to expensive interventions to identify cross-connected households. The results show the multiparameter source tracking toolbox as an effective method to identify sewer cross connections for sustainable storm water management.
Collapse
Affiliation(s)
- Mounia Hachad
- Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| | - Martine Lanoue
- City of Laval, soutien technique eau et salubrité, service de l'environnement et de l'écocitoyenneté, 480, Boulevard Armand-Frappier, Laval, QC H7V 3Z4, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, P.O. Box 6128, succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Richard Villlemur
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, P.O. Box 6128, succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michèle Prévost
- Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada; NSERC Industrial Chair on Drinking Water, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada
| | - Sarah Dorner
- Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada; Canada Research Chair in Microbial Contaminant Dynamics in Source Waters, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada
| |
Collapse
|
36
|
Dehkordi SK, Paknejad H, Blaha L, Svecova H, Grabic R, Simek Z, Otoupalikova A, Bittner M. Instrumental and bioanalytical assessment of pharmaceuticals and hormone-like compounds in a major drinking water source-wastewater receiving Zayandeh Rood river, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9023-9037. [PMID: 34498192 DOI: 10.1007/s11356-021-15943-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Zayandeh Rood river is the most important river in central Iran supplying water for a variety of uses including drinking water for approximately three million inhabitants. The study aimed to investigate the quality of water concerning the presence of pharmaceutical active compounds (PhACs) and hormonelike compounds, which have been only poorly studied in this region. Sampling was performed at seven sites along the river (from headwater sites to downstream drinking water source, corresponding drinking water, and treated wastewater) affected by wastewater effluents, specific drought conditions, and high river-water demand. The targeted and nontargeted chemical analyses and in vitro bioassays were used to evaluate the presence of PhACs and hormonelike compounds in river water. In the samples, 57 PhACs and estrogens were detected with LC-MS/MS with the most common and abundant compounds valsartan, carbamazepine, and caffeine present in the highest concentrations in the treated wastewater in the concentrations of 8.4, 19, and 140 μg/L, respectively. A battery of in vitro bioassays detected high estrogenicity, androgenicity, and AhR-mediated activity (viz., in treated wastewater) in the concentrations 24.2 ng/L, 62.2 ng/L, and 0.98 ng/L of 17β-estradiol, dihydrotestosterone and 2,3,7,8-TCDD equivalents, respectively. In surface water samples, estrogenicity was detected in the range of <0.42 (LOD) to 1.92 ng/L of 17β-estradiol equivalents, and the drinking water source contained 0.74 ng/L of 17β-estradiol equivalents. About 19% of the estrogenicity could be explained by target chemical analyses, and the remaining estrogenicity can be at least partially attributed to the potentiation effect of detected surfactant residues. Drinking water contained several PhACs and estrogens, but the overall assessment suggested minor human health risk according to the relevant effect-based trigger values. To our knowledge, this study provides some of the first comprehensive information on the levels of PhACs and hormones in Iranian waters.
Collapse
Affiliation(s)
- Shima Kouhi Dehkordi
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Hamed Paknejad
- Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan, Iran
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Helena Svecova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czechia
| | - Zdenek Simek
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Alena Otoupalikova
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia
| | - Michal Bittner
- Masaryk University, Faculty of Science, RECETOX Centre, Kamenice 753/5, Brno, 625 00, Czechia.
| |
Collapse
|
37
|
Transformation Products of Emerging Pollutants Explored Using Non-Target Screening: Perspective in the Transformation Pathway and Toxicity Mechanism—A Review. TOXICS 2022; 10:toxics10020054. [PMID: 35202240 PMCID: PMC8874687 DOI: 10.3390/toxics10020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
The scientific community has increasingly focused on forming transformation products (TPs) from environmental organic pollutants. However, there is still a lot of discussion over how these TPs are generated and how harmful they are to living terrestrial or aquatic organisms. Potential transformation pathways, TP toxicity, and their mechanisms require more investigation. Non-target screening (NTS) via high-resolution mass spectrometry (HRMS) in model organisms to identify TPs and the formation mechanism on various organisms is the focus of this review. Furthermore, uptake, accumulation process, and potential toxicity with their detrimental consequences are summarized in various organisms. Finally, challenges and future research initiatives, such as performing NTS in a model organism, characterizing and quantifying TPs, and evaluating future toxicity studies on TPs, are also included in this review.
Collapse
|
38
|
Hubbard LE, Kolpin DW, Givens CE, Blackwell BR, Bradley PM, Gray JL, Lane RF, Masoner JR, McCleskey RB, Romanok KM, Sandstrom MW, Smalling KL, Villeneuve DL. Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1028-1040. [PMID: 34967600 PMCID: PMC9219000 DOI: 10.1021/acs.est.1c06821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 μg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 μg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 μg L-1; clothianidin TMG, 2.02 μg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.
Collapse
Affiliation(s)
| | - Dana W. Kolpin
- U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Brett R. Blackwell
- U.S. Environmental Protection Agency, Duluth, Minnesota 55084, United States
| | - Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina 29210, United States
| | - James L. Gray
- U.S. Geological Survey, Lakewood, Colorado 80225, United States
| | - Rachael F. Lane
- U.S. Geological Survey, Lawrence, Kansas 66049, United States
| | - Jason R. Masoner
- U.S. Geological Survey, Oklahoma City, Oklahoma 73116, United States
| | | | | | | | - Kelly L. Smalling
- U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | |
Collapse
|
39
|
Chernova E, Zhakovskaya Z, Berezina N. Occurrence of pharmaceuticals in the Eastern Gulf of Finland (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68871-68884. [PMID: 34279782 DOI: 10.1007/s11356-021-15250-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The presence of substances of emerging concern-pharmaceuticals-in marine environments has been studied to a lesser extent compared to fresh and wastewaters. This is the first study of pharmaceutical distribution in the Russian part of the Baltic Sea. Among 18 pharmaceuticals previously detected in influent waters of Saint-Petersburg WWTPs, 7 compounds (caffeine [81% of samples], carbamazepine [81%], ketoprofen [60%], diclofenac [23 %], ciprofloxacin, trimethoprim, and clarithromycin) were recorded in seawater samples in a range of measured concentrations from 0.1 to 4452 ng L-1. Antibiotics were presented in trace concentrations. In sediment samples, 6 pharmaceuticals (0.1-66.2 ng g-1) were detected. The most common was carbamazepine (80%). The remaining compounds were located in decreasing frequency as follows: ketoprofen, trimethoprim, drotaverine, tetracycline, and ciprofloxacin. Some specific features of the Gulf of Finland affecting the distribution of pharmaceutical concentrations were highlighted-among the most important, the megapolis of St. Petersburg with its population over 5 million and freshwater input by the Neva River (high urbanization of the territory with a potent dilution factor). We discussed the suitable set of anthropogenic markers for the Russian part of the Gulf of Finland.
Collapse
Affiliation(s)
- Ekaterina Chernova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st, St. Petersburg, 197110, Russia.
| | - Zoya Zhakovskaya
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st, St. Petersburg, 197110, Russia
| | - Nadezhda Berezina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya embankment, 1, St. Petersburg, 199034, Russia
| |
Collapse
|
40
|
Omagari R, Nakayama T, Miyawaki T, Yagishita M, Hashimoto S, Kadokami K, Nakajima D. Evaluation of identification accuracy using AIQS for GC-MS for measuring heavily contaminated samples. CHEMOSPHERE 2021; 285:131401. [PMID: 34265717 DOI: 10.1016/j.chemosphere.2021.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Automated identification and quantification systems with gas chromatography-mass spectrometry (GC-MS) (i.e., AIQS-GC) are used as a simple and comprehensive method for screening chemicals existing in the environment and are expected to be useful for emergency surveys in the event of a disaster. However, reports on the potential of AIQS-GC in heavily contaminated samples (HCSs) are limited. In this study, the identification performance of AIQS-GC was confirmed by comparing the exact mass of the targets identified by AIQS-GC with the measured accurate mass using GC-quadrupole-time-of-flight MS (GC-QTofMS) and by employing firefighting wastewater as HCS. In HCS, the mass spectrum interference was determined to cause false positives. The GC-QTofMS method revealed the presence of false positives and the false rate of AIQS-GC in HCS. Herein, AIQS-GC showed high identification accuracy in a normal sample such as river water. Conversely, in HCS, AIQS-GC may lead to incorrect evaluations. The combination of AIQS-GC and support method using GC-QTofMS, which can avoid the false positive is extremely useful for the rapid and easy analysis of HCS.
Collapse
Affiliation(s)
- Ryo Omagari
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan.
| | - Takashi Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan
| | - Takashi Miyawaki
- Faculty of Environmental Engineering, The University of Kitakyushu, Japan
| | - Mayuko Yagishita
- Department of Life and Environmental Science, Prefectural University of Hiroshima, Japan
| | - Shunji Hashimoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Japan
| | - Daisuke Nakajima
- Health and Environmental Risk Division, National Institute for Environmental Studies, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| |
Collapse
|
41
|
Silori R, Tauseef SM. A Review of the Occurrence of Pharmaceutical Compounds as Emerging Contaminants in Treated Wastewater and Aquatic Environments. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211119142030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, pharmaceutical compounds have emerged as potential contaminants in
the aquatic matrices of the environment. High production, consumption, and limited removal
through conventional treatment processes/wastewater treatment plants (WWTPs) are the major
causes for the occurrence of pharmaceutical compounds in wastewater and aquatic environments
worldwide. A number of studies report adverse health effects and risks to aquatic life and the ecosystem because of the presence of pharmaceutical compounds in the aquatic environment. This paper provides a state-of-the-art review of the occurrence of pharmaceutical compounds in treated
wastewater from various WWTPs, surface water and groundwater bodies. Additionally, this review
provides comprehensive information and pointers for research in wastewater treatment and waterbodies management.
Collapse
Affiliation(s)
- Rahul Silori
- HSE and Civil Engineering Department, UPES, Dehradun, 248001, Uttarakhand, India
| | | |
Collapse
|
42
|
Biological Indicators for Fecal Pollution Detection and Source Tracking: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9112058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fecal pollution, commonly detected in untreated or less treated sewage, is associated with health risks (e.g., waterborne diseases and antibiotic resistance dissemination), ecological issues (e.g., release of harmful gases in fecal sludge composting, proliferative bacterial/algal growth due to high nutrient loads) and economy losses (e.g., reduced aqua farm harvesting). Therefore, the discharge of untreated domestic sewage to the environment and its agricultural reuse are growing concerns. The goals of fecal pollution detection include fecal waste source tracking and identifying the presence of pathogens, therefore assessing potential health risks. This review summarizes available biological fecal indicators focusing on host specificity, degree of association with fecal pollution, environmental persistence, and quantification methods in fecal pollution assessment. The development of practical tools is a crucial requirement for the implementation of mitigation strategies that may help confine the types of host-specific pathogens and determine the source control point, such as sourcing fecal wastes from point sources and nonpoint sources. Emerging multidisciplinary bacterial enumeration platforms are also discussed, including individual working mechanisms, applications, advantages, and limitations.
Collapse
|
43
|
K.T V, Ram Achar R, Siriger S. A review on emerging micropollutants: sources, environmental concentration and toxicity. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Every minute, the environment is filled with pollutants of various types, including physical, chemical, and biological. A new threat has emerged in recent years due to human activity, which is of significant concern. These pollutants are not like conventional pollutants but can alter the physiology of living things, and hence these are named emerging pollutants. The pollutant sources include crop protection chemicals, personal care products, antimicrobial mixtures, active pharmaceutical ingredients (API). These compounds are biologically crucial because their minute quantity can also disrupt an individual's endocrine system, and hence they are also called endocrine disruptors. This current work reviews many aspects, including source, problems, and legislative solutions that have been farmed to cope with the current situation of emerging micropollutants.
Collapse
Affiliation(s)
- Vadiraj K.T
- Department of Environmental Science, JSS Academy of Higher Education and Research, Mysore, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru-570 015, Karnataka, India
| | - Sindhuja Siriger
- Department of Studies in Environmental Science, University of Mysore, Mysuru, India
| |
Collapse
|
44
|
Khan AH, Aziz HA, Khan NA, Dhingra A, Ahmed S, Naushad M. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148484. [PMID: 34217082 DOI: 10.1016/j.scitotenv.2021.148484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of pharmaceutical residues in the aquatic ecosystem is an emerging concern of environmentalists. This study primarily investigated the seasonal variation of high-priority pharmaceutical residues in the Yamuna River, accompanied by 22 drains discharge from different parts of Delhi. Five sampling sites were selected for analyzing high-priority pharmaceuticals along with physico-chemical and biological parameters for 3 season's viz. pre-monsoon (PrM), monsoon (DuM), and post-monsoon (PoM), respectively. The maximum occurrences were detected during the PoM, compared to the PrM and DuM seasons. The maximum concentration of BOD, COD, and Phosphate was detected at the last sampling station (SP-5). Similarly, all targeted pharmaceuticals concentration were maximum at the last sampling point i.e. Okhla barrage (SP-5, max: DIC = 556.1 ng/l, IBU = 223.4 ng/l, CAR = 183.1 ng/l, DIA = 457.8 ng/l, OFL = 1726.5 ng/l, FRU = 312.2 ng/l and SIM = 414.9 ng/l) except at Barapulla downstream (SP-4, max: ERY = 178.1 ng/l). The mean concentrations of Fecal coliform (FC) ranged from 1700 to 6500 CFU/100 ml. The maximum colonies were detected in PrM season (6500 CFU/100 ml) followed by PoM (5800 CFU/100 ml) and least in DuM (1700 CFU/100 ml). Risk quotient (RQ) analysis of high-priority pharmaceuticals indicated high ecotoxicological risks exposure (>1) from DIC, DIA, OFL, and SIM in all seasons at all the sampling sites. However, lower risk was predicted for IBU, CAR, ERY, and FRU, respectively. This risk assessment indicated an aquatic ecosystem potentially exposed to high risks from these pharmaceutical residues. Moreover, seasonal agricultural application, rainfall, and temperature could influence the levels and compositions of pharmaceutical residue in the aquatic ecosystem. Hence, attention is required particularly to this stream since it is only a local lifeline source for urban consumers for domestic water supply and farmers for cultivation.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Aastha Dhingra
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Sirajuddin Ahmed
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Smith JP, Boyd TJ, Cragan J, Ward MC. Dissolved rubidium to strontium ratio as a conservative tracer for wastewater effluent-sourced contaminant inputs near a major urban wastewater treatment plant. WATER RESEARCH 2021; 205:117691. [PMID: 34619608 DOI: 10.1016/j.watres.2021.117691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Municipal wastewater (MWW) effluent discharges can introduce contaminants to receiving waters which may have adverse impacts on local ecosystems and human health. Conservative chemical constituents specific to the MWW effluent stream can be used to quantify and trace wastewater effluent-sourced contaminant inputs. Gadolinium (Gd), a rare earth element used as a contrasting agent in medical magnetic resonance imaging, can be found in urban MWW streams. Dissolved anthropogenic Gd has been shown to be an indicator and potential conservative tracer for MWW effluent in receiving waters. Like other known MWW tracers, it can be difficult and expensive to measure. Dissolved rubidium (Rb) to strontium (Sr) ratio enrichment in biological materials such as blood and urine can lead to enriched Rb/Sr values in MWW effluent relative to natural waters. This ratio is relatively easy and inexpensive to measure and represents a promising additional indicator for MWW effluent in receiving waters in urbanized freshwater systems. In July 2015 and 2016 surface water samples were collected from sites in the tidal-fresh Potomac River in the vicinity of the Blue Plains Advanced Wastewater Treatment Plant (BPAWWTP) outfall near Washington, DC USA along with treated MWW effluent samples from the BPAWWTP. Dissolved Rb/Sr ratios were measured in these waters and compared to dissolved Gd concentrations in order to demonstrate the potential of the dissolved Rb/Sr ratio as a conservative indicator for MWW effluent. Results suggest the dissolved Rb/Sr ratio represents a simple and cost-effective indicator and conservative tracer for MWW effluent. It can be used with, or in place of, other proven tracers to investigate wastewater impacts in highly-urbanized, anthropogenically-impacted freshwater systems like the tidal fresh Potomac River and perhaps in a wider range of geologic settings than previously thought. A case study is presented as an example to demonstrate the potential of using dissolved Rb/Sr ratios to trace MWW-sourced nutrient inputs from a major WWTP like BPAWWTP to the receiving waters of tidal-fresh Potomac River.
Collapse
Affiliation(s)
- Joseph P Smith
- Oceanography Department, Mathematics & Science Division, U. S. Naval Academy, 572C Holloway Road, Annapolis, MD 21402-1363 United States.
| | - Thomas J Boyd
- Marine Biogeochemistry (Code 6114), U. S. Naval Research Laboratory, Washington, DC 20375 United States
| | - Jennifer Cragan
- Maritime Planning Associates, Inc., 12 Sherman St., Newport, RI, United States
| | - Matthew C Ward
- Maritime Planning Associates, Inc., 12 Sherman St., Newport, RI, United States
| |
Collapse
|
46
|
Yan C, Leng YL, Wu JT. Quantitative microbial risk assessment for occupational health of temporary entrants and staffs equipped with various grade PPE and exposed to microbial bioaerosols in two WWTPs. Int Arch Occup Environ Health 2021; 94:1327-1343. [PMID: 33721095 PMCID: PMC7957280 DOI: 10.1007/s00420-021-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 12/07/2022]
Abstract
PURPOSE This study was to evaluate the occupational health risks of infection from Gram-negative bacteria and Staphylococcus aureus bioaerosols to temporary entrants and staffs equipped with various grade personal protection equipment (PPE) related to wastewater treatment plants (WWTPs). METHODS This study determined the emission concentrations of Gram-negative bacteria and Staphylococcus aureus bioaerosols from two WWTPs under various aeration modes. Then, a strict quantitative microbial risk assessment (QMRA) was performed on several exposure scenarios associated with occupational health risks of temporary entrants (researchers, visitors, and inspectors) and staffs (field engineer and laboratory technician). RESULTS Although the bioaerosol concentrations were generally regarded as safe according to existing standards, these bioaerosols' health risks were still unacceptable. The microbial bioaerosols posed considerable infection health risks in WWTPs. These risks were generally above the WHO and US EPA benchmarks. The health risks of females were always smaller than those of male of grown-up age group. Staffs that had been exposed to bioaerosols for a long time were found to have higher health risks compared with temporary entrants. In addition, field engineers equipped with PPE rendered low health risks, thus revealing that wearing PPE could effectively reduce the occupational health risks. CONCLUSION This study provided novel data and enriched the knowledge of microbial bioaerosol emission's health risks from various aeration modes in WWTPs. Management decisions could be executed by authorities on the basis of the results of QMRA for field engineers equipped with PPE to reduce the related occupational health risks.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Ya-Li Leng
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jun-Ting Wu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
47
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:40. [PMID: 34321114 PMCID: PMC8320048 DOI: 10.1186/s40462-021-00244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182 Cedex 5, Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Bergen, Germany
| |
Collapse
|
48
|
Chen Y, Nie E, Zheng X, Ye Q, Li H, Wang H. Uptake, subcellular distribution and metabolism of 14C-caffeine in leafy vegetables from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125501. [PMID: 33662793 DOI: 10.1016/j.jhazmat.2021.125501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Irrigation with treated wastewater could lead to the accumulation of caffeine in agricultural fresh. Caffeine is one of the most frequently detected compounds in treated wastewater; however, little is known about its subcellular distribution and metabolism in vegetables. This study reported the uptake, subcellular distribution, and metabolism of 14C-caffeine in Chinese flowering cabbage and water spinach. The results showed that 98% of caffeine lost from solution after 768 h of cultivation. Caffeine was taken up by vegetables and most 14C-activity was accumulated in the bottom leaves. At the subcellular level, 14C-activity was mainly distributed in the organelles in root and stem cells, while in the leafy cells it was dominant in the solution. The metabolism of caffeine was investigated using LC-QTOF-MS. Caffeine underwent demethylation forming xanthine and theobromine, and mineralization to release CO2. Approximately 40.2% of the initially applied caffeine was accumulated in Chinese flowering cabbage as the parent compound (28.3%) and metabolites (11.9%), and 50.9% of the added caffeine was mineralized to CO2 after 768 h of exposure. The knowledge obtained herein is key to evaluating potential risks of caffeine present in treated wastewater, and the quality and safety of agricultural fresh produced by irrigation with treated wastewater.
Collapse
Affiliation(s)
- Yan Chen
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Enguang Nie
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Zheng
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.
| | - Haiyan Wang
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Smalling KL, Devereux OH, Gordon SE, Phillips PJ, Blazer VS, Hladik ML, Kolpin DW, Meyer MT, Sperry AJ, Wagner T. Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145687. [PMID: 33609846 DOI: 10.1016/j.scitotenv.2021.145687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
If not managed properly, modern agricultural practices can alter surface and groundwater quality and drinking water resources resulting in potential negative effects on aquatic and terrestrial ecosystems. Exposure to agriculturally derived contaminant mixtures has the potential to alter habitat quality and negatively affect fish and other aquatic organisms. Implementation of conservation practices focused on improving water quality continues to increase particularly in agricultural landscapes throughout the United States. The goal of this study was to determine the consequences of land management actions on the primary drivers of contaminant mixtures in five agricultural watersheds in the Chesapeake Bay, the largest watershed of the Atlantic Seaboard in North America where fish health issues have been documented for two decades. Surface water was collected and analyzed for 301 organic contaminants to determine the benefits of implemented best management practices (BMPs) designed to reduce nutrients and sediment to streams in also reducing contaminants in surface waters. Of the contaminants measured, herbicides (atrazine, metolachlor), phytoestrogens (formononetin, genistein, equol), cholesterol and total estrogenicity (indicator of estrogenic response) were detected frequently enough to statistically compare to seasonal flow effects, landscape variables and BMP intensity. Contaminant concentrations were often positively correlated with seasonal stream flow, although the magnitude of this effect varied by contaminant across seasons and sites. Land-use and other less utilized landscape variables including biosolids, manure and pesticide application and percent phytoestrogen producing crops were inversely related with site-average contaminant concentrations. Increased BMP intensity was negatively related to contaminant concentrations indicating potential co-benefits of BMPs for contaminant reduction in the studied watersheds. The information gained from this study will help prioritize ecologically relevant contaminant mixtures for monitoring and contributes to understanding the benefits of BMPs on improving surface water quality to better manage living resources in agricultural landscapes inside and outside the Chesapeake Bay watershed.
Collapse
Affiliation(s)
- Kelly L Smalling
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ 08648, USA.
| | | | - Stephanie E Gordon
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA.
| | - Patrick J Phillips
- U.S. Geological Survey New York Water Science Center, Troy, NY 12180, USA.
| | - Vicki S Blazer
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA
| | - Michelle L Hladik
- U.S. Geological Survey California Water Science Center Sacramento, CA 95819, USA.
| | - Dana W Kolpin
- U.S. Geological Survey Central Midwest Water Science Center Iowa City, IA 52240, USA.
| | - Michael T Meyer
- U.S. Geological Survey Kansas Water Science Center, Lawrence, KS 66046, USA.
| | - Adam J Sperry
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA.
| |
Collapse
|
50
|
Zhang H, Shi Z, Bai R, Wang D, Cui F, Zhang J, Strathmann TJ. Role of TEMPO in Enhancing Permanganate Oxidation toward Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7681-7689. [PMID: 34009966 DOI: 10.1021/acs.est.1c01824] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Permanganate (Mn(VII)) has been widely applied as an oxidant in water treatment plants. However, compared with ozone, Fenton, and other advanced oxidation processes, the reaction rates of some trace organic contaminants (TrOCs) with Mn(VII) are relatively low. Therefore, further studies on the strategies for enhancing the oxidation of organic contaminants by Mn(VII) are valuable. In this work, 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), as an electron shuttle, enhanced Mn(VII) oxidation toward various TrOCs (i.e., bisphenol A (BPA), phenol, estrone, sulfisoxazole, etc.). TEMPO sped up the oxidative kinetics of BPA by Mn(VII) greatly, and this enhancement was observed at a wide pH range of 4.0-11.0. The exact mechanism of TEMPO in Mn(VII) oxidation was described briefly as follows: (i) TEMPO was oxidized by Mn(VII) to its oxoammonium cation (TEMPO+) by electron transfer, which was the reactive species responsible for the accelerated degradation of TrOCs and (ii) TEMPO+ could decompose TrOCs rapidly with itself back to TEMPO or TEMPOH (TEMPO hydroxylamine). To further illustrate the interaction between TEMPO and target TrOCs, we explored the transformation pathways of BPA in Mn(VII)/TEMPO oxidation. Compared to Mn(VII) alone, adding TEMPO into the Mn(VII) solution significantly suppressed BPA's self-coupling and promoted hydroxylation, ring-opening, and decarboxylation. Moreover, the Mn(VII)/TEMPO system was promising for the abatement of TrOCs in real waters for humic acid, and ubiquitous cations/anions had no adverse or even beneficial impact on the Mn(VII)/TEMPO system.
Collapse
Affiliation(s)
- Honglong Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Zhenyu Shi
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Dingxiang Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Jing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|