1
|
Li Z, Huang Y, Jiang L, Tang H, Jiao G, Gou H, Gou W, Ni S. Metal stable isotopes fractionation during adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116770. [PMID: 39067077 DOI: 10.1016/j.ecoenv.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Isotope technology is an ideal tool for tracing the sources of certain pollutants or providing insights into environmental processes. In recent years, the advent of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has enabled the precise measurement of various metal stable isotopes. Due to the presence of "fingerprint" properties in various environmental samples, metal stable isotopes have been applied to distinguish the source of contaminants effectively and further understand the corresponding environmental processes. The environmental fate of metal elements is strongly controlled by adsorption, an essential process for the distribution of elements between the dissolved and particulate phases. The adsorption of metal elements on mineral and organic surfaces significantly affects their biogeochemical cycles in the environment. Therefore, it is crucial to elucidate the fractionation characteristics of stable metal isotopes during the adsorption process. In this review, three typical transitional metal elements were selected, considering Mo as the representative of anionic species and Fe and Zn as the representative of cationic species. For Mo, the heavier Mo isotope is preferentially adsorbed in the solution phase, pH has a more significant influence on isotope fractionation, and temperature and ionic strength are relatively insensitive. Differences in coordination environments between dissolved and adsorbed Mo during adsorption, i.e., attachment mode (inner- or outer-sphere) or molecular symmetry (e.g., coordination number and magnitude of distortion), are likely responsible for isotopic fractionation. For Fe, The study of equilibrium/kinetic Fe isotopic fractionation in aqueous Fe(II)-mineral is not simple. The interaction between aqueous Fe(II) and Fe (hydroxyl) oxides is complex and dynamic. The isotope effect is due to coupled electron and atom exchange between adsorbed Fe(II), aqueous Fe(II), and reactive Fe(III) on the surface of Fe (hydroxyl) oxide. For Zn, the heavier Fe isotope preferentially adsorbs on the solid phase, and pH and ionic strength are essential influencing factors. The difference in coordination environment may be the cause of isotope fractionation.
Collapse
Affiliation(s)
- Zijing Li
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| | - Lan Jiang
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Hua Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Wenxian Gou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
2
|
Le Bars M, Legros S, Levard C, Chevassus-Rosset C, Montes M, Tella M, Borschneck D, Guihou A, Angeletti B, Doelsch E. Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118414. [PMID: 34728325 DOI: 10.1016/j.envpol.2021.118414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.
Collapse
Affiliation(s)
- Maureen Le Bars
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France; UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France.
| | - Samuel Legros
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France; UPR Recyclage et Risque, CIRAD, 18524, Dakar, Senegal
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Claire Chevassus-Rosset
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Mélanie Montes
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Marie Tella
- CIRAD, US Analyses, F-34398, Montpellier, France; Analyses, Univ Montpellier, CIRAD, Montpellier, France
| | - Daniel Borschneck
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Abel Guihou
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Emmanuel Doelsch
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
3
|
Ratié G, Chrastný V, Guinoiseau D, Marsac R, Vaňková Z, Komárek M. Cadmium Isotope Fractionation during Complexation with Humic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7430-7444. [PMID: 33970606 DOI: 10.1021/acs.est.1c00646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) isotopes are known to fractionate during complexation with various environmentally relevant surfaces and ligands. Our results, which were obtained using (i) batch experiments at different Cd concentrations, ionic strengths, and pH values, (ii) modeling, and (iii) infrared and X-ray absorption spectroscopies, highlight the preferential enrichment of light Cd isotopes bound to humic acid (HA), leaving the heavier Cd pool preferentially in solution (Δ114/110CdHA-Cd(aq) of -0.15 ± 0.01‰). At high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. Outer-sphere complexation occurs at equilibrium together with inner-sphere complexation as well as with the change of the first Cd coordination and its hydration complexes in solution. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation. This significant outcome elucidates the mechanisms involved in HA-Cd interactions. The results can be used during (i) fingerprinting the available Cd in soil solution after its complexation with solid or soluble natural organic matter and (ii) evaluating the contribution of Cd complexation with organic ligands and phytoplankton-derived debris versus Cd assimilation by phytoplankton in seawater.
Collapse
Affiliation(s)
- Gildas Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Damien Guinoiseau
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, F-13545 Aix-en-Provence, France
| | - Rémi Marsac
- Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Zuzana Vaňková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| |
Collapse
|
4
|
Engel M, Boye K, Noël V, Babey T, Bargar JR, Fendorf S. Simulated Aquifer Heterogeneity Leads to Enhanced Attenuation and Multiple Retention Processes of Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2939-2948. [PMID: 33570404 DOI: 10.1021/acs.est.0c06750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alluvial aquifers serve as one of the main water sources for domestic, agricultural, and industrial purposes globally. Groundwater quality, however, can be threatened by naturally occurring and anthropogenic metal contaminants. Differing hydrologic and biogeochemical conditions between predominantly coarse-grained aquifer sediments and embedded layers or lenses of fine-grained materials lead to variation in metal behavior. Here, we examine processes controlling Zn partitioning within a dual-pore domain-reconstructed alluvial aquifer. Natural coarse aquifer sediments from the Wind River-Little Wind River floodplain near Riverton, WY, were used in columns with or without fine-grained lenses to examine biogeochemical controls on Zn concentrations, retention mechanisms, and transport. Following the introduction of Zn to the groundwater source, Zn preferentially accumulated in the fine-grained lenses, despite their small volumetric contributions. While the clay fraction dominated Zn retention in the sandy aquifer, the lenses supported additional reaction pathways of retention-the reducing conditions within the lenses resulted in ZnS precipitation, overriding the contribution of organic matter. Zinc concentration in the groundwater controlled the formation of Zn-clays and Zn-layered double hydroxides, whereas the extent of sulfide production controlled precipitation of ZnS. Our findings illustrate how both spatial and compositional heterogeneities govern the extent and mechanisms of Zn retention in intricate groundwater systems, with implications for plume behavior and groundwater quality.
Collapse
Affiliation(s)
- Maya Engel
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vincent Noël
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tristan Babey
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John R Bargar
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Engel M, Lezama Pacheco JS, Noël V, Boye K, Fendorf S. Organic compounds alter the preference and rates of heavy metal adsorption on ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141485. [PMID: 32862002 DOI: 10.1016/j.scitotenv.2020.141485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The availability of heavy metals in terrestrial environments is largely controlled by their interactions with minerals and organic matter, with iron minerals having a particularly strong role in heavy metal fate. Because soil organic matter contains a variety of compounds that differ in their chemical properties, the underlying impact organic matter-soil mineral associations bestow on heavy metal binding is still unresolved. Here, we systematically examine the binding of Cd, Zn and Ni by a suite of organic-ferrihydrite assemblages, chosen to account for various compound chemistries within soil organic matter. We posited that organic compound functionality would dictate the extent of association with the organic-ferrihydrite assemblages. Increased heavy metal binding to the assemblages was observed and attributed to the introduction of additional binding sites by the organic functional groups with differing metal affinities. The relative increase depended on the metal's Lewis acidity and followed the order Cd > Zn > Ni, whereas the reverse order was obtained for metal binding by pristine ferrihydrite (Ni > Zn > Cd). Citric acid-, aspartic acid- and cysteine-ferrihydrite assemblages also enhanced the metal binding rate. X-ray absorption spectroscopy revealed that the organic coating contributed significantly to Zn binding by the assemblages, despite relatively low organic surface coverage. Our findings provide valuable information on the nature of heavy metal-organic-mineral interactions and metal adsorption processes regulating their bioavailability and transport.
Collapse
Affiliation(s)
- Maya Engel
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
| | - Juan S Lezama Pacheco
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States
| | - Kristin Boye
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
6
|
Adusei-Gyamfi J, Ouddane B, Rietveld L, Cornard JP, Criquet J. Natural organic matter-cations complexation and its impact on water treatment: A critical review. WATER RESEARCH 2019; 160:130-147. [PMID: 31136847 DOI: 10.1016/j.watres.2019.05.064] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
The quality and quantity of natural organic matter (NOM) has been observed to evolve which poses challenges to water treatment facilities. Even though NOM may not be toxic itself, its presence in water has aesthetic effects, enhances biological growth in distribution networks, binds with pollutants and controls the bioavailability of trace metals. Even though NOM has heterogeneous functional groups, the predominant ones are the carboxyl and the phenolic groups, which have high affinities for metals depending on the pH. The properties of both the NOM and the trace elements influence the binding kinetics and preferences. Ca2+ prefers to bind with the carboxylic groups especially at a low pH while Zn2+ prefers the amine groups though practically, most cations bind to several functions groups. The nature of the chemical environment (neighboring ligands) the ligand finds itself equally influences its preference for a cation. The presence of NOM, cations or a complex of NOM-cations may have significant impact on the efficiency of water processes such as coagulation, adsorption, ion exchange resin and membrane filtration. In coagulation, the complexation between the coagulant salts and NOM helps to remove NOM from solution. This positive influence can further be enhanced by the addition of Ca2+. A negative influence is however, observed in lime-softening method as NOM complexes with Ca2+. A negative influence is also seen in membrane filtration where divalent cations partially neutralize the carboxyl functional groups of NOM thereby reducing the repulsion effect on NOM and increasing membrane fouling. The formation of disinfection by-products could either be increased or reduced during chlorination, the speciation of products formed is modified with generally the enhancement of haloacetic acid formation observed in presence of metal cations. This current work, presents in details the interactions of cations and NOM in the environment, the preference of cations for each functional group and the possible competition between cations for binding sites, as well as the possible impacts of the presence of cations, NOM, or their complex on water treatment processes.
Collapse
Affiliation(s)
- Junias Adusei-Gyamfi
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de L'Environnement, F-59000, Lille, France; Delft University of Technology - Faculty of Civil Engineering and Geosciences - Department of Water Management, the Netherlands
| | - Baghdad Ouddane
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de L'Environnement, F-59000, Lille, France
| | - Luuk Rietveld
- Delft University of Technology - Faculty of Civil Engineering and Geosciences - Department of Water Management, the Netherlands
| | - Jean-Paul Cornard
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de L'Environnement, F-59000, Lille, France
| | - Justine Criquet
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de L'Environnement, F-59000, Lille, France.
| |
Collapse
|
7
|
Manning PL, Edwards NP, Bergmann U, Anné J, Sellers WI, van Veelen A, Sokaras D, Egerton VM, Alonso-Mori R, Ignatyev K, van Dongen BE, Wakamatsu K, Ito S, Knoll F, Wogelius RA. Pheomelanin pigment remnants mapped in fossils of an extinct mammal. Nat Commun 2019; 10:2250. [PMID: 31113945 PMCID: PMC6529433 DOI: 10.1038/s41467-019-10087-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Recent progress has been made in paleontology with respect to resolving pigmentation in fossil material. Morphological identification of fossilized melanosomes has been one approach, while a second methodology using chemical imaging and spectroscopy has also provided critical information particularly concerning eumelanin (black pigment) residue. In this work we develop the chemical imaging methodology to show that organosulfur-Zn complexes are indicators of pheomelanin (red pigment) in extant and fossil soft tissue and that the mapping of these residual biochemical compounds can be used to restore melanin pigment distribution in a 3 million year old extinct mammal species (Apodemus atavus). Synchotron Rapid Scanning X-ray Fluorescence imaging showed that the distributions of Zn and organic S are correlated within this fossil fur just as in pheomelanin-rich modern integument. Furthermore, Zn coordination chemistry within this fossil fur is closely comparable to that determined from pheomelanin-rich fur and hair standards. The non-destructive methods presented here provide a protocol for detecting residual pheomelanin in precious specimens.
Collapse
Affiliation(s)
- Phillip L Manning
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester, M13 9PL, UK
- Department of Geology and Environmental Geoscience, College of Charleston, 66 George St, Charleston, SC, 29424, USA
| | - Nicholas P Edwards
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Jennifer Anné
- The Children's Museum of Indianpolis, 3000 N Meridian St, Indianapolis, IN, 46208, USA
| | - William I Sellers
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester, M13 9PL, UK
| | - Arjen van Veelen
- University of Southampton, Faculty of Engineering and Physical Sciences, Southampton, SO17 1BJ, UK
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Victoria M Egerton
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester, M13 9PL, UK
- The Children's Museum of Indianpolis, 3000 N Meridian St, Indianapolis, IN, 46208, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Bart E van Dongen
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester, M13 9PL, UK
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Fabien Knoll
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester, M13 9PL, UK
- ARAID-Fundación Conjunto Paleontológico de Teruel-Dinópolis, 44002, Teruel, Spain
| | - Roy A Wogelius
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science & Interdisciplinary Centre for Ancient Life, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Thomas SA, Mishra B, Myneni SCB. High Energy Resolution-X-ray Absorption Near Edge Structure Spectroscopy Reveals Zn Ligation in Whole Cell Bacteria. J Phys Chem Lett 2019; 10:2585-2592. [PMID: 31039606 DOI: 10.1021/acs.jpclett.9b01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identifying the zinc (Zn) ligation and coordination environment in complex biological and environmental systems is crucial to understand the role of Zn as a biologically essential but sometimes toxic metal. Most studies on Zn coordination in biological or environmental samples rely on the extended X-ray absorption fine structure (EXAFS) region of a Zn K-edge X-ray absorption spectroscopy (XAS) spectrum. However, EXAFS analysis cannot identify unique nearest neighbors with similar atomic number (i.e., O versus N) and provides little information on Zn ligation. Herein, we demonstrate that high energy resolution-X-ray absorption near edge structure (HR-XANES) spectroscopy enables the direct determination of Zn ligation in whole cell bacteria, providing additional insights lost from EXAFS analysis at a fraction of the scan time and Zn concentration. HR-XANES is a relatively new technique that has improved our understanding of trace metals (e.g., Hg, Cu, and Ce) in dilute systems. This study is the first to show that HR-XANES can unambiguously detect Zn coordination to carboxyl, phosphoryl, imidazole, and/or thiol moieties in model microorganisms.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Satish C B Myneni
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| |
Collapse
|
9
|
Li Y, Wang S, Zhang Q, Zang F, Nan Z, Sun H, Huang W, Bao L. Accumulation, interaction and fractionation of fluoride and cadmium in sierozem and oilseed rape (Brassica napus L.) in northwest China. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:457-468. [PMID: 29689509 DOI: 10.1016/j.plaphy.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Soil fluoride (F) and cadmium (Cd) pollution are of great concern in recently years, due to the fact that considerable amounts of wastewater, gas and residue, containing F and Cd, have been discharged into the environment through ore smelting. Soil F and Cd contamination may result in their interaction in soil and plant, which affects their fractionation distribution in soil and accumulation in oilseed rape. Oilseed rape, which is widely planted and consumed as a popular vegetable in arid and semi-arid land of northwest China, has been believed to a hyperaccumulator for Cd. However, there is limited information about the accumulation, interaction and fractionation of F and Cd in soil-oilseed rape system under F-Cd stresses. A pot-culture experiment, with single (F or Cd) or double elements (F-Cd) being added to soil, was carried out study the accumulation, interaction and fractionation of F and Cd in sierozem and oilseed rape. We found that soil F applications increased the contents of Cd in exchangeable fraction (EX-Cd), the bound to carbonate fraction (CAB-Cd) and the bound to iron and manganese oxides fraction (FMO-Cd) in soil and also increased plant Cd accumulation. Therefore, we suggest that the permitted level of F should be confined within soil quality standards for farmland of China in order to upset the effect of high F concentration on bioavailability of soil Cd. However, soil Cd applications showed negative effects on the content of F in water soluble fraction (Water-F), hence decreased plant F accumulation. A better understanding of the accumulation, interaction and fractionation of F and Cd in sierozem-oilseed rape system are of great importance for environmental protection and for human health. The present study may serve as a basic understanding of the accumulation, interaction and fractionation of F and Cd in sierozem-oilseed rape system, and provide a suggestion for the environmental management.
Collapse
Affiliation(s)
- Yepu Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Qian Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fei Zang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongren Nan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiling Sun
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wen Huang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lili Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Chen W, Guéguen C, Smith DS, Galceran J, Puy J, Companys E. Metal (Pb, Cd, and Zn) Binding to Diverse Organic Matter Samples and Implications for Speciation Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4163-4172. [PMID: 29498836 DOI: 10.1021/acs.est.7b05302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study evaluated the influence of dissolved organic matter (DOM) properties on the speciation of Pb, Zn, and Cd. A total of six DOM samples were categorized into autochthonous and allochthonous sources based on their absorbance and fluorescence properties. The concentration of free metal ions ( CM2+) measured by titration using the absence of gradients and Nernstian equilibrium stripping (AGNES) method was compared with that predicted by the Windermere humic aqueous model (WHAM). At the same binding condition (pH, dissolved organic carbon, ionic strength, and total metal concentration) the allochthonous DOM showed a higher level of Pb binding than the autochthonous DOM (84- to 504-fold CPb2+ variation). This dependency, however, was less pronounced for Zn (12- to 74-fold CZn2+ variation) and least for Cd (2- to 14-fold CCd2+ variation). The WHAM performance was affected by source variation through the active DOM fraction ( F). The commonly used F = 1.3 provided reliable CPb2+ for allochthonous DOMs and acceptable CCd2+ for all DOM, but it significantly under-predicted CPb2+ and CZn2+ for autochthonous DOM. Adjusting F improved CM2+ predictions, but the optimum F values were metal-specific (e.g., 0.03-1.9 for Pb), as shown by linear correlations with specific optical indexes. The results indicate a potential to improve WHAM by incorporating rapid measurement of DOM optical properties for site-specific F.
Collapse
Affiliation(s)
| | | | - D Scott Smith
- Department of Chemistry & Biochemistry , Wilfrid Laurier University , 75 University Avenue West , N2L 3C5 Waterloo , Ontario , Canada
| | - Josep Galceran
- Departament de Química . Universitat de Lleida and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Catalonia , Spain
| | - Jaume Puy
- Departament de Química . Universitat de Lleida and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Catalonia , Spain
| | - Encarnació Companys
- Departament de Química . Universitat de Lleida and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Catalonia , Spain
| |
Collapse
|
11
|
Kikuchi T, Fujii M, Terao K, Jiwei R, Lee YP, Yoshimura C. Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:36-45. [PMID: 27780098 DOI: 10.1016/j.scitotenv.2016.10.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Chemical speciation, reactivity, and bioavailability of trace metals in aqueous systems arestrongly influenced by dissolved organic matter (DOM). DOM is a mixture of diverse components, so a range of organic molecules potentially participates in the occurrence of dissolved trace metals. In this study, we investigated water quality variables that influence dissolved trace metal concentrations in natural and effluent water systems with a particular attention given to the relationship between DOM optical properties and dissolved copper and iron concentrations. We found that specific UV absorbance (SUVA254: an indicator of DOM aromaticity) has a significant correlation with dissolved trace metal to dissolved organic carbon concentration ratios ([Me]T/[DOC]) for copper and iron in natural freshwaters and treated municipal wastewater in the Sagami River basin, Japan. This trend was also prevalent for other freshwaters in temperate climates except for Fe-rich waters. Our findings indicate that the concentrations of dissolved copper and iron in natural and effluent waters are significantly influenced not only by DOM concentration, but also by aromaticity of DOM, and that this DOM property can be inferred from spectrophotometric measurements.
Collapse
Affiliation(s)
- Tetsuro Kikuchi
- Department of Civil Engineering, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Manabu Fujii
- Department of Civil Engineering, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Koumei Terao
- Department of Civil Engineering, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ran Jiwei
- Department of Civil Engineering, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ying Ping Lee
- Department of Civil Engineering, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil Engineering, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
12
|
Li J, Liu J, Lu H, Jia H, Yu J, Hong H, Yan C. Influence of the phenols on the biogeochemical behavior of cadmium in the mangrove sediment. CHEMOSPHERE 2016; 144:2206-2213. [PMID: 26598988 DOI: 10.1016/j.chemosphere.2015.10.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/20/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Phenols exert a great influence on the dynamic process of Cd in the soil-plant interface. We investigated the influence of phenols on the biogeochemical behavior of cadmium in the rhizosphere of Avicennia marina (Forsk) Vierh. All combinations of four levels of cadmium (0, 1, 2 and 4 mg/kg DW) and two levels of phenol (0 and 15 mg/kg DW) were included in the experimental design. We found that phenols facilitated increasing concentrations of exchangeable cadmium (Ex-Cd), acid volatile sulfide (AVS) and reactive solid-phase Fe (II) in sediments, and iron in plants, but inhibited Cd accumulation in iron plaque and roots. The concentrations of AVS and reactive solid-phase Fe (II) were significantly positively correlated with Cd treatment. As for the biogeochemical behavior of Cd in mangrove sediments, this research revealed that phenols facilitated activation and mobility of Cd. They disturbed the "source-sink" balance of Cd and turned it into a "source", whilst decreasing Cd absorption in A. marina. Additionally, phenols facilitated iron absorption in the plant and alleviated the Fe limit for mangrove plant growth.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Hui Jia
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Junyi Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China; State Key Lab of Marine Evironmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
13
|
Huguet S, Isaure MP, Bert V, Laboudigue A, Proux O, Flank AM, Vantelon D, Sarret G. Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:468-480. [PMID: 26233782 DOI: 10.1016/j.scitotenv.2015.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 05/15/2023]
Abstract
In regions impacted by mining and smelting activities, dredged sediments are often contaminated with metals. Phytotechnologies could be used for their management, but more knowledge on the speciation of metals in the sediment and on their fate after colonization by plant roots is needed. This work was focused on a dredged sediment from the Scarpe river (North of France), contaminated with Zn and Cd. Zn, Cd hyperaccumulating plants Arabidopsis halleri from metallicolous and non-metallicolous origin were grown on the sediment for five months in a pot experiment. The nature and extent of the modifications in Cd speciation with or without plant were determined by electron microscopy, micro X-ray fluorescence and bulk and micro X-ray absorption spectroscopy. In addition, changes in Cd exchangeable and bioavailable pools were evaluated, and Cd content in leachates was measured. Finally, Cd plant uptake and plant growth parameters were monitored. In the original sediment, Cd was present as a mixed Zn, Cd, Fe sulfide. After five months, although pots still contained reduced sulfur, Cd-bearing sulfides were totally oxidized in vegetated pots, whereas a minor fraction (8%) was still present in non-vegetated ones. Secondary species included Cd bound to O-containing groups of organic matter and Cd phosphates. Cd exchangeability and bioavailability were relatively low and did not increase during changes in Cd speciation, suggesting that Cd released by sulfide oxidation was readily taken up with strong interactions with organic matter and phosphate ligands. Thus, the composition of the sediment, the oxic conditions and the rhizospheric activity (regardless of the plant origin) created favorable conditions for Cd stabilization. However, it should be kept in mind that returning to anoxic conditions may change Cd speciation, so the species formed cannot be considered as stable on the long term.
Collapse
Affiliation(s)
- Séphanie Huguet
- ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble, France; Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (IPREM UMR 5254), Université de Pau et des Pays de l'Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9, France; INERIS, Parc technologique Alata, 60550 Verneuil-en-Halatte, France; EMDouai, MPE-GCE, 930 Boulevard Lahure, 59500 Douai, France.
| | - Marie-Pierre Isaure
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (IPREM UMR 5254), Université de Pau et des Pays de l'Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9, France
| | - Valérie Bert
- INERIS, Parc technologique Alata, 60550 Verneuil-en-Halatte, France
| | | | - Olivier Proux
- OSUG, UMS832 CNRS/UJF, 414 rue de la piscine, 38400 Saint-Martin d'Hères, France
| | - Anne-Marie Flank
- Beamline LUCIA, SLS, Swiss Light Source, CH-5232 Villigen, Switzerland; Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
| | - Delphine Vantelon
- Beamline LUCIA, SLS, Swiss Light Source, CH-5232 Villigen, Switzerland; Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
| | - Géraldine Sarret
- ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble, France.
| |
Collapse
|
14
|
Beauchemin S, Rasmussen PE, MacKinnon T, Chénier M, Boros K. Zinc in house dust: speciation, bioaccessibility, and impact of humidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9022-9029. [PMID: 25041107 DOI: 10.1021/es5018587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Indoor exposures to metals arise from a wide variety of indoor and outdoor sources. This study investigates the impact of humid indoor conditions on the bioaccessibility of Zn in dust, and the transformation of Zn species during weathering. House dust samples were subjected to an oxygenated, highly humid atmosphere in a closed chamber for 4 to 5 months. Zinc bioaccessibility before and after the experiment was determined using a simulated gastric acid extraction. Bulk and micro X-ray absorption structure (XAS) spectroscopy was used to speciate Zn in dust. Exposure to humid conditions led to a significant increase in Zn bioaccessibility in all samples, which was due to a redistribution of Zn from inorganic forms toward the organic pools such as Zn adsorbed on humates. ZnO readily dissolved under humid conditions, whereas ZnS persisted in the dust. Elevated humidity in indoor microenvironments may sustain higher Zn bioaccessibility in settled dust compared to drier conditions, and part of this change may be related to fungal growth in humid dust. These results help to explain the greater bioaccessibility of certain metals in house dust compared to soils.
Collapse
Affiliation(s)
- Suzanne Beauchemin
- Natural Resources Canada , CanmetMINING, 555 Booth Street, Ottawa, Ontario Canada , K1A 0G1
| | | | | | | | | |
Collapse
|
15
|
Li W, Wang YJ, Zhu M, Fan TT, Zhou DM, Phillips BL, Sparks DL. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4211-9. [PMID: 23550510 DOI: 10.1021/es305120x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously.
Collapse
Affiliation(s)
- Wei Li
- Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19717-1303, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT. The effect of zinc limitation on the transcriptome ofPseudomonas protegens Pf-5. Environ Microbiol 2012; 15:702-15. [DOI: 10.1111/j.1462-2920.2012.02849.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology; Oregon State University; Corvallis; OR; USA
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| |
Collapse
|
17
|
Lee SS, Nagy KL, Park C, Fenter P. Heavy metal sorption at the muscovite (001)-fulvic acid interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9574-9581. [PMID: 21970790 DOI: 10.1021/es201323a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The role of fulvic acid (FA) in modifying the adsorption mode and sorption capacity of divalent metal cations on the muscovite (001) surface was evaluated by measuring the uptake of Cu(2+), Zn(2+), and Pb(2+) from 0.01 m solutions at pH 3.7 with FA using in situ resonant anomalous X-ray reflectivity. The molecular-scale distributions of these cations combined with those previously observed for Hg(2+), Sr(2+), and Ba(2+) indicate metal uptake patterns controlled by cation-FA binding strength and cation hydration enthalpy. For weakly hydrated cations the presence of FA increased metal uptake by approximately 60-140%. Greater uptake corresponded with increasing cation-FA affinity (Ba(2+) ≈ Sr(2+) < Pb(2+) < Hg(2+)). This trend is associated with differences in the sorption mechanism: Ba(2+) and Sr(2+) sorbed in the outer portion of the FA film whereas Pb(2+) and Hg(2+) complexed with FA effectively throughout the film. The more strongly hydrated Cu(2+) and Zn(2+) adsorbed as two distinct outer-sphere complexes on the muscovite surface, with minimal change from their distribution without FA, indicating that their strong hydration impedes additional binding to the FA film despite their relatively strong affinity for FA.
Collapse
Affiliation(s)
- Sang Soo Lee
- Department of Earth and Environmental Sciences, 845 West Taylor Street MC-186, University of Illinois at Chicago, Chicago, Illinois 60607, United States.
| | | | | | | |
Collapse
|
18
|
Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX. Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 2011; 16:1409-17. [PMID: 21350394 PMCID: PMC6259926 DOI: 10.3390/molecules16021409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/18/2022] Open
Abstract
The role of sulfur on the availability of Cu and the bacterial community in rice rhizospheres was investigated by pot experiments. With sulfur addition, pH in rhizosphere soil decreased and Mg(NO3)2 extractable Cu increased significantly. The bacterial community composition also changed with sulfur addition. Some specific clones having high similarity to Thiobacillus, which indicated that sulfur oxidation in the rice rhizosphere could increase the availability of Cu. These results suggested that sulfur source which could provide substrate to sulfur oxidizing bacteria and enhance the availability of Cu was not a suitable sulfur fertilizer for Cu polluted soil.
Collapse
Affiliation(s)
- Ji-Yan Shi
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-571-86971424, Fax: +86-571-86971898
| | - Hui-Rong Lin
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
- Department of Environmental Science and Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
| | - Xiao-Feng Yuan
- Life Science Department, Zhejiang Chinese Medical University, Hangzhou 310053, China; E-Mail: (X.-F.Y.)
| | - Xin-Cai Chen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
| | - Chao-Feng Shen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
| | - Ying-Xu Chen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China; E-Mails: (H.-R.L.); (X.-C.C.); (C.-F.S.); (Y.-X.C.)
| |
Collapse
|
19
|
Liu C, Bai R. Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd. J Colloid Interface Sci 2010; 350:282-9. [DOI: 10.1016/j.jcis.2010.04.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/25/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
|
20
|
Bigalke M, Weyer S, Wilcke W. Copper isotope fractionation during complexation with insolubilized humic acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5496-502. [PMID: 20557129 DOI: 10.1021/es1017653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The bioavailability, mobility, and toxicity of Cu depend on Cu speciation in solution. In natural systems like soils, sediments, lakes, and river waters, organo-Cu complexes are the dominating species. Organo-complexation of Cu may cause a fractionation of stable Cu isotopes. The knowledge of Cu isotope fractionation during sorption on humic acid may help to better understand Cu isotope fractionation in natural environments and thus facilitate the use of Cu stable isotope ratios (delta(65)Cu) as tracer of the fate of Cu in the environment. We therefore studied Cu isotope fractionation during complexation with insolubilized humic acid (IHA) as a surrogate of humic acid in soil organic matter with the help of sorption experiments at pH 2-7. We used NICA-Donnan chemical speciation modeling to describe Cu binding on IHA and to estimate the influence of Cu binding to different functional groups on Cu isotope fractionation. The observed overall Cu isotope fractionation at equilibrium between the solution and IHA was Delta(65)Cu(IHA-solution) = 0.26 +/- 0.11 per thousand (2SD). Modeled fractionations of Cu isotopes for low- (LAS) and high-affinity sites (HAS) were identical with Delta(65)Cu(LAS/HAS-solution) = 0.27. pH did not influence Cu isotope fractionation in the investigated pH range.
Collapse
Affiliation(s)
- Moritz Bigalke
- Earth System Science Research Center, Geographic Institute, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany.
| | | | | |
Collapse
|
21
|
Strawn DG, Baker LL. Molecular characterization of copper in soils using X-ray absorption spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2813-21. [PMID: 19446385 DOI: 10.1016/j.envpol.2009.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 05/14/2023]
Abstract
Bioavailability of Cu in the soil is a function of its speciation. In this paper we investigated Cu speciation in six soils using X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and synchrotron-based micro X-ray fluorescence (mu-XRF). The XANES and EXAFS spectra in all of the soils were the same. mu-XRF results indicated that the majority of the Cu particles in the soils were not associated with calcium carbonates, Fe oxides, or Cu sulfates. Principal component analysis and target transform of the XANES and EXAFS spectra suggested that Cu adsorbed on humic acid (HA) was an acceptable match. Thus it appears that Cu in all of the soils is primarily associated with soil organic matter (SOM). Theoretical fitting of the molecular structure in the soil EXAFS spectra revealed that the Cu in the soils existed as Cu atoms bound in a bidentate complex to O or N functional groups.
Collapse
Affiliation(s)
- Daniel G Strawn
- Soil and Land Resources Division, P.O. Box 442339, University of Idaho, Moscow, ID 83844-2339, USA.
| | | |
Collapse
|
22
|
Jouvin D, Louvat P, Juillot F, Maréchal CN, Benedetti MF. Zinc isotopic fractionation: why organic matters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:5747-54. [PMID: 19731672 DOI: 10.1021/es803012e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Zinc isotopic fractionation during adsorption onto a purified humic acid (PHA), an analogue of organic matter (OM), has been investigated experimentally as a function of pH. The Donnan Membrane device (DM) was used to separate Zn bound to the PHA from free Zn2+ ions in solution and allowed us to measure the isotopic ratios of free Zn2+. Below pH 6, adsorption of Zn on the PHA resulted in no measurable isotopic fractionation, while at higher pH, Zn bound to PHA was heavier than free Zn2+ (delta66Zn(PHA-FreeZn2+) = +0.24 per thousand +/- 0.06 2sigma, n = 4). This can be explained by changes in Zn speciation with pH, with higher complexation constants and shorter bond lengths for Zn-PHA complex compared to the free Zn2+. Complexation of Zn with PHA occurred mostly through binding to high affinity sites (HAS) and low affinity sites (LAS). Fractionation factors for 66Zn/64Zn ratios determined by mass balance calculations were equal to 1.0004 for HAS (alpha(HAS-solution)) and 1.000 for LAS (alpha(LAS-soultion)). delta66Zn(OM-FreeZn2+) should then vary according to the heterogeneous nature of the OM, because of the variable relative proportions of these two types of sites. The NICA-Donnan model, along with these fractionation factors and measured delta66Zn(TotalDissolved), was used to simulate the corresponding isotopic composition of free Zn2+ in the Seine River, France: delta66Zn(TotalDissolved-FreeZn2+) varied from +0.02 per thousand to +0.18 per thousand, depending on the HAS/LAS ratio assumed for the OM. This study allows a better understanding of Zn isotope fractionation mechanisms associated with organic mater binding.
Collapse
Affiliation(s)
- Delphine Jouvin
- Equipe de Géochimie des Eaux, Université Paris Diderot - Institut de Physique du Globe de Paris - CNRS, UMR 7154, Batiment Lamarck, 75205 Paris cedex 13, France.
| | | | | | | | | |
Collapse
|
23
|
Duckworth OW, Bargar JR, Sposito G. Quantitative structure-activity relationships for aqueous metal-siderophore complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:343-349. [PMID: 19238962 DOI: 10.1021/es802044y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Siderophores, biogenic chelating agents that facilitate the solubilization and uptake of ferric iron, form stable complexes with a wide range of nutrient and contaminant metals and thus may profoundly affect their fate, transport, and biogeochemical cycling. To understand more comprehensively the factors that control the stability and reactivity, as well as the potential for microbial uptake, of metal-siderophore complexes, we probed the structures of complexes formed between the trihydroxamate siderophore desferrioxamine B (DFOB) and Cu(II), Ga(III), Mn(II), Ni(II), and Zn(II) in solution by using extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that all metals studied are dominantly in octahedral coordination, with significant Jahn-Teller distortion of the Cu(II)HDFOB(0) complex. Additionally, log-transformed complex stability constants correlate not only with the charge-normalized interatomic distances within the complex, affirming and expanding existing predictive relationships, but also with the Debye-Waller parameter of the first coordination shell. The derived structure-activity relationships not only quantitatively relate the measured physical architecture of aqueous complexes to their observed stability but also allow for the prediction of siderophore-metal stability constants.
Collapse
Affiliation(s)
- Owen W Duckworth
- Department of Soil Science, North Carolina State University, Raleigh, North Carolina 27695-7619, USA
| | | | | |
Collapse
|