1
|
Partl GJ, Naier BFE, Bakry R, Schlapp-Hackl I, Kopacka H, Wurst K, Gelbrich T, Fliri L, Schottenberger H. Can't touch this: Highly omniphobic coatings based on self-textured C6-fluoroponytailed polyvinylimidazolium monoliths. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073794. [PMID: 33916482 PMCID: PMC8038605 DOI: 10.3390/ijerph18073794] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are manmade synthetic chemicals which have been in existence for over 70 years. Though they are currently being phased out, their persistence in the environment is widespread. There is increasing evidence linking PFAS exposure to health effects, an issue of concern since PFAS such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulate in humans, with a half-life of years. Many epidemiological studies suggest that, worldwide, semen quality has decreased over the past several decades. One of the most worrying effects of PFOS and PFOA is their associations with lower testosterone levels, similar to clinical observations in infertile men. This review thus focuses on PFOS/PFOA-associated effects on male reproductive health. The sources of PFAS in drinking water are listed. The current epidemiological studies linking increased exposure to PFAS with lowered testosterone and semen quality, and evidence from rodent studies supporting their function as endocrine disruptors on the reproductive system, exhibiting non-monotonic dose responses, are noted. Finally, their mechanisms of action and possible toxic effects on the Leydig, Sertoli, and germ cells are discussed. Future research efforts must consider utilizing better human model systems for exposure, using more accurate PFAS exposure susceptibility windows, and improvements in statistical modeling of data to account for the endocrine disruptor properties of PFAS.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-5148
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115908. [PMID: 33190976 DOI: 10.1016/j.envpol.2020.115908] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Calafat AM, Kato K, Hubbard K, Jia T, Botelho JC, Wong LY. Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: Paired serum-urine data from the 2013-2014 National Health and Nutrition Examination Survey. ENVIRONMENT INTERNATIONAL 2019; 131:105048. [PMID: 31376596 PMCID: PMC7879379 DOI: 10.1016/j.envint.2019.105048] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 05/18/2023]
Abstract
Concerns are heightened from detecting environmentally persistent man-made per- and polyfluoroalkyl substances (PFAS) in drinking water systems around the world. Many PFAS, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), remain in the human body for years. Since 1999-2000, assessment of exposure to PFOS, PFOA, and other select PFAS in the U.S. general population has relied on measuring PFAS serum concentrations in participants of the National Health and Nutrition Examination Survey (NHANES). Manufacturers have replaced select chemistries ("legacy" PFAS) with PFAS with shorter biological half-lives (e.g., GenX, perfluorobutanoate [PFBA]) which may efficiently eliminate in urine. However, knowledge regarding exposure to these compounds is limited. We analyzed 2682 urine samples for 17 legacy and alternative PFAS in 2013-2014 NHANES participants ≥6 years of age. Concentrations of some of these PFAS, measured previously in paired serum samples from the same NHANES participants, suggested universal exposure to PFOS and PFOA, and infrequent or no exposure to two short-chain PFAS, perfluorobutane sulfonate and perfluoroheptanoate. Yet, in urine, PFAS were seldom detected; the frequency of not having detectable concentrations of any of the 17 PFAS was 67.5%. Only two were detected in >1.5% of the population: PFBA (13.3%) and perfluorohexanoate (PFHxA, 22.6%); the 90th percentile urine concentrations were 0.1 μg/L (PFBA), and 0.3 μg/L (PFHxA). These results suggest that exposures to short-chain PFAS are infrequent or at levels below those that would result in detectable concentrations in urine. As such, these findings do not support biomonitoring of short-chain PFAS or fluorinated alternatives in the general population using urine, and highlight the importance of selecting the adequate biomonitoring matrix.
Collapse
Affiliation(s)
- Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kayoko Kato
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kendra Hubbard
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tao Jia
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lee-Yang Wong
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
5
|
Non-targeted Screening in Environmental Monitoring Programs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:731-741. [PMID: 31347081 DOI: 10.1007/978-3-030-15950-4_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Contaminant monitoring programs have been tasked with understanding the fate and transport of toxic chemicals in the environment. Mass spectrometry based methods have traditionally been developed to maximize sensitivity and accuracy of a select set of target compounds. As mass spectrometry methods have advanced, so has the breadth of questions proposed by environmental chemists. Incorporating these methods in chemical monitoring programs provides large data sets to explore the effects of complex mixtures on environmental systems.
Collapse
|
6
|
Ledda C, La Torre G, Cinà D, Paravizzini G, Vitale E, Pavone P, Iavicoli I, Rapisarda V. Serum concentrations of perfluorinated compounds among children living in Sicily (Italy). Toxicol Lett 2018; 298:186-193. [PMID: 30217717 DOI: 10.1016/j.toxlet.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
|
7
|
Tian M, Huang Q, Wang H, Martin FL, Liu L, Zhang J, Shen H. Biphasic effects of perfluorooctanoic acid on steroidogenesis in mouse Leydig tumour cells. Reprod Toxicol 2018; 83:54-62. [PMID: 30508572 DOI: 10.1016/j.reprotox.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant, which may possess endocrine disrupting properties. Herein, we investigated the possible mechanism(s) of toxicity and steroidogenesis in mouse Leydig cells. MLTC-1 (mouse Leydig tumour cells) cells were exposed to 0, 50, 100 or 200 μM PFOA for 48 h to ascertain their effects on the nuclear (membrane) receptor responses, steroidogenesis pathway and related regulated gene expression and steroid hormone secretion profiles. Our results reveal that nuclear receptors PXR, SR-B1 and LHR are sensitive to PFOA exposure. PFOA can accumulate in mitochondria and alter cholesterol precursor (fatty acid) mitochondrial transport process-related gene expression and thus inhibit steroid hormone precursor (cholesterol) production. In particular, PFOA exhibits biphasic effects on testosterone and progesterone production at differing levels of exposure. These findings indicate the potential endocrine-related effects of PFOA on steroid hormone secretion in Leydig cells and point to a novel disruption model.
Collapse
Affiliation(s)
- Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhejiang Zhoushan, 316021, China
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Kato K, Kalathil AA, Patel AM, Ye X, Calafat AM. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. CHEMOSPHERE 2018; 209:338-345. [PMID: 29935462 PMCID: PMC7916321 DOI: 10.1016/j.chemosphere.2018.06.085] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), man-made chemicals with variable length carbon chains containing the perfluoroalkyl moiety (CnF2n+1-), are used in many commercial applications. Since 1999-2000, several long-chain PFAS, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have been detected at trace levels in the blood of most participants of the National Health and Nutrition Examination Survey (NHANES)-representative samples of the U.S. general population-while short-chain PFAS have not. Lower detection frequencies and concentration ranges may reflect lower exposure to short-chain PFAS than to PFOS or PFOA or that, in humans, short-chain PFAS efficiently eliminate in urine. We developed on-line solid phase extraction-HPLC-isotope dilution-MS/MS methods for the quantification in 50 μL of urine or serum of 15 C3-C11 PFAS (C3 only in urine), and three fluorinated alternatives used as PFOA or PFOS replacements: GenX (ammonium salt of 2,3,3,3,-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoate, also known as HFPO-DA), ADONA (ammonium salt of 4,8-dioxa-3H-perfluorononanoate), and 9Cl-PF3ONS (9-chlorohexadecafluoro-3-oxanonane-1-sulfonate), main component of F53-B. Limit of detection for all analytes was 0.1 ng/mL. To validate the method, we analyzed 50 commercial urine/serum paired samples collected in 2016 from U.S. volunteers with no known exposure to the chemicals. In serum, detection frequency and concentration patterns agreed well with those from NHANES. By contrast, except for perfluorobutanoate, we did not detect long-chain or short-chain PFAS in urine. Also, we did not detect fluorinated alternatives in either urine or serum. Together, these results suggest limited exposure to both short-chain PFAS and select fluorinated alternatives in this convenience population.
Collapse
Affiliation(s)
- Kayoko Kato
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Akil A Kalathil
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ayesha M Patel
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
9
|
Steves AN, Turry A, Gill B, Clarkson-Townsend D, Bradner JM, Bachli I, Caudle WM, Miller GW, Chan AWS, Easley CA. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Syst Biol Reprod Med 2018; 64:225-239. [PMID: 29911897 DOI: 10.1080/19396368.2018.1481465] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. ABBREVIATIONS CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.
Collapse
Affiliation(s)
- Alyse N Steves
- a Genetics and Molecular Biology Program , Laney Graduate School, Emory University , Atlanta , GA , USA
| | - Adam Turry
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - Brittany Gill
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | | | - Joshua M Bradner
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Ian Bachli
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - W Michael Caudle
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Gary W Miller
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Anthony W S Chan
- e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA.,f Department of Human Genetics , Emory University , Atlanta , GA , USA
| | - Charles A Easley
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA.,e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA
| |
Collapse
|
10
|
Khanjani P, King AWT, Partl GJ, Johansson LS, Kostiainen MA, Ras RHA. Superhydrophobic Paper from Nanostructured Fluorinated Cellulose Esters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11280-11288. [PMID: 29518309 PMCID: PMC6095637 DOI: 10.1021/acsami.7b19310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/08/2018] [Indexed: 05/15/2023]
Abstract
The development of economically and ecologically viable strategies for superhydrophobization offers a vast variety of interesting applications in self-cleaning surfaces. Examples include packaging materials, textiles, outdoor clothing, and microfluidic devices. In this work, we produced superhydrophobic paper by spin-coating a dispersion of nanostructured fluorinated cellulose esters. Modification of cellulose nanocrystals was accomplished using 2 H,2 H,3 H,3 H-perfluorononanoyl chloride and 2 H,2 H,3 H,3 H-perfluoroundecanoyl chloride, which are well-known for their ability to reduce surface energy. A stable dispersion of nanospherical fluorinated cellulose ester was obtained by using the nanoprecipitation technique. The hydrophobized fluorinated cellulose esters were characterized by both solid- and liquid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. Further, we investigated the size, shape, and structure morphology of nanostructured fluorinated cellulose esters by dynamic light scattering, scanning electron microscopy, and X-ray diffraction measurements.
Collapse
Affiliation(s)
- Pegah Khanjani
- Department of Bioproducts
and Biosystems, Aalto University School
of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
| | - Alistair W. T. King
- Department of Chemistry, University of Helsinki, AI Virtasen Aukio 1, 00014 Helsinki, Finland
| | - Gabriel J. Partl
- Department of Chemistry, University of Helsinki, AI Virtasen Aukio 1, 00014 Helsinki, Finland
| | - Leena-Sisko Johansson
- Department of Bioproducts
and Biosystems, Aalto University School
of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts
and Biosystems, Aalto University School
of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
- Department of Applied Physics, Aalto University
School of Science, Puumiehenkuja
2, 02150 Espoo, Finland
| | - Robin H. A. Ras
- Department of Bioproducts
and Biosystems, Aalto University School
of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
- Department of Applied Physics, Aalto University
School of Science, Puumiehenkuja
2, 02150 Espoo, Finland
| |
Collapse
|
11
|
Frawley RP, Smith M, Cesta MF, Hayes-Bouknight S, Blystone C, Kissling GE, Harris S, Germolec D. Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague–Dawley rats and B6C3F1/N mice when administered by oral gavage for 28 days. J Immunotoxicol 2018. [DOI: 10.1080/1547691x.2018.1445145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rachel P. Frawley
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew Smith
- Richard Bland College of William & Mary, South Prince George, VA, USA
| | - Mark F. Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Chad Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Grace E. Kissling
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Shawn Harris
- Social & Scientific Systems, Inc., Durham, NC, USA
| | - Dori Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Zhang R, Ye J, Wei Q, Li M, Xu K, Li Z, Lin W, Liu P, Chen R, Ma A, Zhou Z. Plasma concentration of 14 perfluoroalkyl acids (PFAAs) among children from seven cities in Guangdong, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1469-1476. [PMID: 29066194 DOI: 10.1016/j.scitotenv.2017.10.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
The toxicity and persistence of perfluoroalkyl acids (PFAAs) in humans have drawn growing concerns, particularly for children. However, data regarding the concentrations of PFAAs in children are limited. In this study, we measured the concentrations of 14 PFAAs in plasma samples collected from 1192 children aged 0-7years from 7 cities in Guangdong Province: Guangzhou, Shenzhen, Foshan, Dongguan, Zhaoqing, Zhongshan and Zhanjiang. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in >99.5% of the analysed samples. PFOS had the highest median concentration (23.6ng/mL) in the total samples, followed by PFOA (2.8ng/mL). The median concentrations of the other PFAAs were lower than 0.4ng/mL. The concentrations of perfluorohexanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, perfluorohexane sulfonate, PFOA and PFOS in children from Foshan were significantly higher than those found in other cities (p<0.001). Negative correlations between most of the PFAA concentrations and age (r=-0.06--0.45) were found in all children. Weak to moderate correlations (r=0.080-0.698) were observed between all PFAA concentrations. Our findings indicated a high exposure of children to PFAAs in the early life-stage. The exposure sources and pathways of PFAAs in different regions are different. Considering a lack of information on the exposure pathways and health status, more studies are needed to evaluate the exposure resources and assess the health risk of PFAA exposure in children.
Collapse
Affiliation(s)
- Ruijia Zhang
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Jufeng Ye
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Qinzhi Wei
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Minjie Li
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Kaihui Xu
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Zihuan Li
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Wenting Lin
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Peishan Liu
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Ruopei Chen
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China
| | - Ande Ma
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China.
| | - Zhifeng Zhou
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, Guangdong, China.
| |
Collapse
|
13
|
Omorodion H, Palenzuela M, Ruether M, Twamley B, Platts JA, Baker RJ. A rationally designed perfluorinated host for the extraction of PFOA from water utilising non-covalent interactions. NEW J CHEM 2018. [DOI: 10.1039/c7nj03026f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three hosts for the encapsulation of perfluorooctanoic acid have been synthesized. The host:guest complexes have been characterized by multinuclear NMR spectroscopy in solution and the solid state.
Collapse
Affiliation(s)
| | - Miguel Palenzuela
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Manuel Ruether
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Brendan Twamley
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | | | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
14
|
Zhang R, Wei Q, Li M, Li Z, Lin W, Ma A, Zhou Z. Exposure of children aged 0-7 years to perfluorinated compounds in Foshan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23299-23308. [PMID: 28836141 DOI: 10.1007/s11356-017-9922-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
To evaluate the exposure of children to 14 perfluorinated compounds (PFCs) in a typical and representative industrial city, plasma samples from 476 children aged 0-7 years in Foshan, China, were analysed. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in 100% of the samples, accounting for 82.27 and 11.46% of the total PFC concentrations, respectively, while PFOS peaked at age 0-1 years, for which the mean and median concentrations were 113.71 and 83.65 ng/mL, respectively, while PFOA peaked at age 3-4 years, for which the mean and median concentrations were 10.68 and 6.58 ng/mL, respectively. The concentrations of PFOS, perfluorohexane sulfonate and perfluorohexanoic acid decreased with age among children aged 0-7 years, and no gender-related differences were found in the concentrations of PFCs. A high correlation was found among all PFCs, especially between PFCs of similar carbon chains (r = 0.161-0.695, p < 0.05). In addition, the concentrations of PFOS and PFOA in children's plasma in Foshan were up to 40-fold higher than those reported in China and other countries. In conclusion, children in Foshan have extensive exposure to PFCs, especially in infancy. Further studies are needed to explore the impact of PFCs on children who live in a typical and representative industrial city in China. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ruijia Zhang
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University, North 1838th Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qinzhi Wei
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Minjie Li
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University, North 1838th Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zihuan Li
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University, North 1838th Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenting Lin
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University, North 1838th Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ande Ma
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University, North 1838th Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhifeng Zhou
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University, North 1838th Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
15
|
Olsen GW, Mair DC, Lange CC, Harrington LM, Church TR, Goldberg CL, Herron RM, Hanna H, Nobiletti JB, Rios JA, Reagen WK, Ley CA. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000-2015. ENVIRONMENTAL RESEARCH 2017; 157:87-95. [PMID: 28528142 DOI: 10.1016/j.envres.2017.05.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 05/19/2023]
Abstract
In 2015, thirteen per- and polyfluoroalkyl substances (PFAS), including perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA) were analyzed in human plasma that were collected from a total of 616 American Red Cross male and female blood donors (ages 20-69) at 6 regional blood collection centers. Plasma samples were analyzed using a validated solvent precipitation-isotope dilution direction-liquid chromatography tandem mass spectrometry method. The data were analyzed in conjunction with prior cross-sectional investigations [2000-2001 (n =645), 2006 (n =600), and 2010 (n =600)] to determine PFAS trends. Age- and sex-adjusted geometric mean serum (2000-2001) and plasma (2006, 2010, 2015) concentrations (ng/mL) were, respectively: PFHxS (2.3, 1.5, 1.3, 0.9); PFOS (35.1, 14.5, 8.4, 4.3); PFOA (4.7, 3.4, 2.4, 1.1); PFNA (0.6, 1.0, 0.8, 0.4); and PFDA (0.2, 0.3, 0.3, 0.1). The percentage decline in these geometric mean concentrations from 2000-2001 to 2015 were: PFHxS (61%); PFOS (88%); PFOA (77%); PFNA (33%); and PFDA (50%). The results indicate a continued decline of PFHxS, PFOS, and PFOA concentrations in American Red Cross blood donors. For the remaining PFAS measured in 2015, including the shorter chain perfluoroalkyls perfluorobutanesulfonate (PFBS) and perfluorohexanoate (PFHxA), the majority of samples were below the lower limit of quantitation.
Collapse
Affiliation(s)
| | - David C Mair
- American Red Cross, North Central Region, St. Paul, MN, USA
| | | | | | - Timothy R Church
- University of Minnesota, Division of Environmental Health Sciences, Minneapolis, MN, USA
| | | | - Ross M Herron
- American Red Cross, Southern California Region, Los Angeles, CA, USA
| | - Hank Hanna
- American Red Cross, Pacific Northwest Region, Portland, OR, USA
| | - John B Nobiletti
- American Red Cross, Greater Alleghenies Region, Johnstown, PA, USA
| | - Jorge A Rios
- American Red Cross, New England Region, Dedham, MA, USA
| | | | - Carol A Ley
- 3M Company, Medical Department, St. Paul, MN, USA
| |
Collapse
|
16
|
PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 2017; 387:95-107. [PMID: 28558994 DOI: 10.1016/j.tox.2017.05.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans and wildlife. While PFOA and PFOS have been the subject of numerous studies since they were first described over a decade ago, less is known about the biological activity of PFHxS and PFNA. Most PFAAs are activators of peroxisome proliferator-activated receptor α (PPARα), although the biological effects of these compounds are likely mediated by other factors in addition to PPARα. To evaluate the effects of PFHxS and PFNA, male wild-type and Pparα-null mice were dosed by oral gavage with PFHxS (3 or 10mg/kg/day), PFNA (1 or 3mg/kg/day), or vehicle for 7days, and liver gene expression was evaluated by full-genome microarrays. Gene expression patterns were then compared to historical in-house data for PFOA and PFOS in addition to the experimental hypolipidemic agent, WY-14,643. While WY-14,643 altered most genes in a PPARα-dependent manner, approximately 11-24% of regulated genes in PFAA-treated mice were independent of PPARα. The possibility that PFAAs regulate gene expression through other molecular pathways was evaluated. Using data available through a microarray database, PFAA gene expression profiles were found to exhibit significant similarity to profiles from mouse tissues exposed to agonists of the constitutive activated receptor (CAR), estrogen receptor α (ERα), and PPARγ. Human PPARγ and ERα were activated by all four PFAAs in trans-activation assays from the ToxCast screening program. Predictive gene expression biomarkers showed that PFAAs activate CAR in both genotypes and cause feminization of the liver transcriptome through suppression of signal transducer and activator of transcription 5B (STAT5B). These results indicate that, in addition to activating PPARα as a primary target, PFAAs also have the potential to activate CAR, PPARγ, and ERα as well as suppress STAT5B.
Collapse
|
17
|
Loos M, Singer H. Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data. J Cheminform 2017; 9:12. [PMID: 28286574 PMCID: PMC5323340 DOI: 10.1186/s13321-017-0197-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A large proportion of polar anthropogenic compounds routinely released into the environment comprises homologue series, i.e., sets of chemicals differing in a repeating chemical unit. Using analytical techniques such as liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), these compounds are readily measurable as signal sets with characteristic differences in mass and typically retention time. However, and despite such distinct characteristics, no computational approach for the direct, simultaneous and untargeted detection of all such signal sets comprising both LC and HRMS information has to date been presented. RESULTS A fast two-staged approach has been developed to extract LC-HRMS signal patterns which can be indicative of homologous analytes. In a first stage, a k-d tree representation of picked LC-HRMS peaks is used to extract all feasible 3-tuples of peaks with restrictions in, e.g., mass defect differences. A second stage then recombines these 3-tuples to larger series tuples while ensuring smooth changes in their retention time characteristics. This unsupervised approach was evaluated for ten effluent samples from Swiss sewage treatment plants (STPs), in both positive and negative electrospray-ionization. CONCLUSIONS Beside recovering all continuous series of previously identified homologues, substantial fractions of nontargeted peaks could subsequently be assigned into very diverse peak series, although assignments were often not unique. The latter ambiguities were resolved by a self-organizing map technique and revealed both distinctive series meshing and rivaling combinatorial solutions in the presence of isobaric or gapped series peaks. When comparing STPs, several ubiquitous yet partially low-frequent series mass differences emerged and may prioritize future identification efforts. The presented algorithm is freely available as part of the R package nontarget and as a user-friendly web-interface at www.envihomolog.eawag.ch.Graphical AbstractSearch for systematic series indicative of homologous compounds is based on a partitioned representation of LC-HRMS signal characteristics. This nontargeted search first extracts series triplets in a nearest-neighbour walk and then recombines them to larger ones. For illustration, the two dimensions involving mass defect characteristics are represented by one only.
Collapse
Affiliation(s)
- Martin Loos
- Swiss Federal Institute for Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, 8092 Switzerland
| | - Heinz Singer
- Swiss Federal Institute for Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| |
Collapse
|
18
|
Cariou R, Veyrand B, Yamada A, Berrebi A, Zalko D, Durand S, Pollono C, Marchand P, Leblanc JC, Antignac JP, Le Bizec B. Perfluoroalkyl acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women and their newborns. ENVIRONMENT INTERNATIONAL 2015; 84:71-81. [PMID: 26232143 DOI: 10.1016/j.envint.2015.07.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 05/17/2023]
Abstract
One major concern regarding perfluoroalkyl acids (PFAAs) is their potential role in onset of health troubles consecutive to early exposure during the perinatal period. In the present work, the internal exposure levels of 18 targeted PFAAs were determined in ca. 100 mother-newborn pairs recruited in France between 2010 and 2013. In serum, the cumulated concentrations of the 7 most frequently detected compounds were 5.70ng/mL and 2.83ng/mL (median values) in maternal and cord serum, respectively. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexylesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) contributed to around 90% of the total PFAAs contamination, with concentration levels and contamination profiles in accordance with other published work in Europe. Levels measured in breast milk were far lower (20 to 150 fold) than those determined in serum. Associations between the different monitored substances as well as between levels determined in the different investigated biological matrices mostly do not appear statistically significant. The estimated materno-foetal transfer would be thus substance-dependant, mainly driven by the physico-chemical properties of the different PFAAs (nature of polar group and length of alkylated side chain). We conclude that trans-placental passage and breastfeeding are both significant routes of human exposure to PFAAs.
Collapse
Affiliation(s)
- Ronan Cariou
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Bruno Veyrand
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Ami Yamada
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France; Risk Assessment Department - French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Alain Berrebi
- Service de gynécologie-obstétrique, CHU Paule-de-Viguier, 330, avenue de Grande-Bretagne, 31059 Toulouse, France
| | - Daniel Zalko
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Sophie Durand
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Charles Pollono
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Philippe Marchand
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Jean-Charles Leblanc
- Risk Assessment Department - French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Philippe Antignac
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France; INRA, Nantes F-44307, France.
| | - Bruno Le Bizec
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| |
Collapse
|
19
|
Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14546-59. [PMID: 25854201 PMCID: PMC4592498 DOI: 10.1007/s11356-015-4202-7] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are used in a wide range of products of all day life. Due to their toxicological potential, an emerging focus is directed towards their exposure to humans. This study investigated the PFAS load of consumer products in a broad perspective. Perfluoroalkyl sulfonic acids (C4, C6-C8, C10-PFSA), carboxylic acids (C4-C14-PFCA) and fluorotelomer alcohols (4:2, 6:2; 8:2 and 10:2 FTOH) were analysed in 115 random samples of consumer products including textiles (outdoor materials), carpets, cleaning and impregnating agents, leather samples, baking and sandwich papers, paper baking forms and ski waxes. PFCA and PFSA were analysed by HPLC-MS/MS, whereas FTOH were detected by GC/CI-MS. Consumer products such as cleaning agents or some baking and sandwich papers show low or negligible PFSA and PFCA contents. On the other hand, high PFAS levels were identified in ski waxes (up to about 2000 μg/kg PFOA), leather samples (up to about 200 μg/kg PFBA and 120 μg/kg PFBS), outdoor textiles (up to 19 μg/m(2) PFOA) and some other baking papers (up to 15 μg/m(2) PFOA). Moreover, some test samples like carpet and leather samples and outdoor materials exceeded the EU regulatory threshold value for PFOS (1 μg/m(2)). A diverse mixture of PFASs can be found in consumer products for all fields of daily use in varying concentrations. This study proves the importance of screening and monitoring of consumer products for PFAS loads and the necessity for an action to regulate the use of PFASs, especially PFOA, in consumer products.
Collapse
Affiliation(s)
- Matthias Kotthoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Fraunhofer IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany.
| | - Josef Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Fraunhofer IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany.
| | - Heinrich Jürling
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Fraunhofer IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany.
| | - Martin Schlummer
- Fraunhofer Institute for Process Engineering and Packaging, Fraunhofer IVV, Giggenhauser Straße 35, 85354, Freising, Germany.
| | - Dominik Fiedler
- Fraunhofer Institute for Process Engineering and Packaging, Fraunhofer IVV, Giggenhauser Straße 35, 85354, Freising, Germany.
| |
Collapse
|
20
|
Wu XM, Bennett DH, Calafat AM, Kato K, Strynar M, Andersen E, Moran RE, Tancredi DJ, Tulve NS, Hertz-Picciotto I. Serum concentrations of perfluorinated compounds (PFC) among selected populations of children and adults in California. ENVIRONMENTAL RESEARCH 2015; 136:264-73. [PMID: 25460645 PMCID: PMC4724210 DOI: 10.1016/j.envres.2014.09.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 05/18/2023]
Abstract
Perfluorinated compounds (PFCs) have been widely used in industrial applications and consumer products. Their persistent nature and potential health impacts are of concern. Given the high cost of collecting serum samples, this study is to understand whether we can quantify PFC serum concentrations using factors extracted from questionnaire responses and indirect measurements, and whether a single serum measurement can be used to classify an individual's exposure over a one-year period. The study population included three demographic groups: young children (2-8 years old) (N=67), parents of young children (<55 years old) (N=90), and older adults (>55 years old) (N=59). PFC serum concentrations, house dust concentrations, and questionnaires were collected. The geometric mean of perfluorooctane sulfonic acid (PFOS) was highest for the older adults. In contrast, the geometric mean of perfluorooctanoic acid (PFOA) was highest for children. Serum concentrations of the parent and the child from the same family were moderately correlated (Spearman correlation (r)=0.26-0.79, p<0.05), indicating common sources within a family. For adults, age, having occupational exposure or having used fire extinguisher, frequencies of consuming butter/margarine, pork, canned meat entrées, tuna and white fish, freshwater fish, and whether they ate microwave popcorn were significantly positively associated with serum concentrations of individual PFCs. For children, residential dust concentrations, frequency of wearing waterproof clothes, frequency of having canned fish, hotdogs, chicken nuggets, French fries, and chips, and whether they ate microwave popcorn were significant positive predictors of individual PFC serum concentrations. In addition, the serum concentrations collected in a subset of young children (N=20) and the parents (N=42) one year later were strongly correlated (r=0.68-0.98, p<0.001) with the levels measured at the first visits, but showed a decreasing trend. Children had moderate correlation (r=0.43) between serum and dust concentrations of PFOS, indicating indoor sources contribute to exposure. In conclusion, besides food intake, occupational exposure, consumer product use, and exposure to residential dust contribute to PFC exposure. The downward temporal trend of serum concentrations reflects the reduction of PFCs use in recent years while the year-to-year correlation indicates that a single serum measurement could be an estimate of exposure relative to the population for a one-year period in epidemiology studies.
Collapse
Affiliation(s)
- Xiangmei May Wu
- Department of Public Health Sciences, University of California, One Shields Avenue, MS1C, Davis, CA 95616, United States.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, One Shields Avenue, MS1C, Davis, CA 95616, United States.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Hwy, Atlanta, GA 30341, United States.
| | - Kayoko Kato
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Hwy, Atlanta, GA 30341, United States.
| | - Mark Strynar
- US EPA, Human Exposure and Atmospheric Sciences Division, Methods Development and Application Branch, Durham, NC 27711, United States.
| | - Erik Andersen
- US EPA, Human Exposure and Atmospheric Sciences Division, Methods Development and Application Branch, Durham, NC 27711, United States.
| | - Rebecca E Moran
- Department of Public Health Sciences, University of California, One Shields Avenue, MS1C, Davis, CA 95616, United States.
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, CA, United States.
| | - Nicolle S Tulve
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, One Shields Avenue, MS1C, Davis, CA 95616, United States.
| |
Collapse
|
21
|
Liu L, She J, Zhang X, Zhang J, Tian M, Huang Q, Shah Eqani SAMA, Shen H. Online background cleanup followed by high-performance liquid chromatography with tandem mass spectrometry for the analysis of perfluorinated compounds in human blood. J Sep Sci 2014; 38:247-53. [DOI: 10.1002/jssc.201400761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Liangpo Liu
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen P. R. China
| | - Jianwen She
- Biochemistry Section; Environmental Health Laboratory Branch; California Department of Public Health; CA USA
| | - Xueqin Zhang
- Xiamen Maternity and Child Health Care Hospital; Xiamen P. R. China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen P. R. China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen P. R. China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen P. R. China
| | | | - Heqing Shen
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen P. R. China
| |
Collapse
|
22
|
Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. Asian J Androl 2014; 16:71-80. [PMID: 24369135 PMCID: PMC3901884 DOI: 10.4103/1008-682x.122345] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Environmental contaminants such as persistent organic pollutants (POPs) are man-made bioaccumulative compounds with long half-lives that are found throughout the world as a result of heavy use in a variety of consumer products during the twentieth century. Wildlife and animal studies have long suggested adverse effects of exposure to these compounds on human reproductive health, which, according to the endocrine disrupter hypothesis, are ascribed to the compounds’ potential to interfere with endocrine signaling, especially when exposure occurs during certain phases of fetal and childhood development. An extensive number of epidemiological studies have addressed the possible effects of exposure to POPs on male reproductive health, but the results are conflicting. Thus far, most studies have focused on investigating exposure and the different reproductive health outcomes during adulthood. Some studies have addressed the potential harmful effects of fetal exposure with respect to malformations at birth and/or reproductive development, whereas only a few studies have been able to evaluate whether intrauterine exposure to POPs has long-term consequences for male reproductive health with measurable effects on semen quality markers and reproductive hormone levels in adulthood. Humans are not exposed to a single compound at a time, but rather, to a variety of different substances with potential divergent hormonal effects. Hence, how to best analyze epidemiological data on combined exposures remains a significant challenge. This review on POPs will focus on current knowledge regarding the potential effects of exposure to POPs during fetal and childhood life and during adulthood on male reproductive health, including a critical revision of the endocrine disruption hypothesis, a comment on pubertal development as part of reproductive development and a comment on how to account for combined exposures in epidemiological research.
Collapse
Affiliation(s)
- Anne Vested
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
23
|
Axmon A, Axelsson J, Jakobsson K, Lindh CH, Jönsson BAG. Time trends between 1987 and 2007 for perfluoroalkyl acids in plasma from Swedish women. CHEMOSPHERE 2014; 102:61-7. [PMID: 24440039 DOI: 10.1016/j.chemosphere.2013.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/18/2013] [Accepted: 12/01/2013] [Indexed: 05/05/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are a large group of chemicals which are highly persistent in both nature and humans. The use of the most prominent ones, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), was reduced in the early 21st century, and since then levels in human matrices have decreased. However, these two compounds have been exchanged by other PFAAs, for which time trends have not been as extensively investigated. By the use of 80 plasma samples collected between 1987 and 2007 from healthy women (n=1-9 yearly for 1987-2001, n=15 from 2006, and n=10 from 2007), possible time trends of six PFAAs were assessed. Time trends were evaluated for the entire study period, as well as for three sub-periods. As seen in previous studies, levels of perfluorohexane sulfonate (PFHxS), PFOS, and PFOA peaked during the middle time period (1990-2000), with medians of 0.98 ng mL(-1), 18.06 ng mL(-1), and 3.73 ng mL(-1), respectively. However, levels of perfluorononanic acid (PFNA), perfluorodecanic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) increased over the whole study period and most markedly so after year 2000, with medians of 0.73 ng mL(-1), 0.28 ng mL(-1), and 0.24 ng mL(-1), respectively, during the last study period.
Collapse
Affiliation(s)
- Anna Axmon
- Department of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden.
| | - Jonatan Axelsson
- Department of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Kristina Jakobsson
- Department of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Christian H Lindh
- Department of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Bo A G Jönsson
- Department of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| |
Collapse
|
24
|
Ode A, Källén K, Gustafsson P, Rylander L, Jönsson BAG, Olofsson P, Ivarsson SA, Lindh CH, Rignell-Hydbom A. Fetal exposure to perfluorinated compounds and attention deficit hyperactivity disorder in childhood. PLoS One 2014; 9:e95891. [PMID: 24760015 PMCID: PMC3997434 DOI: 10.1371/journal.pone.0095891] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 11/22/2022] Open
Abstract
Background The association between exposure to perfluorinated compounds (PFCs) and attention deficit hyperactivity disorder (ADHD) diagnosis has been sparsely investigated in humans and the findings are inconsistent. Objectives A matched case-control study was conducted to investigate the association between fetal exposure to PFCs and ADHD diagnosis in childhood. Methods The study base comprised children born in Malmö, Sweden, between 1978 and 2000 that were followed up until 2005. Children with ADHD (n = 206) were identified at the Department of Child and Adolescent Psychiatry. Controls (n = 206) were selected from the study base and were matched for year of birth and maternal country of birth. PFC concentrations were measured in umbilical cord serum samples. The differences of the PFC concentrations between cases and controls were investigated using Wilcoxon's paired test. Possible threshold effects (above the upper quartile for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) and above limit of detection [LOD] for perfluorononanoic acid (PFNA)) were evaluated by conditional logistic regression. Results The median umbilical cord serum concentrations of PFOS were 6.92 ng/ml in the cases and 6.77 ng/ml in the controls. The corresponding concentrations of PFOA were 1.80 and 1.83 ng/ml. No associations between PFCs and ADHD were observed. Odds ratios adjusted for smoking status, parity, and gestational age were 0.81 (95% confidence interval [CI] 0.50 to 1.32) for PFOS, 1.07 (95% CI 0.67 to 1.7) for PFOA, and 1.1 (95% CI 0.75 to 1.7) for PFNA. Conclusions The current study revealed no support for an association between fetal exposure to PFOS, PFOA, or PFNA and ADHD.
Collapse
Affiliation(s)
- Amanda Ode
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- * E-mail:
| | - Karin Källén
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Bo A. G. Jönsson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Per Olofsson
- Obstetrics and Gynecology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Sten A. Ivarsson
- Department of Clinical Sciences, Unit of Pediatric Endocrinology, Lund University/Clinical Research Centre (CRC), Malmö, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Anna Rignell-Hydbom
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Rand AA, Mabury SA. Protein binding associated with exposure to fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) in rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2421-9. [PMID: 24460105 DOI: 10.1021/es404390x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biotransformation of fluorotelomer-based compounds such as fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) are sources of exposure to perfluorinated carboxylates (PFCAs), leading in part to the observation of significant concentrations of PFCAs in human blood. The biotransformation of FTOHs and PAPs yield intermediate metabolites that have been observed to covalently modify proteins. In the current investigation, the extent of covalent protein binding in Sprague-Dawley rats upon exposure to 8:2 FTOH and the 6:2 polyfluoroalkyl phosphate diester (6:2 diPAP) was quantified. The animals were administered a single dose of 8:2 FTOH or 6:2 diPAP at 100 mg/kg by oral gavage to monitor biotransformation and extent of protein binding within the liver, kidney, and plasma. In the 8:2 FTOH-dosed animals, perfluorooctanoate (PFOA) was produced as the primary PFCA, at 623.13 ± 59.3, 459.5 ± 171.8, and 397.3 ± 133.0 ng/g in the plasma, liver, and kidney, respectively. For the animals exposed to 6:2 diPAPs, perfluorohexanoate (PFHxA) was the primary PFCA produced, with maximum concentrations of 57.4 ± 6.5, 9.0 ± 1.2, and 25.3 ± 1.2 ng/g in the plasma, liver, and kidney, respectively. Protein binding was observed in the plasma, liver, and kidney after 8:2 FTOH and 6:2 diPAP exposure, with the most significant binding occurring in the liver (>100 nmol/g protein). This is the first study to link the exposure and in vivo biotransformation of fluorotelomer-based compounds to covalent protein binding.
Collapse
Affiliation(s)
- Amy A Rand
- University of Toronto , Department of Chemistry, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
26
|
Ode A, Rylander L, Lindh CH, Källén K, Jönsson BAG, Gustafsson P, Olofsson P, Ivarsson SA, Rignell-Hydbom A. Determinants of maternal and fetal exposure and temporal trends of perfluorinated compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:7970-7978. [PMID: 23436123 DOI: 10.1007/s11356-013-1573-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/11/2013] [Indexed: 05/27/2023]
Abstract
In recent years, some perfluorinated compounds (PFCs) have been identified as potentially hazardous substances which are harmful to the environment and human health. According to limited data, PFC levels in humans could be influenced by several determinants. However, the findings are inconsistent. In the present study, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were measured in paired maternal and cord serum samples (N=237) collected between 1978 and 2001 in Southern Sweden to study the relationship between these and to investigate several potential determinants of maternal and fetal exposure to PFCs. Time trends of PFCs in Swedish women were also evaluated. The study is a part of the Fetal Environment and Neurodevelopment Disorders in Epidemiological Research project. PFOS, PFOA, and PFNA levels (median) were higher in maternal serum (15, 2.1, and 0.24 ng/ml, respectively) than in cord serum (6.5, 1.7, and 0.20 ng/ml, respectively). PFC levels were among the highest in women originating from the Nordic countries and the lowest in women from the Middle East, North Africa, and sub-Saharan Africa. Multiparous women had lower serum PFOA levels (1.7 ng/ml) than primiparous women (2.4 ng/ml). Maternal age, body mass index, cotinine levels, and whether women carried male or female fetuses did not affect serum PFC concentrations. Umbilical cord serum PFC concentrations showed roughly similar patterns as the maternal except for the gestational age where PFC levels increased with advancing gestational age. PFOS levels increased during the study period in native Swedish women. In summary, PFOS levels tend to increase while PFOA and PFNA levels were unchanged between 1978 and 2001 in our study population. Our results demonstrate that maternal country of origin, parity, and gestational age might be associated with PFC exposure.
Collapse
Affiliation(s)
- Amanda Ode
- Division of Occupational and Environmental Medicine, Lund University, 221 85, Lund, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wallace KB, Kissling GE, Melnick RL, Blystone CR. Structure-activity relationships for perfluoroalkane-induced in vitro interference with rat liver mitochondrial respiration. Toxicol Lett 2013; 222:257-64. [PMID: 23954199 PMCID: PMC3935505 DOI: 10.1016/j.toxlet.2013.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022]
Abstract
Perfluorinated alkyl acids (PFAAs) represent a broad class of commercial products designed primarily for the coatings industry. However, detection of residues globally in a variety of species led to the discontinuation of production in the U.S. Although PFAAs cause activation of the PPARα and CAR nuclear receptors, interference with mitochondrial bioenergetics has been implicated as an alternative mechanism of cytotoxicity. Although the mechanisms by which the eight carbon chain PFAAs interfere with mitochondrial bioenergetics are fairly well described, the activities of the more highly substituted or shorter chain PFAAs are far less well characterized. The current investigation was designed to explore structure-activity relationships by which PFAAs interfere with mitochondrial respiration in vitro. Freshly isolated rat liver mitochondria were incubated with one of 16 different PFAAs, including perfluorinated carboxylic, acetic, and sulfonic acids, sulfonamides and sulfamido acetates, and alcohols. The effect on mitochondrial respiration was measured at five concentrations and dose-response curves were generated to describe the effects on state 3 and 4 respiration and respiratory control. With the exception of PFOS, all PFAAs at sufficiently high concentrations (>20μM) stimulated state 4 and inhibited state 3 respiration. Stimulation of state 4 respiration was most pronounced for the carboxylic acids and the sulfonamides, which supports prior evidence that the perfluorinated carboxylic and acetic acids induce the mitochondrial permeability transition, whereas the sulfonamides are protonophoric uncouplers of oxidative phosphorylation. In both cases, potency increased with increasing carbon number, with a prominent inflection point between the six and eight carbon congeners. The results provide a foundation for classifying PFAAs according to specific modes of mitochondrial activity and, in combination with toxicokinetic considerations, establishing structure-activity-based boundaries for initial estimates of risk for noncancer endpoints for PFAAs for which minimal in vivo toxicity testing currently exists.
Collapse
Affiliation(s)
- K B Wallace
- University of Minnesota Medical School, Department of Biochemistry and Molecular Biology, Duluth, MN 55812, United States.
| | | | | | | |
Collapse
|
28
|
Phosphoproteome analysis reveals an important role for glycogen synthase kinase-3 in perfluorododecanoic acid-induced rat liver toxicity. Toxicol Lett 2013; 218:61-9. [DOI: 10.1016/j.toxlet.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
|
29
|
Stahl T, Riebe RA, Falk S, Failing K, Brunn H. Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to plants: results of a pilot study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1784-1793. [PMID: 23379692 DOI: 10.1021/jf305003h] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To study the behavior of perfluoroalkyl substances (PFASs) in soil and the carry-over from soil to plants, technical mixtures of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at a concentration of 25 mg/kg soil were applied to 1.5 m(3) monolithic soil columns of a lysimeter. Growth samples and percolated water were analyzed for PFASs throughout a period of 5 years. In addition to PFOA/PFOS plant compartments and leachate were found to be contaminated with short-chain PFASs. Calculation showed significant decreasing trends (p < 0.05) for all substances tested in the growth samples. Short-chain PFASs and PFOA pass through the soil much more quickly than PFOS. Of the 360 g of PFOA and 367.5 g of PFOS applied to the soil, 96.88% PFOA and 99.98% PFOS were still present in the soil plot of the lysimeter after a period of 5 years. Plants accumulated 0.001% PFOA and 0.004% PFOS. Loss from the soil plot through leachate amounted to 3.12% for PFOA and 0.013% for PFOS.
Collapse
|
30
|
Rand AA, Mabury SA. Covalent binding of fluorotelomer unsaturated aldehydes (FTUALs) and carboxylic acids (FTUCAs) to proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1655-63. [PMID: 23256684 DOI: 10.1021/es303760u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fluorotelomer unsaturated carboxylic acids and aldehydes (FTUCAs and FTUALs) are intermediate compounds that form from the biotransformation of fluorotelomer-based compounds. Previous evidence that FTUCAs and FTUALs bind to biological nucleophiles has indicated that protein binding might give rise to toxicity resulting from protein function disruption. The current study assesses the reactivity of FTUALs and FTUCAs by probing the covalent interactions of FTUALs and FTUCAs with proteins present in rat liver microsomes and bovine blood plasma. The FTUALs exhibited significant levels of protein covalent binding, with binding levels ranging from 20.1 (±2.8)% to 71.3 (±19.5)% in microsomes and 24.0 (±1.5)% to 82.5 (±14.0)% in blood plasma. By contrast, the FTUCAs did not exhibit any apparent covalent binding. Bovine serum albumin (BSA) was extracted and isolated from the plasma after incubation of 8:2 FTUAL (5-100 μM). Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the stoichiometry of 8:2 FTUAL covalently bound to BSA; three measurable FTUAL adducts were formed with BSA. To compare the percent binding results from the FTUAL microsome incubation experiments, 8:2 FTOH was incubated in microsomes to determine the protein binding associated with the biotransformation of 8:2 FTOH. Results from this study showed that the biotransformation of 8:2 FTOH yielded 26.1 (±3.0)% binding, and was statistically similar to the percent binding associated with 8:2 FTUAL exposure (p > 0.05), indicating that the binding of 8:2 FTUAL to proteins might be a primary fate in the biotransformation of 8:2 FTOH.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
31
|
Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, Darnerud PO. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996-2010. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9071-9. [PMID: 22770559 DOI: 10.1021/es301168c] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We investigated temporal trends of blood serum levels of 13 perfluorinated alkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in primiparous women (N = 413) from Uppsala County, Sweden, sampled 3 weeks after delivery 1996-2010. Levels of the short-chain perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) increased 11%/y and 8.3%/y, respectively, and levels of the long-chain perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) increased 4.3%/y and 3.8%/y, respectively. Concomitantly, levels of FOSA (22%/y), perfluorooctane sulfonate (PFOS, 8.4%/y), perfluorodecane sulfonate (PFDS, 10%/y), and perfluorooctanoate (PFOA, 3.1%/y) decreased. Thus, one or several sources of exposure to the latter compounds have been reduced or eliminated, whereas exposure to the former compounds has recently increased. We explored if maternal levels of PFOS, PFOA, and PFNA during the early nursing period are representative for the fetal development period, using serial maternal serum samples, including cord blood (N = 19). PFAA levels in maternal serum sampled during pregnancy and the nursing period as well as in cord blood were strongly correlated. Strongest correlations between cord blood levels and maternal levels were observed for maternal serum sampled shortly before or after the delivery (r = 0.70-0.89 for PFOS and PFOA). A similar pattern was observed for PFNA, although the correlations were less strong due to levels close to the method detection limit in cord blood.
Collapse
Affiliation(s)
- Anders Glynn
- Department of Research and Development, National Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, Reagen WK, Zobel LR. Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000-2010. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6330-6338. [PMID: 22554481 DOI: 10.1021/es300604p] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eleven perfluorinated alkyl acids (PFAAs) were analyzed in plasma from a total of 600 American Red Cross adult blood donors from six locations in 2010. The samples were extracted by protein precipitation and quantified by using liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The anions of the three perfluorosulfonic acids measured were perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). The anions of the eight perfluorocarboxylic acids were perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Findings were compared to results from different donor samples analyzed at the same locations collected in 2000-2001 (N = 645 serum samples) and 2006 (N = 600 plasma samples). Most measurements in 2010 were less than the lower limit of quantitation for PFBS, PFPeA, PFHxA, and PFDoA. For the remaining analytes, the geometric mean concentrations (ng/mL) in 2000-2001, 2006, and 2010 were, respectively, PFHxS: (2.25, 1.52, 1.34); PFOS (34.9, 14.5, 8.3); PFHpA (0.13, 0.09, 0.05); PFOA (4.70, 3.44, 2.44); PFNA (0.57, 0.97, 0.83); PFDA (0.16, 0.34, 0.27), and PFUnA (0.10, 0.18, 0.14). The percentage decline (parentheses) in geometric mean concentrations from 2000-2001 to 2010 were PFHxS (40%), PFOS (76%), and PFOA (48%). The decline in PFOS suggested a population halving time of 4.3 years. This estimate is comparable to the geometric mean serum elimination half-life of 4.8 years reported in individuals. This similarity supports the conclusion that the dominant PFOS-related exposures to humans in the United States were greatly mitigated during the phase-out period.
Collapse
Affiliation(s)
- Geary W Olsen
- 3M Company, Medical Department, St. Paul, Minnesota, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, Henriksen TB, Olsen SF. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:668-73. [PMID: 22306490 PMCID: PMC3346773 DOI: 10.1289/ehp.1104034] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 02/03/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Perfluoroalkyl acids are persistent compounds used in various industrial -applications. Of these compounds, perfluorooctanoate (PFOA) is currently detected in humans worldwide. A recent study on low-dose developmental exposure to PFOA in mice reported increased weight and elevated biomarkers of adiposity in postpubertal female offspring. OBJECTIVE We examined whether the findings of increased weight in postpubertal female mice could be replicated in humans. METHODS A prospective cohort of 665 Danish pregnant women was recruited in 1988-1989 with offspring follow-up at 20 years. PFOA was measured in serum from gestational week 30. Offspring body mass index (BMI) and waist circumference were recorded at follow-up (n = 665), and biomarkers of adiposity were quantified in a subset (n = 422) of participants. RESULTS After adjusting for covariates, including maternal pre-pregnancy BMI, smoking, education, and birth weight, in utero exposure to PFOA was positively associated with anthropometry at 20 years in female but not male offspring. Adjusted relative risks comparing the highest with lowest quartile (median: 5.8 vs. 2.3 ng/mL) of maternal PFOA concentration were 3.1 [95% confidence interval (CI): 1.4, 6.9] for overweight or obese (BMI ≥ 25 kg/m2) and 3.0 (95% CI: 1.3, 6.8) for waist circumference > 88 cm among female offspring. This corresponded to estimated increases of 1.6 kg/m2 (95% CI: 0.6, 2.6) and 4.3 cm (95% CI: 1.4, 7.3) in average BMI and waist circumference, respectively. In addition, maternal PFOA concentrations were positively associated with serum insulin and leptin levels and inversely associated with adiponectin levels in female offspring. Similar associations were observed for males, although point estimates were less precise because of fewer observations. Maternal perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (PFOSA), and perfluorononanoate (PFNA) concentrations were not independently associated with offspring anthropometry at 20 years. CONCLUSIONS Our findings on the effects of low-dose developmental exposures to PFOA are in line with experimental results suggesting obesogenic effects in female offspring at 20 years of age.
Collapse
Affiliation(s)
- Thorhallur I Halldorsson
- Center for Fetal Programming, Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rand AA, Mabury SA. Assessing the structure-activity relationships of fluorotelomer unsaturated acids and aldehydes with glutathione. Reactivity of glutathione with fluorotelomer unsaturated acids and aldehydes. Cell Biol Toxicol 2012; 28:115-24. [PMID: 22252736 DOI: 10.1007/s10565-012-9211-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/03/2012] [Indexed: 11/25/2022]
Abstract
Fluorotelomer alcohols (FTOHs) have been shown to degrade via abiotic and biotic mechanisms to perfluorocarboxylates (PFCAs) which are environmentally persistent and bioaccumulate in humans and wildlife depending on their chain length. Fluorotelomer unsaturated aldehydes (FTUALs) and acids (FTUCAs) are intermediate metabolites that form from the degradation of FTOHs. Their potential for toxicity is not yet defined and may be more significant compared to PFCAs. Past studies have shown that these intermediates form adducts with glutathione (GSH). The purpose of this study was to further assess the reactivity of these intermediate compounds. In vitro experiments were carried out in an aqueous buffer system (pH 7.4) where FTUCAs and FTUALs of varying chain lengths were reacted with GSH. To quantify the reactivity of FTUCAs and FTUALs, unreacted free GSH was derivatized with 5,5'-dithiobis(2-nitrobenzoic acid), its absorbance measured at 412 nm, and the percentage of unconjugated free GSH evaluated over time. EC50 values were obtained for the reactions of GSH with acrolein and methyl methacrylate to assess the accuracy of the method, as well as for acrylic acid, FTUCAs, and FTUALs. The results of this study indicated that α,β-unsaturated aldehydes are comparatively the most reactive and reaction with GSH may be influenced by the length of the fluorinated tail. This is the first study to examine the relationship of FTUCAs and FTUALs with biological nucleophiles by quantifying their intrinsic reactivity.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | |
Collapse
|
35
|
Jiang Q, Lust RM, Strynar MJ, Dagnino S, DeWitt JC. Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings. Toxicology 2012; 293:97-106. [PMID: 22273728 DOI: 10.1016/j.tox.2012.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPARα). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that developmental PFOA exposure may not affect cardiac energetics. In summary, structural and functional characteristics of the heart appear to be developmental targets of PFOA, possibly at the level of cardiomyocytes. Additional studies will investigate mechanisms of PFOA-induced developmental cardiotoxicity.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Mark J Strynar
- Human Exposure and Atmospheric Sciences Division, Methods Development and Application Branch, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, United States
| | - Sonia Dagnino
- Human Exposure and Atmospheric Sciences Division, Methods Development and Application Branch, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, United States
| | - Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
36
|
Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, Lau C, Lieder PH, van Otterdijk FM, Wallace KB. Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod Toxicol 2011; 33:513-530. [PMID: 21878386 DOI: 10.1016/j.reprotox.2011.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/20/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022]
Abstract
Sequential 28-day and 90-day oral toxicity studies were performed in male and female rats with ammonium perfluorobutyrate (NH(4)(+)PFBA) at doses up to 150 and 30mg/kg-d, respectively. Ammonium perfluorooctanoate was used as a comparator at a dose of 30mg/kg-d in the 28-day study. Female rats were unaffected by NH(4)(+)PFBA. Effects in males included: increased liver weight, slight to minimal hepatocellular hypertrophy; decreased serum total cholesterol; and reduced serum thyroxin with no change in serum thyrotropin. During recovery, liver weight, histological, and cholesterol effects were resolved. Results of RT-qPCR were consistent with increased transcriptional expression of the xenosensor nuclear receptors PPARα and CAR as well as the thyroid receptor, and decreased expression of Cyp1A1 (Ah receptor-regulated). No observable adverse effect levels (NOAELs) were 6 and >150mg/kg-d for male and female rats in the 28-day study and 6 and >30mg/kg-d in the 90-dat study, respectively.
Collapse
Affiliation(s)
- John L Butenhoff
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | - James A Bjork
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Minnesota, Duluth, MN, USA.
| | - Shu-Ching Chang
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | - David J Ehresman
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | | | - Kaberi Das
- United States Environmental Protection Agency, National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA.
| | - Christopher Lau
- United States Environmental Protection Agency, National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA.
| | - Paul H Lieder
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | | | - Kendall B Wallace
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Minnesota, Duluth, MN, USA.
| |
Collapse
|