1
|
Tokranov AK, Ransom KM, Bexfield LM, Lindsey BD, Watson E, Dupuy DI, Stackelberg PE, Fram MS, Voss SA, Kingsbury JA, Jurgens BC, Smalling KL, Bradley PM. Predictions of groundwater PFAS occurrence at drinking water supply depths in the United States. Science 2024; 386:748-755. [PMID: 39446898 DOI: 10.1126/science.ado6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals," have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient-boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 million to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking water supplies before any treatment.
Collapse
|
2
|
Chaudhary A, Usman M, Cheng W, Haderlein S, Boily JF, Hanna K. Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20235-20244. [PMID: 39480132 DOI: 10.1021/acs.est.4c10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.
Collapse
Affiliation(s)
- Aaifa Chaudhary
- Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
- Environmental Mineralogy & Chemistry, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Wei Cheng
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Stefan Haderlein
- Environmental Mineralogy & Chemistry, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | | | - Khalil Hanna
- Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
3
|
Fan C, Cheng L, Deng W. Design of deep eutectic solvents for multiple perfluoroalkyl substances removal: Energy-based screening and mechanism elucidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175039. [PMID: 39079639 DOI: 10.1016/j.scitotenv.2024.175039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
The current landscape of perfluoroalkyl substances (PFAS) extraction methodologies presents significant challenges, particularly for multiple PFAS with different carbon chain lengths. This study introduced an energy-driven strategic approach for screening deep eutectic solvents (DESs) to effectively remove a diverse range of PFAS, including perfluoroalkylcarboxylic acids (PFCAs), perfluoroalkanesulfonic acids (PFSAs), and perfluoroalkyl amides (FAAs), from contaminated environments (total 13 target compounds). Utilizing energy-based screening, we identified DES candidates with high affinity for a spectrum of PFAS compounds from 1234 potential starting materials of eutectic systems. Key findings revealed the superior removal efficiency of tributylphosphineoxide/2-methylpiperazine system, exceeding 99 % for various PFAS with different carbon chain lengths in real environmental water samples. Additionally, we elucidated the molecular interactions between DESs and PFAS through ab initio molecular dynamics (AIMD) simulations, providing valuable insights into the mechanisms governing the removal process. The mechanism of extraction involves hydrogen bond network topology and structural organization, with DESs capable of extracting PFAS while maintaining a weakly aggregated state of target molecules and minimizing the impact on the intrinsic structures of DES. The proposed system forms a dynamic, complementary, and flexible non-covalent interaction network structure with PFAS. The study advances the understanding of DES as a designable, effective, and sustainable alternative to conventional solvents for PFAS remediation, offering a significant contribution to environmental chemistry and green technology.
Collapse
Affiliation(s)
- Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wanlin Deng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Dong Q, Min X, Zhang W, Zhao Y, Wang Y. Removal of perfluoroalkyl acids and precursors with silylated clay: Efficient adsorption and enhanced reuse. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136202. [PMID: 39437470 DOI: 10.1016/j.jhazmat.2024.136202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Organically modified clays (organoclays) have been considered effective adsorbents for the treatment of per- and polyfluoroalkyl substances (PFAS). However, the stability of organoclays prepared through the conventional cation exchange approach has been a major concern for their practical application. In this study, we reported the development of a new organically functionalized clay by grafting pillared clay substrate with an organosilane through covalent bonding. The performance of the silylated clay (QAG-ZrMT) was systematically compared with an organoclay prepared from ion exchange (HDTMA-ZrMT) for the adsorption of two legacy perfluoroalkyl acids: perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), and two precursor compounds 5:3 fluorotelomer carboxylic acid (5:3FTCA) and 6:2 fluorotelomer sulfonic acid (6:2FTS). Compared to HDTMA-ZrMT, QAG-ZrMT showed substantially improved performance for adsorption of less hydrophobic PFAS (e.g., 5:3FTCA), which could be related to the stronger electrostatic interactions between PFAS and QAG-ZrMT than HDTMA-ZrMT. More importantly, QAG-ZrMT could be conveniently regenerated and reused for multiple cycles with robust performance. In contrast, HDTMA-ZrMT almost completely lost its capacity for PFAS removal after regeneration, due to the loss of organic functional groups during solvent regeneration. Results can shed light on the design of efficient and regenerable organoclay adsorbents for remediation of PFAS-contaminated water matrices.
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Wenxin Zhang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Yanan Zhao
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
5
|
Zou Y, Peng P, Zou H, Zhang Y, Chen C, Huang S. Transport and retention of COVID-19-related antiviral drugs in saturated porous media under various hydrochemical conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117028. [PMID: 39276648 DOI: 10.1016/j.ecoenv.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have garnered considerable attention, particularly in the global battle against the COVID-19 pandemic, amid heightened concerns regarding environmentally acquired antiviral resistance. A comprehensive understanding of their transport in subsurface environments is imperative for accurately predicting their environmental fate and risks. This study investigated the mobility and retention characteristics of six COVID-19 antiviral drugs in saturated quartz sand columns. Results showed that the mobility of the drugs was primarily contingent on their hydrophobicity, with ribavirin and favipiravir exhibiting the highest transportability, while arbidol displaying the greatest retention. The transport characteristics of ribavirin and favipiravir remained largely unaffected by pH, whereas the retention of the other four antivirals remained consistently minimal under alkaline conditions. Elevating ionic strength marginally facilitated the transport of these antivirals, while the presence of Ca2+ notably enhanced their retention in quartz sand compared to Na+. Ribavirin and remdesivir warrant particular attention due to their relatively high transportability and propensity for environmentally acquired antiviral resistance. These findings contribute to an enhanced understanding of the leachate potential and transport of COVID-19-related antivirals in sandy porous media, furnishing fundamental data for predicting their environmental fate and associated risks.
Collapse
Affiliation(s)
- Yefeng Zou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Peng Peng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yun Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Han J, Choong CE, Jang M, Lee J, Hyun S, Lee WS, Kim M. Causative mechanisms limiting the removal efficiency of short-chain per- and polyfluoroalkyl substances (PFAS) by activated carbon. CHEMOSPHERE 2024; 365:143320. [PMID: 39303790 DOI: 10.1016/j.chemosphere.2024.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Short-chain per and polyfluoroalkyl substances (PFAS) have been found to be relatively high in water treatment systems compared to long-chain PFAS because of the unsatisfactory adsorption efficiency of short-chain PFAS. Knowledge about why short-chain PFAS are less removed by porous carbon is very limited. The study focused on providing causal mechanisms that link the low adsorption of short-chain PFAS and proposing an improved method for removing both short- and long-chain PFAS. The long-chain PFAS with higher hydrophobicity diffused more quickly than the short-chain PFAS due to stronger partitioning driving forces. In the initial adsorption stage, therefore, pores of activated carbon were blocked by long-chain PFAS, which makes it difficult for the short-chain PFAS to enter the internal pores. Although several short-chain PFAS diffuse into the pores, the relatively more hydrophilic short-chain congeners cannot be fully adsorbed on activated carbon due to limited positively charged sites. Moreover, compared to larger particle sizes, smaller activated carbon particles have shorter pore channels near the surface, reducing the risk of pore-blocking and ensuring the pores remain accessible for more efficient adsorption. Additionally, these smaller particles offer a greater external surface area and more functional groups, which enhance the adsorption capacity. It indicates that the smaller particle size of activated carbon would have a positive effect on the short-chain PFAS removal.
Collapse
Affiliation(s)
- Junho Han
- Environmental Planning Institute, Seoul National University, Seoul, 08826, Republic of Korea; Department of Earth and Environmental Science, Rutgers University, New Jersey, 07102, United States
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Junghee Lee
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea
| | - Seunghun Hyun
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Seok Lee
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61945, Republic of Korea
| | - Minhee Kim
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea.
| |
Collapse
|
7
|
Maâroufi L, Hofmann D, Zarfl C, Hüben M, Pütz T, Amelung W. Non-extractable residues of perfluorooctanoic acid (PFOA) in soil. CHEMOSPHERE 2024; 366:143422. [PMID: 39343318 DOI: 10.1016/j.chemosphere.2024.143422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PER: and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used 14C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10 °C and 20 °C in the dark. To support potential co-metabolic decomposition, some samples were additionally fed with glucose to enhance microbial activity. The PFOA residues were then sequentially extracted using 0.01 M CaCl2, followed by accelerated solvent extraction (ASE) with methanol or methanol/acetic acid after 0, 1, 3, 9, 30, 62, and 90 days of incubation. In addition, we monitored the release of 14C into the gas phase as well as [14C]-PFOA-NER after dry combustion and liquid scintillation counting. After 90 days, we found that the [14C]-PFOA content declined in the extraction order of CaCl2 ((bio)available fraction) > ASE (residual fraction) > NER > gas fraction), with most rapid changes occurring in the first 9 days of incubation. NER formation was different in the two soils and reached 5-9% of the applied amount in the Cambisol and Luvisol, respectively. Noteworthy the proportion of 14C-PFOA in the (bio)available fraction remained relatively stable over time at 56-62% of the applied amount, indicating the reversible transfer into this fraction from a bi-exponentially declining residual (ASE) pool. These dissipation patterns were neither influenced by temperature nor by the addition of glucose. We conclude that NER exist for PFOA, but that the majority of PFOA remains in (bio)available form, thus maintaining toxicity and mobility in soil for prolonged periods of time.
Collapse
Affiliation(s)
- Lucie Maâroufi
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| | - Diana Hofmann
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Christiane Zarfl
- Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72074 Tübingen, Germany.
| | - Michael Hüben
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Thomas Pütz
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Wulf Amelung
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
8
|
Wen W, Gao L, Cheng H, Xiao L, Zhang S, Li S, Jiang X, Xia X. Legacy and alternative perfluoroalkyl acids in the Yellow River on the Qinghai-Tibet Plateau: Levels, spatiotemporal characteristics, and multimedia transport processes. WATER RESEARCH 2024; 262:122095. [PMID: 39032330 DOI: 10.1016/j.watres.2024.122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
The source region of the Yellow River (SRYR) located in the northeast of the Qinghai-Tibetan Plateau is not only the largest runoff-producing area in the Yellow River Basin, but also the most important freshwater-supply ecological function area in China. In this study, the short-term spatiotemporal distribution of selected legacy and alternative perfluoroalkyl acids (PFAAs) in the SRYR was first investigated in multiple environmental media. Total PFAA concentrations were in the range of 1.16-14.3 ng/L, 4.25-42.1 pg/L, and 0.21-13.0 pg/g dw in rainwater, surface water, and sediment, respectively. C4-C7 PFAAs were predominant in various environmental matrices. Spatiotemporal characteristics were observed in the concentrations and composition profiles. Particularly, the spatial distribution of rainwater and the temporal distribution of surface water exhibited highly significant differences (p<0.01). Indian monsoon, westerly air masses, and local mountain-valley breeze were the driving factors that contributed to the change of rainwater. Rainwater, meltwater runoff, and precursor degradation were important sources of PFAA pollution in surface water. Organic carbon content was a major factor influencing PFAA distribution in sediment. These results provide a theoretical basis for revealing the regional transport and fate of PFAAs, and are also important prerequisites for effectively protecting the freshwater resource and aquatic environment of the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lijuan Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Office of Laboratory and Equipment Management, Beijing Normal University, Zhuhai 519087, China
| | - Hao Cheng
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Xiao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Siling Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Li M, Zhao X, Yan P, Xie H, Zhang J, Wu S, Wu H. A review of per- and polyfluoroalkyl substances (PFASs) removal in constructed wetlands: Mechanisms, enhancing strategies and environmental risks. ENVIRONMENTAL RESEARCH 2024; 262:119967. [PMID: 39260718 DOI: 10.1016/j.envres.2024.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
PER: Polyfluoroalkyl substances (PFASs), typical persistent organic pollutants detected in various water environments, have attracted widespread attention due to their undesirable effects on ecology and human health. Constructed wetlands (CWs) have emerged as a promising, cost-effective, and nature-based solution for removing persistent organic pollutants. This review summarizes the removal performance of PFASs in CWs, underlying PFASs removal mechanisms, and influencing factors are also discussed comprehensively. Furthermore, the environmental risks of PFASs-enriched plants and substrates in CWs are analyzed. The results show that removal efficiencies of total PFASs in various CWs ranged from 21.3% to 98%. Plant uptake, substrate absorption and biotransformation are critical pathways in CWs for removing PFASs, which can be influenced by the physiochemical properties of PFASs, operation parameters, environmental factors, and other pollutants. Increasing dissolved oxygen supply and replacing traditional substrates in CWs, and combining CWs with other technologies could significantly improve PFASs removal. Further, CWs pose relatively lower ecological and environmental risks in removing PFASs, which indicates CWs could be an alternative solution for controlling PFASs in aquatic environments.
Collapse
Affiliation(s)
- Mingjun Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Peihao Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China
| | - Suqing Wu
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
10
|
Wang J, Lin ZW, Dichtel WR, Helbling DE. Perfluoroalkyl acid adsorption by styrenic β-cyclodextrin polymers, anion-exchange resins, and activated carbon is inhibited by matrix constituents in different ways. WATER RESEARCH 2024; 260:121897. [PMID: 38870863 DOI: 10.1016/j.watres.2024.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous environmental contaminants of global concern, and adsorption processes are the most widely used technologies to remove PFAAs from water. However, there remains little data on the ways that specific water matrix constituents inhibit the adsorption of PFAAs on different adsorbents. In this study, we evaluated the adsorption of 13 PFAAs on two styrene-functionalized β-cyclodextrin (StyDex) polymers, an activated carbon (AC), and an anion-exchange resin (AER) in the absence and presence of specific water matrix constituents (16 unique water matrices) in batch experiments. All four adsorbents exhibited some extent of adsorption inhibition in the presence of inorganic ions and/or humic acid (HA) added as a surrogate for natural organic matter. Two PFAAs (C5-C6 perfluorocarboxylic acids (PFCAs)) were found to exhibit relatively weak adsorption and five PFAAs (C6-C8 perfluorosulfonic acids (PFSAs) and C9-C10 PFCAs) were found to exhibit relatively strong adsorption on all four adsorbents across all matrices. Adsorption inhibition was the greatest in the presence of Ca2+ (direct site competition) and HA (direct site competition and pore blockage) for AC, NO3- (direct site competition) and Ca2+ (chemical complexation) for the AER, and SO42- (compression of the double layer) for the StyDex polymers. The pattern of adsorption inhibition of both StyDex polymers were similar to each other but different from AC and AER, which demonstrates the distinctive PFAA adsorption mechanism on StyDex polymers. The unique performance of each type of adsorbent confirms unique adsorption mechanisms that result in unique patterns of adsorption inhibition in the presence of matrix constituents. These insights could be used to develop models to predict the performance of these adsorbents in real water matrices and afford rational selection of adsorbents based on water chemistry for specific applications.
Collapse
Affiliation(s)
- Jieyuan Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Molé RA, Velosa AC, Carey GR, Liu X, Li G, Fan D, Danko A, Lowry GV. Groundwater solutes influence the adsorption of short-chain perfluoroalkyl acids (PFAA) to colloidal activated carbon and impact performance for in situ groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134746. [PMID: 38850952 DOI: 10.1016/j.jhazmat.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Subsurface injection of colloidal activated carbon (CAC) is an in situ remediation strategy for perfluoroalkyl acids (PFAA), but the influence of groundwater solutes on longevity is uncertain, particularly for short-chain PFAA. We quantify the impact of inorganic anions, dissolved organic matter (DOM), and stabilizing polymer on PFAA adsorption to a commercial CAC. Surface characterization supported PFAA chain-length dependent adsorption results and mechanisms are provided. Inorganic anions decreased adsorption for short-chain PFAA (<7 perfluorinated carbons) due to competitive effects, while long-chain PFAA (≥ 7 perfluorinated carbons) were less impacted. DOM decreased adsorption of all PFAA in a chain-length dependent manner. High DOM concentrations (10 mg/L, ∼5 mg OC/L) decreased PFOA adsorption by a factor of 2, PFPeA by one order of magnitude, and completely hindered PFBA adsorption. High MW DOM has less impact on short-chain PFAA than low MW DOM, possibly due to differences in the ability to access CAC micropores. Low DOM concentrations (1 mg/L, ∼0.5 mg OC/L) did not impact adsorption. CMC (90 kDa average MW) had negligible impact on PFAA adsorption likely due to minimal CAC surface coverage. Longevity modeling demonstrated that groundwater solutes limit the capacity for PFAA in a CAC barrier, particularly for short-chain PFAA.
Collapse
Affiliation(s)
- Rachel A Molé
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Adriana C Velosa
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Grant R Carey
- Porewater Solutions, 2958 Barlow Crescent, Ottawa, Ontario K0A 1T0, Canada
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Guangbin Li
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Dimin Fan
- Geosyntec Consultants, 65 North Raymond Ave. Suite 200, Pasadena, CA 91103, USA
| | - Anthony Danko
- Naval Facilities Engineering Systems Command, Engineering and Expeditionary Warfare Center, Port Hueneme, CA, 93043, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
13
|
Chen S, Li B, Zhao R, Zhang B, Zhang Y, Chen J, Sun J, Ma X. Natural mineral and industrial solid waste-based adsorbent for perfluorooctanoic acid and perfluorooctane sulfonate removal from surface water: Advances and prospects. CHEMOSPHERE 2024; 362:142662. [PMID: 38936483 DOI: 10.1016/j.chemosphere.2024.142662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PER: and polyfluorinated alkyl substances, especially perfluorooctanoic acid and perfluorooctane sulfonic acid (PFOX), have attracted considerable attention lately because of their widespread occurrence in aquatic environment and potential biological toxicity to animals and human beings. The development of economical, efficient, and engineerable adsorbents for removing PFOX in water has become one of the research focuses. This review summarized the recent progress on natural mineral and industrial solid based adsorbent (NM&ISW-A) and removal mechanisms concerning PFOX onto NM&ISW-A, as well as proposed the current challenges and future perspectives of using NM&ISW-A for PFOX removal in water. Kaolinite and montmorillonite are usually used as model clay minerals for PFOX removal, and have been proved to adsorb PFOX by ligand exchange and electrostatic attraction. Fe-based minerals, such as goethite, magnetite, and hematite, have better PFOX adsorption capacity than clay minerals. The adsorbent prepared from industrial solid waste by high temperature roasting has great potential application prospects. Fabricating nanomaterials, amination modification, surfactant modification, fluorination modification, developing versatile composites, and designing special porous structure are beneficial to improve the adsorption performance of PFOX onto NM&ISW-A by enhancing the specific surface area, positive charge, and hydrophobicity. Electrostatic interaction, hydrophobic interaction, hydrogen bond, ligand and ion exchange, and self-aggregation (formation of micelle or hemimicelle) are the main adsorption mechanisms of PFOX by NM&ISW-A. Among them, electrostatic and hydrophobic interactions play a considerable role in the removal of PFOX by NM&ISW-A. Therefore, NM&ISW-A with electrostatic functionalities and considerable hydrophobic segments enables rapid, efficient, and high-capacity removal of PFOX. The future directions of NM&ISW-A for PFOX removal include the preparation and regeneration of engineerable NM&ISW-A, the development of coupling technology for PFOX removal based on NM&ISW-A, the in-depth research on adsorption mechanism of PFOX by NM&ISW-A, as well as the development of NM&ISW-A for PFOX alternatives removal. This review paper would be helpful the comprehensive understanding of NM&ISW-A potential for PFOX removal and the PFOX removal mechanisms, and identifies the gaps for future research and development.
Collapse
Affiliation(s)
- Siyuan Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Ruining Zhao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxuan Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yuqing Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiale Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiahe Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
14
|
Rasmusson K, Fagerlund F. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources - A comprehensive review of subsurface transport processes. CHEMOSPHERE 2024; 362:142663. [PMID: 38908440 DOI: 10.1016/j.chemosphere.2024.142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants in the environment. An increased awareness of adverse health effects related to PFAS has further led to stricter regulations for several of these substances in e.g. drinking water in many countries. Groundwater constitutes an important source of raw water for drinking water production. A thorough understanding of PFAS subsurface fate and transport mechanisms leading to contamination of groundwater resources is therefore essential for management of raw water resources. A review of scientific literature on the subject of processes affecting subsurface PFAS fate and transport was carried out. This article compiles the current knowledge of such processes, mainly focusing on perfluoroalkyl acids (PFAA), in soil- and groundwater systems. Further, a compilation of data on transport parameters such as solubility and distribution coefficients, as well as, insight gained and conclusions drawn from the reviewed material are presented. As the use of certain fire-fighting foams has been identified as the major source of groundwater contamination in many countries, research related to this type of pollution source has been given extra focus. Uptake of PFAS in biota is outside the scope of this review. The review showed a large spread in the magnitude of distribution coefficients and solubility for individual PFAS. Also, it is clear that the influence of multiple factors makes site-specific evaluation of distribution coefficients valuable. This article aims at giving the reader a comprehensive overview of the subject, and providing a base for further work.
Collapse
Affiliation(s)
- Kristina Rasmusson
- Uppsala Water and Waste AB, Virdings allé 32B, SE-75450, Uppsala, Sweden.
| | - Fritjof Fagerlund
- Uppsala University, Department of Earth Sciences, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
15
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Vakili M, Cagnetta G, Deng S, Wang W, Gholami Z, Gholami F, Dastyar W, Mojiri A, Blaney L. Regeneration of exhausted adsorbents after PFAS adsorption: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134429. [PMID: 38691929 DOI: 10.1016/j.jhazmat.2024.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.
Collapse
Affiliation(s)
| | - Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Zahra Gholami
- ORLEN UniCRE, a.s, Revoluční 1521/84, 400 01 Ústí nad Labem, Czech Republic
| | - Fatemeh Gholami
- Department of Mathematics, Physics, and Technology, Faculty of Education, University of West Bohemia, Klatovská 51, Plzeň 301 00, Czech Republic
| | - Wafa Dastyar
- Chemical, Environmental, and Materials Engineering Department, McArthur Engineering Building, University of Miami, Coral Gables, FL 33124, USA
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| |
Collapse
|
17
|
Feng G, Zhou B, Yuan R, Luo S, Gai N, Chen H. Influence of soil composition and environmental factors on the adsorption of per- and polyfluoroalkyl substances: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171785. [PMID: 38508244 DOI: 10.1016/j.scitotenv.2024.171785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have garnered considerable scientific and regulatory scrutiny due to their widespread distribution across environments and their potential toxicological impacts on human health. The pedosphere serves as a vital reservoir for these chemicals, significantly determining their environmental trajectory and chemical transformations. This study offers a comprehensive synthesis of the current understanding regarding the adsorption mechanics of PFASs in soil matrices. Due to their unique molecular structure, PFASs predominantly engage in hydrophobic and electrostatic interactions during soil adsorption. This work thoroughly evaluates the influence of various factors on adsorption efficiency, including soil properties, molecular characteristics of PFASs, and the prevailing environmental conditions. The complex nature of soil environments complicates isolating individual impacts on PFAS behavior, necessitating an integrated approach to understanding their environmental destinies better. Through this exploration, we seek to clarify the complex interplay of factors that modulate the adsorption of PFASs in soils, highlighting the urgent need for future research to disentangle the intricate and combined effects that control the environmental behavior of PFAS compounds.
Collapse
Affiliation(s)
- Ge Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Eco-geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nan Gai
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Kong X, Zhou A, Chen X, Cheng X, Lai Y, Li C, Ji Q, Ji Q, Kong J, Ding Y, Zhu F, He H. Insight into the adsorption behaviors and bioaccessibility of three altered microplastics through three types of advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170420. [PMID: 38301781 DOI: 10.1016/j.scitotenv.2024.170420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Advanced oxidation processes (AOPs) can significantly alter the structural properties, environmental behaviors and human exposure level of microplastics in aquatic environments. Three typical microplastics (Polyethylene (PE), polypropylene (PP), and polystyrene (PS)) and three AOPs (Heat-K2S2O8 (PDS), UV-H2O2, UV-peracetic acid (PAA)) were adopted to simulate the process when microplastics exposed to the sewage disposal system. 2-Nitrofluorene (2-NFlu) adsorption experiments found the equilibrium time decreased to 24 hours and the capacity increased up to 610 μg g-1, which means the adsorption efficiency has been greatly improved. The fitting results indicate the adsorption mechanism shifted from the partition dominant on pristine microplastic to the physical adsorption (pore filling) dominant. The alteration of specific surface area (21 to 152 m2 g-1), pore volume (0.003 to 0.148 cm3 g-1) and the particle size (123 to 16 μm) of microplastics after AOPs are implying the improvement for pore filling. Besides, the investigation of bioaccessibility is more complex, AOPs alter microplastic with more oxygen-containing functional groups and lower hydrophobicity detected by XPS and water contact angle, those modifications have increased the sorption concentration, especially in the human intestinal tract. Therefore, this indicates the actual exposure of organic compounds loaded in microplastic may be higher than in the pristine microplastic. This study can help to assess the human health risk of microplastic pollution in actual environments.
Collapse
Affiliation(s)
- Xiangcheng Kong
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Aoyu Zhou
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yuqi Lai
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yuan Ding
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Fengxiao Zhu
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, PR China.
| |
Collapse
|
19
|
Tan X, Shi Y, Ma CF, Chi Q, Yang YH, Zhang WX, Xiao HM, Wang X. Fluoro-functionalized plant biomass adsorbent: Preparation and application in extraction of trace perfluorinated compounds from environmental water samples. J Environ Sci (China) 2024; 137:703-715. [PMID: 37980053 DOI: 10.1016/j.jes.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 11/20/2023]
Abstract
Perfluorinated compounds (PFCs) are toxic and widely present in the environment, and therefore effective adsorbents are required to remove PFCs from environmental water. In the present study, a new type of fluorinated biomass materials was synthesized via an ingenious fluorosilanization reaction. These adsorbents were applied for the adsorption of 13 typical PFCs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). By comparing their adsorption performance, Fluorinated cedar slag (FCS) was discovered to have the best absorption efficiency and enabled highly efficient enrichment of PFCs. The adsorption recovery of FCS with the investigated PFCs is greater than 90% under the optimal adsorption condition. Ascribed to the high affinity of F-F sorbent-sorbate interaction, FCS had good adsorption capacities of PFCs from aqueous solution, with the maximum adsorption capacity of 15.80 mg/g for PFOS and 10.71 mg/g for PFOA, respectively. Moreover, the adsorption time could be achieved in a short time (8 min). Using the FCS absorbent, an innovative FCS-solid phase extraction assisted with high performance liquid chromatography-electrospray-tandem mass spectrometry (FCS-SPE-HPLC-ESI-MS/MS) method was first developed to sensitively detect PFCs in the environmental water samples. The intra-day and inter-day recovery rates of the 13 compounds ranged from 90.7%-104.3%, with the RSD of 2.1%-4.7% (intra-day) and 2.5%-8.5% (inter-day), respectively. This research demonstrates the potential of the newly fluoro-functionalized plant biomass to adsorb PFCs from environmental water, with the advantages of high adsorption efficiencies, high anti-interference, easy operation and low economic cost.
Collapse
Affiliation(s)
- Xi Tan
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yan Shi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chun-Feng Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Hang Yang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Xiang Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
20
|
Xu D, Yan M, Xie Y. Energy harvesting from water streaming at charged surface. Electrophoresis 2024; 45:244-265. [PMID: 37948329 DOI: 10.1002/elps.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Water flowing at a charged surface may produce electricity, known as streaming current/potentials, which may be traced back to the 19th century. However, due to the low gained power and efficiencies, the energy conversion from streaming current was far from usable. The emergence of micro/nanofluidic technology and nanomaterials significantly increases the power (density) and energy conversion efficiency. In this review, we conclude the fundamentals and recent progress in electrical double layers at the charged surface. We estimate the generated power by hydrodynamic energy dissipation in multi-scaling flows considering the viscous systems with slipping boundary and inertia systems. Then, we review the coupling of volume flow and current flow by the Onsager relation, as well as the figure of merits and efficiency. We summarize the state-of-the-art of electrokinetic energy conversions, including critical performance metrics such as efficiencies, power densities, and generated voltages in various systems. We discuss the advantages and possible constraints by the figure of merits, including single-phase flow and flying droplets.
Collapse
Affiliation(s)
- Daxiang Xu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Meng Yan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yanbo Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an, P. R. China
| |
Collapse
|
21
|
Li L, Haak L, Guarin TC, Teel L, Sundaram V, Pagilla KR. Per- and poly-fluoroalkyl substances removal in multi-barrier advanced water purification system for indirect potable reuse. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10990. [PMID: 38291828 DOI: 10.1002/wer.10990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
The study evaluated the removal efficacy of per- and poly-fluoroalkyl substances (PFAS) across various advanced water treatment (AWT) processes in a field-scale AWT train using secondary effluent samples from a full-scale water reclamation facility (WRF). Samples collected from April to October 2020 revealed PFCAs as the dominant PFAS compounds in the WRF secondary effluent, with PFPeA having the highest average concentration and PFSAs in notably lower amounts. Temporal fluctuations in total PFAS concentrations peaked in September 2020, which may reflect the seasonality in PFAS discharges related to applications like AFFFs and pesticides. In assessing AWT processes, coagulation-flocculation-clarification-filtration system showed no notable PFAS reduction, while ozonation resulted in elevated PFBS and PFBA concentrations. Biological activated carbon (BAC) filtration effectively removed long-chain PFAS like PFOS and PFHxS but saw increased concentrations of short-chain PFAS post-treatment. Granular activated carbon (GAC) filtration was the most effective treatment, reducing all PFSAs below the detection limits and significantly decreasing most PFCAs, though short-chain PFCAs persisted. UV treatment did not remove short-chain PFCAs such as PFBA, PFPeA, and PFHxA. The findings highlight the efficacy of AWT processes like GAC in PFAS reduction for potable reuse, but also underscore the challenge presented by short-chain PFAS, emphasizing the need for tailored treatment strategies. PRACTITIONER POINTS: Secondary effluents showed higher concentrations of PFCAs compared to PFSAs. Advanced water treatment effectively removes long-chain PFAS but not short-chain. Ozonation may contribute to formation of short-chain PFAS. BAC is less effective on short-chain PFAS, requiring further GAC treatment.
Collapse
Affiliation(s)
- Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
- UNAB's Circular Bioeconomy Research Center, Autonomous University of Bucaramanga, Bucaramanga, Colombia
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, Nevada, USA
| | | | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
22
|
Cogorno J, Rolle M. Impact of Variable Water Chemistry on PFOS-Goethite Interactions: Experimental Evidence and Surface Complexation Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1731-1740. [PMID: 38206803 DOI: 10.1021/acs.est.3c09501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.
Collapse
Affiliation(s)
- Jacopo Cogorno
- Department of Environmental and Resource Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs. Lyngby, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Massimo Rolle
- Department of Environmental and Resource Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs. Lyngby, Denmark
- Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| |
Collapse
|
23
|
Dong Q, Min X, Zhao Y, Wang Y. Adsorption of per- and polyfluoroalkyl substances (PFAS) by ionic liquid-modified clays: Effect of clay composition and PFAS structure. J Colloid Interface Sci 2024; 654:925-934. [PMID: 37898076 DOI: 10.1016/j.jcis.2023.10.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Organically modified clays have been reported as a promising class of adsorbents for the treatment of per- and polyfluoroalkyl substances (PFAS), a group of emerging contaminants of widespread concerns. Here, we reported the development and evaluation of ionic liquid (IL)-modified clays prepared with various natural clays to explore the role of clay substrate in the adsorption of eight persistent perfluoroalkyl acids (PFAAs). Based on detailed adsorption isotherm study, we found that the adsorption capacities of PFAAs were closely related to the cation exchange capacities of the raw clays and correspondingly the IL loadings of the modified clays. Additionally, a positive correlation was observed between the adsorption affinity of PFAAs onto IL-modified clays and the octanol-water distribution coefficient (Dow) of PFAAs. Adsorption free energy analysis suggested that both electrostatic and hydrophobic interactions played important roles in the adsorption of PFAAs onto IL-modified clays. Although electrostatic interactions were more predominant, the contribution of hydrophobic interactions increased with the increasing carbon number of perfluoroalkyl moiety of PFAAs, resulting in more favorable adsorption of long-chain PFAAs than their short-chain homologs. The performance of IL-modified clays was further demonstrated for the removal of PFAA mixtures under environmentally relevant conditions. Overall, results of this work can provide important insights into guiding the design of organically modified clay adsorbents for PFAS treatment.
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States.
| | - Yanan Zhao
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
24
|
Leung SCE, Wanninayake D, Chen D, Nguyen NT, Li Q. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166764. [PMID: 37660805 DOI: 10.1016/j.scitotenv.2023.166764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dushanthi Wanninayake
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
25
|
Umeh AC, Hassan M, Egbuatu M, Zeng Z, Al Amin M, Samarasinghe C, Naidu R. Multicomponent PFAS sorption and desorption in common commercial adsorbents: Kinetics, isotherm, adsorbent dose, pH, and index ion and ionic strength effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166568. [PMID: 37633378 DOI: 10.1016/j.scitotenv.2023.166568] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The adsorption and desorption of 9 PFAS, including 3 perfluoroalkyl sulphonic and 6 perfluoroalkyl carboxylic acids, in artificial groundwater was investigated using 3 commercial adsorbents that comprised a powdered activated carbon (PAC), a surface-modified organoclay (NMC+n), and a carbonaceous organic amendment (ROAC). Sorption kinetics and isotherms of PFAS, as well as the effects of adsorbent dose, pH, index ion and ionic strength on PFAS adsorption and desorption were investigated. Sorption of multicomponent PFAS in the adsorbents was rapid, especially for NMC+n and ROAC, regardless of PFAS chain length. The sorption and (and especially) desorption of PFAS in the adsorbents was impacted by the pH, index ion, and ionic strength of simulated groundwater, especially for the short chain PFAS, with only minimal impacts on NMC+n and PAC compared to ROAC. Although the potential mineral and charged constituents of the adsorbents contributed to the adsorption of short chain PFAS through electrostatic interactions, these interactions were susceptible to variable groundwater chemistry. Hydrophobic interactions also played a major role in facilitating and increasing PFAS sorption, especially in adsorbents with aliphatic functional groups. The desorption of PFAS from the adsorbents was below 8 % when the aqueous phase was deionised water, with no measurable desorption for NMC+n. In contrast, the desorption of short chain PFAS in simulated groundwater increased substantially (30-100 %) in the adsorbents, especially in ROAC and NMC+n, but more so with ROAC. In general, the three adsorbents exhibited strong stability for the long chain PFAS, especially the perfluoroalkyl sulphonic acids, with minimal to no sorption reversibility under different pH and ionic composition of simulated groundwater. This study highlights the importance of understanding not only the sorption of PFAS in groundwater using adsorbents, but also the desorption of PFAS, which may be useful for decision making during the ex-situ and in-situ treatment of PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Masud Hassan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maureen Egbuatu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zijun Zeng
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Chamila Samarasinghe
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
26
|
Chen F, Chen J, Liu X, Zhi Y, Qian S, Li W, Wang X. Removal of per- and polyfluoroalkyl substances by activated hydrochar derived from food waste: Sorption performance and desorption hysteresis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122820. [PMID: 39491159 DOI: 10.1016/j.envpol.2023.122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Carbonaceous materials, derived from waste biomass, have proven to be a viable and appealing alternative for removing emerging micro-pollutants, such as per- and polyfluoroalkyl substances (PFAS). To assess the feasibility and efficacy of using material derived from food waste to alleviate PFAS pollution, this study prepared activated hydrochar (AHC) for sorbing ten PFAS, including five perfluoroalkyl carboxylic acids (PFCA; C4-C8), three perfluoroalkyl sulfonic acids (PFSA; C4, C6, C8), and two emerging PFAS, namely hexafluoropropylene oxide dimer acid (commercial name GenX, an alternative to perfluorooctanoic acid (PFOA)) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). The results demonstrated that AHC possessed a relatively high specific surface area (207 m2/g) and hydrophobic surface properties. At environmentally relevant concentrations (40 μg/L), the sorption partition coefficients (log Kd) of PFAS on AHC ranged from 2.33 to 6.49 L/kg. Notably, GenX exhibited a lower log Kd value (2.33 L/kg) than PFOA (3.88 L/kg). The AHC showed favorable sorption performance for all tested PFAS, with log Kd values surpassing other reported sorbents (e.g., 0.83 for GenX on pyrochar, and 2.83 for PFOA on commercial biochar). Additionally, desorption hysteresis was observed for all PFAS, except for PFOA, and was particularly pronounced in PFBA, GenX, and 6:2 FTS at high initial concentrations, with Hysteresis Index (HI) values varying from 0.31 to 1.45, 0.68 to 1.88, and 0.51 to 1.85, respectively. Given its robust sorption capacity and desorption hysteresis toward PFAS, AHC is expected to be a favorable candidate for remediating PFAS-contaminated water. This study underscores, for the first time, the potential of food waste-derived hydrochar as an efficient sorbent for alleviating PFAS contamination, and further study is needed to investigate the sorption and desorption behaviors of PFAS on AHC at various environmental conditions.
Collapse
Affiliation(s)
- Fan Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Jiangliang Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shenhua Qian
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
27
|
Niarchos G, Georgii L, Ahrens L, Kleja DB, Fagerlund F. A systematic study of the competitive sorption of per- and polyfluoroalkyl substances (PFAS) on colloidal activated carbon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115408. [PMID: 37666203 DOI: 10.1016/j.ecoenv.2023.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Treatment of environmental media contaminated with per- and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC. Batch tests were conducted with natural soil and spiked water, using CAC at 0.2% w/w to remove seven PFAS with individual starting concentrations up to 0.05 mmol L-1. PFAS sorption to CAC was evaluated in three systems: a composite mixture of all studied compounds, a binary-solute system, and a single-solute system. The sorption experiments exhibited strong PFAS affinity to CAC, with removal rates between 41% and 100%, and solid/liquid partition coefficients (Kd) between 10 and 104 L kg-1. Differences were noticed among the various spiking mixtures, based on perfluorocarbon chain length, functional group, and the starting PFAS concentrations. Competition effects were detected when PFAS were in a multi-solute system, with an average 10% drop in removal, which can evidently become more relevant at higher concentrations, due to the observed non-linearity of the sorption process. The PFAS most vulnerable to competition effects in multi-solute systems were the short-chain perfluoropentanoic acid (PFPeA) and perfluorobutane sulfonic acid (PFBS), with an up to 25% reduction in removal. In bi-solute systems, perfluorooctane sulfonamide (FOSA) dominated over its ionisable counterparts, i.e. perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA), indicating the importance of hydrophobic effects or layer formation in the sorption process. These results underscore the importance of considering competition in PFAS sorption processes when designing and implementing remediation techniques for PFAS-contaminated media.
Collapse
Affiliation(s)
- Georgios Niarchos
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden.
| | - Linnea Georgii
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Dan Berggren Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P. O. Box 7090, SE-750 07 Uppsala, Sweden
| | - Fritjof Fagerlund
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
28
|
Dai M, Yan N, Brusseau ML. Potential impact of bacteria on the transport of PFAS in porous media. WATER RESEARCH 2023; 243:120350. [PMID: 37499541 PMCID: PMC10530518 DOI: 10.1016/j.watres.2023.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
The transport and fate of per- and poly-fluoroalkyl substances (PFAS) in soil and groundwater is a topic of critical concern. A number of factors and processes may influence the transport and fate of PFAS in porous media. One factor that has received minimal attention to date is the impact of bacteria on the retention and transport of PFAS, which is the focus of this current study. The first part of this work comprised a critical review of prior studies to delineate observed PFAS-bacteria interactions and to summarize the mechanisms of PFAS sorption and retention by bacteria. Retention of PFAS by bacteria can occur through sorption onto cell surfaces and/or by incorporation into the cell interior. Factors such as the molecular structure of PFAS, solution chemistry, and bacterial species can affect the magnitude of PFAS sorption. The influence of bacteria on the retention and transport of PFAS was investigated in the second part of the study with a series of batch and miscible-displacement experiments. Batch experiments were conducted using Gram-negative Pseudomonas aeruginosa and Gram-positive Bacillus subtilis to quantify the sorption of perfluorooctane sulfonic acid (PFOS). The results indicated that both bacteria showed strong adsorption of PFOS, with no significant difference in adsorption capacity. Miscible-displacement experiments were then conducted to examine the retention and transport of PFOS in both untreated sand and sand inoculated with Pseudomonas aeruginosa or Bacillus subtilis for 1 and 3 days. The transport of PFOS exhibited greater retardation for the experiments with inoculated sand. Furthermore, the enhanced sorption was greater for the 3-day inoculation compared to the 1-day, indicating that biomass is an important factor affecting PFOS transport. A mathematical model representing transport with nonlinear and rate-limited sorption successfully simulated the observed PFOS transport. This study highlights the need for future studies to evaluate the effect of bacteria on the transport of PFAS in soil and groundwater.
Collapse
Affiliation(s)
- Mengfan Dai
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mark L Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
29
|
Hakimabadi SG, Taylor A, Pham ALT. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon. WATER RESEARCH 2023; 242:120212. [PMID: 37336180 DOI: 10.1016/j.watres.2023.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
The immobilization of per- and polyfluoroalkyl substances (PFAS) by colloidal activated carbon (CAC) barriers has been proposed as a potential in-situ method to mitigate the transport of plumes of PFAS in the subsurface. However, if PFAS are continuously released from a source zone, the adsorptive sites on CAC will eventually become saturated, upon which point the breakthrough of PFAS in the barrier will occur. To predict the long-term effectiveness of CAC barriers, it is important to evaluate the factors that may affect the adsorption of PFAS on CAC. In this study, the adsorption of 7 PFAS on a polymer-stabilized CAC (i.e., PlumeStop®) and on a polymer-free CAC was investigated using batch experiments. The adsorption affinity of PFAS to CAC was in the following order: PFOS > 6:2 FTS > PFHxS > PFOA > PFBS > PFPeA > PFBA. This result indicates that hydrophobic interaction was the predominant adsorption mechanism, and that hydrophilic compounds such as PFBA and PFPeA will break through CAC barriers first. The partition coefficient Kd for the adsorption of PFAS on the polymer-stabilized CAC was 1.3 - 3.5 times smaller than the Kd for the adsorption of PFAS on the polymer-free CAC, suggesting that the polymers decreased the adsorption, presumably due to competitive sorption. Thus, the PFAS adsorption capacity of PlumeStop CAC barriers is expected to increase once the polymers are biodegraded and/or washed away. The affinity of PFOS and PFOA to CAC increased when the ionic strength of the solution increased from 1 to 100 mM, or when the concentration of Ca2+ increased from 0 to 2 mM. In contrast, less PFOS and PFOA were adsorbed in the presence of 1 - 20 mgC/L Suwannee River Fulvic Acid, which represented dissolved organic carbon, or in the presence of 10 - 100 mg/L diethylene glycol butyl ether (DGBE), which is an important component in some aqueous film-forming foam (AFFF) formulations. The presence of 0.5 - 4.8 mg/L benzene or 0.5 - 8 mg/L trichloroethylene, the co-contaminants that may comingle with PFAS at AFFF-impacted sites, diminished PFOS adsorption but had no effect or even slightly enhanced PFOA adsorption. When the initial concentration of TCE was 8 mg/L, the Kd (514 ± 240 L/g) for the adsorption of PFOS was approximately 20 times lower than that in the TCE-free system (Kd = 9,579 ± 829 L/g). The results of this study provided insights into some key factors that may affect the adsorption of PFAS in in-situ CAC barriers.
Collapse
Affiliation(s)
| | - Alannah Taylor
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
30
|
Moavenzadeh Ghaznavi S, Zimmerman C, Shea ME, MacRae JD, Peckenham JM, Noblet CL, Apul OG, Kopec AD. Management of per- and polyfluoroalkyl substances (PFAS)-laden wastewater sludge in Maine: Perspectives on a wicked problem. Biointerphases 2023; 18:041004. [PMID: 37602771 DOI: 10.1116/6.0002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.
Collapse
Affiliation(s)
- Simin Moavenzadeh Ghaznavi
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04473
| | - Charity Zimmerman
- School of Economics, University of Maine, 5782 Winslow Hall, Orono, Maine 04473
| | - Molly E Shea
- School of Economics, University of Maine, 5782 Winslow Hall, Orono, Maine 04473
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04473
| | - John M Peckenham
- Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, 5710 Norman Smith Hall, Orono, Maine 04473
| | - Caroline L Noblet
- School of Economics, University of Maine, 5782 Winslow Hall, Orono, Maine 04473
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04473
| | - A Dianne Kopec
- Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, 5710 Norman Smith Hall, Orono, Maine 04473
| |
Collapse
|
31
|
Nath J, De J, Sur S, Banerjee P. Interaction of Microbes with Microplastics and Nanoplastics in the Agroecosystems-Impact on Antimicrobial Resistance. Pathogens 2023; 12:888. [PMID: 37513735 PMCID: PMC10386327 DOI: 10.3390/pathogens12070888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are hotspots for the exchange of antimicrobial resistance genes (ARGs) between different bacterial taxa in the environment. Propagation of antimicrobial resistance (AMR) is a global public health issue that needs special attention concerning horizontal gene transfer (HGT) under micro-nano plastics (MNPs) pressure. Interactions between MNPs and microbes, or mere persistence of MNPs in the environment (either water or soil), influence microbial gene expressions, affecting autochthonous microbiomes, their resistomes, and the overall ecosystem. The adsorption of a range of co-contaminants on MNPs leads to the increased interaction of pollutants with microbes resulting in changes in AMR, virulence, toxin production, etc. However, accurately estimating the extent of MNP infestation in agroecosystems remains challenging. The main limitation in estimating the level of MNPs contamination in agroecosystems, surface and subsurface waters, or sediments is the lack of standardized protocols for extraction of MPs and analytical detection methods from complex high organic content matrices. Nonetheless, recent advances in MPs detection from complex matrices with high organic matter content are highly promising. This review aims to provide an overview of relevant information available to date and summarize the already existing knowledge about the mechanisms of MNP-microbe interactions including the different factors with influence on HGT and AMR. In-depth knowledge of the enhanced ARGs propagation in the environment under the influence of MNPs could raise the needed awareness, about future consequences and emergence of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jayashree Nath
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jayita De
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
33
|
Yu L, Hua Z, Liu X, Chen L, Zhang Y, Ma Y, Dong Y, Xue H. The addition of iron-carbon enhances the removal of perfluoroalkyl acids (PFAAs) in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121534. [PMID: 37001598 DOI: 10.1016/j.envpol.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Hazardous perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have become ubiquitous environmental persistent organic contaminants, posing serious threats to environmental health, which has led to the development of PFAA treatment methods. Wetland construction in combination with iron-carbon (CW-I), a low-maintenance and high-efficiency technology, may be capable of removing PFAAs through physico-biochemical processes. In this study, we aim to investigate the removal efficiency of PFAAs by CW-I as well as the critical functions of all components within the wetlands. Pairwise comparisons of iron-carbon and control groups revealed that iron-carbon significantly enhanced 15.9% for PFOA and 17.9% for PFOS absorption through phytouptake and substrate adsorption, with respective removal efficiencies of 71.8% ± 1.03% and 85.8% ± 1.56%. The generated iron ions stimulated plant growth and further enhanced phytouptake of PFAAs, with PFAAs accumulated primarily in root tissues with limited translocation. Observations of batch adsorption suggest that chemical and electrostatic interactions are involved in the iron-carbon adsorption process, with film and intraparticle diffusions being the rate-limiting events. Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy revealed that PFAA adsorption by substrates occurs at the molecular level, as well as the occurrence of hydrophobic force effects and ligand exchanges during the iron-carbon adsorption process. Additionally, iron-carbon significantly altered the genera, phyla, and community structure of microorganisms, and some microorganisms and their extracellular polymers may possess ability to bind PFAAs. The information provided in this study contributes to our understanding of the PFAA removal processes in CW-I and enriched the classical cases of PFAA removal by CWs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Luying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yixin Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yueyang Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
34
|
Alinezhad A, Shao H, Litvanova K, Sun R, Kubatova A, Zhang W, Li Y, Xiao F. Mechanistic Investigations of Thermal Decomposition of Perfluoroalkyl Ether Carboxylic Acids and Short-Chain Perfluoroalkyl Carboxylic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8796-8807. [PMID: 37195265 PMCID: PMC10269594 DOI: 10.1021/acs.est.3c00294] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the β-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.
Collapse
Affiliation(s)
- Ali Alinezhad
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Heng Shao
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Katerina Litvanova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Runze Sun
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubatova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yang Li
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
35
|
Min X, Wang Y. Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131047. [PMID: 36827723 DOI: 10.1016/j.jhazmat.2023.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Removal of short-chain per- and polyfluoroalkyl substances (PFAS) represents a unique challenge in comparison to the long-chain homologs. In this study, a series of functionalized periodic mesoporous organosilica (PMO) materials with tunable molar ratio of fluoroalkyl to amine functional groups were developed and used as platform adsorbents to investigate the adsorption behavior of short-chain PFAS, with a focus on perfluorobutanoic acid (PFBA). Modification with fluoroalkyl group substantially enhanced the adsorption affinity of PFBA with the functionalized PMO materials. Adsorption free energy analysis suggested that although electrostatic interactions were more predominant in PFBA adsorption, modification of PMOs with increased fluoroalkyl group loadings increased the non-electrostatic interactions with PFBA, resulting in more favorable PFBA adsorption. The optimal functionalized PMO showed fast PFBA adsorption kinetics, excellent PFBA removal efficiency in various water chemistry conditions, and can be regenerated and reused for numerous cycles with methanol/water mixture containing 500-mM NH3·H2O as regenerant. Furthermore, the optimal functionalized PMO showed robust performance for the removal of PFAS mixtures under complex natural water matrix. Results of this study suggested the important role of non-electrostatic interactions in enhancing the removal of short-chain PFAS and can provide mechanistic insights into guiding the design of improved adsorbents for PFAS removal.
Collapse
Affiliation(s)
- Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI 53201, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
36
|
Medon B, Pautler BG, Sweett A, Roberts J, Risacher FF, D'Agostino LA, Conder J, Gauthier JR, Mabury SA, Patterson A, McIsaac P, Mitzel R, Hakimabadi SG, Pham ALT. A field-validated equilibrium passive sampler for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:980-995. [PMID: 37128709 DOI: 10.1039/d2em00483f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labelled PFAS M2PFOA and M4PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br- and M3PFPeA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M8PFOA and C8H17SO3-), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water samples obtained adjacent to the sampler deployment locations. Neither biofouling of the rate-limiting barrier nor any physical change to it was observed on the sampler after retrieval. The passive sampler developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface water.
Collapse
Affiliation(s)
- Blessing Medon
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | - Florent F Risacher
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Lisa A D'Agostino
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Jason Conder
- Geosyntec Consultants Inc., Costa Mesa, California, 92626, USA
| | - Jeremy R Gauthier
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Patricia McIsaac
- Eurofins Environment Testing America, Oakton, Virginia, 22124, USA
| | - Robert Mitzel
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Seyfollah Gilak Hakimabadi
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
37
|
Kong X, Zhang J, Ji Q, Li C, Chen X, Cao X, Zhu F, Yang S, Li S, He H. Insights into adsorption mechanisms of nitro polycyclic aromatic hydrocarbons on common microplastic particles: Experimental studies and modeling. CHEMOSPHERE 2023; 320:138050. [PMID: 36739992 DOI: 10.1016/j.chemosphere.2023.138050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Nitro polycyclic aromatic hydrocarbons (NPAHs) and microplastics (MPs) are emerging contaminants that pose a threat to the aquatic ecosystem. Knowledge of the NPAHs and MPs interaction will help the understanding of their fate and risks in natural environment. Here, the adsorption behavior and mechanism of typical NPAHs on microplastics were investigated. The adsorption kinetic and isotherm data showed that the adsorption of NPAHs was controlled by chemical adsorption and hydrophobic partition, because of excellent fit of kinetic and isothermal equations (R2 > 0.9). The adsorption capacity (587-744 μg g-1) was largely dependent on the hydrophobicity of NPAHs. The experiment of environmental factors confirmed the important role of pollutant hydrophobicity, with 1-Npyr of the highest hydrophobicity having the greatest adsorption on MPs (adsorption rate >90%) and less affected by solution pH and ionic strength (changer <5%). In the mixture system, MPs displayed high adsorption capacity for each compound; Interestingly, because compounds with smaller size were easy to occupy the adsorption sites in the pores of MPs, the adsorption of 2-Nflu (724 μg g-1) was even greater than that of 9-Nant (713 μg g-1) and 1-Npyr (703 μg g-1). The model calculation of adsorption also shows that there is surface adsorption and hydrophobic distribution in the adsorption process. The findings provide new insights into the interactions of MPs with organic pollutants in complex environments.
Collapse
Affiliation(s)
- Xiangcheng Kong
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing, 210023, China.
| | - Jinghua Zhang
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
38
|
Campos-Pereira H, Kleja DB, Ahrens L, Enell A, Kikuchi J, Pettersson M, Gustafsson JP. Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils. CHEMOSPHERE 2023; 321:138133. [PMID: 36791815 DOI: 10.1016/j.chemosphere.2023.138133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances. The negative slope between log Kd and pH became steeper with increasing perfluorocarbon chain length of the PFAS (r2 = 0.75, p ≤ 0.05). Organic carbon (OC) alone was a poor predictor of the partitioning for all PFASs, except for FOSA (r2 = 0.71), and the OC-normalized PFAS partitioning, as derived from organic soil materials, underestimated PFAS sorption to the soils. Multiple linear regression suggested sorption contributions (p ≤ 0.05) from OC for perfluorooctane sulfonate (PFOS) and FOSA, and Fe/Al (hydr)oxides for PFOS, FOSA, and perfluorodecanoate (PFDA). FOSA was the only substance under study for which there was a statistically significant correlation between its binding and soil texture (silt + clay). To predict PFAS sorption, the surface net charge of the soil organic matter fraction of all soils was calculated using the Stockholm Humic Model. When calibrated against charge-dependent PFAS sorption to a peat (Oe) material, the derived model significantly underestimated the measured Kd values for 10 out of 11 soils. To conclude, additional sorbents, possibly including silicate minerals, contribute to the binding of PFASs in soil. More research is needed to develop geochemical models that can accurately predict PFAS sorption in soils.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Dan B Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden; Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Anja Enell
- Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Johannes Kikuchi
- Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden; Department of Thematic Studies, Linköping University, SE-581 83, Linköping, Sweden
| | | | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
39
|
Nickerson A, Maizel AC, Schaefer CE, Ranville JF, Higgins CP. Effect of geochemical conditions on PFAS release from AFFF-impacted saturated soil columns. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:405-414. [PMID: 36629138 DOI: 10.1039/d2em00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.
Collapse
Affiliation(s)
- Anastasia Nickerson
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | - James F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| |
Collapse
|
40
|
Lei X, Lian Q, Zhang X, Karsili TK, Holmes W, Chen Y, Zappi ME, Gang DD. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121138. [PMID: 36702432 DOI: 10.1016/j.envpol.2023.121138] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have drawn great attention due to their wide distribution in water bodies and toxicity to human beings. Adsorption is considered as an efficient treatment technique for meeting the increasingly stringent environmental and health standards for PFAS. This paper systematically reviewed the current approaches of PFAS adsorption using different adsorbents from drinking water as well as synthetic and real wastewater. Adsorbents with large mesopores and high specific surface area adsorb PFAS faster, their adsorption capacities are higher, and the adsorption process are usually more effective under low pH conditions. PFAS adsorption mechanisms mainly include electrostatic attraction, hydrophobic interaction, anion exchange, and ligand exchange. Various adsorbents show promising performances but challenges such as requirements of organic solvents in regeneration, low adsorption selectivity, and complicated adsorbent preparations should be addressed before large scale implementation. Moreover, the aid of decision-making tools including response surface methodology (RSM), techno-economic assessment (TEA), life cycle assessment (LCA), and multi criteria decision analysis (MCDA) were discussed for engineering applications. The use of these tools is highly recommended prior to scale-up to determine if the specific adsorption process is economically feasible and sustainable. This critical review presented insights into the most fundamental aspects of PFAS adsorption that would be helpful to the development of effective adsorbents for the removal of PFAS in future studies and provide opportunities for large-scale engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tolga K Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| |
Collapse
|
41
|
Wen W, Xiao L, Hu D, Zhang Z, Xiao Y, Jiang X, Zhang S, Xia X. Fractionation of perfluoroalkyl acids (PFAAs) along the aquatic food chain promoted by competitive effects between longer and shorter chain PFAAs. CHEMOSPHERE 2023; 318:137931. [PMID: 36706813 DOI: 10.1016/j.chemosphere.2023.137931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are proteinophilic pollutants. We hypothesized that fractionation of PFAAs may occur along a food chain. To testify this hypothesis, we investigated the bioconcentration, bioaccumulation, and fractionation of 11 kinds of PFAAs (C-F = 3-11) along an aquatic food chain consisting of D. magna, zebrafish, and cichlid. The results showed that the proportions of PFNA, PFOA, and all shorter chain PFAAs in the D. magna and fish tissues were lower than the ones in exposure water, opposing to the other longer chain PFAAs. Predation promoted such fractionation differences, and the proportions of PFNA, PFOA, and all shorter chain PFAAs in organisms decreased while those of the other longer chain PFAAs increased along the food chain. The results of isothermal titration calorimetry and molecular docking experiments showed that binding affinities of PFAAs and fish proteins increased with the number of perfluorinated carbons, resulting in a substitution of shorter chain PFAAs by their longer chain analogues. It also triggered the differences in the uptake and elimination of PFFAs and competitive bioaccumulation between longer and shorter chain PFAAs. This study suggests that fractionation should be considered in studying environmental behaviors and evaluating ecological risks of multiple PFAAs.
Collapse
Affiliation(s)
- Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University at ZhaiHai, 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Lu Xiao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University at ZhaiHai, 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Diexuan Hu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Zhining Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China.
| |
Collapse
|
42
|
Zhang W, Wellington TE, Liang Y. Effect of two sorbents on the distribution and transformation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in soil-soybean systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120941. [PMID: 36566675 DOI: 10.1016/j.envpol.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The broad application of perfluoroalkyl acid (PFAA) precursors has led to their occurrence in soil, resulting in potential uptake and bioaccumulation in plants. In this study, we investigated the effect of powdered activated carbon (PAC) and montmorillonite on the distribution and transformation of a perfluorooctanesulfonic acid (PFOS) precursor, N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA), in soil-plant systems. The results showed that N-EtFOSAA at 300 μg/kg was taken up by soybean roots and shoots together with its transformation products (i.e., perfluorooctane sulfonamide (PFOSA), PFOS), while decreasing the biomass of shoots and roots by 47.63% and 61.16%, respectively. PAC amendment significantly reduced the water leachable and methanol extractable N-EtFOSAA and its transformation products in soil. In the presence of soybean and after 60 days, 73.5% of the initially spiked N-EtFOSAA became non-extractable bound residues. Compared to the spiked controls, the PAC addition also decreased the total plant uptake of N-EtFOSAA by 94.96%. In contrast, montmorillonite showed limited stabilization performance for N-EtFOSAA and its transformation products and was ineffective to lower their bioavailability. Overall, the combination of PAC and soybean was found to be effective in immobilizing N-EtFOSAA in soil.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Tamia E Wellington
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
43
|
Ruan J, Tang T, Zhang M, Qiao W. Interaction mechanism between chlorinated polyfluoroalkyl ether potassium sulfonate (F-53B) and chromium on different types of soil surfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119820. [PMID: 35940486 DOI: 10.1016/j.envpol.2022.119820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The coexistence of per- and polyfluoroalkyl substances (PFASs) and heavy metals have been found in soils. However, the interaction between the combined pollutants in soils remains unclear. In this study, the adsorption processes of single and combined Cr(VI) and chlorinated polyfluoroalkyl ether potassium sulfonate (F-53 B) in red, yellow and black soils were simulated. When compared with the single F-53 B and Cr(VI), the adsorption amount of the combined F-53 B and Cr(VI) on soils changed with the types of soils. The interactions between F-53 B and Cr(VI) in soils affected their adsorption behavior. The adsorption of the combined F-53 B and Cr(VI) best fit second-order kinetics and the Freundlich equation. Moreover, aluminum and iron oxides are highly correlated with adsorption of F-53 B and Cr(VI). Both F-53 B and Cr(VI) can form complexes with aluminum and iron oxides through electrostatic interactions, but PFOS could be bridged with iron oxides to form an inner sphere complex and with aluminum oxides to form an outer sphere complex. The coexistence of F-53 B and Cr(VI) could change the fluorescent group of dissolved organic matter (DOM) in soils due to the complexation between F-53 B and DOM. In addition, F-53 B increased the acid-soluble portion of Cr and decreased its residual form, which promoted the environmental risk of Cr in soils.
Collapse
Affiliation(s)
- Jingqi Ruan
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianhao Tang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
44
|
Reif D, Zoboli O, Wolfram G, Amann A, Saracevic E, Riedler P, Hainz R, Hintermaier S, Krampe J, Zessner M. Pollutant source or sink? Adsorption and mobilization of PFOS and PFOA from sediments in a large shallow lake with extended reed belt. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115871. [PMID: 36056490 DOI: 10.1016/j.jenvman.2022.115871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, we i) assessed the occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in sediments, pore water, and bulk water from three different areas in Lake Neusiedl, Austria, and ii) investigated mechanisms regulating adsorption and remobilization of these substances under different conditions via multiple lab-scale experiments. The adsorption capacity was mainly influenced by sediments' organic matter content, oxide composition, and pre-loading. Results suggest that a further increase of PFAS-concentrations in the open lake can be partly buffered by sediment transport to the littoral zone and adsorption to sediments in the extended reed belt. But, under current conditions, the conducted experiments revealed a real risk for mobilization of PFOS and PFOA from reed belt sediments that may lead to their transport back into the lake. The amount of desorbed PFAS is primarily dependent on water/sediment- or pore water/water-ratios and the concentration gradient. In contrast, water matrix characteristics and oxygen levels played a minor role in partitioning. The highest risk for remobilizing PFOS and PFOA was observed in experiments with sediments taken near the only major tributary to the lake (river Wulka), which had the highest pre-loading. The following management advice for water transport between high and low polluted areas can be derived based on the results. First, to reduce emissions into Lake waters from polluted tributaries like the Wulka river, we recommend diffuse pathways through the reed belt in the lake's littoral to reduce pollutant transport into the Lake and avoid high local sediment loadings. Second, water exchange with dried-up areas with probable higher loadings should be carefully handled and monitored to avoid critical back transport in the open lake. And third, general work in the reed belt or generally in the reed should be accompanied by monitoring to prevent uncontrolled remobilization in the future.
Collapse
Affiliation(s)
- D Reif
- Institute for Water Quality and Resource Management- TU Wien; Karlsplatz 13/226-1, 1040, Vienna, Austria.
| | - O Zoboli
- Institute for Water Quality and Resource Management- TU Wien; Karlsplatz 13/226-1, 1040, Vienna, Austria
| | - G Wolfram
- DWS Hydro-Ökologie GmbH, Zentagasse 47, 1050, Vienna, Austria
| | - A Amann
- Institute for Water Quality and Resource Management- TU Wien; Karlsplatz 13/226-1, 1040, Vienna, Austria
| | - E Saracevic
- Institute for Water Quality and Resource Management- TU Wien; Karlsplatz 13/226-1, 1040, Vienna, Austria
| | - P Riedler
- DWS Hydro-Ökologie GmbH, Zentagasse 47, 1050, Vienna, Austria
| | - R Hainz
- DWS Hydro-Ökologie GmbH, Zentagasse 47, 1050, Vienna, Austria
| | - S Hintermaier
- DWS Hydro-Ökologie GmbH, Zentagasse 47, 1050, Vienna, Austria
| | - J Krampe
- Institute for Water Quality and Resource Management- TU Wien; Karlsplatz 13/226-1, 1040, Vienna, Austria
| | - M Zessner
- Institute for Water Quality and Resource Management- TU Wien; Karlsplatz 13/226-1, 1040, Vienna, Austria
| |
Collapse
|
45
|
Wallis I, Hutson J, Davis G, Kookana R, Rayner J, Prommer H. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. WATER RESEARCH 2022; 225:119096. [PMID: 36162294 DOI: 10.1016/j.watres.2022.119096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Contamination through per-and poly-fluoroalkyl substances (PFAS) have occurred globally in soil and groundwater systems at military, airport and industrial sites due to the often decades-long periodic application of firefighting foams. At PFAS contaminated sites, the unsaturated soil horizon often serves as a long-term source for sustained PFAS contamination for both groundwater and surface water runoff. An understanding of the processes controlling future mass loading rates to the saturated zone from these source zones is imperative to design efficient remediation measures. In the present study, hydrochemical data from a site where PFAS transport was observed as a result of the decades-long application of AFFF were used to develop and evaluate conceptual and numerical models that determine PFAS mobility across the vadose zone under realistic field-scale conditions. The simulation results demonstrate that the climate-driven physical flow processes within the vadose zone exert a dominating control on the retention of PFAS. Prolonged periods of evapotranspiration exceeding rainfall under the semi-arid conditions trigger periods of upward flux and evapoconcentration, leading to the observed persistence of PFAS compounds in the upper ca. 2 metres of the vadose zone, despite cessation of AFFF application to soils since more than a decade. Physico-chemical retention mechanisms, namely sorption to the air-water interface (AWI) and sediment surfaces, contribute further to PFAS retention. The simulations demonstrate how PFAS downward transport is effectively confined to short periods following discrete rain events when soils display a high degree of saturation. During these periods, AWI sorption is at a minimum. In addition, high PFAS concentrations measured and simulated below the source zone reduce the effect of the AWI further due to a decrease in surface tension associated with elevated PFAS concentrations. Consequently, time-integrated PFAS migration and retardation illuminates that the field-relevant PFAS transport rates are predominantly controlled by the physical flow processes with a lower relative importance of AWI and sediment sorption adding to PFAS retention.
Collapse
Affiliation(s)
- Ilka Wallis
- Flinders University, College of Science and Engineering, P.O. Box 2100, Adelaide, South Australia 5001, Australia.
| | - John Hutson
- Flinders University, College of Science and Engineering, P.O. Box 2100, Adelaide, South Australia 5001, Australia
| | - Greg Davis
- CSIRO Land and Water, Wembley, Western Australia 6014, Australia
| | - Rai Kookana
- CSIRO Land and Water, Glen Osmond, South Australia 5064, Australia
| | - John Rayner
- CSIRO Land and Water, Wembley, Western Australia 6014, Australia
| | - Henning Prommer
- CSIRO Land and Water, Wembley, Western Australia 6014, Australia; School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6913, Australia
| |
Collapse
|
46
|
Ordonez D, Podder A, Valencia A, Sadmani AA, Reinhart D, Chang NB. Continuous fixed-bed column adsorption of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from canal water using zero-valent Iron-based filtration media. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Zhang W, Liang Y. Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119724. [PMID: 35809706 DOI: 10.1016/j.envpol.2022.119724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Biosolids containing per- and polyfluoroalkyl substances (PFAS) could contaminate the receiving environments once they are land applied. In this study, we evaluated the feasibility of controlling the bioavailability of PFAS in biosolids to timothy-grass through stabilization or mobilization approaches. Stabilization was accomplished by adding a sorbent (i.e. granular activated carbon (GAC), RemBind, biochar) to biosolids, while mobilization was achieved by adding a surfactant, sodium dodecyl sulphate (SDS), to biosolids. The results showed that the ΣPFAS concentration in grass shoots grown in biosolids amended soil treated by GAC or RemBind at 2% was only 2.77% and 3.35% of the ΣPFAS concentration detected in shoots grown in biosolids amended soil without a sorbent, respectively, indicating the effectiveness of GAC and RemBind for stabilizing PFAS and reduce their bioavailability. On the other hand, mobilization by adding SDS to biosolids at a dose range of 10-100 mg/kg significantly increased the plant uptake of ΣPFAS by 15.48%-108.57%. Thus, mobilization by adding SDS could be a valuable approach for enhancing the PFAS removal if phytoremediation is applied. Moreover, higher rate of PFAS uptake took place after grass cutting was observed in this study. Thus, proper mowing and regrowth of timothy-grass could lead to efficient and cost-effective removal of PFAS from biosolids amended soil through phytoremediation and leave the site clean to be used for other purposes.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
48
|
Qi L, Li R, Wu Y, Lin X, Chen G. Effect of solution chemistry on the transport of short-chain and long-chain perfluoroalkyl carboxylic acids (PFCAs) in saturated porous media. CHEMOSPHERE 2022; 303:135160. [PMID: 35640683 DOI: 10.1016/j.chemosphere.2022.135160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Perfluorocarboxylic acids (PFCAs) are one of the most widely detected classes of PFAS in the global environment after decades of intensive use. This study investigated the impact of perfluorinated carbon chain length on the transport behavior of PFCAs by testing and modeling two short-chain (PFPeA and PFHxA) and two long-chain PFCAs (PFOA and PFDA) in laboratory water-saturated columns. Moreover, their transport behavior was examined under different solution chemistry conditions, including pH, ionic strength, and cationic type. The experimental and simulation results indicated that the chain length had a limited impact on transport behaviors of PFPeA, PFHxA, and PFOA under various pH and ionic strengths, evidenced by their tracer-like breakthrough curves. In contrast, the mobility of PFDA was significantly affected by pH and ionic strengths. Additionally, the transport of all four PFCAs was inhabited in the presence of the divalent cation Ca2+. This study could help predict migration behavior and assess the potential risk of PFCAs in the subsurface system.
Collapse
Affiliation(s)
- Lin Qi
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| | - Runwei Li
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Yudi Wu
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
49
|
Wang M, Cai Y, Zhou B, Yuan R, Chen Z, Chen H. Removal of PFASs from water by carbon-based composite photocatalysis with adsorption and catalytic properties: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155652. [PMID: 35508243 DOI: 10.1016/j.scitotenv.2022.155652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic pollutants widely distributed in aquatic environments. The adsorption and photocatalytic methods have been widely used to remove PFASs in water because of their respective advantages. Still, they have apparent defects when used alone. Therefore, the adsorption and photocatalytic technologies are combined through suitable preparation methods, and the excellent properties of the two are used to synergize the treatment of organic pollutants. This strategy of "concentrating" pollutants and then degrading them in a centralized manner plays an essential role in removing trace PFASs. Nevertheless, a review focusing on this kind of adsorption photocatalyst system is lacking. This review will fill this gap and provide a reference for developing a carbon-based composite photocatalyst. Firstly, different carbon-based composite photocatalysts are reviewed in detail, focusing on the differences in various composite materials' excellent adsorption and catalytic properties. Secondly, the factors influencing the removal effect of carbon-based composite photocatalysts are discussed. Thirdly, the removal mechanism of carbon-based composite photocatalysts is summarized in detail. The removal process involves two steps: adsorption and photodegradation. The adsorption process involves multiple cooperative adsorption mechanisms, and photocatalytic degradation includes oxidative and reductive degradation. Fourthly, the comparison of adsorption-photocatalysis with common treatment techniques (including removal rate, range of adaptation, cost, and the possibility of expanding application) is summarized. Finally, the prospects of carbon-based composite photocatalysts for repairing PFASs are given by evaluating the performance of different composites.
Collapse
Affiliation(s)
- Mingran Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanping Cai
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
50
|
Wang Y, Warner M, Li K, Hawkins GL, Huang Q. Assessing explicit models of per- and polyfluoroalkyl substances adsorption on anion exchange resins by rapid small-scale column tests. CHEMOSPHERE 2022; 300:134547. [PMID: 35405197 DOI: 10.1016/j.chemosphere.2022.134547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Managing per- and polyfluoroalkyl substance (PFAS) contamination has gained worldwide attention due to their ubiquitous occurrence in water systems. Anion exchange resins (AERs) have been proven effective in removing both long-chain and short-chain PFASs. In this study, an explicit model was developed to describe the breakthrough behavior of an individual PFAS as a single solute onto anion exchange resin in a column filtration process. The model was further modified to predict the breakthrough curve of co-existing PFASs on AER in multi-solute systems by incorporating a separation factor describing the competitive adsorption and a blockage factor describing the loss of adsorption sites. Rapid small-scale column tests (RSSCTs) were performed with six AERs of various properties and three model PFASs in both single- and multi-solutes systems. The breakthrough behaviors of RSSCTs for both single- and multi-solute systems were found adequately described by the models developed in this study. The experiments and accompanied model simulations reveal some important relationships between the AER performance and the properties of both the AERs and the PFASs.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Max Warner
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Ke Li
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Gary L Hawkins
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|