1
|
Schweizer S, Aberle B, Klimm A, Hauer B, Vetter W. Cytochrome P450 induced formation of hydroxylated polybrominated diphenyl ether and dibenzo-p-dioxin derivates from brominated phenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177940. [PMID: 39662406 DOI: 10.1016/j.scitotenv.2024.177940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Methoxylated polybrominated diphenyl ethers (MeO-BDEs) are a class of environmentally relevant halogenated natural products. The two most relevant isomers, 2'-MeO-BDE 68 and 6-MeO-BDE 47, were repeatedly detected at levels comparable with persistent organic pollutants in marine environmental and food samples. MeO-BDEs were suspected to be biosynthesized by bromoperoxidases through the merging of two bromophenol units, three of which (2,4-dibromophenol, 2,6-dibromophenol and 2,4,6-tribromophenol) are abundant in marine environments, followed by O-methylation to give MeO-BDEs. However, not all abundant MeO-BDEs can be explained by the direct coupling of bromophenols. Therefore, several bromophenols were incubated with CYP109B1 from Bacillus subtilis. Incubations of 2,4-dibromophenol with CYP109B1 resulted in both 2'-OH-BDE 68 and 6-OH-BDE 47. Mechanistic considerations indicated that both compounds emerged from an epoxidized intermediate. After subsequent methylation this leads to the two most relevant MeO-BDEs in marine environments. By contrast, incubations with 2,6-dibromophenol and 2,4,6-tribromophenol did not form any OH-BDEs but tri- or tetrabrominated dibenzo-p-dioxins (PBDDs), i.e. another known class of environmentally relevant halogenated natural products whose toxicity has shown to be similar to their chlorinated analogues. SYNOPSIS: Treatment of bromophenols with cytochrome P450 monooxygenase CYP109B1 led to the formation of hydroxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins.
Collapse
Affiliation(s)
- Sina Schweizer
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70599 Stuttgart, Germany
| | - Benjamin Aberle
- University of Stuttgart, Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, D-70569 Stuttgart, Germany
| | - Alexandra Klimm
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70599 Stuttgart, Germany
| | - Bernhard Hauer
- University of Stuttgart, Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, D-70569 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Liu Y, Hou X, Li X, Liu J, Jiang G. Simultaneous determination of 19 bromophenols by gas chromatography-mass spectrometry (GC-MS) after derivatization. Talanta 2024; 274:126015. [PMID: 38581850 DOI: 10.1016/j.talanta.2024.126015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are a class of ubiquitous emerging halogenated pollutants. Their 19 congeners are problematically separated and detected. This work described the separation and detection of 19 BP congeners by gas chromatography-mass spectrometry (GC-MS). Investigations into the derivatization of bromophenols were carried out using two silylation reagents (N,O-bis(trimethylsilyl)trifluoroacetamide and N-methyl-N-(trimethylsily)trifluoroacetamide), two alkylation reagents (methyl iodide and trimethylsilyldiazomethane) and acetic anhydride prior to GC-MS analysis. Optimal chromatographic separation, sensitivity, and linearity were achieved after BP derivatization using acetic anhydride, featuring the equipment detection limits of 0.39-1.26 pg and correlation coefficients of 0.9948-0.9999 (linear range: 0.5-250 ng mL-1) for all 19 BP congeners. Furthermore, the simultaneous determination of 19 bromophenols and 19 bromoanisoles, common environmental transformation products of BPs, is also demonstrated. The improved analytical performance on GC-MS after derivatization would benefit investigations on the environmental origins, behaviors and fates of BPs and their environmental metabolites.
Collapse
Affiliation(s)
- Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoying Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
3
|
Zhang M, Li P, Wang Q, Huang L, Lin K. Production of Polyhalogenated Carbazoles in Marine Red Alga Corallina officinalis: A Possible Natural Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6673-6681. [PMID: 37053377 DOI: 10.1021/acs.est.3c00311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) have been increasingly detected in the environment as a result of anthropogenic and natural origin. However, it is unclear how PHCZs are naturally produced. In this study, the formation of PHCZs from bromoperoxidase (BPO)-mediated halogenation of carbazole was investigated. A total of six PHCZs were identified in reactions under different incubation conditions. The presence of Br- significantly influenced the formation of PHCZs. The products were first dominated by 3-bromocarbazole and then 3,6-dibromocarbazole as the reactions proceeded. Both bromo- and chlorocarbazoles were identified in the incubations with trace Br-, suggesting the co-occurrence of BPO-catalyzed bromination and chlorination. However, BPO-catalyzed chlorination of carbazole was much weaker than that of bromination. The formation of PHCZs could be attributable to the halogenation of carbazole by reactive halogen species generated from BPO-catalyzed oxidation of Br- and Cl- by H2O2. The halogenation was found to follow a successive substitution order of C-3, C-6, and C-1 on the carbazole ring, forming 3-, 3,6-, and 1,3,6-isomers. Similar to the incubation experiments, six PHCZs were for the first time detected in red algal samples collected from the South China Sea, China, suggesting the biogenesis of PHCZs in marine red algae. Given the widespread distribution of red algae in the marine environment, BPO-catalyzed halogenation of carbazole may be a natural origin for PHCZs.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Peng Li
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qifang Wang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lingfeng Huang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Dron J, Demelas C, Mas J, Durand A, Pantalacci A, Austruy A, Périot M, Revenko G, Gori D, Lebaron K, Coupé S, Höhener P, Boudenne JL. Assessment of the contamination by 2,4,6-tribromophenol of marine waters and organisms exposed to chlorination discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119742. [PMID: 35835273 DOI: 10.1016/j.envpol.2022.119742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
2,4,6-tribromophenol (TBP) is implied in the production of brominated flame retardants but is also a major chlorination by-product in seawater. A growing number of studies indicate that TBP is highly toxic to the marine biota, but the contribution of anthropogenic sources among natural production is still under question concerning its bioaccumulation in marine organisms. Here, several water sampling campaigns were carried out in the industrialized Gulf of Fos (northwestern Mediterranean Sea, France) and clearly showed the predominant incidence of industrial chlorination discharges on the TBP levels in water, at the 1-10 ng L-1 level in average and reaching up to 580 ng L-1 near the outlets. The bioaccumulation of TBP was measured in 90 biota samples from the Gulf of Fos. The concentrations found in European conger muscle tissues (140-1000 ng g-1 lipid weight, in average), purple sea urchin gonads (830-880 ng g-1 lipid weight, in average), and Mediterranean mussel body (1500-2000 ng g-1 lipid weight, in average) were above all published references. Significant correlations with fish length (European conger) and gonad somatic index (purple sea urchin) were also identified. Comparatively, fish, urchins and mussels from other Mediterranean sites analyzed within this study showed a lower bioaccumulation level of TBP, consistently with what found elsewhere. Industrial outflows were thus identified as hotspots for TBP in seawater and marine organisms. The environmental risk assessment indicated a high potential toxicity in the industrial Gulf of Fos, in particular near the outlets, and a limited threat to human but toxicological references are lacking.
Collapse
Affiliation(s)
- Julien Dron
- Institut Écocitoyen pour La Connaissance des Pollutions, Fos-sur-Mer, France.
| | | | - Justine Mas
- Institut Écocitoyen pour La Connaissance des Pollutions, Fos-sur-Mer, France; Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Anthony Pantalacci
- Institut Écocitoyen pour La Connaissance des Pollutions, Fos-sur-Mer, France
| | - Annabelle Austruy
- Institut Écocitoyen pour La Connaissance des Pollutions, Fos-sur-Mer, France
| | - Marine Périot
- Institut Écocitoyen pour La Connaissance des Pollutions, Fos-sur-Mer, France
| | - Gautier Revenko
- Institut Écocitoyen pour La Connaissance des Pollutions, Fos-sur-Mer, France
| | - Didier Gori
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | - Karine Lebaron
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Marseille, France
| | - Stéphane Coupé
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Marseille, France
| | | | | |
Collapse
|
6
|
Cao Y, Gao Y, Hu X, Zeng Y, Luo X, Li G, An T, Mai B. Insight into phototransformation mechanism and toxicity evolution of novel and legacy brominated flame retardants in water: A comparative analysis. WATER RESEARCH 2022; 211:118041. [PMID: 35030361 DOI: 10.1016/j.watres.2022.118041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardants (NBFRs) have become widespread as a consequence of the prohibition on the use of polybrominated diphenyl ethers (PBDEs). However, the transformation mechanism and potential environmental risk are largely unclear. In this study, we have explored the phototransformation behavior of the most abundant NBFRs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in water under ultraviolet (UV) irradiation. Meanwhile, the legacy 2,2',4,4',6,6'-hexabromodiphenyl ether (BDE155) with similar structure was investigated contrastively. Results show that novel BTBPE is more persistent than legacy BDE155, with nearly four times slower photodegradation rate constants (0.0120 min-1and 0.0447 min-1, respectively). 18 products are identified in the phototransformation of BTBPE. Different from the only debrominated products formed in legacy BDE155 transformation, the ether bond cleavage photoproducts (e.g. bromophenols) are also identified in novel BTBPE transformation. Compound-specific stable isotope analysis (CSIA) confirms the phototransformation mechanism is mainly via debromination accompanying with the breaking of ether bond. Computational toxicity assessment implies that transformation products of BTBPE still have the high kidney risks. Especially the bromophenols formed via the ether bond cleavage could significantly increase the health effects on skin irritation. This study emphasizes the importance of understanding the photolytic behavior and potential risks of novel NBFRs and other structurally similar analogues.
Collapse
Affiliation(s)
- Ya Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Wu Q, Eisenhardt N, Holbert SS, Pawlik JR, Kucklick JR, Vetter W. Naturally occurring organobromine compounds (OBCs) including polybrominated dibenzo-p-dioxins in the marine sponge Hyrtios proteus from The Bahamas. MARINE POLLUTION BULLETIN 2021; 172:112872. [PMID: 34454388 DOI: 10.1016/j.marpolbul.2021.112872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Halogenated natural products (HNPs) were identified from organic extracts of the marine sponge Hyrtios proteus from The Bahamas using gas chromatography with electron capture negative ion mass spectrometry and non-targeted gas chromatography with electron ionization mass spectrometry. The HNPs found have similar properties to anthropogenic persistent organic pollutants (POPs). Two ortho-methoxy brominated diphenyl ethers (MeO-BDEs) 2'-MeO-BDE 68 and 6-MeO-BDE 47 were the most abundant compounds. Fourteen other MeO-BDEs were detected along with several polybrominated dibenzo-p-dioxins (PBDDs) (1,3,7-triBDD, 1,3,6,8-tetraBDD and 1,3,7,9-tetraBDD) and MeO-PBDDs. Further analysis of a higher trophic level octopus (Octopus maya) from the same FAO fishing area showed that the major HNPs detected in Hyrtios proteus were also predominant. Moreover, HNPs were more than 30-fold higher in abundance than the major POPs in the octopus, i.e., polychlorinated biphenyls. Hence, Caribbean marine organisms, including those potentially used for food, harbor relatively high concentrations of HNPs.
Collapse
Affiliation(s)
- Qiong Wu
- University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Natalie Eisenhardt
- National Institute of Standards and Technology, Chemical Sciences Division, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Stephanie Shaw Holbert
- National Institute of Standards and Technology, Chemical Sciences Division, 331 Fort Johnson Road, Charleston, SC 29412, United States; College of Charleston, Department of Biology, Grice Marine Laboratory, Charleston, SC 29412, United States
| | - Joseph R Pawlik
- University of North Carolina Wilmington, Center of Marine Science, 500 Marvin K Moss Lane, Wilmington, NC 28409, United States
| | - John R Kucklick
- National Institute of Standards and Technology, Chemical Sciences Division, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany.
| |
Collapse
|
8
|
Jiang J, Zhao H, Xia D, Li X, Qu B. Formation of free radicals by direct photolysis of halogenated phenols (HPs) and effects of DOM: A case study on monobromophenols. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122220. [PMID: 32050140 DOI: 10.1016/j.jhazmat.2020.122220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The free radicals play an important role to understand direct/indirect transformation mechanisms of organic pollutants. However, very few efforts have been made to elucidate the radicals produced by direct photolysis. In this study, the short-lived radicals generated under simulated sunlight irradiation from representative halogenated phenols (HPs), monobromophenols, were investigated by electron paramagnetic resonance (EPR). The results showed that three radicals, carbon-centered radical (C), hydrogen radical (H) and hydroxyl radical (OH), were generated from the direct irradiation of HPs. Compared to other substitutions, halogenated atom at para-position led to the highest production of these radicals which is in accordance with the energies calculated by density functional theory. Based on the analyses of the reactive species and corresponding intermediate adducts, the possible reaction pathways for these radicals were tentatively proposed. Dissolved organic matters (DOM) could enhance the photodegradation of HPs by directly affecting the radicals' formation, mainly due to generation of excited triplet DOM (3DOM*). A positive correlation was found between the concentrations of hydrated electron and the steady state 3DOM* from different DOM. Our findings provided insights into environmental photochemical fate of HPs through their direct photolysis and will help more accurately understand their phototransformation mechanisms in the environment.
Collapse
Affiliation(s)
- Jingqiu Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116024, China.
| |
Collapse
|
9
|
Goto A, Tue NM, Isobe T, Takahashi S, Tanabe S, Kunisue T. Nontarget and Target Screening of Organohalogen Compounds in Mussels and Sediment from Hiroshima Bay, Japan: Occurrence of Novel Bioaccumulative Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5480-5488. [PMID: 32160746 DOI: 10.1021/acs.est.9b06998] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent screening surveys have shown the presence of unknown halogenated compounds in the marine environment at comparable levels to persistent organic pollutants (POPs). However, their exposure levels and profiles in marine organisms and bioaccumulative potentials remain unclear. The present study performed nontarget/target screening of organohalogen compounds (OHCs) in mussel and sediment samples collected from Hiroshima Bay, Japan, in 2012 and 2018 by using integrated analyses of two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry (GC×GC-HRToFMS) and magnetic sector GC-HRMS. Nontarget analysis by GC×GC-HRToFMS revealed the detection of approximately 60 OHCs including unknown mixed halogenated compounds (UHC-Br3-5Cl) with molecular formulae of C9H6Br3ClO, C9H5Br4ClO, and C9H4Br5ClO in the mussel. Interestingly, UHC-Br3-5Cl concentrations in the mussel samples, which were semi-quantified by GC-HRMS, were comparable to or higher than those of POPs at all the locations surveyed, and their geographical distribution patterns differed from those of other OHCs. These results suggest that UHC-Br3-5Cl are ubiquitous in coastal waters of Hiroshima Bay and derived from a specific source(s). The biota-sediment accumulation factors (BSAFs) of UHC-Br3-5Cl, estimated for a paired sample set of mussel (ng/g lw) and sediment (ng/g TOC), were 1 order of magnitude higher than those for POPs with similar log Kow values, indicating their high bioaccumulative potential.
Collapse
Affiliation(s)
- Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tomohiko Isobe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Center of Advanced Technology for the Environment, Agricultural Faculty, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
10
|
Knossow N, Siebner H, Bernstein A. Isotope analysis method for the herbicide bromoxynil and its application to study photo-degradation processes. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122036. [PMID: 31951995 DOI: 10.1016/j.jhazmat.2020.122036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Bromoxynil is an increasingly applied nitrile herbicide used for post-emergent control of annual broadleaved weeds. Compound-specific isotope analysis (CSIA) of the compound is of interest for studying its environmental fate, yet is challenging following its polar nature. We present a CSIA method for bromoxynil that includes offline thin-layer chromatography purification followed by an elemental analyzer isotope ratio mass spectrometer (EA-IRMS). This method was shown to be accurate and precise for δ13C and δ15N analysis of the compound (standard deviation of replicate standards <0.5‰). The method was applied to photodegraded samples, either radiated under laboratory condition with a UV lamp, or exposed to sunlight under environmental conditions. Dominating degradation products were similar in both cases. Nevertheless, isotope effects differed, presenting a strong inverse carbon isotope effect (εC = 4.74 ± 0.82‰) and a weak inverse nitrogen isotope effect (εN = 0.76 ± 0.12‰) for the laboratory experiment, and an insignificant carbon isotope effect (εC = 0.34 ± 0.44‰) and a normal nitrogen isotope effect (εN = -3.70 ± 0.30‰) for the natural conditions experiment. The differences in δ13C vs. δ15N enrichment trends suggest different mechanism for the two processes. Finally, the obtained dual isotope trend for natural conditions provide the basis for studying the dominance of photodegradation as a degradation route in the environment.
Collapse
Affiliation(s)
- Nadav Knossow
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Hagar Siebner
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
11
|
Zhong C, Zhao H, Cao H, Huang Q. Polymerization of micropollutants in natural aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133751. [PMID: 31462391 DOI: 10.1016/j.scitotenv.2019.133751] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
Micropollutants with high ecotoxicological risks are frequently detected in aquatic environments, which has aroused great concern in recent years. Humification is one of the most important natural detoxification processes of aquatic micropollutants, and the core reactions of this process are polymerization and coupling. During humification, micropollutants are incorporated into the macrostructures of humic substances and precipitated from aqueous systems into sediments. However, the similarities and differences among the polymerization/coupling pathways of micropollutants in different oxidative systems have not been systematically summarized in a review. This article reviews the current knowledge on the weak oxidation-induced spontaneous polymerization/coupling transformation of micropollutants. First, four typical weak oxidative conditions for the initiation of micropollutant polymerization reactions in aquatic environments are compared: enzymatic catalysis, biomimetic catalysis, metal oxide oxidation, and photo-initiated oxidation. Second, three major subsequent spontaneous transformation pathways of micropollutants are elucidated: radical polymerization, nucleophilic addition/substitution and cyclization. Different solution conditions are also summarized. Furthermore, the importance of toxicity evolution during the weak oxidation-induced coupling/polymerization of micropollutants is particularly emphasized. This review provides a new perspective for the transformation mechanism and pathways of micropollutants from aquatic systems into sediments and the atmosphere and offers theoretical support for developing micropollutant control technologies.
Collapse
Affiliation(s)
- Chen Zhong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China.
| | - Hongbin Cao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Bilal M, Ashraf SS, Barceló D, Iqbal HMN. Biocatalytic degradation/redefining "removal" fate of pharmaceutically active compounds and antibiotics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1190-1211. [PMID: 31466201 DOI: 10.1016/j.scitotenv.2019.07.224] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023]
Abstract
Recently, the increasing concentration and persistent appearance of antibiotics traces in the water streams are considered an issue of high concern. In this context, an array of antibiotics has been categorized as pollutants of emerging concern due to their complex and highly stable bioactivity, indiscriminate usage with ultimate release into water bodies, and notable persistence in environmental matrices. Moreover, antibiotics traces containing household sewage/drain waste and pharmaceutical wastewater effluents contain a range of bioactive/toxic organic compounds, inorganic salts, pharmaceutically-active ingredients, or a mixture of all, which possesses negative influences ranging from ecological pollution to damage biodiversity. Moreover, their uncontrolled and undesirable bioaccumulation also poses a potential threat to target and non-target organisms in the environment. Aiming to tackle this issue effectively, various detection, quantification, degradation, and redefining "removal" processes have been proposed and investigated based on physical, chemical, and biological strategies. Though both useful and side effects of antibiotics on humans and animals are usually investigated thoroughly following safety and toxicity measures, however, their direct or indirect environmental impacts are not well reviewed yet. Owing to the considerable research gap, the environmental perfectives of antibiotics traces and their effects on target and non-target populations have now become the topic of research interest. Based on literature evidence, over the past several years, numerous individual studies have been performed and published covering various aspects of antibiotics. However, a comprehensive compilation on enzyme-based degradation of antibiotics is still lacking and requires careful consideration. Hence, this review summarizes up-to-date literature on enzymes as biocatalytic systems, explicitly, free as well as immobilized forms and their effective exploitation for the degradation of various antibiotics traces and other pharmaceutically-active compounds present in the water bodies. It is further envisioned that the enzyme-based strategies, for antibiotics degradation or removal, discussed herein, will help readers for a better understanding of antibiotics persistence in the environment along with the associated risks and removal measures. In summary, the current research thrust presented in this review will additionally evoke researcher to engineer robust and sustainable processes to effectively remediate antibiotics-contaminated environmental matrices.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
13
|
Zhang Q, Liu Y, Lin Y, Kong W, Zhao X, Ruan T, Liu J, Schnoor JL, Jiang G. Multiple Metabolic Pathways of 2,4,6-Tribromophenol in Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7473-7482. [PMID: 31244074 PMCID: PMC6931395 DOI: 10.1021/acs.est.9b01514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bromophenols occur naturally and are used globally as man-made additives in various industrial products. They are decomposition products of many emerging organic pollutants, such as tetrabromobisphenol A, polybrominated dibenzo- p-dioxin (PBDD), polybrominated diphenyl ethers (PBDE), and others. To characterize their biotransformation pathways, bromophenol congener 2,4,6-tribromophenol, being used most frequently in the synthesis of brominated flame retardants and having the greatest environmental abundance, was selected to hydroponically expose rice plants. After exposure for 5 days, 99.2% of 2,4,6-tribromophenol was metabolized by rice. Because of the lack of relative reference standards, an effective screening strategy was used to screen for potential metabolites that were further qualitatively identified by gas and liquid chromatography combined with high-resolution mass spectrometry. Forty transformation products were confirmed or tentatively identified at different confidence levels, including 9 phase I and 31 phase II metabolites. A large number of metabolites (39) were found in rice root, and 10 of them could be translocated and detected in rice stems or leaves. Many transformation pathways were proposed, including debromination, hydroxylation, methylation, coupling reactions, sulfation, and glycosylation. It was remarkable that a total of seven hydrophobic, persistent, and toxic OH-PBDEs and PBDD/Fs were found, indicating the biotic dimeric reactions of 2,4,6-tribromophenol that occurred in the rice plants. These results improve our understanding of the transformation and environmental fates of bromophenols, and they indicate new potential sources for OH-PBDEs and PBDD/Fs in the environment, especially in food chains.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding Author: Phone: +86-010-62849334.
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhou Y, Liu J. Emissions, environmental levels, sources, formation pathways, and analysis of polybrominated dibenzo-p-dioxins and dibenzofurans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33082-33102. [PMID: 30269281 DOI: 10.1007/s11356-018-3307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) were labeled potential persistent organic pollutants by the Stockholm Convention and have structures and toxicities similar to those of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), which has caused considerable concern. This article reviews the current available literature on the status, sources, formation pathways, and analysis of PBDD/Fs. PBDD/Fs are widely generated in industrial thermal processes, such as those for brominated flame retardant (BFR) products, e-waste dismantling, metal smelting processes, and waste incineration. PBDD/Fs can form via the following routes: precursor formation, de novo formation, biosynthesis, and natural formation. The levels of PBDD/Fs in the environment and in organisms and humans have increased due to extensive consumption and the increasing inventory of BFRs; thus, the risk of human exposure to PBDD/Fs is expected to be high.
Collapse
Affiliation(s)
- Yanxiao Zhou
- Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, 310014, Zhejiang, China
| | - Jinsong Liu
- Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, 310014, Zhejiang, China.
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
15
|
Ding J, Long G, Luo Y, Sun R, Chen M, Li Y, Zhou Y, Xu X, Zhao W. Formation of 1,3,8-tribromodibenzo-p-dioxin and 2,4,6,8-tetrabromodibenzofuran in the oxidation of synthetic hydroxylated polybrominated diphenyl ethers by iron and manganese oxides under dry conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30160-30169. [PMID: 30151788 DOI: 10.1007/s11356-018-2980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are ubiquitous and highly toxic emerging endocrine disruptors found in surface and subsurface soils and clay deposits. Seriously, they could be easily transformed to the more toxic dioxins (PBDD/Fs) in photochemical processes and incineration, but the spontaneous formation of PBDD/Fs has rarely been reported. This study focused on the formation of 1,3,8-tribromodibenzo-p-dioxin (1,3,8-TrBDD) and 2,4,6,8-tetrabromodibenzofuran (2,4,6,8-TeBDF) from 2'-OH-BDE-68 and 2,2'-diOH-BB-80 under the oxidization of iron and manganese oxides (goethite and MnOx). Approximately 0.09 μmol/kg (2.33%) and 0.17 μmol/kg (4.15%) were transformed to 1,3,8-TrBDD and 2,4,6,8-TeBDF by goethite in 8 days and a higher conversion 0.15 μmol/kg (3.77%) and 0.23 μmol/kg (5.74%) were observed for MnOx in 4 days. However, the formation of PBDD/Fs, probably proceeding via Smiles rearrangements and bromine elimination processes, was greatly inhibited by the presence of water. Transformation of OH-PBDEs by goethite and MnOx was accompanied by release of Fe and Mn ions and the possible pathways for the formation of reaction products were proposed. In view of the ubiquity of OH-PBDEs and metal oxides in the environment, oxidation of OH-PBDEs mediated by goethite and MnOx is likely an abiotic route for the formation of PBDD/Fs.
Collapse
Affiliation(s)
- Jiafeng Ding
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Gaoyuan Long
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Yang Luo
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Runze Sun
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Mengxia Chen
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Yajun Li
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Yanfang Zhou
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Weirong Zhao
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Fujii Y, Kato Y, Masuda N, Harada KH, Koizumi A, Haraguchi K. Contamination trends and factors affecting the transfer of hexabromocyclododecane diastereomers, tetrabromobisphenol A, and 2,4,6-tribromophenol to breast milk in Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:936-943. [PMID: 29572047 DOI: 10.1016/j.envpol.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
This study investigated contamination trends and factors affecting the levels of brominated flame retardants (BFRs), including hexabromocyclododecane (HBCD) diastereomers, tetrabromobisphenol A (TBBP-A), and 2,4,6-tribromophenol (2,4,6-TBP), in breast milk in Japan. Breast milk samples (n = 64) were collected from mothers living in six prefectures in Japan. The mean concentrations were 2.2, 0.19, 0.29, 3.0, and 0.59 ng/g lipid weight for α-HBCD, β-HBCD, γ-HBCD, TBBP-A, and 2,4,6-TBP, respectively. Based on the previous studies, the levels of ΣHBCD in Japanese women's milk appear to be increasing, and the levels of TBBP-A are higher than those in other Asian countries. Although ΣHBCD were not correlated to phenolic BFRs, the concentration of β-HBCD was significantly correlated to the concentrations of TBBP-A (r = 0.440, p < 0.01) and 2,4,6-TBP (r = 0.320, p < 0.01). The concentration of γ-HBCD increased significantly with maternal age (r = 0.378, p < 0.01), but the concentrations of the other analytes were not dependent on age. The concentration of α-HBCD was higher in primiparae than in multiparae (p < 0.05), while TBBP-A was higher in multiparae. No significant correlation was found between the phenolic BFR levels in milk and mothers' age, working place, and drinking/smoking habits. These results suggest that exposure to α- and γ-HBCD diastereomers could be affected by maternal age and parity, respectively, because of their different kinetics and sources. Therefore, these factors should be considered when conducting infant risk assessments.
Collapse
Affiliation(s)
- Yukiko Fujii
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Nanako Masuda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Koichi Haraguchi
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan.
| |
Collapse
|
17
|
Yang L, Shi Y, Li J, Fang L, Luan T. Transformation of aqueous sulfonamides under horseradish peroxidase and characterization of sulfur dioxide extrusion products from sulfadiazine. CHEMOSPHERE 2018; 200:164-172. [PMID: 29477765 DOI: 10.1016/j.chemosphere.2018.01.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 05/08/2023]
Abstract
The potential of horseradish peroxidase (HRP) to catalyze the removal of sulfonamides from water and the effects of different H2O2 and HRP concentrations were investigated. Six sulfonamides, each with a five- or six-membered heterocyclic group, including sulfamethoxazole (SMX), sulfathiazole (STZ), sulfapyridine (SPD), sulfadiazine (SDZ), sulfamerazine (SMR) and sulfamethoxypyridazine (SMP) were selected as target compounds. All sulfonamides exhibit a pseudo-first-order dependence of the concentration versus the reaction time. The decay rate (k, h-1) of the six sulfonamides spiked individually exhibit a trend following the order of STZ > SMP, SPD > SMR > SDZ » SMX. When spiked together, the coexistent sulfonamides might act as mediators for the enhancement of SMX removal and as competitors for the decreased removal of most sulfonamides. Moreover, six transformation products of SDZ are identified by the Thermo Scientific LTQ Orbitrap Elite technique. SDZ transformation involves two steps: one is the Smiles re-arrangement of the structure, and the other is oxidation and sulfur dioxide extrusion. This study is the first to report the removal dynamics of sulfonamides in HRP-catalyzed reactions and the identified products of SDZ.
Collapse
Affiliation(s)
- Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Jinjin Li
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Ling Fang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| |
Collapse
|
18
|
Koch C, Sures B. Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:706-713. [PMID: 29126092 DOI: 10.1016/j.envpol.2017.10.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
2,4,6-Tribromophenol is the most widely produced brominated phenol. In the present review, we summarize studies dealing with this substance from an environmental point of view. We cover concentrations in the abiotic and biotic environment including humans, toxicokinetics as well as toxicodynamics, and show gaps of the current knowledge about this chemical. 2,4,6-Tribomophenol occurs as an intermediate during the synthesis of brominated flame retardants and it similarly represents a degradation product of these substances. Moreover, it is used as a pesticide but also occurs as a natural product of some aquatic organisms. Due to its many sources, 2,4,6-tribromophenol is ubiquitously found in the environment. Nevertheless, not much is known about its toxicokinetics and toxicodynamics. It is also unclear which role the structural isomer 2,4,5-tribromophenol and several degradation products such as 2,4-dibromophenol play in the environment. Due to new flame retardants that enter the market and can degrade to 2,4,6-tribromophenol, this compound will remain relevant in future years - not only in aquatic matrices, but also in house dust and foodstuff, which are an important exposure route for humans.
Collapse
Affiliation(s)
- Christoph Koch
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, 45141 Essen, Germany; Deutsche Rockwool GmbH & Co. KG, 45966 Gladbeck, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
19
|
Goto A, Tue NM, Someya M, Isobe T, Takahashi S, Tanabe S, Kunisue T. Spatio-temporal trends of polybrominated dibenzo-p-dioxins and dibenzofurans in archived sediments from Tokyo Bay, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:340-347. [PMID: 28478363 DOI: 10.1016/j.scitotenv.2017.04.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
The present study examined the occurrence and potential sources of mono- to octa-brominated dibenzo-p-dioxins/dibenzofurans (Mo-OBDD/Fs) in Tokyo Bay, Japan, using surface sediments and 210Pb-dated sediment cores (covering the period 1895-2000) collected in 2002. The results showed a clear difference in the spatio-temporal trend between PBDFs and PBDDs. The spatial distribution of PBDF concentrations in the surface sediments showed a decreasing trend from the head to the mouth of the bay, which was similar to that of polybrominated diphenyl ethers (PBDEs) reported previously for the same sediment samples. In the sediment cores, PBDF and PBDE concentrations increased drastically after the 1960s and reached the highest levels in the late 1990s. In addition, a significant positive correlation was observed between the concentrations of their predominant congeners, 1,2,3,4,6,7,8-HpBDF and BDE-209. These results indicate that main contamination sources of PBDFs were technical PBDE formulations, especially DecaBDE. In contrast, total PBDDs in the surface sediments were rather uniform in the whole area of the bay. Furthermore, in the sediment cores, PBDD levels showed marginal fluctuation over the past century, with the predominance of 2,7-/2,8-DiBDDs and 1,3,7-/1,3,8-TrBDDs in all the sediment layers. It is noteworthy that these PBDD congeners were also found in the sediment layers corresponding to the pre-industrial era, supporting their natural formation in the coastal environment.
Collapse
Affiliation(s)
- Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Masayuki Someya
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna Koto, Tokyo 136-0075, Japan
| | - Tomohiko Isobe
- Integrated Health Risk Assessment Section, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan; Center of Advanced Technology for the Environment, Agricultural Faculty, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| |
Collapse
|
20
|
Goto A, Tue NM, Someya M, Isobe T, Takahashi S, Tanabe S, Kunisue T. Occurrence of Natural Mixed Halogenated Dibenzo-p-Dioxins: Specific Distribution and Profiles in Mussels from Seto Inland Sea, Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11771-11779. [PMID: 28925692 DOI: 10.1021/acs.est.7b03738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In addition to unintentional formation of polychlorinated (PCDD/Fs), polybrominated (PBDD/Fs), and mixed halogenated (PXDD/Fs) dibenzo-p-dioxins/dibenzofurans during industrial activities, recent studies have shown that several PBDD and PXDD congeners can be produced by marine algal species from the coastal environment. However, multiple exposure status of anthropogenic and naturally derived dioxins in marine organisms remains unclear. The present study examined the occurrence, geographical distribution, and potential sources of PCDD/Fs, PBDD/Fs, and PXDD/Fs using mussels and brown algae collected in 2012 from Seto Inland Sea, Japan. The results showed the widespread occurrence of not only PCDD/Fs but also PBDDs and PXDDs in Seto Inland Sea. The geographical distribution pattern of PBDDs was similar to that of PXDDs, which were obviously different from that of PCDDs and PCDFs, and a significant positive correlation was observed between the levels of their predominant congeners, i.e., 1,3,7-/1,3,8-TrBDDs and DiBMoCDDs. Interestingly, potential precursors of 1,3,7-/1,3,8-TrBDDs and DiBMoCDDs, hydroxylated tetrabrominated diphenyl ethers (6-HO-BDE-47 and 2'-HO-BDE-68) and their mixed halogenated analogue (HO-TrBMoCDE), were also identified in the mussel and brown alga samples collected at the same site, by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-ToFMS) analyses. It is noteworthy that residue levels of 1,3,7-/1,3,8-TrBDDs and DiBMoCDDs in the mussel were 30 times higher than those in the brown alga, suggesting the bioaccumulation of these natural dioxins.
Collapse
Affiliation(s)
- Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masayuki Someya
- Tokyo Metropolitan Research Institute for Environmental Protection , 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Tomohiko Isobe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES) , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Center of Advanced Technology for the Environment, Agricultural Faculty, Ehime University , 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
21
|
Bidleman TF, Brorström-Lundén E, Hansson K, Laudon H, Nygren O, Tysklind M. Atmospheric Transport and Deposition of Bromoanisoles Along a Temperate to Arctic Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10974-10982. [PMID: 28885011 DOI: 10.1021/acs.est.7b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bromoanisoles (BAs) arise from O-methylation of bromophenols, produced by marine algae and invertebrates. BAs undergo sea-air exchange and are transported over the oceans. Here we report 2,4-DiBA and 2,4,6-TriBA in air and deposition on the Swedish west coast (Råö) and the interior of arctic Finland (Pallas). Results are discussed in perspective with previous measurements in the northern Baltic region in 2011-2013. BAs in air decreased from south to north in the order Råö > northern Baltic > Pallas. Geometric mean concentrations at Pallas increased significantly (p < 0.05) between 2002 and 2015 for 2,4-DiBA but not for 2,4,6-TriBA. The logarithm of BA partial pressures correlated significantly to reciprocal air temperature at the coastal station Råö and over the Baltic, but only weakly (2,4-DiBA) or not significantly (2,4,6-TriBA) at inland Pallas. Deposition fluxes of BAs were similar at both sites despite lower air concentrations at Pallas, due to greater precipitation scavenging at lower temperatures. Proportions of the two BAs in air and deposition were related to Henry's law partitioning and source regions. Precipitation concentrations were 10-40% of those in surface water of Bothnian Bay, northern Baltic Sea. BAs deposited in the bay catchment likely enter rivers and provide an unexpected source to northern estuaries. BAs may be precursors to higher molecular weight compounds identified by others in Swedish inland lakes.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| | - Eva Brorström-Lundén
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Katarina Hansson
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU) , SE-901 83 Umeå, Sweden
| | - Olle Nygren
- Building Office, Umeå University , SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| |
Collapse
|
22
|
Ren M, Zeng H, Peng PA, Li HR, Tang CM, Hu JF. Brominated dioxins/furans and hydroxylated polybrominated diphenyl ethers: Occurrences in commercial 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 2,4,6-tribromophenol, and formation during synthesis of BTBPE. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:394-403. [PMID: 28413084 DOI: 10.1016/j.envpol.2017.03.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated dibenzo-p-dioxins (PBDDs) and hydroxylated polybrominated diphenyl ethers (OH-PBDEs) can be formed from bromophenols (BPs) by thermal degradation, biosynthesis or phototransformation. However, it is unknown whether PBDDs and OH-PBDEs can be formed during the chemical production processes that utilize BPs as raw materials. 2,4,6-tribromophenol (2,4,6-TBP) is an important raw material for the synthesis of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), a novel brominated flame retardant. In this study, PBDDs, polybrominated dibenzofurans (PBDFs) and OH-PBDEs have been identified and quantified in commercially available BTBPE and 2,4,6-TBP. Furthermore, their formation as unintentional by-products during the laboratory synthesis of BTBPE from 2,4,6-TBP and 1,2-dibromoethane in the presence of sodium carbonate has also been investigated. 2,3,7,8-substituted PBDDs and PBDFs (2,3,7,8-PBDD/Fs) were undetectable in commercial samples of BTBPE and present in low levels (nanogram per gram) in 2,4,6-TBP. Two tetrabrominated dibenzo-p-dioxins (TeBDDs), namely 1,3,6,8- and 1,3,7,9-TeBDD, and three hydroxylated pentabrominated diphenyl ethers (OH-pentaBDEs), namely 4'-OH-BDE121, 2'-OH-BDE121, and 6'-OH-BDE100, were identified or tentatively identified, and quantitatively estimated to be at concentrations in the range of undetectable to several thousands of nanograms per gram in commercial BTBPE and 2,4,6-TBP. TeBDDs and OH-pentaBDEs were formed as by-products from 2,4,6-TBP during BTBPE synthesis. Further studies need to be conducted in order to determine whether PBDD/Fs and OH-PBDEs are also formed during the industrial synthesis of other chemical compounds that utilize BPs as raw materials or intermediates.
Collapse
Affiliation(s)
- Man Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Hao Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ping-An Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui-Ru Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Cai-Ming Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian-Fang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
23
|
Bidleman TF, Agosta K, Andersson A, Haglund P, Liljelind P, Hegmans A, Jantunen LM, Nygren O, Poole J, Ripszam M, Tysklind M. Sea-air exchange of bromoanisoles and methoxylated bromodiphenyl ethers in the Northern Baltic. MARINE POLLUTION BULLETIN 2016; 112:58-64. [PMID: 27575397 DOI: 10.1016/j.marpolbul.2016.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | - Kathleen Agosta
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Per Liljelind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Alyse Hegmans
- Department of Environmental Science, Royal Roads University, Victoria, BC, V9B 5Y2, Canada
| | - Liisa M Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON L0L 1N0, Canada
| | - Olle Nygren
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Justen Poole
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
24
|
Fu Z, Wang Y, Chen J, Wang Z, Wang X. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8155-8163. [PMID: 27363260 DOI: 10.1021/acs.est.6b00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Predicting metabolism of chemicals and potential toxicities of relevant metabolites remains a vital and difficult task in risk assessment. Recent findings suggested that polybrominated diphenyl ethers (PBDEs) can be transformed into dihydroxylated and dioxin metabolites catalyzed by cytochrome P450 enzymes (CYPs), whereas the mechanisms pertinent to these transformations remain largely unknown. Here, by means of density functional theory (DFT) calculations, we probed the metabolic pathways of 2,2',4,4'-tetraBDE (BDE-47) using the active center model of CYPs (Compound I). Results show that BDE-47 is first oxidized to monohydroxylated products (HO-BDEs), wherein a keto-enol tautomerism is identified for rearrangement of the cyclohexenone intermediate. Dihydroxylation with HO-BDEs as precursors, has a unique phenolic H-abstraction and hydroxyl rebound pathway that is distinct from that for monohydroxylation, which accounts for the absence of epoxides in in vitro studies. Furthermore, we found only dihydroxylated PBDEs with heterophenyl -OH substituents ortho- and meta- to the ether bond serve as precursors for dioxins, which are evolved from aryl biradical coupling of diketone intermediates that are produced from dehydrogenation of the dihydroxylated PBDEs by Compound I. This study may enlighten the development of computational models that afford mechanism-based prediction of the xenobiotic biotransformation catalyzed by CYPs.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xingbao Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
25
|
Saeed A, Altarawneh M, Dlugogorski BZ. Photodecomposition of bromophenols. CHEMOSPHERE 2016; 150:749-758. [PMID: 26742775 DOI: 10.1016/j.chemosphere.2015.11.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Photodecomposition of bromophenols (BPs) represents a potent channel of debromination and elimination of these species in the environment. From this perspective, the present contribution reports geometrical parameters, electronic absorption spectra and excited states of the complete series of BPs in their ground state (S0), as well as their first singlet exited state (S1). We calculate excitation energies for S0 → S1 transition within the framework of the time-dependent density functional theory (TDDFT). We estimate and discuss charges on bromine atoms and HOMO-LUMO energy gaps (E(H-L)) as molecular descriptors for the photoreactivity of BPs and photo-induced debromination mechanism of BPs. Spectral patterns reveal that, as the degree of bromination increases, peaks of absorption spectra red-shift toward wavelengths near 300 nm, for the pentabrominated phenol. Based on the analysis of optimised geometries and Hirshfeld's atomic charges, photodebromination of BPs commences via the loss of an ortho Br atom. The excitation energies decrease linearly with increasing number of bromine atoms. This indicates that, higher brominated congeners of BPs photodecompose more readily than lower brominated congeners.
Collapse
Affiliation(s)
- Anam Saeed
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Mohammednoor Altarawneh
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
| | - Bogdan Z Dlugogorski
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
26
|
Lin K, Zhou S, Chen X, Ding J, Kong X, Gan J. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols. CHEMOSPHERE 2015; 138:806-813. [PMID: 26295539 DOI: 10.1016/j.chemosphere.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently found in the marine biosphere as emerging organic contaminants. Studies to date have suggested that OH-PBDEs in marine biota are natural products. However, the mechanisms leading to the biogenesis of OH-PBDEs are still far from clear. In this study, using a laccase isolated from Trametes versicolor as the model enzyme, we explored the formation of OH-PBDEs from the laccase-catalyzed oxidation of simple bromophenols (e.g., 2,4-DBP and 2,4,6-TBP). Experiments under ambient conditions clearly showed that OH-PBDEs were produced from 2,4-DBP and 2,4,6-TBP in presence of laccase. Polybrominated compounds 2'-OH-BDE68, 2,2'-diOH-BB80, and 1,3,8-TrBDD were identified as the products from 2,4-DBP, and 2'-OH-BDE121 and 4'-OH-BDE121 from 2,4,6-TBP. The production of OH-PBDEs was likely a result of the coupling of bromophenoxy radicals, generated from the laccase-catalyzed oxidation of 2,4-DBP or 2,4,6-TBP. The transformation of bromophenols by laccase was pH-dependant, and was also influenced by enzymatic activity. In view of the abundance of 2,4-DBP and 2,4,6-TBP and the phylogenetic distribution of laccases in the environment, laccase-catalyzed conversion of bromophenols may be potentially an important route for the natural biosynthesis of OH-PBDEs.
Collapse
Affiliation(s)
- Kunde Lin
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Shiyang Zhou
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xi Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiafeng Ding
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyan Kong
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Kim UJ, Jo H, Lee IS, Joo GJ, Oh JE. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. CHEMOSPHERE 2015; 137:108-114. [PMID: 26092317 DOI: 10.1016/j.chemosphere.2015.05.104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
The concentrations and distributions of polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH- and MeO-BDEs) were determined in seven representative fish species from a river in the Republic of Korea. The PBDEs and their derivatives were found to be accumulated in the internal organs of the fish to different extents. PBDEs were preferentially accumulated in the internal organs rather than muscle tissue, and especially, showed increasing accumulation tendencies with increasing bromination level in liver. The OH-BDEs and MeO-BDEs were preferentially accumulated in the liver and gastrointestinal tract, respectively. MeO-BDE concentrations were found to increase according to relative trophic level, suggesting that the PBDE derivatives can be biomagnified to a greater extent than the parent PBDEs in freshwater food webs. In a comparison with the dissolved analyte concentrations in the water that were measured by using semi-permeable membrane devices, the greater uptake of non-ortho substituted MeO-BDEs by fish was observed.
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute Science and Technology (KIST), 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Hyunbin Jo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - In-Seok Lee
- National Fisheries Research & Development Institute (NFRDI), 216, Gijanghaeanro, Gijang-Eup, Gijang-Gun, Busan 619-705, Republic of Korea
| | - Gea-Jae Joo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
28
|
Gao S, Wan Y, Zheng G, Luo K, Kannan K, Giesy JP, Lam MHW, Hu J. Organobromine compound profiling in human adipose: Assessment of sources of bromophenol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 204:81-9. [PMID: 25935608 DOI: 10.1016/j.envpol.2015.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 05/25/2023]
Abstract
Bromophenols (BRPs) have been widely detected in human tissues, however, relative proportions from natural products and/or anthropogenic flame retardants are not clear. 21 polybrominated diphenyl ethers (PBDEs), 15 MeO/OH-PBDEs, and 10 BRPs were simultaneously quantified in adipose collected from people from New York City, USA. An in vitro assay utilizing human liver microsomes was performed for detected predominant organobromine. High concentrations of 2,4,6-triBRP and PBDEs were observed, and extremely low concentrations of naturally occurring MeO/OH-PBDEs were detected. Similar biotransformatioin rates of BRPs and MeO/OH-PBDEs indicated that the relative high concentration of 2,4,6-triBRP in humans was not of natural origin. Significant correlation observed between concentrations of 2,4,6-triBRP and BDE-209 suggested that the two chemicals may share a common source. Both 2,4,6-triBRP and BDE-209 were detected in commercial ABS resins, suggesting that plastic products made from ABS resins could be potential sources of co-exposure of the two compounds for humans.
Collapse
Affiliation(s)
- Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Guomao Zheng
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kai Luo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York, Empire State Plaza, Albany, NY 12201-0509, USA
| | - John P Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology & Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Michael H W Lam
- Department of Biology & Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Zhao Q, Zhao H, Quan X, He X, Chen S. Photochemical Formation of Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) from Polybrominated Diphenyl Ethers (PBDEs) in Aqueous Solution under Simulated Solar Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9092-9099. [PMID: 26134578 DOI: 10.1021/acs.est.5b01240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of great concern due to their higher toxicity compared to PBDEs. However, the abiologic process whereby PBDEs are converted to OH-PBDEs in the aquatic environment is not well understood. To explore the possibility of OH-PBDEs photoformation in natural water, the photohydroxylation of BDE-47 has been investigated in aqueous Fe(III) and/or fulvic acid (FA) solutions and in natural lake water under simulated solar light irradiation. The results showed that 6-OH-BDE-47 and 2'-OH-BDE-68 were generated from BDE-47 under these conditions. Based on the identification of derivatives and reactive radicals, OH-PBDEs formation can be ascribed to an addition reaction of ortho-tetra-BDE radical and hydroxyl radical ((•)OH), with or without a subsequent Smiles rearrangement reaction. Since the ortho-tetra-BDE radical could be readily produced by the photolysis of BDE-47, even in pure water, (•)OH production was considered as critical for the photoformation of OH-PBDEs. Thus, it is reasonable to deduce that the photoreactive components (Fe(III), FA) in aqueous solution played an important role through influencing (•)OH generation. Although the yields of OH-PBDEs did not increase regularly with increasing concentration of these photoreactive components in solution, this study suggests a possible abiotic origin of OH-PBDEs formation in the aquatic environment.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Bidleman T, Agosta K, Andersson A, Brorström-Lundén E, Haglund P, Hansson K, Laudon H, Newton S, Nygren O, Ripszam M, Tysklind M, Wiberg K. Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment. AMBIO 2015; 44 Suppl 3:472-83. [PMID: 26022329 PMCID: PMC4447703 DOI: 10.1007/s13280-015-0666-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011-2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069-2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air-sea gas exchange and "bulk" (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year(-1) for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year(-1) for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.
Collapse
Affiliation(s)
- Terry Bidleman
- />Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Kathleen Agosta
- />Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Agneta Andersson
- />Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Eva Brorström-Lundén
- />IVL Swedish Environmental Research Institute, P.O. Box 530 21, 40014 Göteborg, Sweden
| | - Peter Haglund
- />Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Katarina Hansson
- />IVL Swedish Environmental Research Institute, P.O. Box 530 21, 40014 Göteborg, Sweden
| | - Hjalmar Laudon
- />Swedish University of Agricultural Sciences (SLU), 901 83 Umeå, Sweden
| | - Seth Newton
- />Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| | - Olle Nygren
- />Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Matyas Ripszam
- />Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Mats Tysklind
- />Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Karin Wiberg
- />Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, 750 07 Uppsala, Sweden
| |
Collapse
|
31
|
The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO2. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Lin K, Gan J, Liu W. Production of hydroxylated polybrominated diphenyl ethers from bromophenols by bromoperoxidase-catalyzed dimerization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11977-11983. [PMID: 25229997 DOI: 10.1021/es502854e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) are emerging endocrine-disrupting compounds that are widely present in the marine environment. The origin of HO-PBDEs is generally attributed to metabolism of PBDEs and natural production in the environment. However, it is unclear how HO-PBDEs are produced naturally. Here we report the formation of HO-PBDEs from simple bromophenols (BPs) [e.g., 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)] under the catalysis of bromoperoxidase (BPO) isolated from the common marine red alga Corallina officinalis. Experiments at room temperature showed that BPO readily catalyzes the conversion of 2,4-DBP and 2,4,6-TBP to HO-PBDEs in the presence of Br(-) and H2O2. From analysis of the original forms and their corresponding methylated derivatives, the reaction products were tentatively identified as 2'-HO-BDE-121 and 4'-HO-BDE-121. The formation of HO-PBDEs was likely resulted from the coupling of bromophenoxy radicals generated by the oxidation of BPs via BPO-mediated processes. The presence of Br(-) in the reaction favored the conversion. The production of HO-PBDEs was found to be pH-dependent, and a higher yield was obtained at pH 6.5. In view of the abundance of BPs and C. officinalis in the marine environment, bioconversion of BPs mediated by BPO may be a potential route for the natural production of HO-PBDEs.
Collapse
Affiliation(s)
- Kunde Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310032, China
| | | | | |
Collapse
|
33
|
Bidleman TF, Agosta K, Andersson A, Haglund P, Nygren O, Ripszam M, Tysklind M. Air-water exchange of brominated anisoles in the northern Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6124-6132. [PMID: 24811233 DOI: 10.1021/es5007109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA)>2,4-dibromoanisole (2,4-DBA)≫2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA>2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km2) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Lin K, Yan C, Gan J. Production of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from bromophenols by manganese dioxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:263-271. [PMID: 24266690 DOI: 10.1021/es403583b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of significant concern because of their enhanced toxicological effects compared to PBDEs. Research to date has attributed the origin of OH-PBDEs to biological metabolism of PBDEs and natural production in the environment. However, it is unclear how OH-PBDEs are formed naturally. In this study, we explored the formation of OH-PBDEs via the oxidative transformation of simple bromophenols (BPs, e.g., 4-BP, 2,4-DBP, and 2,4,6-TBP) by birnessite (δ-MnO2). Results showed that OH-PBDEs were readily produced by δ-MnO2 with BPs as precursors. For example, oxidation of 2,4-DBP by δ-MnO2 yielded 2'-OH-BDE-68 and 2',5'-OH-BDE-25. Other OH-PBDEs, such as 6-OH-BDE-13, 2',5'-OH-BDE-3, 4'-OH-BDE-121, and 2',5'-OH-BDE-69, were detected from the reaction with 4-BP and 2,4,6-TBP. The formation of OH-PBDEs likely resulted from the oxidative coupling of bromophenoxy radicals. Mild acidic conditions enhanced while coexisting cations (e.g., Na(+), Mg(2+), and Ca(2+)) suppressed the transformation. Given the ubiquity of BPs and δ-MnO2, oxidation of BPs by δ-MnO2 and other metal oxides is likely an abiotic route for the formation of OH-PBDEs in the environment.
Collapse
Affiliation(s)
- Kunde Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310032, People's Republic of China
| | | | | |
Collapse
|
35
|
S Haglund P, Löfstrand K, Siek K, Asplund L. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products. Mass Spectrom (Tokyo) 2013; 2:S0018. [PMID: 24349937 DOI: 10.5702/massspectrometry.s0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/15/2013] [Indexed: 11/23/2022] Open
Abstract
Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied.
Collapse
Affiliation(s)
| | - Karin Löfstrand
- Department of Applied Environmental Science, Stockholm University
| | | | - Lillemor Asplund
- Department of Materials and Environmental Chemistry, Stockholm University
| |
Collapse
|
36
|
Szatkowski L, Dybala-Defratyka A. A computational study on enzymatically driven oxidative coupling of chlorophenols: an indirect dehalogenation reaction. CHEMOSPHERE 2013; 91:258-264. [PMID: 23273327 DOI: 10.1016/j.chemosphere.2012.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/19/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Density functional theory calculations have been used to describe the mechanism of the dimerization reaction catalyzed by peroxidases and predict whether it could be accompanied by chlorine isotopic fractionation when various chlorophenols are used as their substrates. Since free radicals formed during the catalytic cycle of peroxidases can undergo coupling reactions (either radical-radical or radical-molecule) that can lead to dimers and also polymers formation four different pathways have been considered: radical-anion, radical-cation, radical-radical (singlet state) and radical-radical (triplet state). The following substrates have been investigated: 2-chlorophenol, 4-chlorophenol, 2,4,6-trichlorophenol and 4-chloro-2,6-dimethylphenol. Based on the obtained energetic profiles radical-cation and radical-radical (singlet) coupling seem to be the most probable. Radical-anion coupling although energetically more expensive should not be disregarded taking into account the excess of the anionic form of the substrate being provided in the course of enzymatic reaction. Upon dimer formation halogen is released during radical-anion and radical-radical triplet coupling. However only the latter pathway exhibits chlorine isotopic fractionation. Radical-cation and radical-radical singlet couplings are two-step reactions where the second step comprises intramolecular chlorine transfer accompanied by large chlorine isotope effect.
Collapse
Affiliation(s)
- Lukasz Szatkowski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | | |
Collapse
|