1
|
Wiltse ME, Ballenger B, Stewart CB, Blewett TA, Wadler C, Roth HK, Coupannec M, Malik HT, Xu P, Tarazona Y, Zhang Y, Sudowe R, Rosenblum JS, Quinn JC, Borch T. Oil and gas produced water for cattle, crops, and surface water discharge: Evaluation of chemistry, toxicity and economics. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138581. [PMID: 40359753 DOI: 10.1016/j.jhazmat.2025.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Oil and gas produced water (PW), may help alleviate regional water scarcity affecting agriculture, but is often rich in salts and organic compounds that constrain agricultural applications. The specific objective is to assess the reuse potential of conventional PW through a comprehensive assessment of chemistry, toxicity, and economics by investigating PW from 18 conventionally drilled wells from sandstone formations in the Colorado Denver-Julesburg Basin. Ammonium, total dissolved solids, boron, sodium, and chloride were all close to recommended guidelines for livestock and crop irrigation and surface water discharge. Diesel and gasoline range organics and polycyclic aromatic hydrocarbons were detected in low concentrations in evaporation ponds compared to oil water separators, suggesting volatilization or degradation of organic compounds. Radium levels were generally low, but select samples exceeded the regulatory 5 pCi/g threshold, categorizing them as Non-Exempt TENORM (Technologically Enhanced Naturally Occurring Radioactive Material) waste. EC50 with Daphnia magna (D. magna) showed little to no toxicity for PW sampled in evaporation ponds in contrast to EC50 values of 12 % at the oil water separator, indicating that volatile organics controlled toxicity. However, the Aryl Hydrocarbon Receptor (AhR) bioassay illustrated toxicity not captured by the EC50 test. After chemical and toxicological analyses, it is clear that treatment is required, which informed our techno-economic assessment (TEA). Current PW volumes result in a treatment cost of $5.38/m3 ($1.42/barrel) by nanofiltration, but a scenario with increased volumes will result in a lower cost of $3.83/m³ ($0.60/barrel). Our chemical, toxicological, and economic assessment indicates that the PW in this study has potential to be discharged to surface water or reused for cattle and crop irrigation.
Collapse
Affiliation(s)
- Marin E Wiltse
- Department of Chemistry; Colorado State University, Fort Collins, CO 80523, United States
| | - Brooke Ballenger
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Connor B Stewart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Claire Wadler
- Civil and Environmental Engineering Department, Colorado School of Mines Golden, CO 80401, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Maelle Coupannec
- Department of Environmental & Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523, United States
| | - Huma Tariq Malik
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Yeinner Tarazona
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Ralf Sudowe
- Department of Environmental & Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523, United States
| | - James S Rosenblum
- Civil and Environmental Engineering Department, Colorado School of Mines Golden, CO 80401, United States
| | - Jason C Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Thomas Borch
- Department of Chemistry; Colorado State University, Fort Collins, CO 80523, United States; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
2
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
3
|
Li C, Tiraferri A, Tang P, Ma J, Liu B. Current status, potential assessment, and future directions of biological treatments of unconventional oil and gas wastewater. WATER RESEARCH 2025; 275:123217. [PMID: 39947014 DOI: 10.1016/j.watres.2025.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Unconventional oil and gas (UOG) extraction techniques typically involve the production of large volumes of so-called flowback and produced water (FPW), a site-specific wastewater stream characterized by complex organic and inorganic composition. Sustainable and cost-effective management of FPW, as well as mitigation of its environmental risks and impacts, represents substantial challenges for governments, industries, and societies worldwide. Among various treatment technologies, biological processes have gained interest due to their low installation and operational costs. However, the interaction of FPW's complex composition with microorganisms poses challenging scientific and engineering questions. This review examines the water quality characteristics and sources of FPW from twelve UOG extraction sites in China and North America, revealing strong spatio-temporal heterogeneity of organic, inorganic, and microbial components across different reservoirs. The complex and variable water quality, large wastewater volumes, and high treatment demands have driven the exploration of biological treatments for FPW. This work systematically reviews and analyzes the operating conditions, treatment efficiency, and technical applicability of suspended sludge reactors, attached sludge reactors, mixed systems, and resource/energy recovery systems. Developing skid-mounted equipment based on suspended sludge reactors to handle variations in wastewater quantity and innovating the form of attached sludge reactors, especially in enriching salt-tolerant microbes for in-situ FPW treatment, are deemed essential. The dominant microorganisms playing a key role in the biological treatment are also discussed, with focus on two different inoculation sources (activated sludge and FPW). Roseovarius from FPW and Pseudomonas from activated sludge have strong adaptability to different reactors. The review further underscores the need to integrate biological treatments with complementary technologies. Finally, it advocates for the establishment of robust and scalable biological treatments through research in three main directions: (i) exploring microbial resources in original FPW; (ii) using omics technologies to elucidate microbial function and species interaction; (iii) pre-designing environmental and operational conditions to optimize treatment efficiency.
Collapse
Affiliation(s)
- Chaoyang Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
4
|
Yang Z, Tan W, Xiao Y, Feng Q, Xu L, Liu C, Jiang Z. Unlocking the applicability of Ni-based self-supported anodes in microbial fuel cells for the shale gas flowback wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125491. [PMID: 40288124 DOI: 10.1016/j.jenvman.2025.125491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/26/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
The NiCo2O4 (NCOC) and Ni-P (NPC) self-supported anodes were successfully fabricated and utilized in microbial fuel cells (MFCs) for the treatment of actual shale gas flowback wastewater in this study. As a result, the NCOC and NPC displayed outstanding output voltages at 579.1 mV and 537.1 mV, as well as significantly decreased apparent internal resistances to 228.3 Ω and 396.7 Ω compared to the blank carbon cloth (CC, 206.7 mV and 1850.0 Ω). The electrochemical properties, rough surfaces and biocompatibility of NCOC (649.8 mW/m2) and NPC (436.1 mW/m2) endowed MFCs with superior power generation that was 11.7 and 7.8 times that of CC (55.7 mW/m2). Additionally, the removal ratios of the chemical oxygen demand based on NCOC and NPC achieved 61.5 % (1040.4 ± 34.1 mg/L) and 67.2 % (1136.7 ± 34.1 mg/L) with the increased energy conversion ratios from 8.4 % to 11.2 % and 9.7 %. Ultimately, the successful formation of the biofilms and the enrichment of the functional microorganisms such as Marinobacterium, Halomonas and Desulfuromonas on the prepared anodes further verified that NCOC and NPC could be potential research candidates in MFCs for decontaminating high-salty industrial wastewater.
Collapse
Affiliation(s)
- Zhengxin Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Wenwen Tan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Yi Xiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Qi Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Longjun Xu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Chenglun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zao Jiang
- School of Emergency Management, Xihua University, Chengdu, 610039, China
| |
Collapse
|
5
|
Amundson KK, Borton MA, Wilkins MJ. Anthropogenic impacts on the terrestrial subsurface biosphere. Nat Rev Microbiol 2025; 23:147-161. [PMID: 39406896 DOI: 10.1038/s41579-024-01110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
The terrestrial subsurface is estimated to be the largest reservoir of microbial life on Earth. However, the subsurface also harbours economic, industrial and environmental resources, on which humans heavily rely, including diverse energy sources and formations for the storage of industrial waste and carbon dioxide for climate change mitigation. As a result of this anthropogenic activity, the subsurface landscape is transformed, including the subsurface biosphere. Through the creation of new environments and the introduction of substrates that fuel microbial life, the structure and function of subsurface microbiomes shift markedly. These microbial changes often have unintended effects on overall ecosystem function and are frequently challenging to manage from the surface of the Earth. In this Review, we highlight emerging research that investigates the impacts of anthropogenic activity on the terrestrial subsurface biosphere. We explore how humans alter the constraints on microbial life in the subsurface through drilling, mining, contamination and resource extraction, along with the resulting impacts of microorganisms on resource recovery and subsurface infrastructure.
Collapse
Affiliation(s)
- Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Tsipa A, Puig S, Peixoto L, Paquete CM. Electro-bioremediation of wastewater: Transitioning the focus on pure cultures to elucidate the missing mechanistic insights upon electro-assisted biodegradation of exemplary pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123726. [PMID: 39729711 DOI: 10.1016/j.jenvman.2024.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Electro-bioremediation of exemplary water pollutants such as nitrogenous, phosphorous, and sulphurous compounds, hydrocarbons, metals and azo dyes has already been studied at a macro-scale level using mixed cultures. The technology has been generally established as a proof of concept at the technology readiness level (TRL) of 3, and there are already specific cases where the technology reached TRL 5. However, this technology is less utilized compared to traditional approaches. Although, mixed cultures result in high electro-biodegradation efficiency, their use hinders process' mechanistic insights which are better determined through pure cultures studies. This knowledge can lead to improved technologies. Therefore, this manuscript focuses on the specific pollutants' electro-biodegradation by pure cultures, assessing the availability of information regarding genes, enzymes, proteins and metabolites involved. Furthermore, studies characterizing the dominant genera or species are assessed, in which the available information at molecular level is evaluated. In total, less than 40 studies were found which were predominantly focused on the electro-biodegradation potential rather than the mechanistic insights. This highlights a gap in the field featuring a motivation to transitioning the focus on the study of pure cultures to unravel the mechanistic insights. Therefore, specific actions are suggested. Characterization of the mixed cultures followed by microorganisms' isolation is crucial. Thus, electroactive and biodegradation characteristics will be revealed using omics, genome annotation and transcriptional kinetics. This can lead to optimization at the microbiological level through genetic engineering, synthetic biology, mathematical modelling and strategic building of co-cultures. This research focus offers new avenues for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, 1678, Cyprus; Nireas International Water Research Centre, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Luciana Peixoto
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BIP4DAB, BioData.pt - Portuguese Infrastructure for Biological Data, Rua da Quinta Grande 6, 2780-157, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| |
Collapse
|
7
|
Chang H, Zhu Y, Liu N, Ji P, Yan Z, Cheng X, Qu D, Liang H, Qu F. Enhancing microfiltration membrane performance by sodium percarbonate-based oxidation for hydraulic fracturing wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 262:119888. [PMID: 39216736 DOI: 10.1016/j.envres.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficient>0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Yingyuan Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Naiming Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Pengwei Ji
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350108, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Caceres Gonzalez RA, Hatzell MC. Electrified Solar Zero Liquid Discharge: Exploring the Potential of PV-ZLD in the US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15562-15574. [PMID: 38700697 PMCID: PMC11375782 DOI: 10.1021/acs.est.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Current brine management strategies are based on the disposal of brine in nearby aquifers, representing a loss in potential water and mineral resources. Zero liquid discharge (ZLD) is a possible strategy to reduce brine rejection while increasing the resource recovery from desalination plants. However, ZLD substantially increases the energy consumption and carbon footprint of a desalination plant. The predominant strategy to reduce the energy consumption and carbon footprint of ZLD is through the use of a hybrid desalination technology that integrates renewable energy. Here, we built a computational thermodynamic model of the most mature electrified hybrid technology for ZLD powered by photovoltaic (PV). We examine the potential size and cost of ZLD plants in the US. This work explores the variables (geospatial and design) that most influence the levelized cost of water and the second law efficiency. There is a negative correlation between minimizing the LCOW and maximizing the second-law. And maximizing the second-law, the states that more brine produces, Texas is the location where the studied system achieves the lowest LCOW and high second-law efficiency, while California is the state where the studied system is less favorable. A multiobjective optimization study assesses the impact of considering a carbon tax in the cost of produced water and determines the best potential size for the studied plant.
Collapse
Affiliation(s)
- Rodrigo A Caceres Gonzalez
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Industrial Engineering, Faculty of Engineering and Science, Universidad Diego Portales, Santiago 8370191, Chile
| | - Marta C Hatzell
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, GeorgiaInstitute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Tucker CI, Bartholomew TV, Dudchenko AV, Mauter MS. Component innovations for lower cost mechanical vapor compression. WATER RESEARCH 2024; 260:121950. [PMID: 38917505 DOI: 10.1016/j.watres.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Despite significant capital and operating costs, mechanical vapor compression (MVC) remains the preferred technology for challenging brine concentration applications. This work seeks to assess the dependence of MVC costs on feedwater salinity and desired water recovery and to quantify the value of improved component performance or reduced component costs for reducing the levelized cost of water (LCOW) of MVC. We built a cost optimization model coupling thermophysical, heat and mass transfer, and technoeconomic models to optimize and identify low cost MVC system designs as a function of feedwater salinity and water recovery. The LCOW ranges over 3.6 to 6.1 $/m3 for seawater feed salinities of 25-150 g/kg and water recoveries of 40-80 %. We then perform sensitivity analysis on parameter inputs to isolate irreducible costs and determine high value component innovation targets. The LCOW was most sensitive to evaporator material costs and performance, including the overall heat transfer coefficient in the evaporator. Process and material innovations such as polymer-composite evaporator tubes that reduce evaporator costs by 25 % without reducing heat transfer performance by more than 10 % would result in MVC cost reductions of 8 %.
Collapse
Affiliation(s)
- Carson I Tucker
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Alexander V Dudchenko
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Meagan S Mauter
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA; Environmental Social Sciences, Stanford University, Stanford, CA, 94305, USA; Senior Fellow, Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA; Senior Fellow, Precourt Institute for Energy, Stanford University, Stanford, CA, 94305, USA; Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
10
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
11
|
Peng L, Wen S, Huang H, Yuan X, Huang J, He Y, Chen W. Study of the corrosion behavior of N80 and TP125V steels in aerobic and anoxic shale gas field produced water at high temperature. BMC Chem 2024; 18:117. [PMID: 38926871 PMCID: PMC11210053 DOI: 10.1186/s13065-024-01225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the corrosion behavior of N80 and TP125V steels was delved firstly into produced water from shale gas fields containing CO2-O2. Moreover, the localized corrosion of these steels was investigated to elucidate the effects of aerobic and anoxic on steel corrosion. The results indicated that the corrosion rates of N80 and TP125V steels under aerobic conditions were lower compared to those in the presence of CO2-O2. Specifically, at temperature of 100 °C and with dissolved oxygen (DO) concentration of 4 mg/L in the CO2-O2 environment, the N80 and TP125V steels exhibited the highest corrosion rate, with values of 0.13 mm/y and 0.16 mm/y, respectively, as determined by specific weight loss measurements. Conversely, these rates decreased to 0.022 mm/y and 0.049 mm/y under aerobic conditions. Furthermore, severe localized corrosion of N80 and TP125V steels with a DO concentration of 4 mg/L was also observed in the CO2-O2 environment. Finally, it was evident that pitting corrosion is the predominant type of corrosion affecting N80 and TP125V steels in the produced water from shale gas fields.
Collapse
Affiliation(s)
- Lincai Peng
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, China
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, Sichuan, 610213, China
- High Sulfur Gas Exploitation Pilot Test Center, China National Petroleum Corporation, Chengdu, Sichuan, 610213, China
| | - Shaomu Wen
- PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610051, China
| | - Hongfa Huang
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, China
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, Sichuan, 610213, China
- High Sulfur Gas Exploitation Pilot Test Center, China National Petroleum Corporation, Chengdu, Sichuan, 610213, China
| | - Xi Yuan
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, China
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, Sichuan, 610213, China
- High Sulfur Gas Exploitation Pilot Test Center, China National Petroleum Corporation, Chengdu, Sichuan, 610213, China
| | - Jiahe Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guanggong, 519082, China
| | - Yu He
- Shunan Gas Mine, PetroChina Southwest Oil and Gasfield Company, Luzhou, Sichuan, 646001, China
| | - Wen Chen
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, China.
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, Sichuan, 610213, China.
- High Sulfur Gas Exploitation Pilot Test Center, China National Petroleum Corporation, Chengdu, Sichuan, 610213, China.
| |
Collapse
|
12
|
Zhang J, Yuan S, Zhu X, Zhang N, Wang Z. Hypercrosslinked Hydrogel Composite Membranes Targeted for Removal of Volatile Organic Compounds via Selective Solution-Diffusion in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6039-6048. [PMID: 38507701 DOI: 10.1021/acs.est.3c09320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
13
|
Liu H, Li K, Wang K, Wang Z, Liu Z, Zhu S, Qu D, Zhang Y, Wang J. A novel electro-Fenton hybrid system for enhancing the interception of volatile organic compounds in membrane distillation desalination. J Environ Sci (China) 2024; 138:189-199. [PMID: 38135387 DOI: 10.1016/j.jes.2023.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 12/24/2023]
Abstract
Membrane distillation (MD) is a promising alternative desalination technology, but the hydrophobic membrane cannot intercept volatile organic compounds (VOCs), resulting in aggravation in the quality of permeate. In term of this, electro-Fenton (EF) was coupled with sweeping gas membrane distillation (SGMD) in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface, so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate. During the so-called EF-MD process, an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface. It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L. Effective interceptions can be achieved in a wide temperature range, even though the permeate flux of phenol was also intensified. The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions, which endowed the long-term stability of the system. This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kunpeng Wang
- State Key Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University, Beijing 100084, China
| | - Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimou Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sichao Zhu
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, China
| | - Dan Qu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
15
|
Abdelfattah I, El-Shamy AM. Review on the escalating imperative of zero liquid discharge (ZLD) technology for sustainable water management and environmental resilience. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119614. [PMID: 38043309 DOI: 10.1016/j.jenvman.2023.119614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023]
Abstract
This comprehensive review delves into the forefront of wastewater treatment technology, with a specific focus on the revolutionary concept of Zero Liquid Discharge (ZLD). (ZLD), underpinned by a sustainable ethos, aspires to accomplish total water reclamation, constituting a pivotal response to pressing environmental issues. The paper furnishes a historical panorama of (ZLD), elucidating its motivating factors and inherent merits. It navigates a spectrum of (ZLD) technologies encompassing thermal methodologies, (ZLD) synergized with Reverse Osmosis (RO), High-Efficiency Reverse Osmosis (HERO), Membrane Distillation (MD), Forward Osmosis (FO), and Electrodialysis Reversal (EDR). Moreover, the study casts a global purview over the deployment status of (ZLD) systems in pursuit of resource recovery, accentuating nations such as the United States, China, India, assorted European Union members, Canada, and Egypt. Meticulous case studies take center stage, underscoring intricate scenarios involving heavily contaminated effluents from challenging sectors including tanneries, textile mills, petroleum refineries, and paper mills. The report culminates by distilling sagacious observations and recommendations, emanating from a collaborative brainstorming endeavor. This compendium embarks on an enlightening journey through the evolution of wastewater treatment, (ZLD)'s ascendancy, and its transformative potential in recalibrating water management paradigms while harmonizing industrial progress with environmental stewardship.
Collapse
Affiliation(s)
- I Abdelfattah
- Water Pollution Research Department, National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt Giza, Egypt.
| | - A M El-Shamy
- Physical Chemistry Department, Electrochemistry and Corrosion Lab., National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt Giza, Egypt.
| |
Collapse
|
16
|
Wang C, Zhang H, Kang Z, Fan J. 3D Cellular Solar Crystallizer for Stable and Ultra-Efficient High-Salinity Wastewater Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305313. [PMID: 38037848 PMCID: PMC10787074 DOI: 10.1002/advs.202305313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recent developed interfacial solar brine crystallizers, which employ solar-driven water evaporation for salts crystallization from the near-saturation brine to achieve zero liquid discharge (ZLD) brine treatment, are promising due to their excellent energy efficiency and sustainability. However, most existing interfacial solar crystallizers are only tested using NaCl solution and failed to maintain high evaporation capability when treating real seawater due to the scaling problem caused by the crystallization of high-valent cations. Herein, an artificial tree solar crystallizer (ATSC) with a multi-branched and interconnected open-cell cellular structure that significantly increased evaporation surface is rationally designed, achieving an ultra-high evaporation rate (2.30 kg m-2 h-1 during 2 h exposure) and high energy efficiency (128%) in concentrated real seawater. The unit cell design of ATSC promoted salt crystallization on the outer frame rather than the inner voids, ensuring that salt crystallization does not affect the continuous transport of brine through the pores inside the unit cell, thus ATSC can maintain a stable evaporation rate of 1.94 kg m-2 h-1 on average in concentrated seawater for 80 h continuous exposure. The design concept of ATSC represents a major step forward toward ZLD treatment of high-salinity brine in many industrial processes is believed.
Collapse
Affiliation(s)
- Can Wang
- Research Centre of Textiles for Future Fashion, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Hanchao Zhang
- Research Centre of Textiles for Future Fashion, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Zhanxiao Kang
- Research Centre of Textiles for Future Fashion, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jintu Fan
- Research Centre of Textiles for Future Fashion, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
17
|
Wang X, Xiong Y, Yuan B, Wu Y, Hu W, Wang X, Liu W. Performances and mechanisms of the peroxymonosulfate/ferrate(VI) oxidation process in real shale gas flowback water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119355. [PMID: 37857222 DOI: 10.1016/j.jenvman.2023.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Shale gas flowback water (SGFW), which is an inevitable waste product generated after hydraulic fracturing during development, poses a severe threat to the environment and human health. Managing high-salinity wastewater with complex physicochemical compositions is critical for ensuring environmental sustainability of shale gas development. Desalination processes have been recommended to treat SGFW to adhere to the discharge limits. However, organic fouling has become a significant concern in the steady operation of desalination processes, and the effective removal of organic compounds is challenging. This study aimed to develop an effective oxidation method to mitigate membrane fouling in real SGFW treatment process. It adopted the peroxymonosulfate (PMS)/ferrate (Fe(VI)) process, involving both free and non-free radical pathways that can alleviate the negative effects of high-salinity environments on oxidation. The operating parameters were optimized and removal effects were examined, while the synergistic oxidation mechanism and organic conversion of the PMS/Fe(VI) process were also analyzed. The results showed that the PMS/Fe(VI) process exhibited a synergistic effect compared with the PMS and Fe(VI) processes alone, with a total organic carbon (TOC) removal efficiency of 46.8% under optimal reaction conditions in real SGFW. In the Fe(VI)/PMS process, active species such as Fe(V)/Fe(IV), ·OH, and SO4-· were jointly involved in the oxidation of organic matter. Additionally, 99.5% of the total suspended solids and 95.2% of Ba2+ in the SGFW were removed owing to the formation of a coagulant (Fe3+) and SO42- during the reaction. Finally, an ultrafiltration membrane fouling experiment proved that oxidation processes can increase the membrane-specific flux and alleviate fouling resistance. This study can serve as a reference for the design of real SGFW treatment processes and is significant for the environmental management of shale gas development.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Xiong
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, 610095, China
| | - Bo Yuan
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - You Wu
- Sichuan Zaojing Baicui Environmental Protection Technology Co., Ltd., Chengdu, 610095, China
| | - Wanjin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wenshi Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
18
|
Qiu B, Liu J, Liu Y, Wang Y, Xiao Z, Fan S. Water and salt recovery from shale gas produced water by vacuum membrane distillation followed by crystallization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119094. [PMID: 37776792 DOI: 10.1016/j.jenvman.2023.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
A vacuum membrane distillation (VMD) followed by crystallization (VMD-C) was developed for the recovery of water and salts from shale gas produced water (SGPW). Before VMD, the pretreatment of SGPW with Fenton oxidation-flocculation is applied, with the chemical oxygen demand (COD) concentration reduction of 75% and the total removal of the total suspended solids (TSS), Ca2+, and Mg2+ in SGPW. The pretreatment of SGPW mitigated the membrane fouling in the VMD and effectively prevented the reduction of membrane flux over time. The average flux of the PTFE membrane reached 12.1 kg m-2 h-1 during the separation of the pretreated SGPW at a feed flux of 40 L h-1 and a feed temperature of 40 °C. The rejection rate of the membrane to TDS in SGPW was over 99%. Fresh water with a conductivity of below 20 μs cm-1 was produced by VMD-C. The salts concentrated upstream of the membrane were recovered by a stirring crystallization process. The VMD-C system resulted in a 61% cost savings compared to conventional SGPW treatment.
Collapse
Affiliation(s)
- Boya Qiu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jingyun Liu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China.
| | - Yicai Liu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yinan Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
19
|
Durden L, Eckhoff K, Burdsall AC, Youn S, Andújar-Gonzalez C, Abu-Niaaj L, Magnuson M, Harper WF. Characterizing Bacillus globigii as a Bacillus anthracis surrogate for wastewater treatment studies and bioaerosol emissions. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:3458-3466. [PMID: 38516331 PMCID: PMC10953809 DOI: 10.1039/d3ew00524k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
This study characterized Bacillus globigii (BG) as a Bacillus anthracis Sterne (BAS) surrogate for wastewater treatment-related studies of UV inactivation, adsorption onto powdered activated carbon (PAC), and bioaerosol emission. The inactivation of BG was faster than that of BAS in DI water (pseudo first-order rate constants of 0.065 and 0.016 min-1 respectively) and in PBS solution (0.030 and 0.005 min-1 respectively). BG was also removed more quickly than BAS by PAC adsorption in DI (0.07 and 0.05 min-1 respectively) and in PBS (0.09 and 0.04 min-1 respectively). In DI, BG aggregated more (P < 0.05) than BAS when the pH was 7 or greater but there were no statistically significant differences in NaCl solution. Spore aggregation was also studied with extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) models. Less than 1% of all spores were released as bioaerosols, and there was no significant difference (P > 0.05) in emission between BG and BAS. To the author's knowledge, this study is the first to demonstrate that BG is a suitable surrogate for BAS for bioaerosol emissions, but a poor surrogate for both UV inactivation and PAC adsorption. These results can be used to understand the ability of BAS to act as a surrogate for BA Ames because of its genetic and morphological similarities with BAS.
Collapse
Affiliation(s)
- Leigh Durden
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| | - Kyle Eckhoff
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| | - Adam C Burdsall
- Water Infrastructure Protection Division, National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Sungmin Youn
- Department of Civil Engineering, Marshall University, Huntington, West Virginia, USA
| | - Cindy Andújar-Gonzalez
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| | - Lubna Abu-Niaaj
- Department of Agricultural and Life Sciences, Central State University, Wilberforce, Ohio, USA
| | - Matthew Magnuson
- Water Infrastructure Protection Division, National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| |
Collapse
|
20
|
Yao Y, Ge X, Yin Y, Minjarez R, Tong T. Antiscalants for mitigating silica scaling in membrane desalination: Effects of molecular structure and membrane process. WATER RESEARCH 2023; 246:120701. [PMID: 37837901 DOI: 10.1016/j.watres.2023.120701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Silica scaling is a major type of mineral scaling that significantly constrains the performance and efficiency of membrane desalination. While antiscalants have been commonly used to control mineral scaling formed via crystallization, there is a lack of antiscalants for silica scaling due to its unique formation mechanism of polymerization. In this study, we performed a systematic study that investigated and compared antiscalants with different functional groups and molecular weights for mitigating silica scaling in membrane distillation (MD) and reverse osmosis (RO). The efficiencies of these antiscalants were tested in both static experiments (for hindering silicic acid polymerization) as well as crossflow, dynamic MD and RO experiments (for reducing water flux decline). Our results show that antiscalants enriched with strong H-accepters and H-donors were both able to hinder silicic acid polymerization efficiently in static experiments, with their antiscaling performance being a function of both molecular functionality and weight. Although poly(ethylene glycol) (PEG) with abundant H-accepters exhibited high antiscaling efficiencies during static experiments, it displayed limited performance of mitigating silica scaling during MD and RO. Poly (ethylene glycol) diamine (PEGD), which has a PEG backbone but is terminated by two amino groups, was efficient to both hinder silicic acid polymerization and reduce water flux decline in MD and RO. Antiscalants enriched with H-donors, such as poly(ethylenimine) (PEI) and poly(amidoamine) (PAMAM), were effective of extending the water recovery of MD but conversely facilitated water flux decline of RO in the presence of supersaturated silica. Further analyses of silica scales formed on the membrane surfaces confirmed that the antiscalants interacted with silica via hydrogen bonding and showed that the presence of antiscalants governed the silica morphology. Our work indicates that discrepancy in antiscalant efficiency exists between static experiments and dynamic membrane filtration as well as between different membrane processes associated with silica scaling, providing valuable insights on the design principle and mechanisms of antiscalants tailored to silica scaling.
Collapse
Affiliation(s)
- Yiqun Yao
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Xijia Ge
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Ronny Minjarez
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
21
|
Jia Y, Guan K, Mai Z, Fang S, Li Z, Zhang P, Zou D, Jiang X, He G, Matsuyama H. Thin continuous membrane coating with high surface energy for comprehensive antifouling seawater distillation. WATER RESEARCH 2023; 244:120439. [PMID: 37579566 DOI: 10.1016/j.watres.2023.120439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Membrane distillation (MD) has prominent advantages such as treating high-salinity wastewater with a low-grade thermal energy, high salt rejection, and zero discharge. However, organic fouling and mineral scaling are two major challenges for hydrophobic MD membranes when used for practical applications. Commonly, improving organic fouling- and mineral scaling-resistance require oppositely enhanced wetting properties of membrane, thus is difficult to simultaneously realize dual resistance with one membrane. Here, we proposed to use underwater thermodynamically stable high-surface-energy coating to modify the hydrophobic membrane with Janus structures comprising different surface energy. The underlayered structure meets the hydrophobicity requirements of the MD membrane, while the coating layer realizes dual resistance to organic and inorganic foulants. Theoretical analysis and experimental proof reveal that the membrane with the high-surface-energy coating layer outperforms the pristine one with approximately 10 times of longevity. This strategy provides a new way for the use of high-surface-energy materials in versatilely fouling-resistant MD process.
Collapse
Affiliation(s)
- Yuandong Jia
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Dong Zou
- School of Environmental Science and Engineering, Nanjing Tech University, No.30 South Puzhu Road, Nanjing 211816, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
22
|
Dong P, Shan P, Wang S, Ge B, Zhao C. Heterogeneous Fenton treatment of shale gas fracturing flow-back wastewater by spherical Fe/Al 2O 3 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105685-105699. [PMID: 37715914 DOI: 10.1007/s11356-023-29687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
In this work, efficient Fenton strategy have been proposed for degradation of shale gas fracturing flow-back wastewater using the spherical Fe/Al2O3 supported catalyst. Prior to actual fracturing fluid treatment, the typical model wastewaters such as p-nitrophenol and polyacrylamide were employed to evaluate the catalytic properties of prepared catalyst, and then Fenton treatment of the shale gas fracturing flow-back wastewater was performed on the self-assembled catalytic degradation reactor for continuous flow purification. Results showed that under the conditions of 0.25 mol L-1 impregnating concentration, pH 4, 50 g L-1 catalyst and 0.75 mL L-1 30% H2O2, the removal efficiency of p-nitrophenol and polyacrylamide reached 74% and 61%, respectively, while the COD removal of fracturing flow-back fluid was approximately 48% with the residual 88 mg L-1 COD, meeting the emission standards of the integrated wastewater discharge standard (GB 8978-1996, COD < 100 mg L-1). This work offers new alternatives for Fenton treatment of real wastewater by efficient and low-cost supported catalysts.
Collapse
Affiliation(s)
- Pei Dong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Peipei Shan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Baosheng Ge
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
23
|
Tan B, He Z, Fang Y, Zhu L. Removal of organic pollutants in shale gas fracturing flowback and produced water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163478. [PMID: 37062313 DOI: 10.1016/j.scitotenv.2023.163478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 06/03/2023]
Abstract
Shale gas has been developed as an alternative to conventional energy worldwide, resulting in a large amount of shale gas fracturing flowback and produced water (FPW). Previous studies focus on total dissolved solids reduction using membrane desalination. However, there is a lack of efficient and stable techniques to remove organic pollutants, resulting in severe membrane fouling in downstream processes. This review focuses on the concentration and chemical composition of organic matter in shale gas FPW in China, as well as the hazards of organic pollutants. Organic removal techniques, including advanced oxidation processes, coagulation, sorption, microbial degradation, and membrane treatment are systematically reviewed. In particular, the influences of high salt on each technique are highlighted. Finally, different treatment techniques are evaluated in terms of energy consumption, cost, and organic removal efficiency. It is concluded that integrated coagulation-sorption-Fenton-membrane filtration represents a promising treatment process for FPW. This review provides valuable information for the feasible design, practical operation, and optimization of FPW treatment.
Collapse
Affiliation(s)
- Bin Tan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hangzhou Shangtuo Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Zhengming He
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Yuchun Fang
- Hangzhou Shangtuo Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
24
|
Shi D, Gong T, Wang R, Qing W, Shao S. Control the hydrophilic layer thickness of Janus membranes by manipulating membrane wetting in membrane distillation. WATER RESEARCH 2023; 237:119984. [PMID: 37099871 DOI: 10.1016/j.watres.2023.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
Janus membranes with asymmetric wettability have attracted wide attentions for their robust anti-oil-wetting/fouling abilities in membrane distillation (MD). Compared to traditional surface modification approaches, in this study, we provided a new approach which manipulated surfactant-induced wetting to fabricate Janus membrane with a controllable thickness of the hydrophilic layer. The membranes with 10, 20, and 40 μm of wetted layers were obtained by stopping the wetting induced by 40 mg L-1 Triton X-100 (J = 25 L m-2 h-1) at about 15, 40, and 120 s, respectively. Then, the wetted layers were coated using polydopamine (PDA) to fabricate the Janus membranes. The resulting Janus membranes showed no significant change in porosities or pore size distributions compared with the virgin PVDF membrane. These Janus membranes exhibited low in-air water contact angles (< 50°), high underwater oil contact angles (> 145°), and low adhesion with oil droplets. Therefore, they all showed excellent oil-water separation performance with ∼100% rejection and stable flux. The Janus membranes showed no significant decline in flux, but a trade-off existed between the hydrophilic layer thicknesses and the vapor flux. Utilizing membranes with tunable hydrophilic layer thickness, we elucidated the underlying mechanism of such trade-off in mass transfer. Furthermore, the successful modification of membranes with different coatings and in-situ immobilization of silver nanoparticles indicated that this facile modification method is universal and can be further expanded for multifunctional membrane fabrication.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Rui Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, USA
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, PR China.
| |
Collapse
|
25
|
Zhuang Y, Ji Y, Kuang Q, Zhang Z, Li P, Song J, He N. Oxidation treatment of shale gas produced water: Molecular changes in dissolved organic matter composition and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131266. [PMID: 36996539 DOI: 10.1016/j.jhazmat.2023.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Produced water (PW) is the largest waste stream generated by hydraulic fracturing in an unconventional shale gas reservoir. Oxidation processes (OPs) are frequently used as advanced treatment method in highly complicated water matrix treatments. However, the degradation efficiency is the main focus of research, organic compounds and their toxicity have not been properly explored. Here, we obtained the characterization and transformation of dissolved organic matters of PW samples from the first shale gas field of China by two selected OPs using FT-ICR MS. CHO, CHON, CHOS, and CHONS heterocyclic compounds associated with lignins/CRAM-like, aliphatic/proteins, and carbohydrates compounds were the major organic compounds identified. Electrochemical Fe2+/HClO oxidation preferentially removed aromatic structures, unsaturated hydrocarbons, and tannin compounds with a double-bond equivalence (DBE) value below 7 to more saturated compounds. Nevertheless, Fe (VI) degradation manifested in CHOS compounds with low DBE values, especially single bond compounds. Oxygen- and Sulfur-containing substances, primarily O4-11, S1O3-S1O12, N1S1O4, and N2S1O10 classes, were the main recalcitrant components in OPs. The toxicity assessment showed that the free-radical-formed Fe2+/HClO oxidation could cause significant DNA damage. Therefore, the toxicity response byproducts need spcial attention when conducting OPs. Our results led to discussions on designing appropriate treatment strategies and the development of PW discharge or reuse standards.
Collapse
Affiliation(s)
- Yiling Zhuang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Yufei Ji
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qiyue Kuang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zhaoji Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Peng Li
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, PR China
| | - Junbei Song
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, PR China
| | - Niqian He
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, PR China
| |
Collapse
|
26
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
27
|
Zhong C, Hou D, Liu B, Zhu S, Wei T, Gehman J, Alessi DS, Qian PY. Water footprint of shale gas development in China in the carbon neutral era. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117238. [PMID: 36681031 DOI: 10.1016/j.jenvman.2023.117238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The production of shale gas in China has repercussions for the global energy landscape and carbon neutrality. However, limited and threatened water resources may hinder the expansion of shale-derived natural gas, one of China's most promising development prospects. Coupling historical trends with policy guidance, we project that baseline water stress will intensify in two-thirds of China's provinces in the next decade. By 2035, annual water use for shale gas hydraulic fracturing activities is likely to increase to 16-35 million m3, with 13.8-23.7 million m3 of wastewater produced annually to extract 38-48 billion m3 of gas from ∼4800 shale gas wells. Analysis suggests that this projection is based on previously underestimated geological constraints (e.g., deep continental facies) in shale gas development in China. Nevertheless, forecasts suggest that the water footprint of shale development will become impossible to ignore, particularly in drought-stricken areas, indicating the potential risk of competition for water among shale development, domestic use, food production, and ecological protection. Meanwhile, the annual wastewater management market will increase to $0.2 billion by 2035. Our study suggests a critical need to direct attention to the (shale) energy-water nexus and develop multi-pronged policies to facilitate China's transition to carbon neutrality.
Collapse
Affiliation(s)
- Cheng Zhong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, China.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), Institute for Disaster Management and Reconstruction, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China
| | - Songbai Zhu
- Kela Oil and Gas Development Department of Tarim Oilfield Branch of CNPC, Korla, Xinjiang, 841000, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Joel Gehman
- Department of Strategic Management and Public Policy, George Washington University, Washington, DC, USA
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, China.
| |
Collapse
|
28
|
Xu Y, Ren LF, Li J, Wang C, Qiu Y, Shao J, He Y. Anti-Wetting Performance of an Electrospun PVDF/PVP Membrane Modified by Solvothermal Treatment in Membrane Distillation. MEMBRANES 2023; 13:225. [PMID: 36837728 PMCID: PMC9964468 DOI: 10.3390/membranes13020225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane distillation (MD) is attractive for water reclamation due to the fact of its unique characteristics. However, membrane wetting becomes an obstacle to its further application. In this paper, a novel hydrophobic polyvinylidene fluoride/poly(vinyl pyrrolidone) (PVDF/PVP) membrane was fabricated by electrospinning and solvothermal treatment. The electrospun membranes prepared by electrospinning showed a multilevel interconnected nanofibrous structure. Then, a solvothermal treatment introduced the micro/nanostructure to the membrane with high roughness (Ra = 598 nm), thereby the water contact angle of the membrane increased to 158.3 ± 2.2°. Owing to the superior hydrophobicity, the membrane presented high resistance to wetting in both NaCl and SDS solutions. Compared to the pristine PVDF membrane, which showed wetting with a flux decline (120 min for 0.05 mM surfactant solution treatment), the prepared membrane showed outstanding stability over 600 min, even in 0.2 mM surfactant solutions. These results confirm a simple method for anti-wetting hydrophobic membrane preparation, which presented universal significance to direct contact membrane distillation (DCMD) for industrial application.
Collapse
|
29
|
Yousefi S, Bahrami M, Hesam Najibi S. Hydrate phase equilibria of carbon dioxide/propane gas mixture in concentrated aqueous sodium chloride solutions: experimental data and prediction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Zhao Z, Qin W, Long J, Lei J, Xu W, Wang Z. The removal of organic impurities from industrial waste salt by pyrolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21671-21682. [PMID: 36272002 DOI: 10.1007/s11356-022-23659-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The presence of organic impurities hinders the resource utilization of industrial waste salt (IWS). In this study, pyrolysis treatment was chosen to remove these organic impurities. The optimal process parameters for the pyrolysis of organic impurities were as follows: a temperature of 500 °C and a holding time of 20 min. Under these optimal conditions, the total organic carbon (TOC) removal rate was 96.32%, inducing a decrease in the TOC mass fraction from 1.88 to 0.08%. Fourier transform infrared spectroscopy (FTIR) results obtained during this process showed that prolonging the pyrolysis time (10-70 min) for IWS resulted in a gradual decrease in the relative content of characteristic functional group, such as C-O in ether groups, and the disappearance of functional group, such as benzophenone carbonyl group and ester carbonyl. Organic impurities can release gas-containing compounds that destroy the initially smooth IWS surface, and the resulting particles with rough and irregular shapes fuse into large or lumpy particles during the pyrolysis process. GC‒MS results clearly showed that the number of different semivolatile organic compounds in the IWS was reduced from 35 to 19 as a result of the pyrolysis process. Correspondingly, organic impurities with molecular formulas containing 5-10 carbon atoms converted into compounds containing 6-20 carbon atoms. These findings provide theoretical support for IWS resource utilization.
Collapse
Affiliation(s)
- Zongwen Zhao
- Dongjiang Environmental Co., Ltd, Shenzhen, 518057, Guangdong, China
- Guangdong Provincial Key Laboratory of R&D for Resource Utilization and Deep Treatment of Hazardous Waste Liquid, Shenzhen, 518057, Guangdong, China
| | - Weining Qin
- Dongjiang Environmental Co., Ltd, Shenzhen, 518057, Guangdong, China
- Guangdong Provincial Key Laboratory of R&D for Resource Utilization and Deep Treatment of Hazardous Waste Liquid, Shenzhen, 518057, Guangdong, China
| | - Jiang Long
- Dongjiang Environmental Co., Ltd, Shenzhen, 518057, Guangdong, China
- Guangdong Provincial Key Laboratory of R&D for Resource Utilization and Deep Treatment of Hazardous Waste Liquid, Shenzhen, 518057, Guangdong, China
| | - Jie Lei
- Green Eco-Manufacture Co., Ltd, Shenzhen, 518101, Guangdong, China
| | - Wenbin Xu
- Guangdong Provincial Key Laboratory of R&D for Resource Utilization and Deep Treatment of Hazardous Waste Liquid, Shenzhen, 518057, Guangdong, China
| | - Zhongbing Wang
- School of Environment & Chemical Engineering, Nanchang Hangkong University, Nanchang, 330000, Jiangxi, China.
- Guangdong Provincial Key Laboratory of R&D for Resource Utilization and Deep Treatment of Hazardous Waste Liquid, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
31
|
Liu Y, Wang J, Hoek EMV, Municchi F, Tilton N, Cath TY, Turchi CS, Heeley MB, Jassby D. Multistage Surface-Heated Vacuum Membrane Distillation Process Enables High Water Recovery and Excellent Heat Utilization: A Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:643-654. [PMID: 36579652 DOI: 10.1021/acs.est.2c07094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface-heated membrane distillation (MD) enhances the energy efficiency of desalination by mitigating temperature polarization (TP). However, systematic investigations of larger scale, multistage, surface-heated MD system with high water recovery and heat recycling are limited. Here, we explore the design and performance of a multistage surface-heated vacuum MD (SHVMD) with heat recovery through a comprehensive finite difference model. In this process, the latent heat of condensation is recovered through an internal heat exchanger (HX) using the retentate from one stage as the condensing fluid for the next stage and an external HX using the feed as the condensing fluid. Model results show that surface heating enhances the performance compared to conventional vacuum MD (VMD). Specifically, in a six-stage SHVMD process, 54.44% water recovery and a gained output ratio (GOR) of 3.28 are achieved with a surface heat density of 2000 W m-2, whereas a similar six-stage VMD process only reaches 18.19% water recovery and a GOR of 2.15. Mass and energy balances suggest that by mitigating TP, surface heating increases the latent heat trapped in vapor. The internal and external HXs capture and reuse the additional heat, which enhances the GOR values. We show for SHVMD that the hybrid internal/external heat recovery design can have GOR value 1.44 times higher than that of systems with only internal or external heat recovery. Furthermore, by only increasing six stages to eight stages, a GOR value as high as 4.35 is achieved. The results further show that surface heating can reduce the energy consumption of MD for brine concentration. The multistage SHVMD technology exhibits a promising potential for the management of brine from industrial plants.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
| | - Jingbo Wang
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California90095, United States
- Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, California90095, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Federico Municchi
- Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Nils Tilton
- Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Craig S Turchi
- Thermal Energy Science & Technologies Research Group, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Michael B Heeley
- Department of Economics and Business, Colorado School of Mines, Golden, Colorado80401, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California90095, United States
- Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, California90095, United States
| |
Collapse
|
32
|
Piash KS, Sanyal O. Design Strategies for Forward Osmosis Membrane Substrates with Low Structural Parameters-A Review. MEMBRANES 2023; 13:73. [PMID: 36676880 PMCID: PMC9865366 DOI: 10.3390/membranes13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This article reviews the many innovative strategies that have been developed to specifically design the support layers of forward osmosis (FO) membranes. Forward osmosis (FO) is one of the most viable separation technologies to treat hypersaline wastewater, but its successful deployment requires the development of new membrane materials beyond existing desalination membranes. Specifically, designing the FO membrane support layers requires new engineering techniques to minimize the internal concentration polarization (ICP) effects encountered in cases of FO. In this paper, we have reviewed several such techniques developed by different research groups and summarized the membrane transport properties corresponding to each approach. An important transport parameter that helps to compare the various approaches is the so-called structural parameter (S-value); a low S-value typically corresponds to low ICP. Strategies such as electrospinning, solvent casting, and hollow fiber spinning, have been developed by prior researchers-all of them aimed at lowering this S-value. We also reviewed the quantitative methods described in the literature, to evaluate the separation properties of FO membranes. Lastly, we have highlighted some key research gaps, and provided suggestions for potential strategies that researchers could adopt to enable easy comparison of FO membranes.
Collapse
|
33
|
Badawy Elsheniti M, Ibrahim A, Elsamni O, Elewa M. Experimental and Economic Investigation of Sweeping Gas Membrane Distillation/Pervaporation Modules using Novel Pilot Scale Device. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Alharthi MS, Bamaga O, Abulkhair H, Organji H, Shaiban A, Macedonio F, Criscuoli A, Drioli E, Wang Z, Cui Z, Jin W, Albeirutty M. Evaluation of a Hybrid Moving Bed Biofilm Membrane Bioreactor and a Direct Contact Membrane Distillation System for Purification of Industrial Wastewater. MEMBRANES 2022; 13:16. [PMID: 36676823 PMCID: PMC9863120 DOI: 10.3390/membranes13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Integrated wastewater treatment processes are accepted as the best option for sustainable and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated successively to obtain the combined advantages of these processes for industrial wastewater treatment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant load on the MBR. Similarly, MBR acts as the second step in the biological treatment and serves as a pretreatment prior to the DCMD step. The latter acts as a final treatment to produce high-quality water. A laboratory scale integrated MBBR/MBR/DCMD experimental system was used for assessing the treatment efficiency of primary treated (PTIWW) and secondary treated (STIWW) industrial wastewater in terms of permeate water flux, effluent quality, and membrane fouling. The removal efficiency of total dissolved solids (TDS) and effluent permeate flux of the three-step process (MBBR/MBR/DCMD) were better than the two-step (MBR/DCMD) process. In the three-step process, the average removal efficiency of TDS was 99.85% and 98.16% when treating STIWW and PTIWW, respectively. While in the case of the two-step process, the average removal efficiency of TDS was 93.83% when treating STIWW. Similar trends were observed for effluent permeate flux values which were found, in the case of the three-step process, 62.6% higher than the two-step process, when treating STIWW in both cases. Moreover, the comparison of the quality of the effluents obtained with the analysed configurations with that obtained by Jeddah Industrial Wastewater Treatment Plant proved the higher performance of the proposed membrane processes.
Collapse
Affiliation(s)
- Mamdouh S. Alharthi
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Omar Bamaga
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Hani Abulkhair
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Husam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Amer Shaiban
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Francesca Macedonio
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Alessandra Criscuoli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mohammed Albeirutty
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Alamoudi T, Nawaz MS, Obaid M, Jin Y, Soukane S, Son HS, Gudideni V, Al-Qahtani A, Ghaffour N. Optimization of osmotic backwashing cleaning protocol for produced water fouled forward osmosis membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Zhang X, Wei S, Zhang D, Lu P, Huang Y. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116368. [PMID: 36261973 DOI: 10.1016/j.jenvman.2022.116368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The sulfate-reducing mediate microbial fuel cell (MFC) shows advantages in treating recalcitrant flowback water (FW) from shale gas extraction, but the stability under fluctuant concentrations of sulfate in FW remains unknown. Herein, we investigated the impact of fluctuant sulfate concentrations on the performance of FW treatment in MFCs. Sulfate concentration showed a significant role in the MFC treating FW, with a COD removal of 69.8 ± 9.7% and a peak power density of 2164 ± 396 mW/m3 under 247.5 mg/L sulfate, but only 39.1% and 1216 mW/m3 under 50 mg/L sulfate. The fluctuation of sulfate in a short time allowed to a stable performance, but a longtime intermittent decrease of feeding sulfate concentration significantly inhibited power generation to no more than 512 mW/m3. The sulfur cycling between sulfate and sulfide existed in the system, but the cycling rate became much lower after the longtime intermittent decrease, with resulting to the decreased power generation. Abundant sulfur-oxidizing bacteria (SOB) of Desulfuromonadaceae and Helicobacteraceae in the MFC stably feeding with 247.5 mg/L sulfate supported a high sulfur cycling rate. With the cooperation of abundant sulfate-reducing bacteria (SRB) of Desulfovibrionaceae (capable of producing electricity) on the anode and Desulfobacteraceae in anolyte, this sulfur cycling endowed the MFC with high sulfate tolerance and critically contributed to recalcitrant organics removal and power generation. However, much less SOB of Helicobacteraceae and Campylobacteraceae on the anode with high S0 accumulation on the surface after the longtime intermittent decrease of sulfate likely led to the low sulfur cycling rate. With also less SRB of Marinilabiaceae (capable of producing electricity) and Synergistaceae in the system, this low sulfur cycling rate thus hampered power generation. This research provides an important reference for the bioelectrochemical treatment of wastewater containing recalcitrant organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Shiqiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Yongkui Huang
- National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| |
Collapse
|
37
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H. Compositing of MOFs with ceramic and nanoparticles for efficient and rapid adsorptive desalination of artificial seawater or NaCl solution. RSC Adv 2022; 12:29793-29804. [PMID: 36329944 PMCID: PMC9585531 DOI: 10.1039/d2ra04182k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Poor water availability with the fast-growing population creates crucial issues for universal water security, and efficient approaches ought to be accomplished to balance the demand and supply. One of the most energy- and cost-effective methods for removing NaCl is adsorption desalination. Metal-organic frameworks with ceramic and nanoparticles are a comparatively new research route that increases the desalination capacity. The synthesized composites were examined for efficient and rapid removal of NaCl from NaCl solution or artificial seawater. The adsorption desalination properties were analyzed based on adsorption isotherm, adsorption kinetics, contact time, NaCl, and adsorbent dosage. The adsorptive desalination rate of ZnO@MIL88A(Fe)@α-cordierite composite was only decreased by 4% as the maximum loss after 5 consecutive cycles.
Collapse
Affiliation(s)
- Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University LahoreLahore 54700Pakistan
| | - Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University LahoreLahore 54700Pakistan
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University LahoreLahore 54700Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University LahoreLahore 54700Pakistan
| | - Hina Zain
- Department of Allied Health Sciences, Superior University LahoreLahore 54700Pakistan
| |
Collapse
|
38
|
Medeiros DCCDS, Chelme-Ayala P, Benally C, Al-Anzi BS, Gamal El-Din M. Review on carbon-based adsorbents from organic feedstocks for removal of organic contaminants from oil and gas industry process water: Production, adsorption performance and research gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115739. [PMID: 35932737 DOI: 10.1016/j.jenvman.2022.115739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of process water with considerable concentrations of recalcitrant organic contaminants, such as polycyclic aromatic hydrocarbon (PAHs), phenolic compounds (PCs), and benzene, toluene, ethylbenzene, and xylene (BTEX), are generated by several segments of oil and gas industries. These segments include refineries, hydraulic fracturing (HF), and produced waters from the extraction of shale gas (SGPW), coalbed methane (CBMPW) and oil sands (OSPW). In fact, the concentration of PCs and PAHs in process water from refinery can reach 855 and 742 mg L-1, respectively. SGPW can contain BTEX at concentrations as high as 778 mg L-1. Adsorption can effectively target those organic compounds for the remediation of the process water by applying carbon-based adsorbents generated from organic feedstocks. Such organic feedstocks usually come from organic waste materials that would otherwise be conventionally disposed of. The objective of this review paper is to cover the scientific progress in the studies of carbon-based adsorbents from organic feedstocks that were successfully applied for the removal of organic contaminants PAHs, PCs, and BTEX. The contributions of this review paper include the important aspects of (i) production and characterization of carbon-based adsorbents to enhance the efficiency of organic contaminant adsorption, (ii) adsorption properties and mechanisms associated with the engineered adsorbent and expected for certain pollutants, and (iii) research gaps in the field, which could be a guidance for future studies. In terms of production and characterization of materials, standalone pyrolysis or hybrid procedures (pyrolysis associated with chemical activation methods) are the most applied techniques, yielding high surface area and other surface properties that are crucial to the adsorption of organic contaminants. The adsorption of organic compounds on carbonaceous materials performed well at wide range of pH and temperatures and this is desirable considering the pH of process waters. The mechanisms are frequently pore filling, hydrogen bonding, π-π, hydrophobic and electrostatic interactions, and same precursor material can present more than one adsorption mechanism, which can be beneficial to target more than one organic contaminant. Research gaps include the evaluation of engineered adsorbents in terms of competitive adsorption, application of adsorbents in oil and gas industry process water, adsorbent regeneration and reuse studies, and pilot or full-scale applications.
Collapse
Affiliation(s)
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bader S Al-Anzi
- Department of Environmental Technology Management, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
39
|
Liu X, Turner C. Electronic structure calculations of the fundamental interactions in solvent extraction desalination. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Al-Furaiji M, Kadhom M, Waisi B, Kalash K. Coupled effect of organic fouling and scaling in the treatment of hyper-saline produced water using forward osmosis. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2126768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mustafa Al-Furaiji
- Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
| | - Mohammed Kadhom
- Department of Environmental Science, College of Energy and Environmental Sciences, Alkarkh University of Science, Baghdad, Iraq
| | - Basma Waisi
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Khairi Kalash
- Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
| |
Collapse
|
41
|
Liu N, Yang J, Hu X, Zhao H, Chang H, Liang Y, Pang L, Meng Y, Liang H. Fouling and chemically enhanced backwashing performance of low-pressure membranes during the treatment of shale gas produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156664. [PMID: 35700787 DOI: 10.1016/j.scitotenv.2022.156664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The treatment of shale gas produced water (SGPW) for beneficial reuse is currently the most dominant and economical option. Membrane filtration is one preferred method to deal with SGPW, but membrane fouling is an unavoidable problem. In this study, two types of ultrafiltration (UF) membranes and one type of microfiltration (MF) membrane were investigated to treat SGPW from Sichuan basin. Results showed that increased total dissolved solid (31-40 g/L) and UV254 (10-42.9 m-1) were observed for the same shale gas plays, and the primary fluorescent organic substances were humic acid-like components. Compared to UF membranes with the flux decline by 2% to 60%, MF membranes with larger pore size were more likely to be fouled with the flux decline by 43% to 95%. Cake layer filtration was verified to be the primary membrane fouling mechanism. Statistical analysis showed that UV254 played the most significant role in membrane fouling which had the highest correlation (0.76 to 0.93). Compared to permeate backwashing (13%), deionized water backwashing and chemically enhanced backwashing (CEB) using NaClO, H2O2 and citric acid improved the cleaning efficiencies (31%-95%). CEB using NaOH prepared by deionized water aggravated membrane fouling, while excellent cleaning efficiencies (39%-79%) were observed for CEB using NaOH prepared by permeate. The difference in cleaning behaviors for fouled membranes by SGPW was verified by morphology observation and element composition analysis.
Collapse
Affiliation(s)
- Naiming Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Jie Yang
- Safety, Environment, and Technology Supervision Research Institute of Petrochina Southwest Oil & Gasfield Company, Chengdu, China
| | - Xueqi Hu
- State Grid Sichuan Comprehensive Energy Service Co., Ltd., Power Engineering Br., Chengdu 610072, China
| | - Huaxin Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lina Pang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
42
|
Liang J, Xie T, Liu Y, Wu Q, Bai Y, Liu B. Granular activated carbon (GAC) fixed bed adsorption combined with ultrafiltration for shale gas wastewater internal reuse. ENVIRONMENTAL RESEARCH 2022; 212:113486. [PMID: 35597290 DOI: 10.1016/j.envres.2022.113486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Membrane processes are widely applied in shale gas flowback and produced water (SGFPW) reuse. However, particulate matters and organic matters aggravate membrane fouling, which is one of the major restrictions on SGFPW reuse. The present study proposed fixed bed adsorption using granular activated carbon (GAC) combined with ultrafiltration (UF) for the first time to investigate the treatment performance and membrane fouling mechanism. The adsorption of GAC for SGFPW was best described by the Temkin isotherm model and the pseudo-second-order kinetic model. GAC fixed bed pretreatment with different empty bed contact times (EBCT) (30, 60 and 90 min) showed the significant removal rate for dissolved organic carbon (DOC) and turbidity, which was 34.7%-42.4% and 98.1%-98.9%, respectively. According to characterization of UF membrane fouling layer, particulate matters and organic matters caused major part of membrane fouling. After being treated by GAC fixed bed, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) respectively decreased by more than 32.5% and 18.3% respectively, showing the mitigation effect of GAC fixed bed on membrane fouling. According to the XDLVO theory, GAC fixed bed also mitigated membrane fouling by reducing the hydrophobic interactions between the foulants and the UF membrane. The integrated GAC fixed bed-UF process produced high-quality effluents that met the water quality standards of SGFPW internal reuse, which was an effective technology of the SGFPW reuse.
Collapse
Affiliation(s)
- Jiaxin Liang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China
| | - Tianqiao Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China
| | - Yuanhui Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan, 644000, PR China
| | - Qidong Wu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan, 644000, PR China
| | - Yuhua Bai
- Infrastructure Construction Department, Chengdu University, Chengdu, 610106, PR China
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan, 644000, PR China.
| |
Collapse
|
43
|
|
44
|
Optimization of Water Management Strategies for Shale Gas Extraction Considering Uncertainty in Water Availability and Flowback Water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Nguyen DT, Pham VS. Ions transport in electromembrane desalination: A numerical modeling for the return flow ion-concentration-polarization desalination system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
48
|
Analysis of Regulatory Framework for Produced Water Management and Reuse in Major Oil- and Gas-Producing Regions in the United States. WATER 2022. [DOI: 10.3390/w14142162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rapid development of unconventional oil and gas (O&G) extraction around the world produces a significant amount of wastewater that requires appropriate management and disposal. Produced water (PW) is primarily disposed of through saltwater disposal wells, and other reuse/disposal methods include using PW for hydraulic fracturing, enhanced oil recovery, well drilling, evaporation ponds or seepage pits within the O&G field, and transferring PW offsite for management or reuse. Currently, 1–2% of PW in the U.S. is used outside the O&G field after treatment. With the considerable interest in PW reuse to reduce environmental implications and alleviate regional water scarcity, it is imperative to analyze the current regulatory framework for PW management and reuse. In the U.S., PW is subject to a complex set of federal, state, and sometimes local regulations to address the wide range of PW management, construction, and operation practices. Under the supervision of the U.S. Environment Protection Agency (U.S. EPA), different states have their own regulatory agencies and requirements based on state-specific practices and laws. This study analyzed the regulatory framework in major O&G-producing regions surrounding the management of PW, including relevant laws and jurisdictional illustrations of water rules and responsibilities, water quality standards, and PW disposal and current/potential beneficial reuse up to early 2022. The selected eastern states (based on the 98th meridian designated by the U.S. EPA as a tool to separate discharge permitting) include the Appalachian Basin (Marcellus and Utica shale areas of Pennsylvania, Ohio, and West Virginia), Oklahoma, and Texas; and the western states include California, Colorado, New Mexico, and Wyoming. These regions represent different regulations; climates; water quantities; quality diversities; and geologic, geographic, and hydrologic conditions. This review is particularly focused on the water quality standards, reuse practices and scenarios, risks assessment, knowledge gaps, and research needs for the potential reuse of treated PW outside of O&G fields. Given the complexity surrounding PW regulations and rules, this study is intended as preliminary guidance for PW management, and for identifying the knowledge gaps and research needs to reduce the potential impacts of treated PW reuse on the environment and public health. The regulations and experiences learned from these case studies would significantly benefit other states and countries with O&G sources for the protection of their environment and public health.
Collapse
|
49
|
Kim J, Yun ET, Tijing L, Shon HK, Hong S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Liu Y, Wang J, Jung B, Rao U, Sedighi E, Hoek EMV, Tilton N, Cath TY, Turchi CS, Heeley MB, Ju YS, Jassby D. Desalinating a real hyper-saline pre-treated produced water via direct-heat vacuum membrane distillation. WATER RESEARCH 2022; 218:118503. [PMID: 35500328 DOI: 10.1016/j.watres.2022.118503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) is an emerging thermal desalination technology capable of desalinating waters of any salinity. During typical MD processes, the saline feedwater is heated and acts as the thermal energy carrier; however, temperature polarization (as well as thermal energy loss) contributes to low distillate fluxes, low single-pass water recovery and poor thermal efficiency. An alternative approach is to integrate an extra thermal energy carrier as part of the membrane and/or module assembly, which can channel externally provided heat directly to the membrane-feedwater interface and/or along the feed channel length. This direct-heat delivery has been demonstrated to increase single-pass water recovery and enhance the overall thermal efficiency. We developed a bench-scale direct-heated vacuum MD (DHVMD) process to desalinate pre-treated oil and gas "produced water" with an initial total dissolved solids of 115,500 ppm at a feed temperature ranging between 24 and 32 °C. We evaluated both water flux and specific energy consumption (SEC) as a function of water recovery. The system achieved a 50% water recovery without significant scaling, with an average flux >6 kg m-2 hr-1 and a SEC as low as 2,530 kJ kg-1. The major species of mineral scales (i.e., NaCl, CaSO4, and SrSO4) that limited the water recovery to 68% were modeled in terms of thermodynamics and identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy. In addition, we further developed and employed a physics-based process model to estimate temperature, salinity, water transport and energy flows for full-scale vacuum MD and DHVMD modules. Model results show that a direct-heat input rate of 3,600 W can increase single-pass water recovery from 2.1% to 3.1% while lowering the thermal SEC from 7,800 kJ kg-1 to 6,517 kJ kg-1 in an unoptimized module. Finally, the scaling up potential of DHVMD process is briefly discussed.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jingbo Wang
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Bongyeon Jung
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Unnati Rao
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Erfan Sedighi
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States; Energy Science & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nils Tilton
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Craig S Turchi
- Buildings & Thermal Science Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael B Heeley
- Department of Economics and Business, Colorado School of Mines, Golden, CO, United States
| | - Y Sungtaek Ju
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - David Jassby
- Department of Civil & Environmental Engineering, California NanoSystems Institute and Institute of the Environment & Sustainability, University of California Los Angeles (UCLA), Los Angeles, CA, United States.
| |
Collapse
|