1
|
Wang R, Cheng Y, Wan Q, Cao R, Cai J, Huang T, Wen G. Emergency control of dinoflagellate bloom in freshwater with chlorine enhanced by solar radiation: Efficiency and mechanism. WATER RESEARCH 2024; 265:122275. [PMID: 39163711 DOI: 10.1016/j.watres.2024.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Dinoflagellate requires a lower temperature and blooms frequently in the spring and autumn compared to regular cyanobacteria. The outbreak of dinoflagellate bloom will also lead to the death of some aquatic organisms. However, research on freshwater dinoflagellates is still lacking due to the challenges posed by classification and culture in laboratory. The removal effect and mechanism of Peridinium umbonatum (P. umbonatum, a typical dinoflagellate) were investigated using solar/chlorine in this study. The effect of simulated solar alone on the removal of algae was negligible, and chlorine alone had only a slight effect in removing algae. However, solar/chlorine showed a better removal efficiency with shoulder length reduction factor and kmax enhancement factor of 2.80 and 3.8, respectively, indicating a shorter latency period and faster inactivation rate for solar/chlorine compared to solar and chlorine alone. The removal efficiency of algae gradually increased with the chlorine dosage, but it dropped as the cell density grew. When the experimental temperature was raised to 30 °C, algal removal efficiency significantly increased, as the temperature was unsuitable for the survival of P. umbonatum. Attacks on cell membranes by chlorine and hydroxyl radicals (•OH) produced by solar/chlorine led to a decrease in cell membrane integrity, leading to a rise in intracellular reactive oxygen species and an inhibition of photosynthetic and antioxidant systems. Cell regeneration was not observed in either the chlorine or solar/chlorine systems due to severe cell damage or cysts formation. In addition, natural solar radiation was demonstrated to have the same enhancing effect as simulated solar radiation. However, the algal removal efficiency of solar/chlorine in real water was reduced compared to 119 medium, mainly due to background material in the real water substrate that consumed the oxidant or acted as shading agents.
Collapse
Affiliation(s)
- Ru Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jie Cai
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
2
|
Dong L, Xia Y, Hu Z, Zhang M, Qiao W, Wang X, Yang S. Research progress of persulfate activation technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31771-31786. [PMID: 38658509 DOI: 10.1007/s11356-024-33404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have been widely investigated by academia and industry due to their high efficiency and selectivity for the removal of trace organic pollutants from complex water substrates. PS-AOPs have been extensively studied for the degradation of pesticides, drugs, halogen compounds, dyes, and other pollutants. Utilizing bibliometric statistics, this review presents a comprehensive overview of persulfate-based advanced oxidation technology research over the past decade. The number of published articles about persulfate activation has steadily increased during this time, reflecting extensive international collaboration. Furthermore, this review introduces the most widely employed strategies for persulfate activation reported in the past 10 years, including carbon material activation, photocatalysis, transition metal activation, electrochemical activation, ultrasonic activation, thermal activation, and alkali activation. Next, the potential activation mechanisms and influencing factors, such as persulfate dosage during activation, are discussed. Finally, the application of PS-AOPs in wastewater treatment and in situ groundwater treatment is examined. This review summarizes the previously reported experiences of persulfate-based advanced oxidation technology and presents the current application status of PS-AOPs in organic pollution removal, with the aim of avoiding misunderstandings and providing a solid foundation for future research on the removal of organic pollutants.
Collapse
Affiliation(s)
- Luyu Dong
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Yujin Xia
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Zhixin Hu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Miao Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Weihan Qiao
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Xueli Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
3
|
Wang R, Wang S, Cao R, Han J, Huang T, Wen G. The apoptosis of Chlorella vulgaris and the release of intracellular organic matter under metalimnetic oxygen minimum conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168001. [PMID: 37875207 DOI: 10.1016/j.scitotenv.2023.168001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Metalimnetic oxygen minimum (MOM) is a frequent occurrence in lakes and reservoirs, and its formation is related to the blooming and apoptosis of algae. In this study, the apoptosis mechanism of Chlorella vulgaris (C. vulgaris) and the release of intracellular organic matter (IOM) under different MOM conditions were analyzed by changing the dissolved oxygen (DO) (7.0 mg/L, 3.0 mg/L, and 0.3 mg/L) and water pressure (0.3 MPa and normal pressure). The integrity and auto-fluorescence of algae cells decreased rapidly in the first 8 days, and then stabilized gradually during the development of MOM. Compared with that of water pressures, DO had a significant effect on the activity of algal cells, and higher initial DO levels (3.0 mg/L and 7.0 mg/L) accelerated the lysis of algal cells. The integrity of algae cells decreased to 28.8 %, 31.8 % and 56.6 % at the initial DO of 7 mg/L, 3 mg/L and 0.3 mg/L under 0.3 MPa, respectively. Meanwhile, the concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) continued to increase and reached their maximum at 8 or 12 days, respectively, due to the IOM release caused by algal cell rupture, and then gradually decreased due to microbial degradation. Consistent with the results of membrane integrity, the highest DOC and DON concentrations were found at higher initial DO conditions. By parallel factor analysis, the change in total organic matter fluorescence intensity was consistent with DOC, once again increasing in the first 8 days and then gradually decreasing. The increased humic-like component, which is related to higher aromaticity, led to the monotonic increase of HAAFPs and THMFPs. However, the released IOM of C. vulgaris had lower N-DBPFPs, with TCNMFP predominating primarily. In summary, these results shed new lights on exploring the apoptosis of algae and the release of IOM during the development of MOM.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuo Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingru Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
4
|
Moreno-Andrés J, Romero-Martínez L, Seoane S, Acevedo-Merino A, Moreno-Garrido I, Nebot E. Evaluation of algaecide effectiveness of five different oxidants applied on harmful phytoplankton. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131279. [PMID: 36989795 DOI: 10.1016/j.jhazmat.2023.131279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Harmful algal blooms (HABs) in coastal areas similarly impact both ecosystems and human health. The translocation of phytoplankton species via maritime transport can potentially promote the growth of HABs in coastal systems. Accordingly, ballast water must be disinfected. The main goal of this study is to assess the effectiveness of different emerging biocides, including H2O2, peracetic acid (PAA), peroxymonosulfate (PMS), and peroxydisulfate (PDS). The effectiveness of these biocides is compared with that of conventional chlorination methods. Their effects on two ichthyotoxic microalgae with worldwide distribution, i.e., Prymnesium parvum and Heterosigma akashiwo, are examined. To ensure the prolonged effectiveness of the different reagents, their concentration-response curves for 14 days are constructed and examined. The results suggest a strong but shorter effect by PMS (EC50 = 0.40-1.99 mg·L-1) and PAA (EC50 = 0.32-2.70 mg·L-1), a maintained effect by H2O2 (EC50 = 6.67-7.08 mg·L-1), and a negligible effect by PDS. H. akashiwo indicates higher resistance than P. parvum, except when H2O2 is used. Based on the growth inhibition performance and consumption of the reagents as well as a review of important aspects regarding their application, using H2O2, PAA, or PMS can be a feasible alternative to chlorine-based reagents for inhibiting the growth of harmful phytoplankton.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain.
| | - Leonardo Romero-Martínez
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Sergio Seoane
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE, UPV/EHU), Plentzia 48620, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain
| |
Collapse
|
5
|
Han M, Wang H, Jin W, Chu W, Xu Z. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. J Environ Sci (China) 2023; 128:181-202. [PMID: 36801034 DOI: 10.1016/j.jes.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/18/2023]
Abstract
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
Collapse
Affiliation(s)
- Mengqi Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Wang Y, Wang Y, Wang X, Chang M, Zhang G, Mao X, Li Y, Wang J, Wang L. Efficient activation of peroxodisulfate by novel bionic iron-encapsulated biochar: The key roles of electron transfer pathway and reactive oxygen species evolution. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130204. [PMID: 36308934 DOI: 10.1016/j.jhazmat.2022.130204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel iron-encapsulated biochar (Fe@BC) was prepared using the biomass cultivated with an iron-containing solution. The iron in Fe@BC showed the phase change from Fe3O4 to α-Fe, and to CFe15.1, with the increase of pyrolysis temperature (500-900 °C), and a graphene shell formed on the surface of Fe@BC. In addition, the signals assigned to the π-π* shake up, pyridinic N, graphitic N, and defects of Fe@BC were found to be stronger as the pyrolysis temperature increased. The F4@B9 sample, which was prepared at 900 °C, exhibited an excellent performance (98.01 %) to activate peroxydisulfate (PDS) for the degradation of 2,4-dichlorophenol. Electron paramagnetic resonanceand chemical quenching experiments revealed that reactive oxygen radicals (ROS) including sulfate radical (•SO4-), hydroxyl radical (•OH), superoxide radical (•O2-), and singlet oxygen (1O2) existed in the F4@B9/PDS system. Furthermore, the micro-electrolysis process facilitated the generation of •O2- (12.35 %) and 1O2 (6.49 %) compared with the pure PDS system. Density functional theory revealed that, for the F4@B9-activated PDS process, the graphene shell of F4@B9 served as catalytic active sites as well. According to the correlation analysis, the iron specie of CFe15.1 was more favorable for the generation of ROS than α-Fe. Also, π-π* shake up, pyridinic N, graphitic N, and defects participated in the PDS activation. This study provides a new method for the preparation of high-performance catalysts from naturally grown biomass with high iron contents.
Collapse
Affiliation(s)
- Yangyang Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Ying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoshu Wang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, PR China
| | - Ming Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Gen Zhang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xuhui Mao
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jinsheng Wang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Lei Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
7
|
Wang W, Xu Y, Zhong D. Copper sulphide/cuprous sulphide doped zero-valent iron@carbon (ZVI@C/CuS/Cu 2S) activate PMS for rapid and effective decomposition of Ni-EDTA. ENVIRONMENTAL TECHNOLOGY 2023; 44:864-874. [PMID: 34661510 DOI: 10.1080/21622515.2021.1986575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Ni-EDTA is widely present in electroplating effluents. It cannot be effectively removed by traditional wastewater treatment methods due to its chemical stability. In this study, copper sulphide/cuprous sulphide doped zero-valent iron@carbon (ZVI@C/CuS/Cu2S) was prepared to active peroxymonsulphate (PMS) to decomposition Ni-EDTA. The ZVI@C/CuS/Cu2S + PMS process shows excellent performance under neutral or even alkaline conditions. This is due to the acceleration of ZVI electron transport by CuS/Cu2S, the autocatalysis of CuS/Cu2S itself, and the synergistic effect of CuS/Cu2S and Ni-EDTA. The removal efficiency of 50 ppm Ni-EDTA electroplating effluents reached 99.53% at 10 min, and the discharge water can meet the Chinese emission standard. The influences of the main parameters such as initial pH value, catalyst, PMS and initial Ni-EDTA concentration on removal efficiency was systematically investigated.
Collapse
Affiliation(s)
- Wenyan Wang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Yu Y, Liu C, Yang C, Yu Y, Lu L, Ma R, Li L. One-Step Synthesized Iron-Carbon Core-Shell Nanoparticles to Activate Persulfate for Effective Degradation of Tetrabromobisphenol A: Performance and Activation Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4483. [PMID: 36558336 PMCID: PMC9787185 DOI: 10.3390/nano12244483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as an emerging endocrine disrupter, has been considered one of the persistent organic contaminants in water. It is urgently necessary to develop an efficient technique for the effective removal of TBBPA from water. Herein, a one-step hydrothermal synthesis route was employed to prepare a novel iron-carbon core-shell nanoparticle (Fe@MC) for effectively activating persulfate (PS) to degrade TBBPA. Morphological and structural characterization indicated that the prepared Fe@MC had a typical core-shell structure composed of a 5 nm thick graphene-like carbon shell and a multi-valence iron core. It can be seen that 94.9% of TBBPA (10 mg/L) could be degraded within 30 min at pH = 7. This excellent catalytic activity was attributed to the synergistic effect of the porous carbon shell and a multi-valence iron core. The porous carbon shell could effectively prevent the leaching of metal ions and facilitate PS activation due to its electron transfer capability. Furthermore, numerous micro-reaction zones could be formed on the surface of Fe@MC during the rapid TBBPA removal process. Radical quenching experiments and electron paramagnetic resonance (EPR) technology indicated that reactive oxygen species (ROS), including OH, SO4-, O2-, and 1O2, were involved in the TBBPA degradation process. Based on density functional theory (DFT) calculation, the carbon atoms linked by phenolic hydroxyl groups would be more vulnerable to attack by electron-rich groups; the central carbon was cracked and hydroxylated to generate short-chain aliphatic acids. The toxicity evaluation provides clear evidence for the promising application potential of our prepared material for the efficient removal of TBBPA from water.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
- Inner Mongolia Autonomous Region Key Laboratory of Water Pollution Control, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chenyu Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University, Guangzhou 511443, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
9
|
Zhong J, Ma Y, Jiang S, Dai G, Liu Z, Shu Y. The adsorption affinity of N-doped biochar plays a crucial role in peroxydisulfate activation and bisphenol A oxidative degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88630-88643. [PMID: 35834086 DOI: 10.1007/s11356-022-21747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Metal-free biochar to activate persulfate and degrade organic contaminants has attracted great attention in advanced oxidation processes, while the role of biochar adsorption in the activation and oxidative decomposition process still needed to be further clarified. In this study, nitrogen-doped porous biochar derived from a waste litchi branch was prepared as a peroxydisulfate (PDS) activator for bisphenol A (BPA) degradation, in which the regulation behavior of biochar adsorption was evaluated on the basis of phase distribution and PDS activation mechanism. N-doped biochar obtained at 800 °C with urea and sodium bicarbonate added presented a high specific surface area (821 m2/g), abundant nanopores, and a graphitic structure, and showed the best adsorption capacity and catalytic activity toward BPA. At a dosage of 0.15 g/L NBC-800, 95% BPA can be completely degraded within 60 min with an apparent rate constant (kobs) of 0.0483 min-1. The identified active sites and reactive oxygen species as well as electrochemical tests suggested that both free radicals O2•- and •OH and nonradical pathways including 1O2 originated from C = O and surface electron-transfer mechanisms were involved in BPA decomposition. The experiments and activation mechanisms all confirmed that BPA adsorption on the NBC-800 surface was an extremely crucial step for BPA oxidative degradation.
Collapse
Affiliation(s)
- Jie Zhong
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yancheng Ma
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shaojun Jiang
- School of Environment, South China Normal University, Guangzhou, 510006, China
- Jiangxi Province Academy of Environmental Science, Nanchang, China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhenyuan Liu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Cheng W, Wang P, Zhang Y, Wang H, Ma J, Zhang T. Oxidation resistances of polyamide nanofiltration membranes to hydroxyl and sulfate radicals. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Lin D, Fu Y, Li X, Wang L, Hou M, Hu D, Li Q, Zhang Z, Xu C, Qiu S, Wang Z, Boczkaj G. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129722. [PMID: 35963083 DOI: 10.1016/j.jhazmat.2022.129722] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including solid waste treatment, resources recovery and regeneration of ecomaterials. PS applications mainly rely on direct oxidation by PS itself or the reactive sulfate radical (SO4•-) or hydroxyl radical (•OH) from the activation of peroxodisulfate (PDS, S2O82-) or peroxymonosulfate (PMS, HSO5-) in SO4•--based advanced oxidation processes (SO4•--AOPs). From a broader perspective of environmental cleanup and sustainability, this review summarizes the various applications of PS except pollutant decontamination and elaborates the possible reaction mechanisms. Additionally, the differences between PS treatment and conventional technologies are highlighted. Challenges, research needs and future prospect are thus discussed to promote the development of the applications of PS-based oxidation processes in niche environmental fields. In all, this review is a call to pay more attention to the possibilities of PS application in practical resource reutilization and environmental protection except widely reported pollutant degradation.
Collapse
Affiliation(s)
- Dagang Lin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodie Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Meiru Hou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dongdong Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
12
|
Li X, Jie B, Lin H, Deng Z, Qian J, Yang Y, Zhang X. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114664. [PMID: 35149402 DOI: 10.1016/j.jenvman.2022.114664] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The large amount of trace organic contaminants (TrOCs) in wastewater has caused serious impacts on human health. In the past few years, Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) are widely recognized for their high removal rates of recalcitrant TrOCs from water. Peroxymonosulfate (PMS) and persulfate (PS) are stable and non-toxic strong oxidizing oxidants and can act as excellent SO4•- precursors. Compared with hydroxyl radicals(·OH)-based methods, SR-AOPs have a series of advantages, such as long half-life and wide pH range, the oxidation capacity of SO4•- approaches or even exceeds that of ·OH under suitable conditions. In this review, we present the progress of activating PS/PMS to remove TrOCs by different methods. These methods include activation by transition metal, ultrasound, UV, etc. Possible activation mechanisms and influencing factors such as pH during the activation are discussed. Finally, future activation studies of PS/PMS are summarized and prospected. This review summarizes previous experiences and presents the current status of SR-AOPs application for TrOCs removal. Misconceptions in research are avoided and a research basis for the removal of TrOCs is provided.
Collapse
Affiliation(s)
- Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huidong Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongpei Deng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junyao Qian
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
13
|
Moreno-Andrés J, Rivas-Zaballos I, Acevedo-Merino A, Nebot E. On the Efficacy of H 2O 2 or S 2O 82- at Promoting the Inactivation of a Consortium of Cyanobacteria and Bacteria in Algae-Laden Water. Microorganisms 2022; 10:microorganisms10040735. [PMID: 35456785 PMCID: PMC9024476 DOI: 10.3390/microorganisms10040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Harmful algal blooms in coastal areas can significantly impact a water source. Microorganisms such as cyanobacteria and associated pathogenic bacteria may endanger an ecosystem and human health by causing significant eco-hazards. This study assesses the efficacy of two different reagents, H2O2 and S2O82−, as (pre-)treatment options for algae-laden waters. Anabaena sp. and Vibrio alginolyticus have been selected as target microorganisms. With the objective of activating H2O2 or S2O82−, additional experiments have been performed with the presence of small amounts of iron (18 µmol/L). For the cyanobacterial case, H2O2-based processes demonstrate greater efficiency over that of S2O82−, as Anabaena sp. is particularly affected by H2O2, for which >90% of growth inhibition has been achieved with 0.088 mmol/L of H2O2 (at 72 h of exposure). The response of Anabaena sp. as a co-culture with V. alginolyticus implies the use of major H2O2 amounts for its inactivation (0.29 mmol/L of H2O2), while the effects of H2O2/Fe(II) suggests an improvement of ~60% compared to single H2O2. These H2O2 doses are not sufficient for preventing the regrowth of V. alginolyticus after 24 h. The effects of S2O82− (+ Fe(II)) are moderate, reaching maximum inhibition growth of ~50% for Anabaena sp. at seven days of exposure. Nevertheless, doses of 3 mmol/L of S2O82− can prevent the regrowth of V. alginolyticus. These findings have implications for the mitigation of HABs but also for the associated bacteria that threaten many coastal ecosystems.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Ignacio Rivas-Zaballos
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
14
|
Tang L, Zhang X, Li Z, Gudda FO, Waigi MG, Wang J, Liu H, Gao Y. Enhanced PAHs-contaminated site soils remediation by mixed persulfate and calcium peroxide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114363. [PMID: 35074729 DOI: 10.1016/j.jenvman.2021.114363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) remain in the site soils after relocated coking plants and oil refineries pose huge constraints to the subsequent land utilization. However, single persulfate (PS) or calcium peroxide (CP) remediation strategies can only inefficiently oxidize some PAHs in soil. This work sought to optimize PS/CP oxidation remediation strategy and verify its practical application effect in soil samples spiked with PAHs. The results showed that the mixed PS/CP oxidation remediation was better than the single oxidants strategies; it had high remediation performance in different particles and pollution loads of PAHs-contaminated soils. Simultaneously, reactive radicals (SO4·- and ·OH) were detected, and one side-product (CaSO4) was characterized. This work optimized the mixed PS/CP system (0.3 mol/L PS, and 8 g/kg CP, together with 0.18 mol/L Fe2+ and 0.11 mol/L C2O42-), and the corresponding Total-PAHs removal rate was 85.41%. Compared to the cost based on benzopyrene (BaP) removal, the study provided a cost-effective mixed PS/CP oxidation remediation technique (1.22 $/ton), widely applicable in soils polluted with various organic contaminants represented such as PAHs.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaochun Zhang
- College of Economics and Management, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hua Liu
- College of Economics and Management, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Venâncio JPF, Rodrigues CSD, Nunes OC, Madeira LM. Application of iron-activated persulfate for municipal wastewater disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127989. [PMID: 34920225 DOI: 10.1016/j.jhazmat.2021.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
To address the increasing contamination of aquatic environments and incidence of waterborne diseases, advanced oxidation processes with activated persulfate have emerged as tools to inactivate wastewater microorganisms and contaminants. In this work, the disinfection of a secondary effluent from a wastewater treatment plant by iron-based persulfate activation was studied. Experiments in a batch stirred tank reactor were carried out to evaluate the performance along reaction time and the effect of operational parameters in the oxidative process efficiency (oxidant and iron concentration, pH and temperature). After 60 min of reaction, persulfate and iron concentrations of 3 mM and 0.75 mM, respectively, combined with a neutral initial pH (7.5) and a temperature of 40 °C, allowed to reach values below the detection limit (<10 CFU/100 mL) of enterococci and enterobacteria with and without ciprofloxacin resistance, as well as a 91% inactivation of total heterotrophic organisms and a 70% removal of total organic carbon. Regrowth of microorganisms was evaluated 72 h after treatment and it was only noticed a slight increase in total heterotrophs. Evaluation of physico-chemical characteristics of the treated water showed that it meets the requirements imposed by European and Portuguese legislation for its reuse in irrigation and most urban utilities.
Collapse
Affiliation(s)
- João P F Venâncio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
16
|
Dong S, Yan X, Li W, Liu Y, Han X, Liu X, Feng J, Yu C, Zhang C, Sun J. Macroscopic Zn-doped α-Fe2O3/graphene aerogel mediated persulfate activation for heterogeneous catalytic degradation of sulfamonomethoxine wastewater. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
18
|
Jin H, Cang Z, Ding W, Wu W, Ma H, Wang C, Qi Z, Li Z, Zhang L. Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124411. [PMID: 33189467 DOI: 10.1016/j.jhazmat.2020.124411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
As an emerging contaminant in water, antibiotic resistant bacteria are threatening the public health gravely. In this study, sulfidated ZVI was used to activate persulfate, for antibiotic resistant E. coli and antibiotic resistant genes removal. Impressively, 7 log of antibiotic resistant E. coli was inactivated within 30 min, in sulfidated ZVI activated persulfate system (S/Fe = 0.05). Electron paramagnetic resonance and free radical quenching experiments suggested that sulfidation treatment did not change the specie of radicals. SO4•-and HO• were the main reactive oxygen species for the removal of antibiotic resistant E. coli and genes. Investigation on the activation mechanism of persulfate indicated that persulfate decomposition was mainly attributed to heterogeneous activation. More importantly, in-situ characterization (ATR-FTIR) indicated that the main charge transfer complex was formed on the surface of sulfidated ZVI, which would predominantly mediate the generation of SO4•- and HO•. Finally, the proposed system was evaluated in modeling water and secondary effluent. Results revealed that only 2.86 log and 0.84 log of antibiotic resistant E. coli were inactivated in the presence of NOM (10 mg/L) and HCO3- (84 mg/L), respectively. Besides, sulfidated ZVI activated persulfate system could be pH-dependent in actual wastewater treatment.
Collapse
Affiliation(s)
- Hui Jin
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhizhi Cang
- Beijing Building Materials Academy of Sciences Research, Beijing 100041, PR China
| | - Wei Ding
- Institute of Architecture Design and Research, Chinese Academy of Sciences, Beijing 100086, PR China
| | - Wentong Wu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hongkun Ma
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, B15 2TT, UK
| | - Chenxi Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhongwei Qi
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lingling Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
19
|
V M Starling MC, Costa EP, Souza FA, Machado EC, de Araujo JC, Amorim CC. Persulfate mediated solar photo-Fenton aiming at wastewater treatment plant effluent improvement at neutral PH: emerging contaminant removal, disinfection, and elimination of antibiotic-resistant bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17355-17368. [PMID: 33398751 PMCID: PMC8004486 DOI: 10.1007/s11356-020-11802-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 04/16/2023]
Abstract
This work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82-) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82- at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82- was performed in a solar simulator (30 W m-2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82- and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82- showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L-1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L-1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82- (0.6 € m-3) compared to H2O2 (1.2 € m-3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Elizângela P Costa
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe A Souza
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Elayne C Machado
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Juliana Calábria de Araujo
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
20
|
Karim AV, Jiao Y, Zhou M, Nidheesh PV. Iron-based persulfate activation process for environmental decontamination in water and soil. CHEMOSPHERE 2021; 265:129057. [PMID: 33272667 DOI: 10.1016/j.chemosphere.2020.129057] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Sulfate radical based advanced oxidation processes have been extensively studied for the degradation of environmental contaminants. Iron-based materials such as ferrous, ferric, ZVI, iron oxides, sulfides etc., and various natural iron minerals have been explored for activating persulfate to generate sulfate radicals. In this review, an overview of different iron activated persulfate systems and their application in the removal of organic pollutants and metals in water and soil are summarised. The chemistry behind the activation of persulfate by homogenous and heterogeneous iron-based materials with/without the assistance of electrochemical techniques are also discussed. Besides, the soil decontamination by iron persulfate system and a brief discussion on the ability of the persulfate system to reduce metals presence in wastewater are also summarised. Finally, future research prospects, believed to be useful for all researchers in this field, based on up to date research progress is also given.
Collapse
Affiliation(s)
- Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Yongli Jiao
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
21
|
Romero-Martínez L, Rivas-Zaballos I, Moreno-Andrés J, Moreno-Garrido I, Acevedo-Merino A, Nebot E. Improving the microalgae inactivating efficacy of ultraviolet ballast water treatment in combination with hydrogen peroxide or peroxymonosulfate salt. MARINE POLLUTION BULLETIN 2021; 162:111886. [PMID: 33310544 DOI: 10.1016/j.marpolbul.2020.111886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Due to the increasing number of ecosystem invasions with the introduction of exogenous species via ballast water, the International Maritime Organization adopted the Ballast Water Convention (BWMC). The BWMC establishes standards for the concentration of viable organisms in a ballast water discharge. Ultraviolet (UV) irradiation is commonly used for treating ballast water; however, regrowth after UV irradiation and other drawbacks have been reported. In this study, improvement in UV treatment with the addition of hydrogen peroxide or peroxymonosulfate salt was investigated using the microalgae Tetraselmis suecica as the target organism. Results reported that each of these reagents added in a concentration of 10 ppm reduced the concentration of initial cells by more than 96%, increased the UV inactivation rate, and enabled reaching greater level of inactivation with the treatment. These improvements imply a reduction of the UV doses required for a consistent compliance with the BWMC standards.
Collapse
Affiliation(s)
- Leonardo Romero-Martínez
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea. University of Cadiz. Spain.
| | - Ignacio Rivas-Zaballos
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea. University of Cadiz. Spain
| | - Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea. University of Cadiz. Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, s/n 11510, Puerto Real, Cádiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea. University of Cadiz. Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea. University of Cadiz. Spain
| |
Collapse
|
22
|
Wan Q, Wen G, Cao R, Zhao H, Xu X, Xia Y, Wu G, Lin W, Wang J, Huang T. Simultaneously enhance the inactivation and inhibit the photoreactivation of fungal spores by the combination of UV-LEDs and chlorine: Kinetics and mechanisms. WATER RESEARCH 2020; 184:116143. [PMID: 32688151 DOI: 10.1016/j.watres.2020.116143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Waterborne fungi have been recognized as an emerging environmental contaminant in recent years. This work was to investigate the inactivation efficiency and mechanisms of ultraviolet light-emitting diodes (UV-LEDs)/chlorine (Cl2) (265, 280 and 265/280 nm combination) and LPUV/Cl2 (254 nm) treatments for three fungal species compared with individual disinfection processes. Control of photoreactivation for fungal species inactivated by UV-LEDs/Cl2 and LPUV/Cl2 was also evaluated. The results revealed that the combined UV-LEDs/Cl2 and LPUV/Cl2 processes, especially UV-LEDs/Cl2, exhibited better inactivation performance compared to UV alone and Cl2 alone based on the inactivation rate constants, and an evident synergistic effect was observed. For example, the inactivation rates for Penicillium polonicum in the processes of UV265/Cl2, UV280/Cl2, UV265/280/Cl2 and LPUV/Cl2 was 0.142, 0.168, 0.174 and 0.106 cm2/mJ, respectively, which were all approximately 1.5-fold higher than that of UV alone. The synergistic effect of fungal spores inactivation by UV-LEDs/Cl2 and LPUV/Cl2 was due to the high level production of intracellular reactive oxygen species and the reaction of potential extracellular free radicals. Resistance of the tested fungal spores was as follows: Trichoderma harzianum < Penicillium polonicum < Aspergillus niger. In addition, the joint effect of DNA and other cellular damage resulted in the inhibition of photoreactivation of fungal spores inactivated by UV-LEDs/Cl2 and LPUV/Cl2 compared with that of fungal spore inactivated by UV alone. This study may provide reference for controlling the dissemination of waterborne fungi utilizing combined UV-LEDs and free chlorine processes.
Collapse
Affiliation(s)
- Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Hui Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuancheng Xia
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Wei Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| |
Collapse
|
23
|
Shao Z, Hu X, Cheng W, Zhao Y, Hou J, Wu M, Xue D, Wang Y. Degradable self-adhesive epidermal sensors prepared from conductive nanocomposite hydrogel. NANOSCALE 2020; 12:18771-18781. [PMID: 32970084 DOI: 10.1039/d0nr04666c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conductive hydrogel-based epidermal sensors are attracting significant interest due to their great potential in soft robotics, electronic skins, bioelectronics and personalized healthcare monitoring. However, the conventional conductive hydrogel-based epidermal sensors cannot be degraded, resulting in the significant problem of waste, which will gradually increase the burden on the environment. Herein, degradable adhesive epidermal sensors were assembled using conductive nanocomposite hydrogels, which were prepared via the conformal coating of cellulose nanofiber (CNF) networks and supramolecular interaction among CNF, polydopamine (PDA), Fe3+, and polyacrylamide (PAM). They exhibited superior mechanical properties, reliable degradability (30 days in water), and excellent self-adhesiveness. The obtained hydrogels could be assembled as self-adhesive, degradable epidermal sensors for real-time human motion monitoring. Air could be sucked into the hydrogels during their swelling process, thereby oxidizing the tris-catechol-Fe3+ complexes and releasing Fe3+. Finally, the polymer networks were degraded via a Fenton-like reaction dominated by S2O82- and Fe(ii/iii) with the help of the catechol groups of PDA. This work paves the way for the potential fabrication of degradable, and self-adhesive epidermal sensors for applications in human-machine interactions, implantable bioelectronics, and personalized healthcare monitoring.
Collapse
Affiliation(s)
- Zhiang Shao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology Qingdao, Shandong 266590, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu X, Ran Z, Wen G, Liang Z, Wan Q, Chen Z, Lin Y, Li K, Wang J, Huang T. Efficient inactivation of bacteria in ballast water by adding potassium peroxymonosulfate alone: Role of halide ions. CHEMOSPHERE 2020; 253:126656. [PMID: 32278911 DOI: 10.1016/j.chemosphere.2020.126656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In recent years, ballast water disinfection has been paid much more attention due to the untreated discharged ballast water posing threaten of biological invasion and health related consequences. In this study, an effective and simple approach for ballast water disinfection by just adding potassium peroxymonosulfate (PMS) was assessed, and the role of halide ions in seawater on the enhancement of inactivation was revealed. The reactive species responsible for inactivation, the leakage of intracellular materials, and changes of cellular morphology after inactivation were evaluated to explore the inactivation mechanism. The results showed that Escherichia coli and Bacillus subtilis in ballast water could be totally inactivated within 10 min by adding 0.2 mM PMS alone. The inactivation of bacteria in ballast water fitted to the delayed Chick-Watson model. Chloride and bromide ion in seawater were found to play a crucial role in inactivating bacteria, while the effect of iodide ion could be negligible due to its relative lower concentration in seawater. Chlorine and bromine, produced by the reaction of PMS with chloride and bromide ion, were proved to be the main reactive components that were responsible for the inactivation of bacteria. The extracellular ATP and total nitrogen concentration increased after inactivation which indicated that cell membrane was destroyed by reactive oxidants produced by the reaction between PMS and halide ions. The change of cell morphology confirmed that bacteria were seriously damaged after inactivation. The results suggest that PMS is an attractive alternative disinfectant for ballast water disinfection and this application deserved further research.
Collapse
Affiliation(s)
- Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhilin Ran
- Institute of Innovational Education Research, School of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhuhao Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuzhao Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
25
|
Venieri D, Karapa A, Panagiotopoulou M, Gounaki I. Application of activated persulfate for the inactivation of fecal bacterial indicators in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110223. [PMID: 32148293 DOI: 10.1016/j.jenvman.2020.110223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
Activated persulfate, as a member of the broad group of Advanced Oxidation Processes (AOPs), has emerged as a promising method for the elimination of microorganisms in aqueous matrices. This study evaluates the disinfection efficiency of this technique with respect to the inactivation of Escherichia coli and Enterococcus faecalis in water samples, as representative Gram negative and Gram positive bacterial indicators, respectively. In this perspective, various activators were employed, namely, ferric ion, heating, ultrasound application and UVA irradiation, which exhibited different bactericidal effect, depending on the operating conditions and the structural properties of each species. The highest disinfection rates were achieved with 200 mg/L of persulfate and ferric ion or heating as activators. For instance, 6 Log reductions were recorded within only 10-15 min when 30 mg/L of iron were applied, whereas the same bacterial removal was noted upon heat-activation at 50 °C, but in longer periods (i.e. 45-60 min). Nevertheless, in all cases E. faecalis was more resistant than E. coli, which was readily inactivated in shorter treatment periods. The overall process activity was deteriorated above the limit of 200 mg/L of persulfate. Ultrasound application exhibited lower performance, as even more prolonged treatment was required (120-150 min) for the same bacterial decay with the persulfate concentration not affecting substantially the process. In an attempt to improve the ultrasound activity, it was combined together with iron but with no synergistic results, as no actual enhancement of the method was observed. Finally, UVA did not seem to serve as an activator under the applied conditions, taking into account that it resulted in negligible loss of bacterial viability. Based on the current results, activated persulfate may be used successfully for disinfection purposes; however, the appropriate establishment of process variables is mostly required, considering the various resistance levels of aquatic microorganisms under stressed conditions.
Collapse
Affiliation(s)
- Danae Venieri
- School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece.
| | - Alexandra Karapa
- School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| | - Maria Panagiotopoulou
- School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| | - Iosifina Gounaki
- School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| |
Collapse
|
26
|
Li S, Tang J, Liu Q, Liu X, Gao B. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. ENVIRONMENT INTERNATIONAL 2020; 138:105639. [PMID: 32179320 DOI: 10.1016/j.envint.2020.105639] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nano zero-valent iron (nZVI) and its composite materials have been extensively studied in the field of environmental remediation. However, the oxidation and agglomeration of nZVI limits the large-scale application of nZVI in environmental remediation. This study developed a two-step method to prepare stable carbon-coated nZVI (Fe0@C) which combined hydrothermal carbonization and carbothermal reduction methods and used glucose and iron oxide (Fe3O4) as precursors. When the carbothermal reduction temperature was 700 °C and the elemental molar ratio of carbon to iron was 22:1, stable Fe0@C can be generated. The nZVI particles are encapsulated by mesoporous carbon and embedded in the carbon spheres. The unique structure of carbon coating not only inhibits the agglomeration of nZVI, but also makes nZVI stable in air for more than 120 days. Not only that, the as-synthesized Fe0@C exhibited high catalytic activity toward the degradation of 4-chlorophenol (4-CP) by activating persulfate. Different from conventional nZVI catalysts in generation of sulfate radicals, Fe0@C selectively induced hydroxyl radicals for 4-CP degradation. Moreover, Fe0@C has been shown to efficiently degrade 4-CP by using the dissolved oxygen in water to form hydroxyl radicals. This study not only provides a simple, green method for the preparation of stabilized nZVI, but also provides the possibility of large-scale application of nZVI in the field of environmental remediation.
Collapse
Affiliation(s)
- Song Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Xiaomei Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
27
|
Sumner AJ, Plata DL. A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:945-955. [PMID: 32037427 DOI: 10.1039/c9em00505f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydraulically fractured wells with horizontal drilling (HDHF) accounted for 69% of all oil and gas wells drilled and 670 000 of the 977 000 producing wells in 2016. However, only 238 flowback and produced water samples have been analyzed to date for specific organic chemicals. To aid the development of predictive tools, we constructed a database combining additive disclosure reports and physicochemical conditions at respective well sites with the goal of making synthesized analyses accessible. As proof-of-concept, we used this database to evaluate transformation pathways through two case studies: (1) a filter-based approach for flagging high-likelihood halogenation sites according to experimental criteria (e.g., for a model compound, cinnamaldehyde) and (2) a semi-quantitative, regionally comparative trihalomethane formation model that leverages an empirically derived equation. Study (1) highlighted 173 wells with high cinnamaldehyde halogenation likelihood based on combined criteria related to subsurface conditions and oxidant additive usage. Study (2) found that trihalomethane formation in certain wells within five specific basins may exceed regulatory limits for drinking water based on reaction-favorable subsurface conditions, albeit with wide uncertainty. While experimentation improves our understanding of subsurface reaction pathways, this database has immediate applications for informing environmental monitors and engineers about potential transformation products in residual fluids, guiding well operators' decisions to avoid unwanted transformations. In the future, we envision more robust components incorporating transformation, transport, toxicity, and other physicochemical parameters to predict subsurface interactions and flowback composition.
Collapse
Affiliation(s)
- Andrew J Sumner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
28
|
Huo ZY, Du Y, Chen Z, Wu YH, Hu HY. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. WATER RESEARCH 2020; 173:115581. [PMID: 32058153 DOI: 10.1016/j.watres.2020.115581] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
This study provided an overview of established and emerging nanomaterial (NM)-enabled processes and devices for water disinfection for both centralized and decentralized systems. In addition to a discussion of major disinfection mechanisms, data on disinfection performance (shortest contact time for complete disinfection) and energy efficiency (electrical energy per order; EEO) were collected enabling assessments firstly for disinfection processes and then for disinfection devices. The NM-enabled electro-based disinfection process gained the highest disinfection efficiency with the lowest energy consumption compared with physical-based, peroxy-based, and photo-based disinfection processes owing to the unique disinfection mechanism and the direct mean of translating energy input to microbes. Among the established disinfection devices (e.g., the stirred, the plug-flow, and the flow-through reactor), the flow-through reactor with mesh/membrane or 3-dimensional porous electrodes showed the highest disinfection performance and energy efficiency attributed to its highest mass transfer efficiency. Additionally, we also summarized recent knowledge about current and potential NMs separation and recovery methods as well as electrode strengthening and optimization strategies. Magnetic separation and robust immobilization (anchoring and coating) are feasible strategies to prompt the practical application of NM-enabled disinfection devices. Magnetic separation effectively solved the problem for the separation of evenly distributed particle-sized NMs from microbial solution and robust immobilization increased the stability of NM-modified electrodes and prevented these electrodes from degradation by hydraulic detachment and/or electrochemical dissolution. Furthermore, the study of computational fluid dynamics (CFD) was capable of simulating NM-enabled devices, which showed great potential for system optimization and reactor expansion. In this overview, we stressed the need to concern not only the treatment performance and energy efficiency of NM-enabled disinfection processes and devices but also the overall feasibility of system construction and operation for practical application.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
29
|
Wang X, Wang Y, Chen N, Shi Y, Zhang L. Pyrite enables persulfate activation for efficient atrazine degradation. CHEMOSPHERE 2020; 244:125568. [PMID: 32050347 DOI: 10.1016/j.chemosphere.2019.125568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Persulfate (PS) is widely used for environmental remediation, but its organic contaminant removal performance strongly depends on its activation. In this study, we demonstrate that pyrite (FeS2) can more effectively activate PS than the commonly used FeSO4 for atrazine degradation. When 3.0 mM of PS and 4.2 mM of iron salts were used, the atrazine degradation efficiency of FeS2/PS was 1.4 times that of FeSO4/PS, while the amount of consumed PS in case of FeS2 was only 53% of that by FeSO4. The better PS activation performance of FeS2 could be attributed to its slow and sustainable release of dissolved Fe(II), inhibiting the quenching reaction between •SO4-/•OH and Fe(II) ions, and thus producing more reactive oxygen species for the atrazine degradation. More importantly, the surface bound Fe(II) of FeS2 could activate molecular oxygen to generate superoxide radical (•O2-), which could further promote the effective decomposition of PS by accelerating the Fe(III)/Fe(II) redox cycle. This study unravels the roles of dissolved Fe(II) and surface bound Fe(II) on the persulfate activation, and provides a promising heterogeneous persulfate activator for pollutant control and environmental remediation.
Collapse
Affiliation(s)
- Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yueyao Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yanbiao Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
30
|
Wang D, Sun Y, Tsang DCW, Khan E, Cho DW, Zhou Y, Qi F, Gong J, Wang L. Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121321. [PMID: 31655386 DOI: 10.1016/j.jhazmat.2019.121321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The degradation of di-(2-ethylhexyl) phthalate (DEHP) was examined as an example to capitalize on the potential interactions of peroxydisulfate (PS) and ferrous iron (Fe2+) in the model Day-1/Day-90 and on-site hydraulic fracturing wastewater (FWW). The primary oxidative radicals in the Fe2+/PS system (i.e., SO4- and OH) were less effective for the degradation of DEHP (6.45%) in ultrapure water. Both chloride (Cl-) and bromide (Br-) at equivalent molar ratio with PS enhanced DEHP degradation (15.6% and 45.5%, respectively) via the generation of Cl and Br radicals, whereas the degradation rate was inhibited by the excessive amount of Cl- or Br- in the Day-1/Day-90 FWW. However, the co-presence of ethylene glycol (C2H4(OH)2, 0.043% v/v in the FWW) and halide ions (Cl- or Br-, 0.05 mM) resulted in the highest removal efficiency of 82.6 - 88.5% within 10 min by Fe2+/PS. Further investigation revealed that the formation of reductive alcohol radicals (C2H3(OH)2) slowed down or replenished the Fe2+ exhaustion. This study demonstrated that the Fe2+/PS-based advanced oxidation may show a synergistic interplay with Cl-/Br- and C2H4(OH)2 in the FWW, which depends on their relative concentrations. Thus, the inherent constituents in the fracturing wastewater can be utilized for the catalytic degradation of co-existing organic contaminants.
Collapse
Affiliation(s)
- Di Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Dong-Wang Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Geological Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianyu Gong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
31
|
|
32
|
Sun L, Hu D, Zhang Z, Deng X. Oxidative Degradation of Methylene Blue via PDS-Based Advanced Oxidation Process Using Natural Pyrite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234773. [PMID: 31795168 PMCID: PMC6926825 DOI: 10.3390/ijerph16234773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
H2O2- and PDS-based reactions are two typical advanced oxidation processes (AOPs). In this paper, a comparative study of H2O2/PDS-based AOPs employing natural pyrite as a catalyst to degrade methylene blue (MB) was reported. The adaptive pH range in pyrite/PDS extended from 3 to 11, in contrast to the narrow effective pH range of 3–7 in pyrite/H2O2. As a result of the iron leaching, a synergistic effect of both homogeneous and heterogeneous catalysis was observed in pyrite/PDS, whereas heterogeneous catalytic oxidation dominated pyrite/H2O2. Furthermore, the batch results showed that the MB removal by pyrite/PDS was highly dependent on chemical conditions (e.g., pH, pyrite and PDS concentration, temperature). Powerful SO4•− was generated by pyrite rapidly under acidic or weakly acidic conditions, while SO4•− and PDS were assumed by OH− under alkaline condition. The lower pyrite loading (from 0.1 to 0.5 g/L) was affected the removal efficiency obviously, while the scavenging of SO4•− did not seem to be remarkable with the excessive amounts of pyrite (>0.5 g/L). Excessive amounts of PDS (>2 mmol/L) might negatively affect the pyrite/PDS system. The reaction temperature that increased from 20 to 40 °C had a positive effect on the degradation of MB. SEM and XRD showed that the passivation of catalyst did not occur due to the strong acid-production ability of pyrite/PDS, inhibiting the formation of Fe-oxide covering the pyrite surface.
Collapse
Affiliation(s)
- Liang Sun
- Correspondence: ; Tel.: +86-0532-8402-2020
| | | | | | | |
Collapse
|
33
|
Wu X, Xu G, Zhu JJ. Sonochemical synthesis of Fe 3O 4/carbon nanotubes using low frequency ultrasonic devices and their performance for heterogeneous sono-persulfate process on inactivation of Microcystis aeruginosa. ULTRASONICS SONOCHEMISTRY 2019; 58:104634. [PMID: 31450346 DOI: 10.1016/j.ultsonch.2019.104634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles decorated on multi-wall nanotube (MWCNTs) were successfully fabricated through a facile and rapid sonochemical method without any pre-treatment on MWCNTs. Fe3O4/MWCNTs-20 showed a uniform and fine distribution of nanoparticles in the MWCNTs. The obtained Fe3O4/MWCNTs were analysed using TEM and XPS. Notably, Fe3O4/MWCNTs were used for persulfate activation on cyanobacterial cell removal. With 20 mg/L persulfate, Fe3O4/MWCNTs showed an efficient catalytic performance after 1 h treatment. In the Fe3O4/MWCNTs hybrid catalyst, Fe3O4 helps to produce sulfate radicals and hydroxyl radicals whereas the size of the Fe3O4 clusters could affect the electron transfer for radical generation. Moreover, using high frequency low intensity ultrasound, the combination of persulfate and Fe3O4/MWCNTs-20 reduced the remaining cell number to 9.4% within 30 min treatment. In conclusion, our work demonstrated that low frequency ultrasonic devices are capable of fabricating Fe3O4/MWCNTs via a simple and time-saving route, and the obtained catalysts showed superior catalytic performance on persulfate for harmful cyanobacteria control.
Collapse
Affiliation(s)
- Xiaoge Wu
- Environment Science and Engineering College, Yangzhou University, Yangzhou, Jiangsu 225009, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Guofeng Xu
- Environment Science and Engineering College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
34
|
Moreno-Andrés J, Farinango G, Romero-Martínez L, Acevedo-Merino A, Nebot E. Application of persulfate salts for enhancing UV disinfection in marine waters. WATER RESEARCH 2019; 163:114866. [PMID: 31344506 DOI: 10.1016/j.watres.2019.114866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Over the years, industrial activities that generate high salinity effluents have been intensifying; this has relevant potential for causing organic and microbiological pollution which damages both human and ocean health. The development of new regulations, such as ballast water convention, encourage the development of treatment systems that can be feasible for treating seawater effluents. Accordingly, an approach based on the UV activation of persulfate salts has been assessed. In this scenario, two different persulfate sources (S2O82- and HSO5-) were evaluated under UV-C irradiation for disinfection purposes. An optimization process was performed with low chemical doses (<1 mM). In order to extensively examine the applicability on seawater, different water matrices were tested as well as different microorganisms including both fecal and marine bacteria. An enhancement of UV-inactivation with the addition of persulfate salts was achieved in all cases, kinetic rate constant has been accelerated by up to 79% in seawater. It implies a UV-dose saving up to 45% to achieve 4-log reductions. Best efficiencies were obtained with [HSO5-] = 0.005 mM and [S2O82-] = 0.5 mM. Higher effectiveness was obtained with the use of HSO5- due to its low stability and interaction with chloride. Also, different responses were obtained according to the specific microorganisms by achieving faster disinfection in Gram-negative than in Gram-positive bacteria, the sensitivity observed was Vibrio spp. > E. coli > E. faecalis ≈ Marine Heterotrophic Bacteria. With an evaluation of regrowth after treatment, greater cell damage was detected with the addition of persulfate salts. The major ability of regrowth for marine bacteria encourages the use of a residual disinfectant after disinfection processes.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - Gonzalo Farinango
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain; Universidad Técnica del Norte, Facultad en Ciencias Agropecuarias y Ambientales, Ibarra, Ecuador
| | - Leonardo Romero-Martínez
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
35
|
Yu X, Yin H, Peng H, Lu G, Dang Z. Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:732-740. [PMID: 31412476 DOI: 10.1016/j.scitotenv.2019.06.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate flame retardants (OPFRs) were frequently detected in biotic and abiotic matrix owing to their persistence and recalcitrant degradation. Some specific OPFRs, such as tris-(2-chloroisopropyl) phosphate (TCPP), pose a significant potential risk to human health due to their high water solubility. Therefore, an environmentally sound and high efficient technique is in urgent need of controlling TCPP. This research is focused on degrading TCPP using ultraviolet-persulfate (UV/PS) technique. The degradation reaction of TCPP followed a pseudo-first order kinetics with an apparent rate constant (kobs) at 0.1653 min-1. As the photocatalytic reaction proceeded, TCPP was transformed to twelve degradation intermediates via the selective electron-transfer reactions induced by activated sulfate radical. Anions existence and pH value significantly inhibited the degradation efficiency, implying that it was hard for TCPP to reach up to complete mineralization in actual water treatment process. Additionally, toxicological assessment of degradation intermediate mixture was conducted using Flow cytometry (FCM) analyses, and the result showed that the intracellular reactive oxygen species (ROS) and cell apoptotic rates significantly declined, and membrane potential (MP) increased in comparison with original TCPP. On the other hand, the negative impacts of these degradation products on DNA biosynthesis in Escherichia coli were weakened based on cell cycle analysis, all of which indicated that toxicity of these degradation intermediates was obviously reduced via UV/PS treatment. To summarize, an appropriate mineralization is effective for TCPP detoxification, suggesting the feasibility of TCPP control using UV/PS treatment in water matrix.
Collapse
Affiliation(s)
- Xiaolong Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
36
|
Wu Y, Chen X, Han Y, Yue D, Cao X, Zhao Y, Qian X. Highly Efficient Utilization of Nano-Fe(0) Embedded in Mesoporous Carbon for Activation of Peroxydisulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9081-9090. [PMID: 31286774 DOI: 10.1021/acs.est.9b02170] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscale zerovalent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. However, the aggregation and oxidation of nZVI brings much difficulty in practical application of environmental remediation. In this study, we reported a composite nano-Fe(0)/mesoporous carbon by a chelation-assisted coassembly and carbothermal reduction strategy. Nano-Fe(0) particles with surface iron oxide (Fe2O3·FeO) were wrapped with graphitic layers which were uniformly dispersed in mesoporous carbon frameworks. The unique structure made the nano-Fe(0) particles stable in air for more than 20 days. It was used as a peroxydisulfate (PDS) activator for the oxidation treatment of 2,4,6-trichlorophenol (TCP). The TOF value of MCFe for TCP degradation is nearly 3 times higher than those of FeSO4 and Fe2O3·FeO and nearly 2 times than that of commercial nZVI. The reactive oxygen species (ROS) including •SO4-, HO•, and •O2-, 1O2 are efficiently generated by PDS activation with MCFe. The PDS activation process by nano-Fe(0) particles was intrinsically induced by the ferrous ions (Fe(II)) continuously generated at the solid/aqueous interface. Namely, the nano-Fe(0) particles were highly efficiently utilized in sulfate radical-based advanced oxidation processes (SR-AOP). The porous structure also assists the absorption and transfer of TCP during the degradation process.
Collapse
Affiliation(s)
- Yunwen Wu
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
| | - Xiaotong Chen
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
| | - Yu Han
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
| | - Dongting Yue
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
| | - Xinde Cao
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Xufang Qian
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd. , Shanghai 200240 , China
| |
Collapse
|
37
|
Mechanism of persulfate activation with CuO for removing cephalexin and ofloxacin in water. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03919-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Efficacy of activated persulfate in pathogen inactivation: A further exploration. Food Res Int 2019; 120:425-431. [DOI: 10.1016/j.foodres.2019.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 11/19/2022]
|
39
|
Hess-Erga OK, Moreno-Andrés J, Enger Ø, Vadstein O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:704-716. [PMID: 30677936 DOI: 10.1016/j.scitotenv.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Increasing concerns have accelerated the development of international regulations and methods for ballast water management to limit the introduction of non-indigenous species. The transport of microorganisms with ballast water has received scientific attention in recent years. However, few studies have focused on the importance of organisms smaller than 10 μm in diameter. In this work, we review the effects of ballast water transport, disinfection, and the release of microorganisms on ecosystem processes with a special focus on heterotrophic bacteria. It is important to evaluate both direct and indirect effects of ballast water treatment systems, such as the generation of easily degradable substrates and the subsequent regrowth of heterotrophic microorganisms in ballast tanks. Disinfection of water can alter the composition of bacterial communities through selective recolonization in the ballast water or the recipient water, and thereby affects bacterial driven functions that are important for the marine food web. Dissolved organic matter quality and quantity and the ecosystem status of the treated water can also be affected by the disinfection method used. These side effects of disinfection should be further investigated in a broader context and in different scales (laboratory studies, large-scale facilities, and on the ships).
Collapse
Affiliation(s)
- Ole-Kristian Hess-Erga
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7491 Trondheim, Norway
| | - Javier Moreno-Andrés
- Department of Environmental Technologies, University of Cádiz, INMAR-Marine Research Institute, Camepus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Øivind Enger
- Sarsia Seed AS, Postboks 7150, 5020 Bergen, Norway
| | - Olav Vadstein
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7491 Trondheim, Norway.
| |
Collapse
|
40
|
Popova S, Matafonova G, Batoev V. Simultaneous atrazine degradation and E. coli inactivation by UV/S 2O 82-/Fe 2+ process under KrCl excilamp (222 nm) irradiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:169-177. [PMID: 30447517 DOI: 10.1016/j.ecoenv.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
This study is the first to reveal that the iron-catalyzed photo-activation of persulfate (UV/PS/Fe2+system) under mercury-free KrCl excilamp irradiation (222 nm) is capable of simultaneous degradation of an organic pollutant and inactivation of a microorganism in aqueous media using the herbicide atrazine (ATZ) and E. coli as model contaminants, respectively. Deionized water, natural water and wastewater effluents, contaminated with 4 mg/L ATZ and/or 105 CFU/mL E. coli, were sequentially treated by direct UV, UV/PS and UV/PS/Fe2+ processes. Lowering the pH to 3.5 accelerated both the degradation and inactivation during the UV/PS/Fe2+ treatment of natural water. Comparison of the apparent UV dose-based pseudo first-order rate constants showed the negative effect of E. coli on ATZ degradation by decreasing rates in all of the examined water matrices. This can be due to the competitive effect between ATZ and bacterial cells for reactive oxygen species (ROS). By contrast, E. coli in the presence of ATZ was inactivated faster in natural water and wastewater (but not in deionized water), as compared to the case without ATZ. A scheme of possible synergistic inactivation under ROS exposure in water, containing ATZ, natural organic matter and chloride ions as primary constituents, was proposed. Radical scavenging experiments showed a major contribution of SO4•- to ATZ degradation by UV/PS/Fe2+ treatment of deionized water and natural water. The UV doses, required for 90% removal of ATZ from natural water and wastewater, achieve 160 mJ/cm2 (pH 5.5) and concurrently provide 99.99% E. coli inactivation. These results make the UV/PS/Fe2+ system with narrow band UV light sources promising for simultaneous water treatment and disinfection.
Collapse
Affiliation(s)
- Svetlana Popova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| | - Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
41
|
Moreno-Andrés J, Rios Quintero R, Acevedo-Merino A, Nebot E. Disinfection performance using a UV/persulfate system: effects derived from different aqueous matrices. Photochem Photobiol Sci 2019; 18:878-883. [DOI: 10.1039/c8pp00304a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The disinfectant power of UV combined with a persulfate salt has been assessed. The results obtained suggest this system as an attractive alternative to other photochemical processes currently in use for seawater treatment.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies. INMAR-Marine Research Institute. University of Cádiz. Campus Universitario Puerto Real
- 11510 - Puerto Real
- Spain
| | - Rubén Rios Quintero
- Department of Environmental Technologies. INMAR-Marine Research Institute. University of Cádiz. Campus Universitario Puerto Real
- 11510 - Puerto Real
- Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies. INMAR-Marine Research Institute. University of Cádiz. Campus Universitario Puerto Real
- 11510 - Puerto Real
- Spain
| | - Enrique Nebot
- Department of Environmental Technologies. INMAR-Marine Research Institute. University of Cádiz. Campus Universitario Puerto Real
- 11510 - Puerto Real
- Spain
| |
Collapse
|
42
|
Fang G, Chen X, Wu W, Liu C, Dionysiou DD, Fan T, Wang Y, Zhu C, Zhou D. Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14352-14361. [PMID: 30424600 DOI: 10.1021/acs.est.8b04766] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Persulfate-based in situ chemical oxidation (ISCO) for soil remediation has received great attention in recent years. However, the mechanisms of interaction between persulfate (PS) and soil constituents are not fully understood. In this study, PS decomposition, activation, free radical formation and conversion processes in 10 different soils were examined. The results showed that soil organic matter (SOM) was the dominant factor affecting PS decomposition in soil, but Fe/Mn-oxides were mainly responsible for PS decomposition when SOM was removed. Electron paramagnetic resonance (EPR) spectroscopy analysis showed that sulfate radicals (SO4•-) and hydroxyl radicals (•OH) generated from PS decomposition subsequently react with SOM to produce alkyl-like radicals (R•), and this process is dependent on SOM content. R• and SO4•-/•OH radicals predominated in soil with high and low SOM, respectively, and all three radicals coexist in soil with medium SOM. Chemical probe analysis further identified the types of radicals, and R• can reductively degrade hexachloroethane in high SOM soil, while SO4•- and •OH oxidatively degrade phenol in low SOM soil. These findings provide valuable information for PS-ISCO, and new insight into the role of SOM in the remediation of contaminated soil.
Collapse
Affiliation(s)
- Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Xiru Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Wenhui Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221-0071 , United States
| | - Tingting Fan
- Nanjing Institute of Environmental Science , Ministry of Environmental Protection of the People's Republic of China , Nanjing 210042 , P.R. China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Changyin Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| |
Collapse
|
43
|
Zhou Y, Wang X, Zhu C, Dionysiou DD, Zhao G, Fang G, Zhou D. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. WATER RESEARCH 2018; 142:208-216. [PMID: 29885621 DOI: 10.1016/j.watres.2018.06.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Peroxymonosulfate (PMS) or persulfate activation by sulfur-containing minerals has been applied extensively for the degradation of contaminants; however, the role of sulfur conversion in this process has not been fully explored. In this study, pyrite (FeS2)-based PMS activation process was developed for diethyl phthalate (DEP) degradation, and its underlying mechanisms were elucidated. PMS was found to be efficiently activated by FeS2 for DEP degradation and mineralization, achieving 58.9% total organic carbon removal using 0.5 g/L FeS2 and 2.0 mM PMS. Sulfides were the dominant electron donor for PMS activation, and mediated Fe(II) regeneration to activate PMS on the surface of FeS2 particles. Meanwhile, different sulfur conversion intermediates, such as S52-, S80, S2O32-, and SO32-, were formed from the oxidation of sulfides by Fe(III) and PMS, and determined by X-ray photoelectron spectroscopy and in-situ attenuated total reflectance Fourier transform infrared spectroscopy analysis. SO32- was the dominant sulfur species responsible for sulfate radicals (SO4-) generation by activating PMS directly or activating Fe(III) to initiate a radical chain reaction, which was supported by the electron paramagnetic resonance results. This study highlights the important role of sulfur conversion in PMS activation by pyrite and provides new insights into the mechanism of oxidant activation by sulfur-containing minerals.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiaolei Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Changyin Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Guangchao Zhao
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241000, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
44
|
Zhu S, Huang X, Ma F, Wang L, Duan X, Wang S. Catalytic Removal of Aqueous Contaminants on N-Doped Graphitic Biochars: Inherent Roles of Adsorption and Nonradical Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8649-8658. [PMID: 30027739 DOI: 10.1021/acs.est.8b01817] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Environmentally friendly and low-cost catalysts are important for the rapid mineralization of organic contaminants in powerful advanced oxidation processes (AOPs). In this study, we reported N-doped graphitic biochars (N-BCs) as low-cost and efficient catalysts for peroxydisulfate (PDS) activation and the degradation of diverse organic pollutants in water treatment, including Orange G, phenol, sulfamethoxazole, and bisphenol A. The biochars at high annealing temperatures (>700 °C) presented highly graphitic nanosheets, large specific surface areas (SSAs), and rich doped nitrogen. In particular, N-BC derived at 900 °C (N-BC900) exhibited the highest degradation rate, which was 39-fold and 6.5-fold of that on N-BC400 and pristine biochar, respectively, and the N-BC900 surpassed most popular metal or nanocarbon catalysts. Different from the radical-based oxidation in N-BC400/PDS via the persistent free radicals (PFRs), singlet oxygen and nonradical pathways (surface-confined activated persulfate-carbon complexes) were discovered to dominate the oxidation processes in N-BC900/PDS. Moreover, the adsorption of organics was determined to be the key step determining reaction rate, revealing that the pre-adsorption of reactants significantly accelerated the nonradical oxidation pathway. This study not only provides robust and cheap carbonaceous materials for environmental remediation but also enables the first insight into the graphitic biochar-based nonradical catalysis.
Collapse
Affiliation(s)
- Shishu Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , 73 Huanghe Road , Harbin 150090 , PR China
- Department of Chemical Engineering , Curtin University , GPO Box U1987 , Perth , Western Australia 6845 , Australia
| | - Xiaochen Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , 73 Huanghe Road , Harbin 150090 , PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , 73 Huanghe Road , Harbin 150090 , PR China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , 73 Huanghe Road , Harbin 150090 , PR China
| | - Xiaoguang Duan
- Department of Chemical Engineering , Curtin University , GPO Box U1987 , Perth , Western Australia 6845 , Australia
| | - Shaobin Wang
- Department of Chemical Engineering , Curtin University , GPO Box U1987 , Perth , Western Australia 6845 , Australia
| |
Collapse
|
45
|
Chen Y, Liu Y, Zhang L, Xie P, Wang Z, Zhou A, Fang Z, Ma J. Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:18-25. [PMID: 29631043 DOI: 10.1016/j.jhazmat.2018.03.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Synthesized iron oxychloride (FeOCl) was firstly applied to activate peroxymonosulfate (PMS) to degrade imipramine (IMI), a tricyclic antidepressant. Compared to some other Fe-based materials including zero valent iron, Fe2O3, Fe3O4 and ferric ions, FeOCl presented an impressive catalytic activity on PMS at near-neutral condition due to its unique structure containing abundant unsaturated iron atoms and oxo-bridged configuration. With an increase of FeOCl dose, PMS dose or initial pH in ranges of 0.02 - 0.5 g/L, 0.1 - 2.5 mM and 4.0 - 8.0, the degradation efficiency of IMI was effectively raised by 64.0%, 48.5% and 50.6%, respectively. The presence of either bicarbonate or chloride stimulated the removal of IMI. Moreover, 70.4% of IMI was degraded under the background of real water with 2 mM PMS. The possible reactive species were identified as sulfate and hydroxyl radicals. The formed hypochlorite through the reaction of PMS and the released chloride ions may also contribute to the degradation of IMI. Among the oxidants, sulfate radical was proven to be the dominate one in the system. Additionally, the FeOCl/PMS system can overall effectively degrade six other organic compounds including amitriptyline, desipramine, propranolol, nitrobenzene, methyl-paraben and ethyl-paraben, further suggesting the possible application of this system in treatment of vast aquatic micro-organic pollutants.
Collapse
Affiliation(s)
- Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yanpeng Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Li Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Aijiao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| | - Zheng Fang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
46
|
Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.04.038] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kim C, Ahn JY, Kim TY, Shin WS, Hwang I. Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3625-3633. [PMID: 29432692 DOI: 10.1021/acs.est.7b05847] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The mechanisms involved in the activation of persulfate by nanosized zero-valent iron (NZVI) were elucidated and the NZVI transformation products identified. Two distinct reaction stages, in terms of the kinetics and radical formation mechanism, were found when phenol was oxidized by the persulfate/NZVI system. In the initial stage, lasting 10 min, Fe0(s) was consumed rapidly and sulfate radicals were produced through activation by aqueous Fe2+. The second stage was governed by Fe catalyzed activation in the presence of aqueous Fe3+ and iron (oxyhydr)oxides in the NZVI shells. The second stage was 3 orders of magnitude slower than the initial stage. An electron balance showed that the sulfate radical yield per mole of persulfate was more than two times higher in the persulfate/NZVI system than in the persulfate/Fe2+ system. Radicals were believed to be produced more efficiently in the persulfate/NZVI system because aqueous Fe2+ was supplied slowly, preventing sulfate radicals being scavenged by excess aqueous Fe2+. In the second stage, the multilayered shell conducted electrons, and magnetite in the shell provided electrons for the activation of persulfate. Iron speciation analysis (including X-ray absorption spectroscopy) results indicated that a shrinking core/growing shell model explained NZVI transformation during the persulfate/NZVI process.
Collapse
Affiliation(s)
- Cheolyong Kim
- Department of Civil and Environmental Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Jun-Young Ahn
- Department of Civil and Environmental Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Tae Yoo Kim
- Department of Civil and Environmental Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Inseong Hwang
- Department of Civil and Environmental Engineering , Pusan National University , Busan 46241 , Republic of Korea
| |
Collapse
|
48
|
Lin KYA, Lin JT, Yang H. Ferrocene-modified chitosan as an efficient and green heterogeneous catalyst for sulfate-radical-based advanced oxidation process. Carbohydr Polym 2017; 173:412-421. [DOI: 10.1016/j.carbpol.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022]
|
49
|
Zrinyi N, Pham ALT. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. WATER RESEARCH 2017; 120:43-51. [PMID: 28478294 DOI: 10.1016/j.watres.2017.04.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Heat activates persulfate (S2O82-) into sulfate radical (SO4-), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants.
Collapse
Affiliation(s)
- Nick Zrinyi
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
50
|
Garkusheva N, Matafonova G, Tsenter I, Beck S, Batoev V, Linden K. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:849-855. [PMID: 28448750 DOI: 10.1080/10934529.2017.1312188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe2+) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (105 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (QUV(A+B), kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a QUV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.
Collapse
Affiliation(s)
- Natalya Garkusheva
- a Laboratory of Engineering Ecology , Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences , Ulan-Ude , Russia
| | - Galina Matafonova
- a Laboratory of Engineering Ecology , Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences , Ulan-Ude , Russia
| | - Irina Tsenter
- a Laboratory of Engineering Ecology , Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences , Ulan-Ude , Russia
| | - Sara Beck
- b Department of Civil, Environmental and Architectural Engineering , University of Colorado at Boulder , Boulder , Colorado , USA
| | - Valeriy Batoev
- a Laboratory of Engineering Ecology , Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences , Ulan-Ude , Russia
| | - Karl Linden
- b Department of Civil, Environmental and Architectural Engineering , University of Colorado at Boulder , Boulder , Colorado , USA
| |
Collapse
|