1
|
Kothari R, Venuganti VVK. Effect of oxygen generating nanozymes on indocyanine green and IR 820 mediated phototherapy against oral cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113002. [PMID: 39141980 DOI: 10.1016/j.jphotobiol.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
The hypoxic environment within a solid tumor is a limitation to the effectiveness of photodynamic therapy. Here, we demonstrate the use of oxygen generating nanozymes (CeO2, Fe3O4, and MnO2) to improve the photodynamic effect. The optimized combination of process parameters for irradiation was obtained using the Box Behnken experimental design. Indocyanine green, IR 820, and their different combinations with oxygen generators were studied for their effect on oral carcinoma. Dynamic light scattering technique showed the average particle size of CeO2, MnO2, and Fe3O4 to be 211 ± 16, and 157 ± 28, 143 ± 19 nm with PDI of 0.23, 0.28 and 0.20 and a zeta potential of -2.6 ± 0.45, -2.4 ± 0.60 and -6.1 ± 0.23 mV, respectively. The formation of metal oxides was confirmed using UV-visible, FTIR, and X-ray photon spectroscopies. The amount of dissolved oxygen produced by CeO2, MnO2, and Fe3O4 in the presence of H2O2 within 2 min was 1.7 ± 0.15, 1.7 ± 0.16, and 1.4 ± 0.12 mg/l, respectively. Growth inhibition studies in the FaDu oral carcinoma spheroid model showed a significant (P < 0.05) increase in growth reduction from 81 ± 2.9 and 88 ± 2.1% to 97 ± 1.2 and 99 ± 1.0% for ICG and IR 820, respectively, after irradiation (808 nm laser, 1 W/cm2, 5 min) in the presence of CeO2 (25 μg/ml). In conclusion, oxygen-generating nanozymes can improve the photodynamic effect of ICG and IR 820.
Collapse
Affiliation(s)
- Rupal Kothari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
2
|
Bonagiri LKS, Wang Z, Zhou S, Zhang Y. Precise Surface Profiling at the Nanoscale Enabled by Deep Learning. NANO LETTERS 2024; 24:2589-2595. [PMID: 38252875 DOI: 10.1021/acs.nanolett.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Surface topography, or height profile, is a critical property for various micro- and nanostructured materials and devices, as well as biological systems. At the nanoscale, atomic force microscopy (AFM) is the tool of choice for surface profiling due to its capability to noninvasively map the topography of almost all types of samples. However, this method suffers from one drawback: the convolution of the nanoprobe's shape in the height profile of the samples, which is especially severe for sharp protrusion features. Here, we report a deep learning (DL) approach to overcome this limit. Adopting an image-to-image translation methodology, we use data sets of tip-convoluted and deconvoluted image pairs to train an encoder-decoder based deep convolutional neural network. The trained network successfully removes the tip convolution from AFM topographic images of various nanocorrugated surfaces and recovers the true, precise 3D height profiles of these samples.
Collapse
Affiliation(s)
- Lalith Krishna Samanth Bonagiri
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zirui Wang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Shan Zhou
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Yingjie Zhang
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Hanumanthappa R, Venugopal DM, P C N, Shaikh A, B.M S, Heggannavar GB, Patil AA, Nanjaiah H, Suresh D, Kariduraganavar MY, Raghu SV, Devaraju KS. Polyvinylpyrrolidone-Capped Copper Oxide Nanoparticles-Anchored Pramipexole Attenuates the Rotenone-Induced Phenotypes in a Drosophila Parkinson's Disease Model. ACS OMEGA 2023; 8:47482-47495. [PMID: 38144104 PMCID: PMC10734007 DOI: 10.1021/acsomega.3c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.
Collapse
Affiliation(s)
- Ramesha Hanumanthappa
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Deepa Mugudthi Venugopal
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
| | - Nethravathi P C
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | - Ahesanulla Shaikh
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Siddaiah B.M
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | | | - Akshay A. Patil
- Department
of Botany, Karnataka Science College, Dharwad, Karnataka 580001, India
| | - Hemalatha Nanjaiah
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, 685 W. Baltimore St. HSFI-380, Baltimore, Maryland 21201, United States
| | - D. Suresh
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | | | - Shamprasad Varija Raghu
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
- Division
of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | | |
Collapse
|
4
|
Yang S, Zhang W, Pan G, Chen J, Deng J, Chen K, Xie X, Han D, Dai M, Niu L. Photocatalytic Co-Reduction of N 2 and CO 2 with CeO 2 Catalyst for Urea Synthesis. Angew Chem Int Ed Engl 2023; 62:e202312076. [PMID: 37667537 DOI: 10.1002/anie.202312076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
The effective conversion of carbon dioxide (CO2 ) and nitrogen (N2 ) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO2-x nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H2 (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N2 and CO2 by introducing oxygen vacancies. Particularly, CeO2 -500 (CeO2 nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C-N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 μg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO2 -500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C-N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.
Collapse
Affiliation(s)
- Shuyi Yang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wensheng Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Guoliang Pan
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jiaying Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jiayi Deng
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ke Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xianglun Xie
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, P. R. China
| | - Mengjiao Dai
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
5
|
Kitchin KT, Richards JA, Robinette BL, Wallace KA, Coates NH, Castellon BT, Grulke EA. Biochemical effects of copper nanomaterials in human hepatocellular carcinoma (HepG2) cells. Cell Biol Toxicol 2023; 39:2311-2329. [PMID: 35877023 DOI: 10.1007/s10565-022-09720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
In dose-response and structure-activity studies, human hepatic HepG2 cells were exposed for 3 days to nano Cu, nano CuO or CuCl2 (ions) at doses between 0.1 and 30 ug/ml (approximately the no observable adverse effect level to a high degree of cytotoxicity). Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. With nano Cu and nano CuO, few indications of cytotoxicity were observed between 0.1 and 3 ug/ml. In respect to dose, lactate dehydrogenase and aspartate transaminase were the most sensitive cytotoxicity parameters. The next most responsive parameters were alanine aminotransferase, glutathione reductase, glucose 6-phosphate dehydrogenase, and protein concentration. The medium responsive parameters were superoxide dismutase, gamma glutamyltranspeptidase, total bilirubin, and microalbumin. The parameters glutathione peroxidase, glutathione reductase, and protein were all altered by nano Cu and nano CuO but not by CuCl2 exposures. Our chief observations were (1) significant decreases in glucose 6-phosphate dehydrogenase and glutathione reductase was observed at doses below the doses that show high cytotoxicity, (2) even high cytotoxicity did not induce large changes in some study parameters (e.g., alkaline phosphatase, catalase, microalbumin, total bilirubin, thioredoxin reductase, and triglycerides), (3) even though many significant biochemical effects happen only at doses showing varying degrees of cytotoxicity, it was not clear that cytotoxicity alone caused all of the observed significant biochemical effects, and (4) the decreased glucose 6-phosphate dehydrogenase and glutathione reductase support the view that oxidative stress is a main toxicity pathway of CuCl2 and Cu-containing nanomaterials.
Collapse
Affiliation(s)
- Kirk T Kitchin
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA.
| | - Judy A Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Brian L Robinette
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA
| | - Kathleen A Wallace
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA
| | - Najwa H Coates
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Benjamin T Castellon
- Institute of Biomedical Studies and Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Eric A Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY, 20506-0046, USA
| |
Collapse
|
6
|
Ellepola K, Bhatt L, Chen L, Han C, Jahanbazi F, Klie RF, Lagunas Vargas F, Mao Y, Novakovsky K, Sapkota B, Pesavento RP. Nanoceria Aggregate Formulation Promotes Buffer Stability, Cell Clustering, and Reduction of Adherent Biofilm in Streptococcus mutans. ACS Biomater Sci Eng 2023; 9:4686-4697. [PMID: 37450411 DOI: 10.1021/acsbiomaterials.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Streptococcus mutans is one of the key etiological factors in tooth-borne biofilm development that leads to dental caries in the presence of fermentable sugars. We previously reported on the ability of acid-stabilized nanoceria (CeO2-NP) produced by the hydrolysis of ceric salts to limit biofilm adherence of S. mutans via non-bactericidal mechanism(s). Herein, we report a chondroitin sulfate A (CSA) formulation (CeO2-NP-CSA) comprising nanoceria aggregates that promotes resistance to bulk precipitation under a range of conditions with retention of the biofilm-inhibiting activity, allowing for a more thorough mechanistic study of its bioactivity. The principal mechanism of reduced in vitro biofilm adherence of S. mutans by CeO2-NP-CSA is the production of nonadherent cell clusters. Additionally, dose-dependent in vitro human cell toxicity studies demonstrated no additional toxicity beyond that of equimolar doses of sodium fluoride, currently utilized in many oral health products. This study represents a unique approach and use of a nanoceria aggregate formulation with implications for promoting oral health and dental caries prevention as an adjunctive treatment.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Lopa Bhatt
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Chen Han
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Forough Jahanbazi
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Robert F Klie
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Francisco Lagunas Vargas
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Kirill Novakovsky
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Bibash Sapkota
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Russell P Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Badia A, Duarri A, Salas A, Rosell J, Ramis J, Gusta MF, Casals E, Zapata MA, Puntes V, García-Arumí J. Repeated Topical Administration of 3 nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS NANO 2023; 17:910-926. [PMID: 36596252 DOI: 10.1021/acsnano.2c05447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increased oxidative stress in the retina and retinal pigment epithelium is implicated in age-related macular degeneration (AMD). Antioxidant cerium oxide nanoparticles (CeO2NPs) have been used to treat degenerative retinal pathologies in animal models, although their delivery route is not ideal for chronic patient treatment. In this work, we prepared a formulation for ocular topical delivery that contains small (3 nm), nonaggregated biocompatible CeO2NPs. In vitro results indicate the biocompatible and protective character of the CeO2NPs, reducing oxidative stress in ARPE19 cells and inhibiting neovascularization related to pathological angiogenesis in both HUVEC and in in vitro models of neovascular growth. In the in vivo experiments, we observed the capacity of CeO2NPs to reach the retina after topical delivery and a subsequent reversion of the altered retinal transcriptome of the retinal degenerative mouse model DKOrd8 toward that of healthy control mice, together with signs of decreased inflammation and arrest of degeneration. Furthermore, CeO2NP eye drops' treatment reduced laser-induced choroidal neovascular lesions in mice by lowering VEGF and increasing PEDF levels. These results indicate that CeO2NP eye drops are a beneficial antioxidant and neuroprotective treatment for both dry and wet forms of AMD disease.
Collapse
Affiliation(s)
- Anna Badia
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Salas
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Jordi Rosell
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Joana Ramis
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Muriel Freixanet Gusta
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Miguel A Zapata
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| | - Victor Puntes
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, 08010,Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Josep García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| |
Collapse
|
8
|
Zhang J, Meng HS, Shang YM, Lead JR, Guo ZZ, Hong JP. Response of Soil Bacterial Diversity, Predicted Functions and Co-Occurrence Patterns to Nanoceria and Ionic Cerium Exposure. Microorganisms 2022; 10:1982. [PMID: 36296258 PMCID: PMC9607988 DOI: 10.3390/microorganisms10101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
Release of nanoceria (nCeO2) into the environment has caused much concern about its potential toxicity, which still remains poorly understood for soil microorganisms. In this study, nanoceria and cerium (III) nitrate at different doses (10, 100 and 500 mg/kg) were applied to bok choy (Brassica rapa subsp. chinensis), grown in potting soil, to investigate the responses of soil bacterial communities to nanoceria (NC) and ionic cerium (IC) applications. The results showed that bacterial richness was slightly increased in all cerium treatments relative to the negative control without cerium amendment (CK), but a significant increase was only found in IC500. The patterns of bacterial community composition, predicted functions and phenotypes of all NC treatments were significantly differentiated from IC and CK treatments, which was correlated with the contents of cerium, available potassium and phosphorus in soil. The co-occurrence network of bacterial taxa was more complex after exposure to ionic cerium than to nanoceria. The keystone taxa of the two networks were entirely different. Predicted functions analysis found that anaerobic and Gram-negative bacteria were enriched under nanoceria exposure. Our study implies that Proteobacteria and nitrifying bacteria were significantly enriched after exposure to nanoceria and could be potential biomarkers of soil environmental perturbation from nanoceria exposure.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hui-Sheng Meng
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yan-Meng Shang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jamie R. Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Zhang-Zhen Guo
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jian-Ping Hong
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
9
|
Nano-ecotoxicology in a changing ocean. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractThe ocean faces an era of change, driven in large by the release of anthropogenic CO2, and the unprecedented entry of pollutants into the water column. Nanomaterials, those particles < 100 nm, represent an emerging contaminant of environmental concern. Research on the ecotoxicology and fate of nanomaterials in the natural environment has increased substantially in recent years. However, commonly such research does not consider the wider environmental changes that are occurring in the ocean, i.e., ocean warming and acidification, and occurrence of co-contaminants. In this review, the current literature available on the combined impacts of nanomaterial exposure and (i) ocean warming, (ii) ocean acidification, (iii) co-contaminant stress, upon marine biota is explored. Here, it is identified that largely co-stressors influence nanomaterial ecotoxicity by altering their fate and behaviour in the water column, thus altering their bioavailability to marine organisms. By acting in this way, such stressors, are able to mitigate or elevate toxic effects of nanomaterials in a material-specific manner. However, current evidence is limited to a relatively small set of test materials and model organisms. Indeed, data is biased towards effects upon marine bivalve species. In future, expanding studies to involve other ecologically significant taxonomic groups, primarily marine phytoplankton will be highly beneficial. Although limited in number, the available evidence highlights the importance of considering co-occurring environmental changes in ecotoxicological research, as it is likely in the natural environment, the material of interest will not be the sole stressor encountered by biota. As such, research examining ecotoxicology alongside co-occurring environmental stressors is essential to effectively evaluating risk and develop effective long-term management strategies.
Collapse
|
10
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
11
|
Su Z, Si W, Liu H, Xiong S, Chu X, Yang W, Peng Y, Chen J, Cao X, Li J. Boosting the Catalytic Performance of CeO 2 in Toluene Combustion via the Ce-Ce Homogeneous Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12630-12639. [PMID: 34448390 DOI: 10.1021/acs.est.1c03999] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catalytic combustion is an advanced technology to eliminate industrial volatile organic compounds such as toluene. In order to replace the expensive noble metal catalysts and avoid the aggregation phenomenon occurring in traditional heterogeneous interfaces, designing homogeneous interfaces can become an emerging methodology to enhance the catalytic combustion performance of metal oxide catalysts. A mesocrystalline CeO2 catalyst with abundant Ce-Ce homogeneous interfaces is synthesized via a self-flaming method which exhibits boosted catalytic performance for toluene combustion compared with traditional CeO2, leading to a ∼40 °C lower T90. The abundant Ce-Ce homogeneous interfaces formed by both highly ordered stacking and small grain size endow the CeO2 mesocrystal with superior redox property and oxygen storage capacity via forming various oxygen vacancies. Surface and bulk oxygen vacancies generate and activate crucial oxygen species, while interfacial oxygen vacancies further promote the reaction behavior of oxygen species (i.e., activation, regeneration, and migration), causing the splitting of redox property toward lower temperature. These properties facilitate aromatic ring decomposition, the important rate-determining step, thus contributing to toluene catalytic degradation to CO2. This work may shed insights into the catalytic effects of homogeneous interfaces in pollutant removal and provide a strategy of interfacial defect engineering for catalyst development.
Collapse
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangchao Xiong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuefeng Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenhao Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
You G, Xu Y, Wang P, Wang C, Chen J, Hou J, Miao L, Gao Y, Li Y. Deciphering the effects of CeO 2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125300. [PMID: 33578093 DOI: 10.1016/j.jhazmat.2021.125300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The physicochemical transformations as well as the redox reaction-induced toxicity changes of ceria nanoparticles (CeO2 NPs) in reducing conditions is extremely lacking. Herein, the behaviors, chemical modifications and toxicity of CeO2 NPs in the presence of reduction-active ions (namely Fe2+ and S2-) were investigated, with a particular emphasis on the cytotoxicity mechanism associated with their physicochemical transformations. The presence of Fe2+ and S2- differently altered the surface properties and toxicity of CeO2 NPs. Redox reactions with Fe2+ led to form small aggregates, boosted the reduction of CeIVO2 and enhanced dissolved Ce3+ concentration. Moreover, CeO2 NPs possessed a high affinity for Escherichia coli (E. coli) and induced the generation of •OH abiotically after reaction with Fe2+, provoking serious disruption of cell membranes and causing high toxicity to E. coli. In contrast, the amending of S2- protected E. coli from direct contact with CeO2 NPs by creating new Ce2S3 precipitated on the surface, accelerating the aggregation of NPs and reducing the concentration of dissolved Ce3+. This study suggested that the chemical interactions between the reactive surfaces of CeO2 and reduction-active ions highly determined the stability and cytotoxicity of CeO2 NPs, which provides fundamental insights into the environmental risks of CeO2 NPs.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yang Gao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| |
Collapse
|
13
|
Chen Y, Li S, Lv S, Huang Y. A novel synthetic route for MOF-derived CuO-CeO2 catalyst with remarkable methanol steam reforming performance. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:155-206. [PMID: 32462332 DOI: 10.1007/398_2020_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent years have raised wide concerns about their toxicity. Numerous studies have been conducted to reveal the toxicity of CNPs, but the results are sometimes contradictory. In this review, the most important factors in mediating CNPs toxicity are discussed, including (1) the roles of physicochemical properties (size, morphology, agglomeration condition, surface charge, coating and surface valence state) on CNPs toxicity; (2) the phase transfer and transformation process of CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2-, and ferrous ions. The physicochemical properties play key roles in the interactions of CNPs with organisms and consequently their environmental transformations, reactivity and toxicity assessment. Also, the speciation transformations of CNPs caused by reactions with (in)organic ligands in both environmental and biological systems would further alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms are proposed based on the physical damage of direct adsorption of CNPs onto the cell membrane and chemical inhibition (including oxidative stress and interaction of CNPs with biomacromolecules). Finally, the current knowledge gaps and further research needs in identifying the toxicological risk factors of CNPs under realistic environmental conditions are highlighted, which might improve predictions about their potential environmental influences. This review aims to provide new insights into cost-effectiveness of control options and management practices to prevent environmental risks from CNPs exposure.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
15
|
Siddiqui S, Siddiqui ZN. Synthesis and catalytic evaluation of PVP-CeO 2/rGO as a highly efficient and recyclable heterogeneous catalyst for multicomponent reactions in water. NANOSCALE ADVANCES 2020; 2:4639-4651. [PMID: 36132914 PMCID: PMC9419207 DOI: 10.1039/d0na00491j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/24/2023]
Abstract
A highly efficient and eco-friendly route for the reduction of graphene oxide (GO) to reduced graphene oxide (rGO) was developed by using polyvinylpyrrolidone coated CeO2 NPs (PVP-CeO2) as a reducing and stabilizing agent. The resulting carbonaceous material, PVP-CeO2/rGO, was well characterized with different spectroscopic techniques such as Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), elemental mapping, Transmission Electron Microscopy (TEM), Raman spectroscopy, powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray Photoelectron Spectroscopy (XPS), and Thermal Gravimetric (TG) analyses. The material exhibited high catalytic potential towards multicomponent reactions for the synthesis of biologically relevant benzodiazepine derivatives in aqueous media. The efficiency of the material for the desired reaction was shown in the form of an excellent product yield (96-98%) and a very short reaction time period (7-10 min). The use of water as solvent and recyclability of the catalyst made the present protocol acceptable from a green perspective.
Collapse
Affiliation(s)
- Shaheen Siddiqui
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Zeba N Siddiqui
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
16
|
Su Z, Yang W, Wang C, Xiong S, Cao X, Peng Y, Si W, Weng Y, Xue M, Li J. Roles of Oxygen Vacancies in the Bulk and Surface of CeO 2 for Toluene Catalytic Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12684-12692. [PMID: 32841009 DOI: 10.1021/acs.est.0c03981] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Catalytic combustion technology is one of the effective methods to remove VOCs such as toluene from industrial emissions. The decomposition of an aromatic ring via catalyst oxygen vacancies is usually the rate-determining step of toluene oxidation into CO2. Series of CeO2 probe models were synthesized with different ratios of surface-to-bulk oxygen vacancies. Besides the devotion of the surface vacancies, a part of the bulk vacancies promotes the redox property of CeO2 in toluene catalytic combustion: surface vacancies tend to adsorb and activate gaseous O2 to form adsorbed oxygen species, whereas bulk vacancies improve the mobility and activity of lattice oxygen species via their transmission effect. Adsorbed oxygen mainly participates in the chemical adsorption and partial oxidation of toluene (mostly to phenolate). With the elevated temperatures, lattice oxygen of the catalysts facilitates the decomposition of aromatic rings and further improves the oxidation of toluene to CO2.
Collapse
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenhao Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chizhong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangchao Xiong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yibin Weng
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Ming Xue
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Römer I, Briffa SM, Arroyo Rojas Dasilva Y, Hapiuk D, Trouillet V, Palmer RE, Valsami-Jones E. Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration. PLoS One 2019; 14:e0217483. [PMID: 31173616 PMCID: PMC6555525 DOI: 10.1371/journal.pone.0217483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials’ own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce4+ and two were a mix of Ce3+/Ce4+). They were exposed to a reaction solution containing KH2PO4, citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO4 NPs were formed. Nanoparticles that were mostly Ce4+ did not dissolve at 1mM reagent concentration, and did not produce CePO4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO4 was found under all conditions used. This is the first paper where the transformation of CeO2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods.
Collapse
Affiliation(s)
- Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sophie Marie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Yadira Arroyo Rojas Dasilva
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Electron Microscopy Center, Dübendorf, Switzerland
| | - Dimitri Hapiuk
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Richard E. Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Davoodbasha MA, Saravanakumar K, Abdulkader AM, Lee SY, Kim JW. Synthesis of Biocompatible Cellulose-Coated Nanoceria with pH-Dependent Antioxidant Property. ACS APPLIED BIO MATERIALS 2019; 2:1792-1801. [DOI: 10.1021/acsabm.8b00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mubarak Ali Davoodbasha
- School of Life Sciences, BSA Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Centre for Surface Technology and Applications, Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Medical Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Akbarsha Mohammad Abdulkader
- Mahatma Gandhi-Doerenkamp Center for Alternatives to Use of Animals in Life Science Education (MGDC), Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Research Division, National College (Autonomous),, Bharathidasan University, Tiruchirappalli 620021, Tamil Nadu, India
| | - Sang-Yul Lee
- Centre for Surface Technology and Applications, Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
| | - Jung-Wan Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Centre for Surface Technology and Applications, Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
| |
Collapse
|
19
|
Sims CM, Maier RA, Johnston-Peck AC, Gorham JM, Hackley VA, Nelson BC. Approaches for the quantitative analysis of oxidation state in cerium oxide nanomaterials. NANOTECHNOLOGY 2019; 30:085703. [PMID: 30240366 PMCID: PMC6351072 DOI: 10.1088/1361-6528/aae364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cerium oxide nanomaterials (nanoceria, CNMs) are receiving increased attention from the research community due to their unique chemical properties, most prominent of which is their ability to alternate between the Ce3+ and Ce4+ oxidation states. While many analytical techniques and methods have been employed to characterize the amounts of Ce3+ and Ce4+ present (Ce3+/Ce4+ ratio) within nanoceria materials, to-date no studies have used multiple complementary analytical tools (orthogonal analysis) with technique-independent oxidation state controls for quantitative determinations of the Ce3+/Ce4+ ratio. Here, we describe the development of analytical methods measuring the oxidation states of nanoceria analytes using technique-independent Ce3+ (CeAlO3:Ge) and Ce4+ (CeO2) control materials, with a particular focus on x-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) approaches. The developed methods were demonstrated in characterizing a suite of commercial nanoceria products, where the two techniques (XPS and EELS) were found to be in good agreement with respect to Ce3+/Ce4+ ratio. Potential sources of artifacts and discrepancies in the measurement results were also identified and discussed, alongside suggestions for interpreting oxidation state results using the different analytical techniques. The results should be applicable towards producing more consistent and reproducible oxidation state analyses of nanoceria materials.
Collapse
Affiliation(s)
- Christopher M. Sims
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Russell A. Maier
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Aaron C. Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Justin M. Gorham
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Vincent A. Hackley
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
20
|
Sikder M, Wang J, Chandler GT, Berti D, Baalousha M. Synthesis, characterization, and environmental behaviors of monodispersed platinum nanoparticles. J Colloid Interface Sci 2019; 540:330-341. [PMID: 30660085 DOI: 10.1016/j.jcis.2019.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/26/2022]
Abstract
The release of platinum group elements, including platinum nanoparticles (PtNPs), has been increasing over recent decades. However, few studies have investigated the fate, behavior and effects of PtNPs in environmental media. Here, we report a protocol for the synthesis of five different sizes (8.5 ± 1.2, 10.3 ± 1.3, 20.0 ± 4.8, 40.5 ± 4.1, and 70.8 ± 4.2 nm) of monodispersed citrate- and polyvinylpyrrolidone (PVP)-coated PtNPs, together with a characterization of their behaviors using a multi method approach in relevant biological and toxicological media. In general, PtNPs sizes measured using dynamic light scattering, field flow fractionation, single-particle inductively-coupled plasma-mass spectroscopy, transmission electron microscopy and atomic force microscopy, were all in good agreement when PtNP sizes were larger than the size detection limits of each analytical technique. Slight differences in sizes measured were attributable to differences in analytical techniques, measuring principles, NP shape and NP permeability. The thickness of the PVP layer increased (from 4.4 to 11.35 nm) with increases in NP size. The critical coagulation concentration of cit-PtNPs was independent of NP size, possibly due to differences in PtNPs surface charges as a function of NP size. PtNPs did not undergo significant dissolution in any media tested. PtNPs did not aggregate significantly in Dulbecco's modified Eagle's medium; but they formed aggregates in moderately hard water and in 30 ppt synthetic seawater, and aggregate size increased with increases in PtNPs concentration. Overall, this study describes a general model NP system (i.e., PtNPs) of different controlled NP sizes and coatings that is predictable, stable and useful to investigate the fate, behavior, uptake, and eco-toxicity of NPs in the environment.
Collapse
Affiliation(s)
- Mithun Sikder
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jingjing Wang
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - G Thomas Chandler
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Debora Berti
- National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), Virginia Tech, 24061, USA
| | - Mohammed Baalousha
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
21
|
Ramalingam V, Sundaramahalingam S, Rajaram R. Size-dependent antimycobacterial activity of titanium oxide nanoparticles against Mycobacterium tuberculosis. J Mater Chem B 2019. [DOI: 10.1039/c9tb00784a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The titanium oxide nanoparticles showed excellent antibiofilm activity against Mycobacterium tuberculosis by inhibiting the colony formation and damage the cell wall leads to immature biofilm formation as well as inhibition of metabolic activity.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- DNA Barcoding and Marine Genomics Laboratory
- Department of Marine Science
- Bharathidasan University
- Tiruchirappalli
- India
| | | | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Laboratory
- Department of Marine Science
- Bharathidasan University
- Tiruchirappalli
- India
| |
Collapse
|
22
|
Zeng Y, Zeng W, Zhou Q, Jia X, Li J, Yang Z, Hao Y, Liu J. Hyaluronic acid mediated biomineralization of multifunctional ceria nanocomposites as ROS scavengers and tumor photodynamic therapy agents. J Mater Chem B 2019. [DOI: 10.1039/c8tb03374a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel HA@ceria nanoquantum dots (HA@CQDs) exhibit efficient protective effects against damage induced by ROS. More importantly, aided by H2O2, the HA@CQDs-Ce6/H2O2 significantly enhanced PDT efficacy for the tumor therapy.
Collapse
Affiliation(s)
- Yiping Zeng
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| | - Weinan Zeng
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| | - Qing Zhou
- State Key Laboratory of Trauma Burns and Combined Injury
- Institute of Combined Injury
- College of Preventive Medicine
- Third Military Medical University
- Chongqing
| | - Xiaolin Jia
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| | - Juan Li
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing
- China
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center
- College of Pharmacy
- Chongqing Medical University
- Chongqing
- China
| | - Yuhui Hao
- State Key Laboratory of Trauma Burns and Combined Injury
- Institute of Combined Injury
- College of Preventive Medicine
- Third Military Medical University
- Chongqing
| | - Junli Liu
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| |
Collapse
|
23
|
Biochemical effects of some CeO 2, SiO 2, and TiO 2 nanomaterials in HepG2 cells. Cell Biol Toxicol 2018; 35:129-145. [PMID: 30368635 DOI: 10.1007/s10565-018-9445-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
The potential mammalian hepatotoxicity of nanomaterials was explored in dose-response and structure-activity studies in human hepatic HepG2 cells exposed to between 10 and 1000 μg/ml of five different CeO2, three SiO2, and one TiO2-based particles for 3 days. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. Few indications of cytotoxicity were observed between 10 and 30 μg/ml. In the 100 to 300 μg/ml exposure range, a moderate degree of cytotoxicity was often observed. At 1000 μg/ml exposures, all but TiO2 showed a high degree of cytotoxicity. Cytotoxicity per se did not seem to fully explain the observed patterns of biochemical parameters. Four nanomaterials (all three SiO2) decreased glucose 6-phosphate dehydrogenase activity with some significant decreases observed at 30 μg/ml. In the range of 100 to 1000 μg/ml, the activities of glutathione reductase (by all three SiO2) and glutathione peroxidase were decreased by some nanomaterials. Decreased glutathione concentration was also found after exposure to four nanomaterials (all three nano SiO2 particles). In this study, the more responsive and informative assays were glucose 6-phosphate dehydrogenase, glutathione reductase, superoxide dismutase, lactate dehydrogenase, and aspartate transaminase. In this study, there were six factors that contribute to oxidative stress observed in nanomaterials exposed to hepatocytes (decreased glutathione content, reduced glucose 6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and increased catalase activities). With respect to structure-activity, nanomaterials of SiO2 were more effective than CeO2 in reducing glutathione content, glucose 6-phosphate dehydrogenase, glutathione reductase, and superoxide dismutase activities.
Collapse
|
24
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
López-Moreno ML, Cedeño-Mattei Y, Bailón-Ruiz SJ, Vazquez-Nuñez E, Hernandez-Viezcas JA, Perales-Pérez OJ, la Rosa GD, Peralta-Videa JR, Gardea-Torresdey JL. Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:196-217. [PMID: 29331809 DOI: 10.1016/j.jhazmat.2017.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The application of nanomaterials (NMs) depends on several characteristics, including polydispersity, shape, surface charge, and composition, among others. However, the specific surface properties of bare NMs induce aggregation, reducing their utilization. Thus, different surface coverages have been developed to avoid or minimize NMs aggregation, making them more stable for the envisioned applications. Carbon-based NMs are usually coated with metals, while metal-based NMs are coated with natural organic compounds including chitosan, dextran, alginate, or citric acid. On the other hand, the coating process is expected to modify the surface properties of the NMs; several coating agents add negative or positive charges to the particles, changing their interaction with the environment. In this review, we analyze the most recent literature about coating processes and the behavior of coated NMs in soil, water, and plants. In particular, the behavior of the most commercialized metal-based NMs, such as TiO2, ZnO, CeO2, CuO, Ag, and Au, and carbon-based NMs are discussed in this review. The available articles about the effects of coated NMs in plants are discussed. Up to now, there is no uniformity in the information to ensure that the surface coverage increases or decreases the effects of NMs in plants. While some parameters are increased, others are decreased. Since the data is contradictory in some cases, the available literature does not allow researchers to determine what concentrations benefit the plants. This review highlights current results and future perspectives on the study of the effects of coated NMs in the environment.
Collapse
Affiliation(s)
- Martha L López-Moreno
- Chemistry Department, University of Puerto Rico at Mayaguez, 259 Boulevard Alfonso Valdez, Mayaguez 00681 Puerto Rico; Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States.
| | - Yarilyn Cedeño-Mattei
- Department of Chemistry and Physics, University of Puerto Rico, Ponce, Puerto Rico; Department of Biology, Chemistry, and Environmental Sciences, Interamerican University of Puerto Rico, San Germán, Puerto Rico
| | - Sonia Janet Bailón-Ruiz
- Chemistry and Physics Department, University of Puerto Rico in Ponce, 2152 Santiago de los Caballeros Avenue, Ponce 00734 Puerto Rico
| | - Edgar Vazquez-Nuñez
- Sciences and Engineering Division, University of Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, C.P. 37150 Guanajuato, Gto., Mexico
| | - José A Hernandez-Viezcas
- Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Oscar Juan Perales-Pérez
- Department of Engineering Sciences and Materials University of Puerto Rico Mayaguez, 00681 Puerto Rico
| | - Guadalupe De la Rosa
- UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; Sciences and Engineering Division, University of Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, C.P. 37150 Guanajuato, Gto., Mexico
| | - José R Peralta-Videa
- Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, United States
| | - Jorge L Gardea-Torresdey
- Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, United States
| |
Collapse
|
26
|
Chen BH, Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 2018; 38:1003-1024. [PMID: 29402135 DOI: 10.1080/07388551.2018.1426555] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2-x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.
Collapse
Affiliation(s)
- Bing-Huei Chen
- a Department of Food Science , Fu Jen Catholic University , New Taipei City , Taiwan.,b Graduate Institute of Medicine , Fu Jen Catholic University , New Taipei City , Taiwan
| | | |
Collapse
|
27
|
Jian N, Bauer K, Palmer RE. Towards production of novel catalyst powders from supported size-selected clusters by multilayer deposition and dicing. NANOTECHNOLOGY 2017; 28:325601. [PMID: 28718457 DOI: 10.1088/1361-6528/aa795b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multilayer deposition method has been developed with the potential to capture and process atomic clusters generated by a high flux cluster beam source. In this deposition mode a series of sandwich structures each consisting of three layers-a carbon support layer, cluster layer and polymer release layer-is sequentially deposited to form a stack of isolated cluster layers, as confirmed by through-focal aberration-corrected HAADF STEM analysis. The stack can then be diced into small pieces by a mechanical saw. The diced pieces are immersed in solvent to dissolve the polymer release layer and form small platelets of supported clusters.
Collapse
Affiliation(s)
- Nan Jian
- Nanoscale Physics, Chemistry and Engineering Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
28
|
Merrifield RC, Arkill KP, Palmer RE, Lead JR. A High Resolution Study of Dynamic Changes of Ce 2O 3 and CeO 2 Nanoparticles in Complex Environmental Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8010-8016. [PMID: 28618231 DOI: 10.1021/acs.est.7b01130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ceria nanoparticles (NPs) rapidly and easily cycle between Ce(III) and Ce(IV) oxidation states, making them prime candidates for commercial and other applications. Increased commercial use has resulted in increased discharge to the environment and increased associated risk. Once in complex media such as environmental waters or toxicology exposure media, the same redox transformations can occur, causing altered behavior and effects compared to the pristine NPs. This study used high resolution scanning transmission electron microscopy and electron energy loss spectroscopy to investigate changes in structure and oxidation state of small, polymer-coated ceria suspensions in complex media. NPs initially in either the III or IV oxidation states, but otherwise identical, were used. Ce(IV) NPs were changed to mixed (III, IV) NPs at high ionic strengths, while the presence of natural organic macromolecules (NOM) stabilized the oxidation state and increased crystallinity. The Ce(III) NPs remained as Ce(III) at high ionic strengths, but were modified by the presence of NOM, causing reduced crystallinity and degradation of the NPs. Subtle changes to NP properties upon addition to environmental or ecotoxicology media suggest that there may be small but important effects on fate and effects of NPs compared to their pristine form.
Collapse
Affiliation(s)
- Ruth C Merrifield
- Department of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, U.K
- Center for Environmental Nanoscience and Risk, University of South Carolina , Columbia, South Carolina United States
| | - Kenton P Arkill
- School of Medicine, University of Nottingham , Nottingham, U.K
- CSIC UPV/EHU and PiE, University of the Basque Country , Lejona, Spain
| | - Richard E Palmer
- Nanoscale Physics Research Laboratory, Physics and Astronomy, University of Birmingham , Birmingham, U.K
| | - Jamie R Lead
- Department of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, U.K
- Center for Environmental Nanoscience and Risk, University of South Carolina , Columbia, South Carolina United States
| |
Collapse
|
29
|
Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). ENVIRONMENTAL SCIENCE: NANO 2017; 4:1086-1094. [PMID: 0 DOI: 10.1039/c7en00015d] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
CeO2NPs displayed concentration and coating property dependent effects on soybean photosynthesis and water use efficiency.
Collapse
Affiliation(s)
- Zhiming Cao
- Zachry Department of Civil Engineering
- Texas A&M University
- USA
| | | | - Lorenzo Rossi
- Zachry Department of Civil Engineering
- Texas A&M University
- USA
| | - Weilan Zhang
- Zachry Department of Civil Engineering
- Texas A&M University
- USA
| | | | - Xingmao Ma
- Zachry Department of Civil Engineering
- Texas A&M University
- USA
| |
Collapse
|
30
|
Pal R, Sikder AK, Saito K, Funston AM, Bellare JR. Electron energy loss spectroscopy for polymers: a review. Polym Chem 2017. [DOI: 10.1039/c7py01459g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron energy loss spectroscopy (EELS) allows imaging as well as extraction of spatially resolved chemical information and this review presents how EELS can be ap plied to polymeric systems.
Collapse
Affiliation(s)
- Ruchi Pal
- IITB-Monash Research Academy
- IIT Bombay
- Mumbai 400076
- India
| | - Arun K. Sikder
- SABIC Research and Technology Pvt. Ltd
- Bangalore 562125
- India
| | - Kei Saito
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Alison M. Funston
- School of Chemistry
- Monash University
- Clayton
- Australia
- ARC Centre of Excellence in Exciton Science
| | | |
Collapse
|
31
|
Briffa S, Lynch I, Trouillet V, Bruns M, Hapiuk D, Liu J, Palmer RE, Valsami-Jones E. Development of scalable and versatile nanomaterial libraries for nanosafety studies: polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles. RSC Adv 2017. [DOI: 10.1039/c6ra25064e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A simple synthesis protocol produced a library of PVP-capped metal oxide nanomaterials with systematically varied properties for hypothesis-driven nano(eco)toxicological studies.
Collapse
Affiliation(s)
- S. M. Briffa
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - I. Lynch
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - V. Trouillet
- Institute for Applied Materials and Karlsruhe Nano Micro Facility
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - M. Bruns
- Institute for Applied Materials and Karlsruhe Nano Micro Facility
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - D. Hapiuk
- Nanoscale Physics Research Laboratory
- School of Physics and Astronomy
- University of Birmingham
- UK
| | - J. Liu
- Nanoscale Physics Research Laboratory
- School of Physics and Astronomy
- University of Birmingham
- UK
| | - R. E. Palmer
- Nanoscale Physics Research Laboratory
- School of Physics and Astronomy
- University of Birmingham
- UK
| | - E. Valsami-Jones
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- B15 2TT Birmingham
- UK
| |
Collapse
|
32
|
Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants (Basel) 2016; 5:E15. [PMID: 27196936 PMCID: PMC4931536 DOI: 10.3390/antiox5020015] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.
Collapse
Affiliation(s)
- Bryant C Nelson
- Material Measurement Laboratory-Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Monique E Johnson
- Material Measurement Laboratory-Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Marlon L Walker
- Material Measurement Laboratory-Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Kathryn R Riley
- Material Measurement Laboratory-Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Christopher M Sims
- Material Measurement Laboratory-Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
33
|
Römer I, Wang ZW, Merrifield RC, Palmer RE, Lead J. High Resolution STEM-EELS Study of Silver Nanoparticles Exposed to Light and Humic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2183-2190. [PMID: 26792384 DOI: 10.1021/acs.est.5b04088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoparticles (NPs) are defined as particles with at least one dimension between 1 and 100 nm or with properties that differ from their bulk material, which possess unique properties. The extensive use of NPs means that discharge to the environment is likely increasing, but fate, behavior, and effects under environmentally relevant conditions are insufficiently studied. This paper focuses on the transformations of silver nanoparticles (AgNPs) under simulated but realistic environmental conditions. High resolution aberration-corrected scanning transmission electron microscopy (HAADF STEM) coupled with electron energy loss spectroscopy (EELS) and UV-vis were used within a multimethod approach to study morphology, surface chemistry transformations, and corona formation. Although loss, most likely by dissolution, was observed, there was no direct evidence of oxidation from the STEM-EELS. However, in the presence of fulvic acid (FA), a 1.3 nm oxygen-containing corona was observed around the AgNPs in water; modeled data based on the HAADF signal at near atomic resolution suggest this was an FA corona was formed and was not silver oxide, which was coherent (i.e., fully coated in FA), where observed. The corona further colloidally stabilized the NPs for periods of weeks to months, dependent on the solution conditions.
Collapse
Affiliation(s)
- Isabella Römer
- School of Geography Earth and Environmental Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zhi Wei Wang
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, Beijing 100083, China
| | - Ruth C Merrifield
- Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Richard E Palmer
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jamie Lead
- School of Geography Earth and Environmental Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
- Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
34
|
Dogra Y, Arkill KP, Elgy C, Stolpe B, Lead J, Valsami-Jones E, Tyler CR, Galloway TS. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 2015; 10:480-7. [PMID: 26554927 DOI: 10.3109/17435390.2015.1088587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) exhibit fast valence exchange between Ce(IV) and Ce(III) associated with oxygen storage and both pro and antioxidant activities have been reported in laboratory models. The reactivity of CeO2 NPs once they are released into the aquatic environment is virtually unknown, but this is important to determine for assessing their environmental risk. Here, we show that amphipods (Corophium volutator) grown in marine sediments containing CeO2 NPs showed a significant increase in oxidative damage compared to those grown in sediments without NPs and those containing large-sized (bulk) CeO2 particles. There was no exposure effect on survival, but significant increases in single-strand DNA breaks, lipid peroxidation and superoxide dismutase activity were observed after a 10-day exposure to 12.5 mg L(-1) CeO2. Characterisation of the CeO2 NPs dispersed in deionised or saline exposure waters revealed that more radicals were produced by CeO2 NPs compared with bulk CeO2. Electron energy loss spectroscopy (EELS) analysis revealed that both CeO2 NPs were predominantly Ce(III) in saline waters compared to deionised waters where they were predominantly Ce(IV). In both types of medium, the bulk CeO2 consisted mainly of Ce(IV). These results support a model whereby redox cycling of CeO2 NPs between Ce(III) and Ce(IV) is enhanced in saline waters, leading to sublethal oxidative damage to tissues in our test organism.
Collapse
Affiliation(s)
- Yuktee Dogra
- a Department of Biosciences , College of Life and Environmental Sciences, The Geoffrey Pope Building, University of Exeter , Exeter , UK
| | - Kenton P Arkill
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK
| | - Christine Elgy
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK
| | - Bjorn Stolpe
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK
| | - Jamie Lead
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK .,c Centre for Environmental Nanoscience and Risk, University of South Carolina , CA , USA , and
| | - Eugenia Valsami-Jones
- b Department of Geography , Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterisation, University of Birmingham , Edgbaston , Birmingham , UK .,d Department of Geography , Earth and Environmental Sciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Charles R Tyler
- a Department of Biosciences , College of Life and Environmental Sciences, The Geoffrey Pope Building, University of Exeter , Exeter , UK
| | - Tamara S Galloway
- a Department of Biosciences , College of Life and Environmental Sciences, The Geoffrey Pope Building, University of Exeter , Exeter , UK
| |
Collapse
|
35
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 2015; 10:32-41. [PMID: 25740379 PMCID: PMC4819577 DOI: 10.3109/17435390.2014.1002868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level.
Collapse
Affiliation(s)
- Nadine S Taylor
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Ruth Merrifield
- b SmartState Center for Environmental Nanoscience and Risk, The Arnold School of Public Health, Environmental Health Sciences, University of South Carolina , Columbia , SC , USA , and.,c School of Geography, Earth and Environmental Science, University of Birmingham , Edgbaston , Birmingham , UK
| | - Tim D Williams
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - J Kevin Chipman
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Jamie R Lead
- b SmartState Center for Environmental Nanoscience and Risk, The Arnold School of Public Health, Environmental Health Sciences, University of South Carolina , Columbia , SC , USA , and.,c School of Geography, Earth and Environmental Science, University of Birmingham , Edgbaston , Birmingham , UK
| | - Mark R Viant
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| |
Collapse
|
37
|
Spulber M, Baumann P, Liu J, Palivan CG. Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy. NANOSCALE 2015; 7:1411-1423. [PMID: 25501999 DOI: 10.1039/c4nr02748e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Medical applications of the superantioxidant ceria nanoparticles (CeNP) are limited due to their high toxicity and low stability. CeNP toxicity is related to their aggregation in solution, and the possible generation of reactive oxygen species (ROS) by a Fenton-like reaction. For the efficient medical application of CeNP, it is necessary to find new solutions, which simultaneously reduce their inherent toxicity while preserving their unique catalytic regenerative qualities. Here we introduce a straightforward strategy based on CeNP encapsulation in polymer vesicles which reduces their toxicity, but preserves their superantioxidant character. We have engineered antioxidant nanoreactors, which serve the dual purpose of: (i) separation of CeNP, which inhibits aggregate formation, and (ii) protection of CeNP from hydrogen peroxide, thus eliminating the Fenton-like reaction which induces cytotoxicity. Nanoreactors containing CeNP possess a higher scavenging activity than free CeNP for both hydroxyl and superoxide radicals, as indicated by spin trapping EPR. Due to the regenerative redox chemistry of ceria, the nanoreactors are active for long periods of time, without requiring additional reducing agents. Upon uptake by cells, the nanoreactors show almost no toxicity compared with the free CeNP after a long term exposure, thus proving their high efficacy as ROS scavengers. Our strategy of engineering CeNP-containing nanoreactors represents a versatile, simple and economical solution to reduce CeNP toxicity, while preserving their functionality; thus nanoreactors are the ideal candidates for fighting oxidative stress in a large variety of medical situations.
Collapse
Affiliation(s)
- M Spulber
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
38
|
Sudarsanam P, Hillary B, Deepa DK, Amin MH, Mallesham B, Reddy BM, Bhargava SK. Highly efficient cerium dioxide nanocube-based catalysts for low temperature diesel soot oxidation: the cooperative effect of cerium- and cobalt-oxides. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00525f] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co3O4 promoted CeO2 nanocubes exhibit a remarkable catalytic activity for soot oxidation, attributed to the superior reducible nature of CeO2 and the preferential exposure of CeO2 (100) and Co3O4 (110) facets.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Brendan Hillary
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Dumbre K. Deepa
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Mohamad Hassan Amin
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Baithy Mallesham
- Inorganic and Physical Chemistry Division
- CSIR – Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Benjaram M. Reddy
- Inorganic and Physical Chemistry Division
- CSIR – Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
39
|
Baalousha M, Arkill KP, Romer I, Palmer RE, Lead JR. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:344-53. [PMID: 25262296 DOI: 10.1016/j.scitotenv.2014.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (Ag NPs) are susceptible to transformations in environmental and biological media such as aggregation, oxidation, dissolution, chlorination, sulfidation, formation/replacement of surface coatings following interaction with natural organic matter (NOM). This paper investigates the impact of surface coating and Suwannee River fulvic acid (SRFA) on the transformations and behavior of Ag NPs (citrate coated and Tween coated; cit-Ag NPs and Tween-Ag NPs, respectively), following reaction with different concentrations of Na2S solution (as a source of sulfide species, H2S and HS(-)). These transformations and the dominant mechanisms of transformations were investigated using UV-vis and scanning transmission electron microscopy coupled with electron energy loss spectroscopy. Here, we have shown that Ag NP surface coating impacts their dissolution following dilution in ultrahigh purity water, with higher extent of dissolution of Tween-Ag NPs compared with cit-Ag NPs. Tween-Ag NPs are susceptible to dissolution following their sulfidation at low S/Ag molar ratio. Suwannee River fulvic acid (SRFA) slows down the dissolution of Tween-Ag NPs at low sulfide concentrations and reduces the aggregation of cit-Ag NP in the presence of sodium sulfide. Sulfidation appears to occur by direct interaction of sulfide species with Ag NPs rather than by indirect reaction of sulfide with dissolved Ag species subsequent to dissolution. Furthermore, the sulfidation process results in the formation of partially sulfidized Ag NPs containing unreacted (metallic) subgrains at the edge of the NPs for Tween-Ag NPs in the presence of high sulfide concentration (2000nM Na2S), which occurred to less extent at lower Na2S concentration for Tween-Ag NPs and at all concentrations of Na2S for cit-Ag NPs. Thus, sulfidized Ag NPs may preserve some of the properties of the Ag NPs such as their potential to shed Ag(+) ions and their toxic potential of Ag NPs.
Collapse
Affiliation(s)
- M Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29028, USA
| | - K P Arkill
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - I Romer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - R E Palmer
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - J R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29028, USA; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
40
|
Pietroiusti A, Tran L, Campagnolo L. Nanosafety forum for young scientists: a meeting report. EUROPEAN JOURNAL OF NANOMEDICINE 2015. [DOI: 10.1515/ejnm-2015-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn October of 2014, a meeting jointly organized by the EU Nanosafety Cluster and the COST Action TD 1204, was held on the beautiful island of Ortygia in Syracuse (Sicily). The meeting was specifically conceived to give the opportunity to young researchers in the field of nanotoxicology to present and discuss the results of their research. Presentations were divided into eight sessions over 2 days, reflecting the eight working groups of the Nanosafety Cluster. This report gives a description of the meeting activities and a summary of the data presented there.
Collapse
|
41
|
|