1
|
Song Y, Jian M, Qiao L, Zhao Z, Yang Y, Jiao T, Zhang Q. Efficient Removal and Recovery of Ag from Wastewater Using Charged Polystyrene-Polydopamine Nanocoatings and Their Sustainable Catalytic Application in 4-Nitrophenol Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5834-5846. [PMID: 38261542 DOI: 10.1021/acsami.3c16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
This study addresses the long-standing challenges of removing and recovering trace silver (Ag) ions from wastewater while promoting their sustainable catalysis utilization. We innovatively developed a composite material by combining charged sulfonated polystyrene (PS) with a PDA coating. This composite serves a dual purpose: effectively removing and recovering trace Ag+ from wastewater and enabling reused Ag for sustainable applications, particularly in the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The PS-PDA demonstrated exceptional selectivity to trace Ag+ recycling, which is equal to 14 times greater than the commercial ion exchanger. We emphasize the distinct roles of different charged functional groups in Ag+ removal and catalytic reduction performance. The negatively charged SO3H groups exhibited the remarkable ability to rapidly enrich trace Ag ions from wastewater, with a capacity 2-3 times higher than that of positively-N+(CH3)3Cl and netural-CH2Cl-modified composites; this resulted in an impressive 96% conversion of 4-NP to 4-AP within just 25 min. The fixed-bed application further confirmed the effective treatment capacity of approximately 4400 L of water per kilogram of adsorbent, while maintaining an extremely low effluent Ag+ concentration of less than 0.1 mg/L. XPS investigations provided valuable insights into the conversion of Ag+ ions into metallic Ag through the enticement of negatively charged SO3H groups and the in situ reduction facilitated by PDA. This breakthrough not only facilitates the efficient extraction of Ag from wastewater but also paves the way for its environmentally responsible utilization in catalytic reactions.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Meili Jian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Lili Qiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Ziyi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Yujia Yang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
- Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
2
|
Anh NH, Min YJ, Thi My Nhung T, Long NP, Han S, Kim SJ, Jung CW, Yoon YC, Kang YP, Park SK, Kwon SW. Unveiling potentially convergent key events related to adverse outcome pathways induced by silver nanoparticles via cross-species omics-scale analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132208. [PMID: 37544172 DOI: 10.1016/j.jhazmat.2023.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The adverse effects of silver nanoparticles (AgNPs) have been studied in various models. However, there has been discordance between molecular responses across the literature, attributed to methodological biases and the physicochemical variability of AgNPs. In this study, a gene pathway meta-analysis was conducted to identify convergent and divergent key events (KEs) associated with AgNPs and explore common patterns of these KEs across species. We performed a cross-species analysis of transcriptomic data from multiple studies involving various AgNPs exposure. Pathway enrichment analysis revealed a set of pathways linked to oxidative stress, apoptosis, and metabolite and lipid metabolism, which are considered potentially conserved KEs across species. Subsequently, experiments confirmed that oxidative stress responses could be early KEs in both Caenorhabditis elegans and HepG2 cells. Moreover, AgNPs preferentially impaired the mitochondria, as evidenced by mitochondrial fragmentation and dysfunction. Furthermore, disruption of amino acids, nucleotides, sulfur compounds, glycerolipids, and glycerophospholipids metabolism were in good agreement with gene pathway shreds of evidence. Our findings imply that, although there may be organism-specific responses, potentially conserved events could exist regardless of species and physicochemical factors. These results provide valuable insights into the development of adverse outcome pathways of AgNPs across species and the regulatory toxicity of AgNPs.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, the Republic of Korea
| | - Seunghyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
3
|
Liao W, Zhu Z, Feng C, Yan Z, Hong Y, Liu D, Jin X. Toxicity mechanisms and bioavailability of copper to fish based on an adverse outcome pathway analysis. J Environ Sci (China) 2023; 127:495-507. [PMID: 36522080 DOI: 10.1016/j.jes.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/17/2023]
Abstract
Copper (Cu) exists in a variety of forms in different aquatic environments, and affects their bioavailability. In this study we provide a systematic review on toxicity of Cu which focuses on identifying evidence in the mechanisms of Cu toxicity, and apply an adverse outcome pathway (AOP) analysis to identify multiple potential mechanisms and their interactions of Cu toxicity to fish. This analysis process included the mechanisms of behavior toxicant, oxidative toxicant, ion regulation disruption toxicity, as well as endocrine disruption toxicity. It was found that at low levels of Cu exposure, swimming, avoid predators, locating prey and other sensory functions will be impaired, and the organism will suffer from metabolic alkalosis and respiratory acidosis following the inhibition of the carbonic anhydrase active. The main pathway of acute toxicity of Cu to fish is the inhibition of the Na+/K+-ATPase enzyme, and lead to reduced intracellular sodium absorption, as well as Cu-induced increased cell permeability, in turn resulting in increased sodium ion loss, leading to cardiovascular collapse and respiratory insufficiency. The endocrine disruption toxicity of Cu to fish caused growth inhibition and reproductive reduction. In addition, there are several key pathways of Cu toxicity that are affected by hardness (e.g., Ca2+) and intracellular DOC concentrations, including inhibiting Cu-induction, improving branchial gas exchange, altering membrane transport functions, decreasing Na+ loss, and increasing Na+ uptake. The results of the AOP analysis will provide a robust framework for future directed research on the mechanisms of Cu toxicity.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| | - Ziwei Zhu
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
4
|
Nanomedicine for drug resistant pathogens and COVID-19 using mushroom nanocomposite inspired with bacteriocin – A Review. INORG CHEM COMMUN 2023; 152:110682. [PMID: 37041990 PMCID: PMC10067464 DOI: 10.1016/j.inoche.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Multidrug resistant (MDR) pathogens have become a major global health challenge and have severely threatened the health of society. Current conditions have gotten worse as a result of the COVID-19 pandemic, and infection rates in the future will rise. It is necessary to design, respond effectively, and take action to address these challenges by investigating new avenues. In this regard, the fabrication of metal NPs utilized by various methods, including green synthesis using mushroom, is highly versatile, cost-effective, eco-compatible, and superior. In contrast, biofabrication of metal NPs can be employed as a powerful weapon against MDR pathogens and have immense biomedical applications. In addition, the advancement in nanotechnology has made possible to modify the nanomaterials and enhance their activities. Metal NPs with biomolecules composite to prevents their microbial adhesion and kills the microbial pathogens through biofilm formation. Bacteriocin is an excellent antimicrobial peptide that works well as an augmentation substance to boost the antimicrobial effects. As a result, we concentrate on the creation of new, eco-compatible mycosynthesized metal NPs with bacteriocin nanocomposite via electrostatic, covalent, or non-covalent bindings. The synergistic benefits of metal NPs with bacteriocin to combat MDR pathogens and COVID-19, as well as other biomedical applications, are discussed in this review. Moreover, the importance of the adverse outcome pathway (AOP) in risk analysis of manufactured metal nanocomposite nanomaterial and their future possibilities also discussed.
Collapse
|
5
|
Shao P, Chang Z, Li M, Lu X, Jiang W, Zhang K, Luo X, Yang L. Mixed-valence molybdenum oxide as a recyclable sorbent for silver removal and recovery from wastewater. Nat Commun 2023; 14:1365. [PMID: 36914674 PMCID: PMC10011435 DOI: 10.1038/s41467-023-37143-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Silver ions in wastewater streams are a major pollutant and a threat to human health. Given the increasing demand and relative scarcity of silver, these streams could be a lucrative source to extract metallic silver. Wastewater is a complex mixture of many different metal salts, and developing recyclable sorbents with high specificity towards silver ions remains a major challenge. Here we report that molybdenum oxide (MoOx) adsorbent with mixed-valence (Mo(V) and Mo(VI)) demonstrates high selectivity (distribution coefficient of 6437.40 mL g-1) for Ag+ and an uptake capacity of 2605.91 mg g-1. Our experimental results and density functional theory calculations illustrate the mechanism behind Ag+ adsorption and reduction. Our results show that Mo(V) species reduce Ag+ to metallic Ag, which decreases the energy barrier for subsequent Ag+ reductions, accounting for the high uptake of Ag+ from wastewater. Due to its high selectivity, MoOx favorably adsorbs Ag+ even in the presence of interfering ions. High selective recovery of Ag+ from wastewater (recovery efficiency = 97.9%) further supports the practical applications of the sorbent. Finally, MoOx can be recycled following silver recovery while maintaining a recovery efficiency of 97.1% after five cycles. The method is expected to provide a viable strategy to recover silver from wastewater.
Collapse
Affiliation(s)
- Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Ziwen Chang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, 401331, Chongqing, P. R. China.
| | - Xiang Lu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Wenli Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, P. R. China
| | - Kai Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China.
| |
Collapse
|
6
|
Gerber LS, Heusinkveld HJ, Langendoen C, Stahlmecke B, Schins RPF, Westerink RHS. Acute, sub-chronic and chronic exposures to TiO2 and Ag nanoparticles differentially affects neuronal function in vitro. Neurotoxicology 2022; 93:311-323. [DOI: 10.1016/j.neuro.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
7
|
Li M, Ruan LY, Dang F, Liu HL, Zhou DM, Yin B, Wang JS. Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118954. [PMID: 35122920 DOI: 10.1016/j.envpol.2022.118954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) can enter soils via the application of sludge and pose risks to soil invertebrates. However, current knowledge regarding the toxicity of AgNPs at environmentally relevant concentration is insufficient, especially at the molecular level. Therefore, we examined the effects of low-level AgNPs (7.2 mg kg-1, dry weight) on the bioaccumulation, pathology and metabolism of earthworms (Pheretima guillemi). After exposure for 28 d, earthworms were dissected into digestive system and the rest of the body to explore the response of different body parts to AgNPs. Ag concentration in the digestive system of exposed group (2.5 mg kg-1, dry weight) was significantly higher than that of the control group (0.5 mg kg-1, dry weight). AgNPs exposure had no significant effects on the survival and growth, but induced intestinal damage and metabolic interference to earthworms relative to the control. Metabolomics analysis showed that AgNPs exposure disturbed the glycerophospholipid metabolism, glutathione metabolism and energy metabolism in the digestive system and the energy metabolism in the rest of the body. AgNPs exposure also induced lipid peroxidation in the digestive system. The different metabolic responses between two body parts highlighted the importance of the uptake routes of Ag. These results provide a biochemical insight for the risk assessment of low-level AgNPs in terrestrial environment.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ling-Yu Ruan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Fei Dang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hai-Long Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bin Yin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
8
|
Mo F, Li H, Li Y, Ma C, Wang M, Li Z, Deng N, Zhang C, Xing B, Xu J, Li G, Wang L, Zheng Y, Yang Y. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151380. [PMID: 34780825 DOI: 10.1016/j.scitotenv.2021.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This present study investigated detoxification mechanisms of leguminous forage Trifolium pratense L. (red clover) seedlings upon exposure to Ag ions (Ag+) on an atomic level. Depressed plant growth (maximum inhibition rate: 46.57%) and significantly altered antioxidase/antioxidant substances levels (maximum inhibition rate: 65.45%/55.41%) revealed that the physiological metabolism was disturbed. Notable lesions were observed in both leaf and root cells at 588 μM Ag+ treatment. All differentially expressed genes (DEGs) were remarkably mapped to biological metabolism related pathways. Red clover seedlings were speculated to initially transform and immobilize Ag+ in the culture medium, then transporting and fixing them inside the cell, mainly as unreduced Ag+ bound to oxygen-, nitrogen-, sulfur-, chloride-containing biological molecules. A portion of Ag+ was reduced to Ag0 and aggregated to form crystalline argentiferous nanoparticles. Effective reducing agents such as alcohols, carboxylic acid, and etc, which are capable of coordinating heavy metals to reduce and stabilize them, were assumed to play a role in Ag+ reduction. The research results are of great value to understand the defense and tolerance mechanisms of red clover to Ag+ and explore the main existing forms of Ag+ in vivo and in vitro, which could indicate contamination condition in regional ecological environment such as mining area and its potential effects.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Geng Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lixin Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yaqin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Gao Y, Wu W, Qiao K, Feng J, Zhu L, Zhu X. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes. WATER RESEARCH 2021; 204:117603. [PMID: 34536684 DOI: 10.1016/j.watres.2021.117603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Determining the bioavailability and toxicity mechanism of silver nanoparticles (AgNPs) is challenging as Ag+ is continuously released by external or internal AgNP dissolution in the actual exposure system (regardless of the laboratory or the natural environment). Here a novel pulsed-gradient Ag+ (AgNO3) exposure was conducted with zebrafish (Danio rerio) larvae to simulate dissolved gradient concentrations of Ag+ from polyvinylpyrrolidone (PVP)-coated AgNPs. The accumulation and toxicity of the pulsed-gradient Ag+ (AgNO3) and, in the meantime, the released Ag+ from PVP-AgNPs were predicted using a toxicokinetic-toxicodynamic (TK-TD) model with obtained Ag+ parameters. In order to further understand the possible mechanism of PVP-AgNP releasing Ag+ in the body, subcellular fractions (S9) of zebrafish were also used to incubate with AgNPs in vitro to mimic the realistic in vivo scenarios. In the TK process, in vivo analysis showed that AgNPs released around twice as many Ag+ into the body than were detected with a single Ag+ pulse-exposure system; this was supported by evidence that subcellular S9 fractions might cause the PVP-AgNPs to lose the capping agent and favor Ag+ release. In the TD process, toxicity (survival rate) was predicted by the total bodily Ag(I) concentration, suggesting that AgNP toxicity in larvae was mainly due to gradually released Ag+ rather than AgNPs themselves. This study helps clarify the role of Ag+ in AgNP toxicity and offers a novel framework by which to investigate the toxicity of metal nanoparticles and corresponding metal ions in biological systems.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Weiran Wu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Kexin Qiao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
11
|
Deng S, Yan X, Xiong P, Li G, Ku T, Liu N, Liao C, Jiang G. Nanoscale cobalt-based metal-organic framework impairs learning and memory ability without noticeable general toxicity: First in vivo evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145063. [PMID: 33736171 DOI: 10.1016/j.scitotenv.2021.145063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 05/10/2023]
Abstract
Metal-organic frameworks (MOFs) exhibit broad potential applications in the environmental, biomedical, catalyst, and energy fields. However, the currently existing data hardly shed light on their health risks before the MOFs' large-scale usage. In this context, we exploratively investigated the in vivo fate and effect of one representative cobalt-based zeolitic imidazolate framework (ZIF-67) at the nano- (60 nm) and submicron- (890 nm) scales. Different from submicron-scale ZIF-67 showing better biosafety, nanoscale particles manifested a neurodegenerative risk at the dose of no general toxicity, evidenced by the impairment of learning and memory ability and disordered function of the neuropeptide signaling pathway in a rat model. The involvement of oxidative damage and inflammatory processes in the neurotoxicity induced by ZIF-67 was discussed as well. These findings not only provide a wake-up call for the prudent applications of MOFs but also provide insight into the better design and safer use of MOFs for broader applications.
Collapse
Affiliation(s)
- Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
13
|
Ruiz-Ruiz B, Arellano-García ME, Radilla-Chávez P, Salas-Vargas DS, Toledano-Magaña Y, Casillas-Figueroa F, Luna Vazquez-Gomez R, Pestryakov A, García-Ramos JC, Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS OMEGA 2020; 5:12005-12015. [PMID: 32548379 PMCID: PMC7271025 DOI: 10.1021/acsomega.0c00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 μg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.
Collapse
Affiliation(s)
- Balam Ruiz-Ruiz
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - María Evarista Arellano-García
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - Patricia Radilla-Chávez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - David Sergio Salas-Vargas
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Yanis Toledano-Magaña
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Francisco Casillas-Figueroa
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Roberto Luna Vazquez-Gomez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Alexey Pestryakov
- Department
of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Juan Carlos García-Ramos
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, C.P. 22879 Ensenada, Baja California, México
| |
Collapse
|
14
|
Qiang L, Arabeyyat ZH, Xin Q, Paunov VN, Dale IJF, Lloyd Mills RI, Rotchell JM, Cheng J. Silver Nanoparticles in Zebrafish ( Danio rerio) Embryos: Uptake, Growth and Molecular Responses. Int J Mol Sci 2020; 21:ijms21051876. [PMID: 32182933 PMCID: PMC7084859 DOI: 10.3390/ijms21051876] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Silver nanoparticles (AgNPs) are widely used in commercial applications as antimicrobial agents, but there have recently been increasing concerns raised about their possible environmental and health impacts. In this study, zebrafish embryos were exposed to two sizes of AgNP, 4 and 10 nm, through a continuous exposure from 4 to 96 h post-fertilisation (hpf), to study their uptake, impact and molecular defense responses. Results showed that zebrafish embryos were significantly impacted by 72 hpf when continuously exposed to 4 nm AgNPs. At concentrations above 0.963 mg/L, significant in vivo uptake and delayed yolk sac absorption was evident; at 1.925 mg/L, significantly reduced body length was recorded compared to control embryos. Additionally, 4 nm AgNP treatment at the same concentration resulted in significantly upregulated hypoxia inducible factor 4 (HIF4) and peroxisomal membrane protein 2 (Pxmp2) mRNA expression in exposed embryos 96 hpf. In contrast, no significant differences in terms of larvae body length, yolk sac absorption or gene expression levels were observed following exposure to 10 nm AgNPs. These results demonstrated that S4 AgNPs are available for uptake, inducing developmental (measured as body length and yolk sac area) and transcriptional (specifically HIF4 and Pxmp2) perturbations in developing embryos. This study suggests the importance of particle size as one possible factor in determining the developmental toxicity of AgNPs in fish embryos.
Collapse
Affiliation(s)
- Liyuan Qiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; (L.Q.); (Q.X.)
| | - Zeinab H. Arabeyyat
- Department of Marine Biology, the University of Jordan, Aqaba branch, Aqaba 77111, Jordan;
| | - Qi Xin
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; (L.Q.); (Q.X.)
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Imogen J. F. Dale
- School of Biological, Biomedical, and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (I.J.F.D.); (R.I.L.M.)
| | - Richard I. Lloyd Mills
- School of Biological, Biomedical, and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (I.J.F.D.); (R.I.L.M.)
| | - Jeanette M. Rotchell
- School of Biological, Biomedical, and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (I.J.F.D.); (R.I.L.M.)
- Correspondence: (J.M.R.); (J.C.); Tel.: +44-1482-465333 (J.M.R.); +852-3469-2124 (J.C.); Fax: +44-1482-465458 (J.M.R.); +852-3693-4766 (J.C.)
| | - Jinping Cheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; (L.Q.); (Q.X.)
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Lab (Guangzhou) & Department of Ocean Science, School of Science, the Hong Kong University of Science and Technology, Kowloon, Hong Kong
- Correspondence: (J.M.R.); (J.C.); Tel.: +44-1482-465333 (J.M.R.); +852-3469-2124 (J.C.); Fax: +44-1482-465458 (J.M.R.); +852-3693-4766 (J.C.)
| |
Collapse
|
15
|
Krämer S, Busch W, Schüttler A. A Self-Organizing Map of the Fathead Minnow Liver Transcriptome to Identify Consistent Toxicogenomic Patterns across Chemical Fingerprints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:526-537. [PMID: 31820487 DOI: 10.1002/etc.4646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Lack of consistent findings in different experimental settings remains a major challenge in toxicogenomics. The present study investigated whether consistency between findings of different microarray experiments can be improved when the analysis is based on a common reference frame ("toxicogenomic universe"), which can be generated using the machine learning algorithm of the self-organizing map (SOM). This algorithm arranges and clusters genes on a 2-dimensional grid according to their similarity in expression across all considered data. In the present study, 19 data sets, comprising of 54 different adult fathead minnow liver exposure experiments, were retrieved from Gene Expression Omnibus and used to train a SOM. The resulting toxicogenomic universe aggregates 58 872 probes to 2500 nodes and was used to project, visualize, and compare the fingerprints of these 54 different experiments. For example, we could identify a common pattern, with 14% of significantly regulated nodes in common, in the data sets of an interlaboratory study of ethinylestradiol exposures. Consistency could be improved compared with the 5% total overlap in regulated genes reported before. Furthermore, we could determine a specific and consistent estrogen-related pattern of differentially expressed nodes and clusters in the toxicogenomic universe by applying additional clustering steps and comparing all obtained fingerprints. Our study shows that the SOM-based approach is useful for generating comparable toxicogenomic fingerprints and improving consistency between results of different experiments. Environ Toxicol Chem 2020;39:526-537. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Krämer
- Helmholtz-Center for Environmental Research - UFZ GmbH, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Wibke Busch
- Helmholtz-Center for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Andreas Schüttler
- Helmholtz-Center for Environmental Research - UFZ GmbH, Leipzig, Germany
| |
Collapse
|
16
|
Stephano-Hornedo JL, Torres-Gutiérrez O, Toledano-Magaña Y, Gradilla-Martínez I, Pestryakov A, Sánchez-González A, García-Ramos JC, Bogdanchikova N. Argovit™ silver nanoparticles to fight Huanglongbing disease in Mexican limes ( Citrus aurantifolia Swingle). RSC Adv 2020; 10:6146-6155. [PMID: 35495993 PMCID: PMC9049702 DOI: 10.1039/c9ra09018e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 01/22/2023] Open
Abstract
Nowadays, Huanglongbing (HLB) disease, commonly known as "yellow dragon disease", affects citrus crops worldwide and has a devastating effect in the agro-industrial sector. Significant efforts have been made to fight the illness, but still, there is no effective treatment to eradicate the disease. This work is the first approach to evaluate the capacity of silver nanoparticles (AgNPs) to directly eradicate the bacteria responsible for Huanglongbing disease, Candidatus Liberibacter asiaticus (CLas), in the field. The AgNPs were administered by foliar sprinkling and trunk injection of 93 sick trees with remarkable results. Both methods produce an 80-90% decrease of bacterial titre, quantified by qRT-PCR in collected foliar tissue, compared with the control group. Scanning electron microscopy images show an essential reduction of starch accumulation in phloem vessels after AgNP treatments without evidence of bacteria in the analyzed samples. Compared with other effective methods that involve β-lactam antibiotics, the potency of AgNPs is 3 to 60-times higher when it is administered by foliar sprinkling and from 75 to 750-fold higher when the administration was by trunk-injection. All these results allow us to propose this AgNP formulation as a promising alternative for the treatment of infected trees in the field.
Collapse
Affiliation(s)
- José L Stephano-Hornedo
- Meredith Gould Laboratories Tijuana Baja California Mexico
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) Carretera Transpeninsular 3917 Ensenada Baja California 22860 Mexico
| | - Osmin Torres-Gutiérrez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) Carretera Transpeninsular 3917 Ensenada Baja California 22860 Mexico
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de La Salud, Universidad Autónoma de Baja California (UABC) Blvd. Zertuche y Blvd. de los Lagos S/N Fracc. Valle Dorado 22890 Ensenada B.C. Mexico
| | - Israel Gradilla-Martínez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Km 107 Carretera Tijuana-Ensenada C.P. 22860 Ensenada B.C. Mexico
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Alejandro Sánchez-González
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) Carretera Transpeninsular 3917 Ensenada Baja California 22860 Mexico
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de La Salud, Universidad Autónoma de Baja California (UABC) Blvd. Zertuche y Blvd. de los Lagos S/N Fracc. Valle Dorado 22890 Ensenada B.C. Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Km 107 Carretera Tijuana-Ensenada C.P. 22860 Ensenada B.C. Mexico
| |
Collapse
|
17
|
Zhao Y, Xu L, Yang C, Chen T, Yu L. Design and preparation of magnetic mesoporous melamine–formaldehyde resin: A novel material for pre‐concentration and determination of silver. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanfang Zhao
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou Jiangsu 225002 China
- College of Chemistry and Pharmaceutical ScienceQingdao Agricultural University Qingdao 266109 China
- Jiangsu Agro‐hormone Research Center Changzhou 213022 China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical ScienceQingdao Agricultural University Qingdao 266109 China
| | - Chenggen Yang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou Jiangsu 225002 China
| | - Tian Chen
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou Jiangsu 225002 China
| | - Lei Yu
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou Jiangsu 225002 China
| |
Collapse
|
18
|
Sooklert K, Wongjarupong A, Cherdchom S, Wongjarupong N, Jindatip D, Phungnoi Y, Rojanathanes R, Sereemaspun A. Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation. Toxicol Res 2019; 35:257-270. [PMID: 31341555 PMCID: PMC6629447 DOI: 10.5487/tr.2019.35.3.257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/13/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.
Collapse
Affiliation(s)
- Kanidta Sooklert
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asarn Wongjarupong
- Department of Orthopedics, Queen SavangVadhana Memorial Hospital, Sriracha, Chonburi, Thailand
| | - Sarocha Cherdchom
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nicha Wongjarupong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yupa Phungnoi
- Department of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhorn Ratchasima, Thailand
| | - Rojrit Rojanathanes
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Colorimetric assay for ultrasensitive detection of Ag(I) ions based on the formation of gold nanoparticle oligomers. Anal Bioanal Chem 2019; 411:2439-2445. [DOI: 10.1007/s00216-019-01685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
20
|
Lee D, Lee H, Lee G, Kim I, Lee SW, Kim W, Lee SW, Lee JH, Park J, Yoon DS. Extremely sensitive and wide-range silver ion detection via assessing the integrated surface potential of a DNA-capped gold nanoparticle. NANOTECHNOLOGY 2019; 30:085501. [PMID: 30524017 DOI: 10.1088/1361-6528/aaf66f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the rapid development of nanotechnology and its associated waste stream, public concern is growing over the potential toxicity exposure to heavy metal ions poses to the human body and the environment. Herein, we report an extremely sensitive Kelvin probe force microscopy (KPFM)-based platform for detecting nanotoxic materials (e.g. Ag+) accomplished by probing the integrated surface potential differences of a single gold nanoparticle on which an interaction between probe DNA and target DNA occurs. This interaction can amplify the surface potential of the nanoparticle owing to the coordination bond mediated by Ag+ (cytosine-Ag+-cytosine base pairs). Interestingly, compared with conventional methods, this platform is capable of extremely sensitive Ag+ detection (∼1 fM) in a remarkably wide-range (1 fM to 1 μM). Furthermore, this platform enables Ag+ detection in a practical sample (general drinking water), and this KPFM-based technique may have the potential to detect other toxic heavy metal ions and single nucleotide polymorphisms by designing specific DNA sequences.
Collapse
Affiliation(s)
- Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li L, Li L, Zhou X, Yu Y, Li Z, Zuo D, Wu Y. Silver nanoparticles induce protective autophagy via Ca 2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 2019; 13:369-391. [PMID: 30729847 DOI: 10.1080/17435390.2018.1550226] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used for manufacturing products containing antibacterial agents, as well as food technologies such as edible films and food packaging. Routes of AgNPs exposure are principally derived by contacting with certain medical sprays, food, toothpaste, and purification products. Previously, we showed that AgNPs induce endoplasmic reticulum (ER) stress and promote apoptosis progression in SH-SY5Y cells; however, whether AgNP-induced ER stress is able to trigger autophagy in vivo and in vitro, and the role of autophagy in AgNP-induced cytotoxicity remain unclear. In the present study, we found that increased intracellular calcium (Ca2+) levels arising from AgNP-induced-ER stress resulted in activation of calmodulin-dependent protein kinase kinase β (CaMKKβ) and adenosine 5'-monophosphate-activated protein kinase (AMPK), which downregulated the level of mammalian target of rapamycin (mTOR) and upregulated Beclin-1 to activate autophagy in SH-SY5Y cells. Specifically, inhibition of autophagy by the addition of chloroquine (CQ) or silencing of Beclin-1 significantly enhanced the cytotoxicity of AgNPs, suggesting that autophagy plays a protective role in AgNP-induced cell apoptosis. Furthermore, we showed that oral administration of AgNPs for 28 continuous days induced ER stress-mediated apoptosis and autophagy in rats via activation of CaMKKβ and AMPK. In summary, this study is the first to report that AgNPs induce protective autophagy via a Ca2+/CaMKKβ/AMPK/mTOR pathway in vivo and in vitro. Therefore, public exposure to AgNPs should arouse concerns regarding environmental safety and human health. Highlight Silver nanoparticle-induced ER stress elicits protective autophagy via a Ca2+-dependent mechanism in SH-SY5Y cells. The Ca2+/CaMKKβ/AMPK/mTOR pathway is involved in autophagy. Orally administered silver nanoparticles induce ER stress-mediated autophagy and apoptosis in rats.
Collapse
Affiliation(s)
- Lin Li
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China.,b Department of Pharmacy, The First Affiliated Hospital of College of Medicine , Zhejiang University , Hangzhou , P.R. China
| | - Lu Li
- c Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) , Guangzhou , P.R. China
| | - Xuejiao Zhou
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Yang Yu
- d Liaoning Medical Device Test Institute , Shenyang , P.R. China
| | - Zengqiang Li
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Daiying Zuo
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Yingliang Wu
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| |
Collapse
|
22
|
Wang P, Zhang B, Zhang H, He Y, Ong CN, Yang J. Metabolites change of Scenedesmus obliquus exerted by AgNPs. J Environ Sci (China) 2019; 76:310-318. [PMID: 30528022 DOI: 10.1016/j.jes.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/09/2023]
Abstract
With increasing emission of silver nanoparticles (AgNPs) into the environment, it is important to understand the effects of ambient concentration of AgNPs. The biological effects of AgNPs on Scenedesmus obliquus, a ubiquitous freshwater microalgae, was evaluated. AgNPs exerted a minor inhibitory effect at low doses. Non-targeted metabolomic studies were conducted to understand and analyze the effect of AgNPs on algal cells from a molecular perspective. During the 48 hr of exposure to AgNPs, 30 metabolites were identified, of which nine had significant changes compared to the control group. These include d-galactose, sucrose, and d-fructose. These carbohydrates are involved in the synthesis and repair of cell walls. Glycine, an important constituent amino acid of glutathione, increased with AgNP exposure concentration increasing, likely to counteract an increased intracellular oxidative stress. These results provide a new understanding of the toxicity effects and mechanism of AgNPs. These metabolites could be useful biomarkers for future research, employed in the early detection of environmental risk from AgNPs.
Collapse
Affiliation(s)
- Pu Wang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China; School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Jun Yang
- School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
23
|
Wang S, Lv J, Zhang S. Discovery of CRR1-targeted copper deficiency response in Chlamydomonas reinhardtii exposed to silver nanoparticles. Nanotoxicology 2019; 13:447-454. [DOI: 10.1080/17435390.2018.1551967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Songshan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Cooper RJ, Menking-Colby MN, Humphrey KA, Victory JH, Kipps DW, Spitzer N. Involvement of β-catenin in cytoskeleton disruption following adult neural stem cell exposure to low-level silver nanoparticles. Neurotoxicology 2018; 71:102-112. [PMID: 30605761 DOI: 10.1016/j.neuro.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/30/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
Abstract
Silver nanoparticles (AgNPs) are increasingly incorporated in consumer products to confer antibacterial properties. AgNPs are shed during everyday use of these products, resulting in ingestion or inhalation and bioaccumulation in tissues including the brain. While these low levels of AgNPs do not induce DNA fragmentation typical of apoptosis or necrosis, they do interfere with cytoskeletal structure and dynamics in cultured differentiating adult neural stem cells (NSCs). Moreover, these cells form f-actin inclusions in response to 1 μg/ml AgNPs. Here, we report that these cytoskeletal inclusions colocalize with aggregates of the signaling protein β-catenin, a modulator of cytoskeletal dynamics. Pharmacological alteration of β-catenin signaling reduced formation of f-actin inclusions. AgNP exposure also resulted in a reduction of neurite length in differentiating NSCs, which was mimicked by pharmacological activation of β-catenin signaling. Conversely, pharmacological inhibition of the Wnt/β-catenin signaling pathway resulted in increased neurite lengths in control cells, but did not reverse the neurite collapse induced by AgNP exposure. Substantial changes in neurite length, in response to low-level AgNP or pharmacological manipulation of β-catenin signaling, occurred within the first six hours of exposure and were most evident in cells differentiating towards neural-like morphologies. We conclude that low-level exposure to AgNP, such as that resulting from use of consumer products, may disrupt β-catenin signaling in neural cells in an indirect or non-additive manner. Exposure to AgNP shed from consumer products at levels currently considered safe, may therefore alter physiological function of neural cells. This is of concern particularly regarding children, whose brains contain many developing neurons, and who may face bioaccumulation of AgNP over decades of exposure.
Collapse
Affiliation(s)
- Robert J Cooper
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, 25755, United States
| | - Maya N Menking-Colby
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, 25755, United States
| | - Kenneth A Humphrey
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, 25755, United States
| | - Jack H Victory
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, 25755, United States
| | - Daniel W Kipps
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, 25755, United States
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, 25755, United States.
| |
Collapse
|
25
|
Dąbrowska-Bouta B, Sulkowski G, Strużyński W, Strużyńska L. Prolonged Exposure to Silver Nanoparticles Results in Oxidative Stress in Cerebral Myelin. Neurotox Res 2018; 35:495-504. [PMID: 30406926 PMCID: PMC6420427 DOI: 10.1007/s12640-018-9977-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Currently, silver nanoparticles (AgNPs) are frequently used in a wide range of medical and consumer products. Substantial usage of AgNPs is considered to create substantive risks to both the environment and the human health. Since there is increasing evidence that the main mechanism of toxicity of AgNPs relates to oxidative stress, in the current study we investigate oxidative stress-related biochemical parameters in myelin isolated from adult rat brain subjected to a low dose of AgNPs. Animals were exposed for 2 weeks to 0.2 mg/kg b.w. of small (10 nm) AgNPs stabilized in citrate buffer or silver citrate established as a control to compare the effects of particulate and ionic forms of silver. We observe enhanced peroxidation of lipids and decreased concentrations of protein and non-protein –SH groups in myelin membranes. Simultaneously, expression of superoxide dismutase, a free radical scavenger, is increased whereas the process of protein glutathionylation, being a cellular protective mechanism against irreversible oxidation, is found to be inefficient. Results indicate that oxidative stress-induced alterations in myelin membranes may be the cause of ultrastructural disturbances in myelin sheaths.
Collapse
Affiliation(s)
- Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Witold Strużyński
- Department of Animal Environment Biology, Unit of Zoology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego str, 02-787, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland.
| |
Collapse
|
26
|
Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
28
|
Zheng M, Lu J, Zhao D. Toxicity and Transcriptome Sequencing (RNA-seq) Analyses of Adult Zebrafish in Response to Exposure Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. Sci Rep 2018; 8:8083. [PMID: 29795396 PMCID: PMC5967324 DOI: 10.1038/s41598-018-26499-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/14/2018] [Indexed: 01/20/2023] Open
Abstract
Increasing utilization of stabilized iron sulfides (FeS) nanoparticles implies an elevated release of the materials into the environment. To understand potential impacts and underlying mechanisms of nanoparticle-induced stress, we used the transcriptome sequencing (RNA-seq) technique to characterize the transcriptomes from adult zebrafish exposed to 10 mg/L carboxymethyl cellulose (CMC) stabilized FeS nanoparticles for 96 h, demonstrating striking differences in the gene expression profiles in liver. The exposure caused significant expression alterations in genes related to immune and inflammatory responses, detoxification, oxidative stress and DNA damage/repair. The complement and coagulation cascades Kyoto encyclopedia of genes and genomes (KEGG) pathway was found significantly up-regulated under nanoparticle exposure. The quantitative real-time polymerase chain reaction using twelve genes confirmed the RNA-seq results. We identified several candidate genes commonly regulated in liver, which may serve as gene indicators when exposed to the nanoparticles. Hepatic inflammation was further confirmed by histological observation of pyknotic nuclei, and vacuole formation upon exposure. Tissue accumulation tests showed a 2.2 times higher iron concentration in the fish tissue upon exposure. This study provides preliminary mechanistic insights into potential toxic effects of organic matter stabilized FeS nanoparticles, which will improve our understanding of the genotoxicity caused by stabilized nanoparticles.
Collapse
Affiliation(s)
- Min Zheng
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA.,School of Marine Sciences, Sun Yat-sen University, Guangdong, 510275, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangdong, 510275, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA. .,Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| |
Collapse
|
29
|
Cambier S, Røgeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen TG, Guignard C, Kruszewski M, Hoffmann L, Audinot JN, Ropstad E, Gutleb AC. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:972-982. [PMID: 28838034 DOI: 10.1016/j.scitotenv.2017.08.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The use of silver nanomaterials in everyday products, such as cosmetics, textiles, certain types of packaging, etc. is increasing, leading to their release into the environment, including aquatic ecosystems. This last point initiated this investigation on the toxicological effects of Ag nanoparticles (Ag NPs) in the aquatic model organism Danio rerio. For this purpose, zebrafish larvae were exposed to 20nm bare Ag NPs at different concentrations and AgNO3, used as a positive control for Ag+ ions toxicity, at the beginning of their foraging behaviour to determine adverse effects on fitness parameters. We used secondary ion mass spectrometry (SIMS) to determine the localization of Ag and transcriptomics (microarray) to determine the toxicity at the level of gene expression in fish larvae. Exposure to Ag NPs did not result in adverse effects on survival and growth of the fish. However, SIMS analysis showed that Ag NPs mainly concentrate around liver blood vessels and in the interstitial tissue between the intestine and the liver. Gene expression profiles revealed that AgNO3 and Ag NPs impacted common pathways, suggesting similar targets, such as the phototransduction system. However, the Ag NPs showed a broader set of genes impacted following the exposure, including the circadian clock regulation and the photoreception, suggesting specific particle-related effects in addition to those induced by ions.
Collapse
Affiliation(s)
- Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | | | - Anastasia Georgantzopoulou
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg; Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | | | | | - Tore-Geir Iversen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo
| | - Cédric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland
| | - Lucien Hoffmann
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Nicolas Audinot
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Erik Ropstad
- Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
30
|
Feswick A, Isaacs M, Biales A, Flick RW, Bencic DC, Wang RL, Vulpe C, Brown-Augustine M, Loguinov A, Falciani F, Antczak P, Herbert J, Brown L, Denslow ND, Kroll KJ, Lavelle C, Dang V, Escalon L, Garcia-Reyero N, Martyniuk CJ, Munkittrick KR. How consistent are we? Interlaboratory comparison study in fathead minnows using the model estrogen 17α-ethinylestradiol to develop recommendations for environmental transcriptomics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2614-2623. [PMID: 28316117 PMCID: PMC6145073 DOI: 10.1002/etc.3799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/27/2016] [Accepted: 03/17/2017] [Indexed: 05/26/2023]
Abstract
Fundamental questions remain about the application of omics in environmental risk assessments, such as the consistency of data across laboratories. The objective of the present study was to determine the congruence of transcript data across 6 independent laboratories. Male fathead minnows were exposed to a measured concentration of 15.8 ng/L 17α-ethinylestradiol (EE2) for 96 h. Livers were divided equally and sent to the participating laboratories for transcriptomic analysis using the same fathead minnow microarray. Each laboratory was free to apply bioinformatics pipelines of its choice. There were 12 491 transcripts that were identified by one or more of the laboratories as responsive to EE2. Of these, 587 transcripts (4.7%) were detected by all laboratories. Mean overlap for differentially expressed genes among laboratories was approximately 50%, which improved to approximately 59.0% using a standardized analysis pipeline. The dynamic range of fold change estimates was variable between laboratories, but ranking transcripts by their relative fold difference resulted in a positive relationship for comparisons between any 2 laboratories (mean R2 > 0.9, p < 0.001). Ten estrogen-responsive genes encompassing a fold change range from dramatic (>20-fold; e.g., vitellogenin) to subtle (∼2-fold; i.e., block of proliferation 1) were identified as differentially expressed, suggesting that laboratories can consistently identify transcripts that are known a priori to be perturbed by a chemical stressor. Thus, attention should turn toward identifying core transcriptional networks using focused arrays for specific chemicals. In addition, agreed-on bioinformatics pipelines and the ranking of genes based on fold change (as opposed to p value) should be considered in environmental risk assessment. These recommendations are expected to improve comparisons across laboratories and advance the use of omics in regulations. Environ Toxicol Chem 2017;36:2593-2601. © 2017 SETAC.
Collapse
Affiliation(s)
- April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Meghan Isaacs
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Adam Biales
- Molecular Indicators Research Branch, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | - Robert W Flick
- Molecular Indicators Research Branch, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | - David C Bencic
- Molecular Indicators Research Branch, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | - Rong-Lin Wang
- Molecular Indicators Research Branch, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | - Chris Vulpe
- Department of Nutritional Science and Toxicology, University of California-Berkeley, Berkeley, California, USA
| | - Marianna Brown-Augustine
- Department of Nutritional Science and Toxicology, University of California-Berkeley, Berkeley, California, USA
| | - Alex Loguinov
- Department of Nutritional Science and Toxicology, University of California-Berkeley, Berkeley, California, USA
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Philipp Antczak
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - John Herbert
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lorraine Brown
- Pacific Environmental Science Centre, North Vancouver, British Columbia, Canada
| | - Nancy D Denslow
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin J Kroll
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Candice Lavelle
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Viet Dang
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Lynn Escalon
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| | - Natàlia Garcia-Reyero
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA
| | - Christopher J Martyniuk
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kelly R Munkittrick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
31
|
Świątek ZM, van Gestel CAM, Bednarska AJ. Toxicokinetics of zinc-oxide nanoparticles and zinc ions in the earthworm Eisenia andrei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:151-158. [PMID: 28531765 DOI: 10.1016/j.ecoenv.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 05/26/2023]
Abstract
The toxicokinetics of zinc in the earthworm Eisenia andrei was investigated following exposure for 21 days to ionic zinc (ZnCl2) or zinc oxide nanoparticles (ZnO-NPs) in Lufa 2.2 soil, followed by 21 days elimination in clean soil. Two concentrations were tested for both ZnCl2 (250 and 500μg Zn g-1) and ZnO-NPs (500 and 1000μg Zn g-1), corresponding to EC25 and EC50 for effects on reproduction. Based on the measured internal Zn concentrations in the earthworms over time of exposure, the kinetics parameters ka - assimilation rate constant (gsoil g-1body weight day-1) and ke - elimination rate constant (day-1) were estimated using a one-compartment model for either total Zn concentrations in the soil or porewater Zn concentrations. In the ZnCl2 treatments, ka was higher for total Zn concentrations in soil, whereas in the ZnO-NP treatments, ka was higher for porewater Zn concentrations. The value of ke did not differ between the two Zn forms (ZnCl2 vs ZnO-NPs) for either EC50 or EC25 when related to total Zn concentrations in soil, but for EC50, ke related to porewater Zn concentrations was significantly higher for ZnCl2 than for ZnO-NPs. It is concluded that differences in kinetic parameters between treatments were connected with exposure concentrations rather than with the form of Zn. Zinc was efficiently regulated by the earthworms in all treatments: a 2-fold increase in exposure concentration resulted in a less than 2-fold increase in internal concentration, and after transfer to uncontaminated soil the internal Zn concentrations in the earthworms returned to ca 111μgg-1 dw in all treatments.
Collapse
Affiliation(s)
- Zuzanna M Świątek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland
| |
Collapse
|
32
|
Javurek AB, Suresh D, Spollen WG, Hart ML, Hansen SA, Ellersieck MR, Bivens NJ, Givan SA, Upendran A, Kannan R, Rosenfeld CS. Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles. Sci Rep 2017; 7:2822. [PMID: 28588204 PMCID: PMC5460200 DOI: 10.1038/s41598-017-02880-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague-Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.
Collapse
Affiliation(s)
- Angela B Javurek
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Dhananjay Suresh
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - William G Spollen
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah A Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Mark R Ellersieck
- Department of Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Scott A Givan
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65211, USA
| | - Anandhi Upendran
- Department of MU-institute of Clinical and Translational Sciences (MU-iCATS), University of Missouri, Columbia, MO, 65211, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Raghuraman Kannan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
33
|
Gupta S, Kumar V, Joshi KB. Solvent mediated photo-induced morphological transformation of AgNPs-peptide hybrids in water-EtOH binary solvent mixture. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Zhang B, Zhang H, Du C, Ng QX, Hu C, He Y, Ong CN. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. WATER RESEARCH 2017; 114:135-143. [PMID: 28237781 DOI: 10.1016/j.watres.2017.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 05/04/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials. Their fast-growing utilization has increased the occurrence of AgNPs in the environment, posing potential health and ecological risks. In this study, we conducted chronic toxicity tests and investigated the metabolic changes of the growing Daphna similis with exposure to 0, 0.02, and 1 ppb AgNPs, using non-targeted mass spectrometry-based metabolomics. To the best of our knowledge, this study is the first to report the baseline metabolite change of a common aquatic organism Daphnia crustacean through its life-cycle. The results show a dynamic kinetic pattern of the growing Daphnia's metabolome underwent a cycle from day 0 to day 21, with the level of metabolites gradually increasing from day 0 to day 13, before falling back to the baseline level of day 0 on day 21. As for the samples exposed to environmental concentrations of AgNPs, although without morphological or structural changes, numerous metabolite changes occurred abruptly during the first 10 days, and these changes reached steady state by day 13. The significant changes in certain metabolites, such as amino acids (serine, threonine and tyrosine), sugars (d-allose) and fatty acids (arachidonic acid) revealed new insights into how these metabolites in Daphnia respond to chronic AgNPs stress. These findings highlight the capability of metabolomics to discover early metabolic responses to environmental silver nanoparticles.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Chunlei Du
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qin Xiang Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyang Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghan District, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
35
|
Jahan S, Yusoff IB, Alias YB, Bakar AFBA. Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicol Rep 2017; 4:211-220. [PMID: 28959641 PMCID: PMC5615119 DOI: 10.1016/j.toxrep.2017.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 04/02/2017] [Indexed: 01/03/2023] Open
Abstract
Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities. Here we discuss five potentially utilized ENMs with their possible toxicological risk factors to aquatic plants, vertebrates model and microbes. Moreover, the key effect of ENMs surface transformations by significant reaction with environmental objects such as dissolved natural organic matter (DOM) and the effect of ENMs surface coating and surface charge will also be debated. The transformations of ENMs are subsequently facing a major ecological transition that is expected to create a substantial toxicological effect towards the ecosystem. These transformations largely involve chemical and physical processes, which depend on the properties of both ENMs and the receiving medium. In this review article, the critical issues that controlling the transport and toxicity of ENMs are reviewed by exploiting the latest reports and future directions and targets are keenly discussed to minimize the pessimistic effects of ENMs.
Collapse
Affiliation(s)
- Shanaz Jahan
- Department of Geology, Environmental and Earth Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ismail Bin Yusoff
- Department of Geology, Environmental and Earth Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yatimah Binti Alias
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
- University Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ahmad Farid Bin Abu Bakar
- Department of Geology, Environmental and Earth Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
36
|
Schroeder AL, Martinović-Weigelt D, Ankley GT, Lee KE, Garcia-Reyero N, Perkins EJ, Schoenfuss HL, Villeneuve DL. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:427-436. [PMID: 27939634 PMCID: PMC6139436 DOI: 10.1016/j.envpol.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/14/2016] [Accepted: 12/03/2016] [Indexed: 05/19/2023]
Abstract
Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.
Collapse
Affiliation(s)
- Anthony L Schroeder
- University of Minnesota - Twin Cities, Water Resources Center, 1985 Lower Buford Circle, St. Paul, MN 55108, USA; U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | - Dalma Martinović-Weigelt
- University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN 55105, USA
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | - Kathy E Lee
- U.S. Geological Survey, Toxic Substances Hydrology Program, Grand Rapids, MN 55744, USA
| | - Natalia Garcia-Reyero
- U.S. Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, MS 39180, USA; Mississippi State University - Institute for Genomics Biocomputing and Biotechnology, Starkville, MS 39762, USA
| | - Edward J Perkins
- U.S. Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, WSB-273, St., Cloud State University, St. Cloud, MN 56301, USA
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA.
| |
Collapse
|
37
|
Feswick A, Loughery JR, Isaacs MA, Munkittrick KR, Martyniuk CJ. Molecular initiating events of the intersex phenotype: Low-dose exposure to 17α-ethinylestradiol rapidly regulates molecular networks associated with gonad differentiation in the adult fathead minnow testis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:46-56. [PMID: 27810492 DOI: 10.1016/j.aquatox.2016.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Intersex, or the presence of oocytes in the testes, has been documented in fish following exposure to wastewater effluent and estrogenic compounds. However, the molecular networks underlying the intersex condition are not completely known. To address this, we exposed male fathead minnows to a low, environmentally-relevant concentration of 17alpha-ethinylestradiol (EE2) (15ng/L) and measured the transcriptome response in the testis after 96h to identify early molecular initiating events that may proceed the intersex condition. The short-term exposure to EE2 did not affect gonadosomatic index and proportion of gametes within the testes. However, the production of 11-ketotestosterone and testosterone from the testis in vitro was decreased relative to controls. Expression profiling using a 8×60K fathead minnow microarray identified 10 transcripts that were differentially expressed in the testes, the most dramatic change being that of coagulation factor XIII A chain (20-fold increase). Transcripts that included guanine nucleotide binding protein (Beta Polypeptide 2), peroxisome proliferator-activated receptor delta, and WNK lysine deficient protein kinase 1a, were down-regulated by EE2. Subnetwork enrichment analysis revealed that EE2 suppressed transcriptional networks associated with steroid metabolism, hormone biosynthesis, and sperm mobility. Most interesting was that gene networks associated with doublesex and mab-3 related transcription factor 1 (dmrt1) were suppressed in the adult testis, despite the fact that dmrt1 itself was not different in expression from control males. Transcriptional networks involving forkhead box L2 (foxl2) (transcript involved in ovarian follicle development) were increased in expression in the testis. Noteworthy was that a gene network associated to granulosa cell development was increased over 100%, suggesting that this transcriptome network may be important for monitoring estrogenic exposures. Other cell processes rapidly downregulated by EE2 at the transcript level included glucose homeostasis, response to heavy metal, amino acid catabolism, and the cyclooxygenase pathway. Conversely, lymphocyte chemotaxis, intermediate filament polymerization, glucocorticoid metabolism, carbohydrate utilization, and anterior/posterior axis specification were increased. These data provide new insight into the transcriptional responses that are perturbed prior to gonadal remodeling and intersex following exposure to estrogens. These data demonstrate that low concentrations of EE2 (1) rapidly suppresses male hormone production, (2) down-regulate molecular networks related to male sex differentiation, and (3) induce transcriptional networks related to granulosa cell development in the adult testis. These responses are hypothesized to be key molecular initiating events that occur prior to the development of the intersex phenotype following estrogenic exposures.
Collapse
Affiliation(s)
- April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Jennifer R Loughery
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Meghan A Isaacs
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
38
|
Bermejo-Nogales A, Fernández M, Fernández-Cruz ML, Navas JM. Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1). Comp Biochem Physiol C Toxicol Pharmacol 2016; 190:54-65. [PMID: 27544301 DOI: 10.1016/j.cbpc.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
Among the nanomaterials currently in commercial products, those based on silver are the most used, and so there is a high probability that silver nanoparticles (AgNPs) will be released into aquatic environments where they could adversely affect aquatic organisms, including fish. Taking this into account, the aim of the present work was to characterize in depth the mechanisms underlying the toxic action of AgNPs using fish cell lines, determining specifically the contribution of alterations in cellular structures and oxidative stress time course to the cytotoxicity of AgNPs. Since liver plays a key role in detoxification, the hepatoma cell line PLHC-1 was used. Exposure to AgNPs (NM-300K, obtained from the Joint Research Centre Repository) caused alterations at the lysosomal and mitochondrial levels at lower concentrations than those that disrupted plasma membrane (evaluated by means of neutral red, alamarBlue, and 5-carboxyfluorescein diacetate, acetoxymethyl ester assays respectively). AgNO3, used as a control Ag+ ion source, produced similar cytotoxic effects but at lower concentrations than AgNPs. Both silver forms caused oxidative disruption but the initial response was delayed in AgNPs until 6h of exposure. Transmission electron microscopy analysis also evidenced the disruption of mitochondrial structures in cells exposed to cytotoxic concentrations of both forms of silver. At non-cytotoxic concentrations, AgNPs were detected inside the nucleoli and mitochondria, thereby pointing to long-term effects. The present work evidences the mutual interaction between the induction of oxidative stress and the alterations of cellular structures, particularly mitochondria, as cytotoxicity mechanisms not exclusively associated to NPs.
Collapse
Affiliation(s)
- A Bermejo-Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña, Km 7.5, Madrid, Spain.
| | - M Fernández
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida. Complutense 22, E-28040 Madrid, Spain
| | - M L Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña, Km 7.5, Madrid, Spain
| | - J M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña, Km 7.5, Madrid, Spain.
| |
Collapse
|
39
|
Biales AD, Kostich MS, Batt AL, See MJ, Flick RW, Gordon DA, Lazorchak JM, Bencic DC. Initial development of a multigene 'omics-based exposure biomarker for pyrethroid pesticides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:27-35. [PMID: 27564377 DOI: 10.1016/j.aquatox.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Omics technologies have long since promised to address a number of long standing issues related to environmental regulation. Despite considerable resource investment, there are few examples where these tools have been adopted by the regulatory community, which is in part due to a focus of most studies on discovery rather than assay development. The current work describes the initial development of an omics based assay using 48h Pimephales promelas (FHM) larvae for identifying aquatic exposures to pyrethroid pesticides. Larval FHM were exposed to seven concentrations of each of four pyrethroids (permethrin, cypermethrin, esfenvalerate and bifenthrin) in order to establish dose response curves. Then, in three separate identical experiments, FHM were exposed to a single equitoxic concentration of each pyrethroid, corresponding to 33% of the calculated LC50. All exposures were separated by weeks and all materials were either cleaned or replaced between runs in an attempt to maintain independence among exposure experiments. Gene expression classifiers were developed using the random forest algorithm for each exposure and evaluated first by cross-validation using hold out organisms from the same exposure experiment and then against test sets of each pyrethroid from separate exposure experiments. Bifenthrin exposed organisms generated the highest quality classifier, demonstrating an empirical Area Under the Curve (eAUC) of 0.97 when tested against bifenthrin exposed organisms from other exposure experiments and 0.91 against organisms exposed to any of the pyrethroids. An eAUC of 1.0 represents perfect classification with no false positives or negatives. Additionally, the bifenthrin classifier was able to successfully classify organisms from all other pyrethroid exposures at multiple concentrations, suggesting a potential utility for detecting cumulative exposures. Considerable run-to-run variability was observed both in exposure concentrations and molecular responses of exposed fish across exposure experiments. The application of a calibration step in analysis successfully corrected this, resulting in a significantly improved classifier. Classifier evaluation suggested the importance of considering a number of aspects of experimental design when developing an expression based tool for general use in ecological monitoring and risk assessment, such as the inclusion of multiple experimental runs and high replicate numbers.
Collapse
Affiliation(s)
- Adam D Biales
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States.
| | - Mitchell S Kostich
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Angela L Batt
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Mary J See
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Robert W Flick
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Denise A Gordon
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Jim M Lazorchak
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - David C Bencic
- US Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| |
Collapse
|
40
|
Mauro M, Crosera M, Bovenzi M, Adami G, Filon FL. Pilot study on in vitro silver nanoparticles permeation through meningeal membrane. Colloids Surf B Biointerfaces 2016; 146:245-9. [DOI: 10.1016/j.colsurfb.2016.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
|
41
|
Guo X, Li Y, Yan J, Ingle T, Jones MY, Mei N, Boudreau MD, Cunningham CK, Abbas M, Paredes AM, Zhou T, Moore MM, Howard PC, Chen T. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 2016; 10:1373-84. [PMID: 27441588 DOI: 10.1080/17435390.2016.1214764] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.
Collapse
Affiliation(s)
| | - Yan Li
- a Division of Genetic and Molecular Toxicology
| | - Jian Yan
- a Division of Genetic and Molecular Toxicology
| | | | | | - Nan Mei
- a Division of Genetic and Molecular Toxicology
| | - Mary D Boudreau
- c Division of Biochemical Toxicology , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | | | - Mazhar Abbas
- a Division of Genetic and Molecular Toxicology .,d Institute of Molecular Biology and Biotechnology, The University of Lahore , Pakistan , and
| | | | - Tong Zhou
- e Center for Veterinary Medicine, U.S. Food and Drug Administration , Rockville , MD , USA
| | | | | | - Tao Chen
- a Division of Genetic and Molecular Toxicology
| |
Collapse
|
42
|
Choi S, Lee G, Park IS, Son M, Kim W, Lee H, Lee SY, Na S, Yoon DS, Bashir R, Park J, Lee SW. Detection of Silver Ions Using Dielectrophoretic Tweezers-Based Force Spectroscopy. Anal Chem 2016; 88:10867-10875. [DOI: 10.1021/acs.analchem.6b00107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seungyeop Choi
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Gyudo Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- School
of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - In Soo Park
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Myeonggu Son
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Woong Kim
- Department
of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Hyungbeen Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sei-Young Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sungsoo Na
- Department
of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dae Sung Yoon
- Department
of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Rashid Bashir
- Department
of Bioengineering, University Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jinsung Park
- Department
of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Sang Woo Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
43
|
Strickland JD, LeFew WR, Crooks J, Hall D, Ortenzio JN, Dreher K, Shafer TJ. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses. Toxicology 2016; 355-356:1-8. [DOI: 10.1016/j.tox.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/26/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
|
44
|
Garcia-Reyero N, Thornton C, Hawkins AD, Escalon L, Kennedy AJ, Steevens JA, Willett KL. Assessing the exposure to nanosilver and silver nitrate on fathead minnow gill gene expression and mucus production. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.enmm.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Qin G, Xiong Y, Tang S, Zhao P, Doering JA, Beitel SC, Hecker M, Wang M, Liu H, Lu H, Du H. Impact of Predator Cues on Responses to Silver Nanoparticles in Daphnia carinata. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 69:494-505. [PMID: 26044927 DOI: 10.1007/s00244-015-0165-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The past decades have witnessed a boom in nanotechnology that has led to increasing production and application of silver nanoparticles (AgNPs) in the textile industry due to their antimicrobial properties. Increase in the manufacture and use of NPs inevitably has resulted in their increased release into aquatic environments resulting in the exposure of organisms living in these environments. Recently, the risk of exposure to NPs and the potential interaction with biological systems has received increasing attention. The present study investigated the potential effects of predator cues on the toxicity of environmentally relevant concentrations of AgNPs in Daphnia carinata at organismal and biochemical levels. The results of this study show that exposure to environmentally relevant concentrations of AgNPs can result in adverse effects on daphnids with 24- and 48-h LC50 values of 3.56 and 1.75 μg/L, respectively. Furthermore, significant inhibition of reproduction was observed at concentrations as low as 0.5 μg/L. Exposure to predator cues alone resulted in an increase in reproduction and inhibition of superoxide dismutase activity in daphnids. However, coexposure to predator cues interacted in an antagonistic manner with AgNPs with a 24-h LC50 value of 10.81 μg/L compared with 3.56 μg/L for AgNPs alone. In summary, AgNPs could pose risks to aquatic invertebrates at environmentally relevant concentrations. Interestingly, the presence of other factors, such as predator cues, moderated the effects of exposure to AgNPs. Therefore, there is a need to further investigate the potential interactions between NPs and biological factors that can modulate toxicity of NPs for application to the risk assessment of aquatic invertebrates.
Collapse
Affiliation(s)
- Guangqiu Qin
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, 530028, China.
| | - Yunxia Xiong
- College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Peng Zhao
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, 530028, China
| | - Jon A Doering
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Shawn C Beitel
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Mao Wang
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Haoliang Lu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huamao Du
- College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
46
|
Assessment of total silver and silver nanoparticle extraction from medical devices. Food Chem Toxicol 2015; 85:10-9. [DOI: 10.1016/j.fct.2015.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
|
47
|
Effect of ionic-strength adjusters on the detection of silver ion using ion-selective electrode. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Lee JW, Won EJ, Raisuddin S, Lee JS. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci (China) 2015; 35:115-127. [PMID: 26354700 DOI: 10.1016/j.jes.2015.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/05/2023]
Abstract
In environmental risk assessments (ERA), biomarkers have been widely used as an early warning signal of environmental contamination. However, biomarker responses have limitation due to its low relevance to adverse outcomes (e.g., fluctuations in community structure, decreases in population size, and other similar ecobiologically relevant indicators of community structure and function). To mitigate these limitations, the concept of adverse outcome pathways (AOPs) was developed. An AOP is an analytical, sequentially progressive pathway that links a molecular initiating event (MIE) to an adverse outcome. Recently, AOPs have been recognized as a potential informational tool by which the implications of molecular biomarkers in ERA can be better understood. To demonstrate the utility of AOPs in biomarker-based ERA, here we discuss a series of three different biological repercussions caused by exposure to benzo(a)pyrene (BaP), silver nanoparticles (AgNPs), and selenium (Se). Using mainly aquatic invertebrates and selected vertebrates as model species, we focus on the development of the AOP concept. Aquatic organisms are suitable bioindicator species whose entire lifespans can be observed over a short period; moreover, these species can be studied on the molecular and population levels. Also, interspecific differences between aquatic organisms are important to consider in an AOP framework, since these differences are an integral part of the natural environment. The development of an environmental pollutant-mediated AOP may enable a better understanding of the effects of environmental pollutants in different scenarios in the diverse community of an ecosystem.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Hamdard University, New Delhi 110062, India
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
49
|
Tang S, Wang M, Germ KE, Du HM, Sun WJ, Gao WM, Mayer GD. Health implications of engineered nanoparticles in infants and children. World J Pediatr 2015; 11:197-206. [PMID: 26253410 DOI: 10.1007/s12519-015-0028-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 11/10/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND The nanotechnology boom and the ability to manufacture novel nanomaterials have led to increased production and use of engineered nanoparticles (ENPs). However, the increased use of various ENPs inevitably results in their release in or the contamination of the environment, which poses significant threats to human health. In recent years, extraordinary economic and societal benefits of nanoproducts as well as their potential risks have been observed and widely debated. To estimate whether ENPs are safe from the onset of their manufacturing to their disposal, evaluation of the toxicological effects of ENPs on human exposure, especially on more sensitive and vulnerable sectors of the population (infants and children) is essential. DATA SOURCES Papers were obtained from PubMed, Web of Science, and Google Scholar. Literature search words included: "nanoparticles", "infants", "children", "exposure", "toxicity", and all relevant cross-references. RESULTS A brief overview was conducted to 1) characterize potential exposure routes of ENPs for infants and children; 2) describe the vulnerability and particular needs of infants and children about ENPs exposure; 3) investigate the current knowledge about the potential health hazards of ENPs; and 4) provide suggestions for future research and regulations in ENP applications. CONCLUSIONS As the manufacturing and use of ENPs become more widespread, directed and focused studies are necessary to measure actual exposure levels and to determine adverse health consequences in infants and children.
Collapse
Affiliation(s)
- Song Tang
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Cooper RJ, Spitzer N. Silver nanoparticles at sublethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult neural stem cells. Neurotoxicology 2015; 48:231-8. [PMID: 25952507 DOI: 10.1016/j.neuro.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 11/25/2022]
Abstract
Silver nanoparticles (AgNPs) have potent antimicrobial properties at concentrations far below those that cause cytotoxic and genotoxic effects in eukaryotic cells. This property has resulted in the widespread use of AgNPs in consumer products, leading to environmental exposures at sub-lethal levels through ingestion and inhalation. Although the toxicity of AgNPs has been well characterized, effects of environmentally relevant exposures have not been extensively investigated in spite of studies that suggest accumulation of silver in tissues, including brain. To assess the sublethal effects of AgNPs on neural cell function, we used cultured SVZ-NSCs, a model of neurogenesis and neural cells. Throughout life, neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricles proliferate and migrate via the rostral migratory stream to the olfactory bulb. Once there, they complete differentiation into neurons and glia and integrate into existing circuits. This process of neurogenesis is tightly regulated, and is considered a part of healthy brain function. We found that 1.0 μg/mL AgNP exposure in cultured differentiating NSCs induced the formation of f-actin inclusions, indicating a disruption of actin function. These inclusions did not co-localize with AgNPs, and therefore do not represent sequestered nanoparticles. Further, AgNP exposure led to a reduction in neurite extension and branching in live cells, cytoskeleton-mediated processes vital to neurogenesis. We conclude that AgNPs at sublethal concentrations disrupt actin dynamics in SVZ-NSCs, and that an associated disruption in neurogenesis may contribute to documented deficits in brain function following AgNP exposure.
Collapse
Affiliation(s)
- Robert J Cooper
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV 25755, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV 25755, USA.
| |
Collapse
|