1
|
Xing C, Chen K, Hu L, Liu L. Efficient Degradation of Ofloxacin by Magnetic CuFe 2O 4 Coupled PMS System: Optimization, Degradation Pathways and Toxicity Evaluation. TOXICS 2024; 12:731. [PMID: 39453151 PMCID: PMC11510951 DOI: 10.3390/toxics12100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Magnetic CuFe2O4 was prepared with the modified sol-gel method and used for enhanced peroxymonosulfate (PMS) activation and ofloxacin (OFL) degradation. The OFL could almost degrade within 30 min at a catalyst dosage of 0.66 g/L, PMS concentration of 0.38 mM, and initial pH of 6.53 without adjustment, using response surface methodology (RSM) with Box-Behnken design (BBD). In the CuFe2O4/PMS system, the coexisting substances, including CO32-, NO3-, SO42-, Cl- and humic acid, have little effect on the OFL degradation. The system also performs well in actual water, such as tap water and surface water (Mei Lake), indicating the excellent anti-interference ability of the system. The cyclic transformation between Cu(II)/Cu(I) and Fe(III)/Fe(II) triggers the generation of active radicals including SO4•-, •OH, •O2- and 1O2. The OFL degradation pathway, mainly involving the dehydrogenation, deamination, hydroxylation, decarboxylation and carboxylation processes, was proposed using mass spectroscopy. Moreover, the toxicity assessment indicated that the end intermediates are environmentally friendly. This study is about how the CuFe2O4/PMS system performs well in PMS activation for refractory organic matter removal in wastewater.
Collapse
Affiliation(s)
| | | | - Limin Hu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (C.X.); (K.C.)
| | - Lanhua Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (C.X.); (K.C.)
| |
Collapse
|
2
|
Jia SM, Chen MH, Yang PF, Wang L, Wang GY, Liu LY, Ma WL. Seasonal variations and sources of atmospheric EPFRs in a megacity in severe cold region: Implications for the influence of strong coal and biomass combustion. ENVIRONMENTAL RESEARCH 2024; 252:119067. [PMID: 38704002 DOI: 10.1016/j.envres.2024.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Environmentally persistent free radicals (EPFRs) can pose exposure risks by inducing the generation of reactive oxygen species. As a new class of pollutants, EPFRs have been frequently detected in atmospheric particulate matters. In this study, the seasonal variations and sources of EPFRs in a severe cold region in Northeastern China were comprehensively investigated, especially for the high pollution events. The geomean concentration of EPFRs in the total suspended particle was 6.58 × 1013 spins/m3 and the mean level in winter was one order of magnitude higher than summer and autumn. The correlation network analysis showed that EPFRs had significantly positive correlation with carbon component, K+ and PAHs, indicating that EPFRs were primarily emitted from combustion and pyrolysis process. The source appointment by the Positive Matrix Factorization (PMF) model indicated that the dominant sources in the heating season were coal combustion (48.4%), vehicle emission (23.1%) and biomass burning (19.4%), while the top three sources in the non-heating season were others (41.4%), coal combustion (23.7%) and vehicle emissions (21.2%). It was found that the high EPFRs in cold season can be ascribed to the extensive use of fossil fuel for heating demand; while the high EPFRs occurred in early spring were caused by the large-scale opening combustion of biomass. In summary, this study provided important basic information for better understanding the pollution characteristics of EPFRs, which suggested that the implementation of energy transformation and straw utilization was benefit for the control of EPFRs in severe cold region.
Collapse
Affiliation(s)
- Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Guo-Ying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| |
Collapse
|
3
|
Zhao Z, Li H, Wei Y, Fang G, Jiang Q, Pang Y, Huang W, Tang M, Jing Y, Feng X, Luo XS, Berkemeier T. Airborne environmentally persistent free radicals (EPFRs) in PM 2.5 from combustion sources: Abundance, cytotoxicity and potential exposure risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172202. [PMID: 38599399 DOI: 10.1016/j.scitotenv.2024.172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
As an emerging atmospheric pollutant, airborne environmentally persistent free radicals (EPFRs) are formed during many combustion processes and pose various adverse health effects. In health-oriented air pollution control, it is vital to evaluate the health effects of atmospheric fine particulate matter (PM2.5) from different emission sources. In this study, various types of combustion-derived PM2.5 were collected on filters in a partial-flow dilution tunnel sampling system from three typical emission sources: coal combustion, biomass burning, and automobile exhaust. Substantial concentrations of EPFRs were determined in PM2.5 samples and associated with significant potential exposure risks. Results from in vitro cytotoxicity and oxidative potential assays suggest that EPFRs may cause substantial generation of reactive oxygen species (ROS) upon inhalation exposure to PM2.5 from anthropogenic combustion sources, especially from automobile exhaust. This study provides important evidence for the source- and concentration-dependent health effects of EPFRs in PM2.5 and motivates further assessments to advance public health-oriented PM2.5 emission control.
Collapse
Affiliation(s)
- Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Hanhan Li
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yaqian Wei
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Guodong Fang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qian Jiang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Zhejiang Institute of Meteorological Sciences, Hangzhou 310008, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Mingwei Tang
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuanshu Jing
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinyuan Feng
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
4
|
Zhao X, Tang L, Zhang S, Wang J, Czech B, Oleszczuk P, Minkina T, Gao Y. Formation and biotoxicity of environmentally persistent free radicals in steelworks soil under thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133697. [PMID: 38325092 DOI: 10.1016/j.jhazmat.2024.133697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Thermal treatment are commonly used to address organic contaminated soils. In particular, the pyrolysis of organic substances can result in the creation of environmentally persistent free radicals (EPFRs). We investigated a steelworks site in Chongqing (China) to observe changes in EPFRs before and after thermal treatment. Our findings revealed that the EPFRs were carbon-centered radicals with a g-factor < 2.0030 and a spin density ranging from n.d.-5.23 × 1015 spins/mg. The formation of EPFRs was driving by polycyclic aromatic hydrocarbons (PAHs), Mn, Cu, and total organic carbon (TOC). Following the thermal treatment, the spin densities of EPFRs increased by a factor of 0.25 to 1.81, with maximum levels reached at 300 °C. High molecular weight PAHs exhibited high heat capacity, enabling the generation of more EPFRs. The thermal decay of EPFRs occurred in two stages, with the shortest 1/e lifetime lasting up to 16.8 h. Raising the temperature or prolonging time can significantly reduce EPFRs levels. Thermal treatment increased the generation of EPFRs, hydroxyl radicals (•OH) and superoxide radical (•O2-), leading to a decrease in bacterial luminescence. Specifically, •OH contributed to approximately 73% of the B. brilliantus inhibition. Our results highlight that the thermal treatment significantly enhance EPFRs concentrations, and the treated soil remained ecologically risky. The knowledge of the formation of EPFRs and their biotoxicity is shedding new light on the thermal treatment risk management.
Collapse
Affiliation(s)
- Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuai Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Tatiana Minkina
- Department of Soil Science, Southern Federal University, Rostov-on-Don, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Zhong L, Zhu B, Su W, Liang W, Wang H, Li T, Cao D, Ruan T, Chen J, Jiang G. Molecular characterization of diverse quinone analogs for discrimination of aerosol-bound persistent pyrolytic and photolytic radicals. Sci Bull (Beijing) 2024; 69:612-620. [PMID: 38101961 DOI: 10.1016/j.scib.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Aerosol-bound organic radicals, including environmentally persistent free radicals (EPFRs), are key components that affect climate, air quality, and human health. While putative structures have been proposed, the molecular characteristics of EPFRs remain unknown. Here, we report a surrogate method to characterize EPFRs in real ambient samples using mass spectrometry. The method identifies chemically relevant oxygenated polycyclic aromatic hydrocarbons (OxPAH) that interconvert with oxygen-centered EPFR (OC-EPFR). We found OxPAH compounds most relevant to OC-EPFRs are structurally rich and diverse quinones, whose diversity is strongly associated with OC-EPFR levels. Both atmospheric oxidation and combustion contributed to OC-EPFR formation. Redundancy analysis and photochemical aging model show pyrolytic sources generated more oxidized OC-EPFRs than photolytic sources. Our study reveals the detailed molecular characteristics of OC-EPFRs and shows that oxidation states can be used to identify the origins of OC-EPFRs, offering a way to track the development and evolution of aerosol particles in the environment.
Collapse
Affiliation(s)
- Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
E Z, Liang J, Li P, Qiang S, Fan Q. A review on photocatalytic attribution and process of pyrolytic biochar in environment. WATER RESEARCH 2024; 251:120994. [PMID: 38277825 DOI: 10.1016/j.watres.2023.120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Biochar has attracted significant attention due to its excellent environmental benefits and extensive applications. Recently, a consensus has been accepted that biochar can act as a photocatalyst and trigger effective photocatalytic reactions in the environment, which is important to energy conversion and the cycle of elements. However, its photocatalytic processes and the corresponding environmental impacts need to receive more and due attention. In this review, we provide a comprehensive summary of the underlying correlations among the pyrolytic evolution of biomass, the structure characteristic of biochar, and the resultant photocatalytic performance. Moreover, the photocatalytic processes and the influence of environmental factors were elaborately investigated on biochar. Finally, future tendencies and challenges in the photocatalysis of biochar have been prospected in the environmental field. This review has offered innovative insights into the photocatalytic essential of biochar and highly enhanced the understanding of its environmental impact.
Collapse
Affiliation(s)
- Zhengyang E
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China
| | - Shirong Qiang
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China.
| |
Collapse
|
7
|
Zhao S, Liu J, Miao D, Sun H, Zhang P, Jia H. Activation of persulfate for the degradation of ethyl-parathion in soil: Combined effects of microwave with biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119930. [PMID: 38160544 DOI: 10.1016/j.jenvman.2023.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Sulfate radical (SO4•-), formed by persulfate (PS) activation during advanced oxidation process (AOPs), can be used for the remediation of organic contaminated soil. However, the role of biochar and microwave (MW) in the activation of PS is not fully understood, especially the corresponding mechanism. Herein, biochar combined with MW was used to activate PS for the remediation of ethyl-parathion (PTH)-polluted soil. The dynamic evolutions of PTH under different conditions, such as biochar content, particle size, reaction temperature, and the degradation mechanisms of PTH were also systematically investigated. Significant enhancement performance on PTH removal was observed after adding biochar, which was 88.78% within 80 min. Meanwhile, activating temperature exhibited remarkable abilities to activate PS for PTH removal. The higher content of adsorption sites in nano-biochar facilitated the removal of PTH. Furthermore, chemical probe tests coupled with quenching experiments confirmed that the decomposition of PS into active species, such as SO4•-, •OH, O2•- and 1O2, contributed to the removal of PTH in biochar combined with MW system, which could oxidize PTH into oxidative products, including paraoxon, 4-ethylphenol, and hydroquinone. The results of this study provide valuable insights into the synergistic effects of biochar and MW in the PS activation, which is helpful for the potential application of biochar materials combined with MW-activated PS in the remediation of pesticide-polluted soils.
Collapse
Affiliation(s)
- Song Zhao
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, 830046, PR China.
| | - Jinbo Liu
- College of Resources and Environment, Northwest A & F University, Yangling, 712100, PR China
| | - Duo Miao
- Department of Science and Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongwen Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Peng Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling, 712100, PR China.
| |
Collapse
|
8
|
Huang Q, Wang J, Wang J, Yu D, Zhan Y, Liu Z. Emerging Health Risks of Crumb Rubber: Inhalation of Environmentally Persistent Free Radicals via Saliva During Artificial Turf Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21005-21015. [PMID: 38048287 DOI: 10.1021/acs.est.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Crumb rubber (CR) is a commonly used infill material in artificial turf worldwide. However, the potential health risk associated with exposure to CR containing environmentally persistent free radicals (EPFRs) remains under investigation. Herein, we observed the widespread presence of CR particles in the range of 2.8-51.4 μg/m3 and EPFRs exceeding 6 × 1015 spins/g in the ambient air surrounding artificial turf fields. Notably, the abundance of these particles tended to increase with the number of operating years of the playing fields. Furthermore, by analyzing saliva samples from 200 participants, we established for the first time that EPFR-carrying CR could be found in saliva specimens, suggesting the potential for inhaling them through the oral cavity and their exposure to the human body. After 40 min of exercise on the turf, we detected a substantial presence of EPFRs, reaching as high as (1.15 ± 1.00) × 1016 spins of EPFR per 10 mL of saliva. Moreover, the presence of EPFRs considerably increased the oxidative potential of CR, leading to the inactivation of Ca2+, redox reactions, and changes in spatial binding of the α-1,4-chain of salivary amylase to Ca2+, all of which could influence human saliva health. Our study provides insights into a new pathway of human exposure to CR with EPFRs in artificial turf infill, indicating an increased human health risk of CR exposure.
Collapse
Affiliation(s)
- Qian'en Huang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqun Wang
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jianping Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China
| | - Dongmei Yu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China
| | - Yuanbo Zhan
- Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ze Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China
| |
Collapse
|
9
|
Li K, Yu J, Kong D, Chen X, Peng Y, Wang L. Differential cytotoxicity to human cells in vitro of tire wear particles emitted from typical road friction patterns: The dominant role of environmental persistent free radicals. CHEMOSPHERE 2023; 343:140256. [PMID: 37742763 DOI: 10.1016/j.chemosphere.2023.140256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Tire wear particles (TWPs) have been recognized as one of the major sources of microplastics (MPs), however, effects of initial properties and photochemical behavior of TWPs on cytotoxicity to human cells in vitro have not been reported. Therefore, here, three TWPs generated from typical wear of tires and pavements (i.e., rolling friction (R-TWPs) and sliding friction (S-TWPs)) and cryogenically milled tire tread (C-TWPs), respectively, and their photoaging counterparts were used to study the reasons for their differential cytotoxicity to 16HBE cells in vitro. Results showed in addition to changes of surface structure and morphology, different preparation methods could also induce formation of different concentration levels of environmental persistent free radicals (EPFRs) (from 1.24 to 3.06 × 1017 spins/g with g-factors ranging 2.00307-2.00310) on surfaces of TWPs, which contained 7.3%-65.8% of reactive EPFRs (r-EPFRs). Meanwhile, photoaging for 90 d could strengthen formation of EPFRs (from 4.03 to 4.61 × 1017 spins/g) with containing 74.7%-78.1% r-EPFRs on surfaces of TWPs and improve their g-factor indexes (ranging 2.00309-2.00313). At 100 μg mL-1 level, compared to C-TWPs, both R-TWPs and S-TWPs (whether photoaging or not) carried higher intensity EPFRs could significantly inhibit 16HBE cells proliferation activity, cause more cells oxidative stress and induce more cell apoptosis/necrosis and secretion of inflammatory factor (P < 0.05). However, regardless of how TWPs were prepared, photoaged or not, exposure at a concentration of 1 μg mL-1 appeared to be non-acute cytotoxic. Correlation analysis suggested dominant toxicity of TWPs was attributed to the formation of r-EPFRs on their surfaces, which could promote accumulation of excess reactive oxygen species in cells and the massive deposition of intracellular particles. This study provides direct evidence of TWPs cytotoxicity, and underlining the need for a better understanding of the influences of initial properties and photochemical characteristics on risk assessment of TWPs released into the environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Deyue Kong
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xingyue Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yonghong Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liangliang Wang
- School of Applied Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
10
|
Ghimire A, Hasan F, Guan X, Potter P, Guo C, Lomnicki S. Oxidation 1-methyl naphthalene based on the synergy of environmentally persistent free radicals (EPFRs) and PAHs in particulate matter (PM) surface. CHEMOSPHERE 2023; 341:140002. [PMID: 37648160 PMCID: PMC10548478 DOI: 10.1016/j.chemosphere.2023.140002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/15/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Studies of the environmental fate through the interactions of particle-associated polycyclic aromatic hydrocarbons (PAHs) with environmentally persistent free radicals (EPFRs) are presented. The formation of PAHs and EPFRs typically occurs side by side during combustion-processes. The laboratory simulation studies of the model PAH molecule 1-Methylnaphthalene (1-MN) interaction with model EPFRs indicate a transformational synergy between these two pollutants due to mutual and matrix interactions. EPFRs, thorough its redox cycle result in the oxidation of PAHs into oxy-/hydroxy-PAHs. EPFRs have been shown before to produce OH radical during its redox cycle in aqueous media and this study has shown that produced OH radical can transform other PM constituents resulting in alteration of PM chemistry. In model PM, EPFRs driven oxidation process of 1-MN produced 1,4-naphthoquinone, 1-naphthaldehyde, 4-hydroxy-4-methylnaphthalen-1-one, and various isomers of (hydroxymethyl) naphthalene. Differences were observed in oxidation product yields, depending on whether EPFRs and PAHs were cohabiting the same PM or present on separate PM. This effect is attributed to the OH radical concentration gradient as a factor in the oxidation process, further strengthening the hypothesis of EPFRs' role in the PAH oxidation process. This finding is revealing new environmental role of EPFRs in a natural degradation process of PAHs. Additionally, it points to implications of such PM surface chemistry in the changing mobility of PAHs into an aqueous medium, thus increasing their bioavailability.
Collapse
Affiliation(s)
- Ajit Ghimire
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Xia Guan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Phillip Potter
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Slawo Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
11
|
Li K, Kong D, Xiu X, Hao W, Xu D. Toxic effects of environmentally persistent free radicals (EPFRs) on the surface of tire wear particles on freshwater biofilms: The alleviating role after sewage-incubation-aging. CHEMOSPHERE 2023; 342:140179. [PMID: 37714474 DOI: 10.1016/j.chemosphere.2023.140179] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The aquatic ecological risks posed by the surface-active components of tire wear particles (TWPs) are not fully understood. This study aimed to determine the acute (24 h exposure) aquatic toxicity effects of TWPs on freshwater biofilms in terms of total organic carbon (TOC), chlorophyll-a (Chl-a) abundance, quantum yield (ФM), and adenosine triphosphate (ATP). Three types of TWP were tested: TWPs produced via the typical wear of tires and roads (i.e., rolling friction (R-TWPs) and sliding friction (S-TWPs)) and cryogenically milled tire treads (C-TWPs). The results showed that the surface structural properties of the three TWPs differed significantly in morphology, bare composition, functional groups, and surface-active components (environmental persistent free radicals). The exposure of biofilms to the TWPs increased TOC and ATP at low concentrations (1 mg L-1) but inhibited them at high concentrations (50 mg L-1). All TWP types inhibited biofilm photosynthesis (reduced Chl-a and ФM) and altered the community structure of algae to varying degrees; in addition, the toxicity mechanisms of the TWPs contributed to the accumulation of reactive oxygen species and cell membrane (or cell-wall) fragmentation, leading to lactate dehydrogenase release. S-TWPs were the most toxic because their surface carried the highest environmental persistent free radicals. R-TWPs were the second most toxic, which was attributed to their smaller particle size. The toxicity of all TWPs was tested after sewage incubation aging. The results showed that the toxicity of all TWPs reduced as the sewage covered their surface components and active sites. This process also reduced the differences in toxicity among the TWPs. This study filled a research gap in our understanding of aquatic toxicity caused by the surface structural properties of tire microplastics and has implications for the study of microplastic biotoxicity mechanisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Deyue Kong
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Defu Xu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| |
Collapse
|
12
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
13
|
Yang J, Fang L, Li Z, Meng G, Jia Y, Jiang Y, Lian J, Gan X. Insights into the formation of environmentally persistent free radicals during photocatalytic degradation processes of ceftriaxone sodium by ZnO/ZnIn 2S 4. CHEMOSPHERE 2023; 314:137618. [PMID: 36563725 DOI: 10.1016/j.chemosphere.2022.137618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/03/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
At present, the researches on photocatalysis were mainly focused on the design, improvement and development of catalysts, and less attention was paid to the existing characteristics of environmentally persistent free radicals (EPFRs) during the process of photocatalytic oxidation. In this study, A flower-like Z-type heterojunction ZnO/ZnIn2S4 (ZnO/ZIS) and typical antibiotic ceftriaxone sodium (CS) were taken as study objects, concentrating on the generation characteristics of EPFRs during the degradation of CS by ZnO/ZIS, and clarifying the degradation mechanism of CS in which EPFRs participated. The results showed that the degradation efficiency of 10 mg/L CS by 0.40 g/L ZnO/ZIS reached 85.3% in 150 min under the irradiation of 500 W xenon lamp. It was clear that ·O2- and h+ play major roles in CS degradation by ZnO/ZIS under visible light, and ·OH plays an auxiliary role. Furthermore, the formation mechanism of EPFRs during photocatalytic degradation processes of CS by ZnO/ZIS were first investigated thoroughly via experimental analysis and density functional theory (DFT) calculations. The concentration level of EPFRs centered on oxygen atoms is 1011 spin/mm3, which were generated in the process of degradation of CS by ZnO/ZIS under visible light. The production of EPFRs chiefly includes two procedures: chemical adsorption and transfer of electrons. The adsorption energy of precursor P8 on ZnIn2S4 side is -1.91 eV, the electrons transferred from precursor P8 and P11 to ZnO/ZnIn2S4 heterojunction. Surprisingly, EPFRs have little negative effects on the degradation process of CS by ZnO/ZIS. The study was not only a key field in the development of photocatalysis technology, but also a new way to study the removal mechanism of antibiotics.
Collapse
Affiliation(s)
- Jianhua Yang
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Lu Fang
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guanhua Meng
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yong Jia
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yongbin Jiang
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Jianjun Lian
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Xinhong Gan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment (MEE) of China, Nanjing, 210042, China.
| |
Collapse
|
14
|
A novel multi-components hierarchical porous composite prepared from solid wastes for benzohydroxamic acid degradation. J Colloid Interface Sci 2023; 630:714-726. [PMID: 36347098 DOI: 10.1016/j.jcis.2022.10.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
In this study, a novel carbon-wrapped-iron hierarchical porous catalyst (Fe/C-Mn800) was prepared from electrolytic manganese residue (EMR) and sewage sludge (SS), which showed outstanding degradation ability toward benzohydroxamic acid (BHA, nearly 90 % was removed within 60 min) with low metal leaching rate. Mechanism exploration found transition metal ions (Fe and Mn) can serve as electron acceptors and facilitate the generation of persistent free radicals (PFRs). These transition metal ions and PFRs mainly participated in the single-electron pathway via activating PMS to generate a large amount of reactive oxygen species (ROS). While the electron negative graphitic N and CO groups not only improve the electronegatively of catalyst, but also acted as the electron sacrificers to favor the electron transfer and directly oxidized the absorbed BHA through the ternary activated outer-sphere complexes. Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) analysis further demonstrated the crucial role of pre-adsorption during the degradation process. This work provided a deep insight into the degradation mechanism of metal/carbon composite and promising opportunity widened the horizon of the high-value utilization of EMR and SS.
Collapse
|
15
|
Zhu L, Liu J, Zhou J, Wu X, Yang K, Ni Z, Liu Z, Jia H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158571. [PMID: 36075414 DOI: 10.1016/j.scitotenv.2022.158571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Lang Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinyi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xintong Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
16
|
Li K, Yu J, Chen X, Kong D, Peng Y, Xiu X, Su H, Yan L. Effects of tire wear particles with and without photoaging on anaerobic biofilm sulfide production in sewers and related mechanisms. CHEMOSPHERE 2022; 308:136185. [PMID: 36030941 DOI: 10.1016/j.chemosphere.2022.136185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Tire wear particles (TWPs) are considered to be one of the major sources of microplastics (MPs) in sewers; however, little has been reported on the surface properties and photochemical behavior of TWPs, especially in terms of their environmental persistent radicals, leachate type, and response after photoaging. It is also unknown how TWPs influence the production of common pollutants (e.g., sulfides) in anaerobic biofilms in sewers. In our study, the effects of cryogenically milled tire treads (C-TWPs) and their corresponding photoaging products (photoaging-TWPs, A-TWPs) on anaerobic biofilm sulfide production in sewers and related mechanisms were studied. The results showed that the two TWPs at a low concentration (0.1 mg L-1) exerted no significant (p > 0.05) effects on sulfide yield, whereas exposure to a high concentration of TWPs (100 mg L-1) inversely affected sulfide yield, with A-TWPs exerting a significant inhibitory effect on sulfide yield in the sewers (p < 0.01). The main reason was that A-TWPs carried higher concentrations of reactive environmental persistent radicals on their surfaces after photoaging than C-TWPs, which could induce the formation of oxygen radicals. In addition, A-TWPs were more uniformly distributed in the wastewater system and could penetrate the biofilm to damage bacterial cells, and their ability to leach polycyclic aromatic hydrocarbons and heavy metals such as zinc additives enhanced their toxic effects. In contrast, C-TWPs contributed significantly to sulfide production (p < 0.01), primarily because of their low biotoxicity, ability to leach a considerable amount of sulfide, and stimulatory effect on anaerobic biofilm surface sulfate-reducing bacteria. Our study complements the toxicity studies of the TWPs particles themselves and provides insight on a new influencing factor for determining the changes in sulfide generation and control measures in sewers.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China
| | - Jianghua Yu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China.
| | - Xingyue Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China
| | - Deyue Kong
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China
| | - Yonghong Peng
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liankang Yan
- School of Applied Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
17
|
Lin H, Chen Q, Wang M, Chang T. Oxidation potential and coupling effects of the fractionated components in airborne fine particulate matter. ENVIRONMENTAL RESEARCH 2022; 213:113652. [PMID: 35700767 DOI: 10.1016/j.envres.2022.113652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) can induce the generation of reactive oxygen species (ROS) and damage human tissues. Fully understanding the generation mechanism of oxidative toxicity of PM is challenging due to the extremely complex composition. Classification methods may be helpful in understanding the ROS production mechanisms of complex PM. This study used a solvent extraction and solid phase extraction methods to separate five different components from PM2.5 includes non-extractable components that have rarely been studied before, and discussed the coupling effect and heterogeneous characteristics of oxidation activity they produced. It is found that the water-soluble component contribute about half of the PM oxidation activity, and metal ions probably contribute most of the oxidation activity. Experimental results show that oxygen molecules is the main precursor of ROS production, which depends on whether the aerosol component has catalytic conversion ability. After mixing humic-like substance (HULIS) and hydrophilic water-soluble (HP-WSM) PM, the oxidation activity increased, it is most likely to be a synergistic effect between HULIS and metal ions is dominant, but limited contribution to oxidation activity. It turns out that the non-extractable and water-insoluble components have higher oxidation activity than the water-soluble components, and the two components exhibited a more durable ability to produce 1O2. The reaction of soluble components to produce ROS is homogeneous, but it is obviously heterogeneous for these insoluble components. This study suggests that future attention should be paid to the oxidative toxicity of the non-extractable component, and that single PM component or compound cannot simply be studied independently.
Collapse
Affiliation(s)
- Hao Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
18
|
Li H, Li H, Zuo N, Liu Y, Lang D, Steinberg C, Pan B, Xing B. Direct toxicity of environmentally persistent free radicals to nematode Caenorhabditis elegans after excluding the concomitant chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156226. [PMID: 35643143 DOI: 10.1016/j.scitotenv.2022.156226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have attracted extensive attention due to their potential toxicity. However, EPFRs-containing particles always coexist with their parent organic contaminants and intermediate degradation products (IM), which may have hindered the toxicity assessment of EPFRs. In this study, the toxicity of EFFRs was specifically verified after comparing the systems without EPFRs, such as the immediate mixture of catechol (CT) and particles, solutions of CT only, IM extracted from the particles, as well as particles after EPFRs quenching. Caenorhabditis elegans (C. elegans) were used as model organisms. Our results showed that EPFRs-containing particles (Si-Al-CT) exhibited significant toxicity to C. elegans, but not for the parent chemical CT and IM on the particles. Higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the Si-Al-CT system were attributed to the mediated generation of ·O2- and ·OH via EPFRs. EPFRs could increase gene expressions related not only to oxidative stress and biotransformation in C. elegans, but also to indications of disturbances in energy homeostasis, survival, proliferation, cell and embryonic development. Overall, these results confirmed the direct toxicity of EPFRs and highlighted the key role of EPFRs which may be neglected in assessing the environmental risks of organic contaminants.
Collapse
Affiliation(s)
- Huijie Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Ning Zuo
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Yi Liu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Lang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Christian Steinberg
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China; Faculty of Life Sciences, Laboratory of Freshwater & Stress Ecology, Humboldt-Universität zu Berlin, Arboretum, Späthstr. 80/81, 12437 Berlin, Germany
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
19
|
Li Q, Dai L, Wang M, Su G, Wang T, Zhao X, Liu X, Xu Y, Meng J, Shi B. Distribution, influence factors, and biotoxicity of environmentally persistent free radical in soil at a typical coking plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155493. [PMID: 35483459 DOI: 10.1016/j.scitotenv.2022.155493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants in contaminated soils and have attracted significant attention. Chinese coke production making a great contribution to the globe is increasingly identified as the non-ignorable source of EPFRs. However, the distribution level, influence factors, and biotoxicity of EPFRs at coking sites remain poorly understood. Herein, a typical coking plant in Tangshan, China, featuring two functional regions (the reconstructed project (RP) and elimination engineering (EE)) was used to study the existence of EPFRs. The spin density of the EPFRs in coking soils was 3.20 × 1020-3.11 × 1021 spins/g with g-factor values of 2.0020-2.0036. The EPFRs presented higher concentrations and g-factor values in RP region than in EE region, and a mixture of carbon-centered radicals and carbon-centered radicals with adjacent oxygen atoms as well as carbon-centered radical was ascertained in the former and the latter, respectively. Correlation analysis and FT-ICR-MS results indicated that polycyclic aromatic hydrocarbons (PAH) together with other unsaturated hydrocarbons and condensed aromatic contaminants, might contribute to the EPFRs formation in the soils of RP region, whereas PAHs were the main source of EPFRs in EE region. Soil components were determined to investigate the influence factors in EPFRs formation. Cu and Fe2O3 were recognized as the markedly positive influence factors, while TOC had a negative impact on EPFR formation. Visible light irradiation can induce the transformation and generation of EPFRs. As representative contaminants, both toluene and 2-chlorophenol can create EPFRs in coking soil under visible light irradiation. The potential biotoxicity tests of Photobacterium phosphoreum T3 spp. showed that EPFRs from the soils diminished bacterial luminescence. Such effect was proven to be induced by the OH based on the quenching experiment. Understanding the influence factors of EPFRs formation and their biotoxicity in coking soils is critical for developing risk assessments and prevention strategies.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihui Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Xu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Tao W, Zhang P, Li H, Yang Q, Oleszczuk P, Pan B. Generation Mechanism of Persistent Free Radicals in Lignocellulose-Derived Biochar: Roles of Reducible Carbonyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10638-10645. [PMID: 35839311 DOI: 10.1021/acs.est.1c06997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Persistent free radicals (PFRs) in biochar can influence biochar reactivity, promoting organic contaminant degradation or even causing certain toxic impacts. However, the PFR generation mechanism is not still well understood. An investigation of the relationship between PFR formation and the chemical structure of biochar is essential for understanding the PFR formation mechanism. Our in situ measurement results showed that PFR intensities increased from 0-509.5 to 146-5678 a.u. after being pyrolyzed at 300 °C for 60 min. The significant positive correlation between PFR intensities and the peak areas of C═O and aromatic C═C groups indicated that the generation of PFRs was highly dependent on the C═O and aromatic C═C structures. The reduction of biochars by KBH4 resulted in a 32.2 ± 2.49% decrease in the C═O content and a relative increase in the C-O content, while other physicochemical properties did not change. Thus, the observed 49.3% decrease in PFR signals after this reduction suggested that the reducible C═O groups, possibly in aldehydes, aromatic ketones, and quinones, were closely associated with PFRs in biochars. This study provides an in situ insight into the PFR generation mechanism and guides the corresponding biochar design and property manipulation.
Collapse
Affiliation(s)
- Wenmei Tao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiliang Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Patryk Oleszczuk
- Faculty of Chemistry, Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, 3 M. Curie-Sklodowska Sq., 20-031 Lublin, Poland
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
21
|
Li Z, Zhao H, Li X, Bekele TG. Characteristics and sources of environmentally persistent free radicals in PM 2.5 in Dalian, Northeast China: correlation with polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24612-24622. [PMID: 34822091 DOI: 10.1007/s11356-021-17688-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are an emerging class of environmental hazardous contaminants that extensively, stably exist in airborne particulate matter and pose harmful effects on human health. However, there was little research about the sources of EPFRs in actual atmospheric conditions. This study reported the occurrence, characteristics, and sources of EPFRs and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected in Dalian, China. The concentrations of PM2.5-bound EPFRs ranged from 1.13 × 1013 to 8.97 × 1015 spins/m3 (mean value: 1.14 × 1015 spins/m3). Carbon-centered radicals and carbon-centered radicals with adjacent oxygen atoms were detected. The concentration of ∑PAHs ranged from 1.09 to 76.24 ng/m3, and PAHs with high molecular weight (HMW) were predominant species in PM2.5. Correlation of EPFRs with SO2, NO2, O3, and 12 kinds of PAHs indicated that both fuel (coal and biomass) combustion and photoreaction in atmosphere influenced the concentrations of EPFR. The positive matrix factorization (PMF) model results have shown that the primary sources contributed most of the EPFRs and those of secondary sources had a little proportion. Coal combustion (52.4%) was the primary contributor of EPFRs, followed by traffic emission (22.6%), industrial sources (9.6%), and secondary sources (9.2%) during the heating period, whereas industrial emission (39.2%) was the primary contributor, followed by coal combustion (38.1%), vehicular exhaust (23.5%), and secondary sources (9.6%) during the non-heating period. The finding of the present study provides an important evidence for further study on the formation mechanism of EPFRs in actual atmospheric to control the air pollution.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China.
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| |
Collapse
|
22
|
Liu Z, Sun Y, Wang J, Li J, Jia H. In Vitro Assessment Reveals the Effects of Environmentally Persistent Free Radicals on the Toxicity of Photoaged Tire Wear Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1664-1674. [PMID: 34821505 DOI: 10.1021/acs.est.1c05092] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tire wear particles (TWP) have been identified as one of the major sources of microplastics (MPs), and few studies have focused on their environmental behaviors and impacts. However, a thorough characteristic and toxicity assessment associated with environmentally persistent free radicals (EPFRs) on the photoaged TWP is missing. In this study, we investigated EPFRs in the process of TWP photoaging and evaluated their toxicity using in vitro bioassays. Our results showed that a total of around 1.0 × 1017 spins/g EPFRs (g-factors ranging 2.00308-2.00318) was formed on TWP with 60 days of light irradiation, which contained more than 29% of reactive EPFRs (r-EPFRs). Using macrophages as model cells for bioassays, TWP-associated EPFRs trigged endpoints, including the decrease of cell viability (27 to 45%) and the increase of oxidative stress response (46-93%) and inflammatory factor secretion. The enhancement of TWP toxicity with photoaging was confirmed to be attributed to the generated EPFRs combined with other TWP's chemical compositions (e.g., various metals and organics). Most importantly, the toxicity of photoaged TWP was closely correlated with the generated r-EPFRs, which induced reactive oxidant species (ROS) generation. This study provides direct evidence of toxicity on the photoaged TWP particles, revealing the potential contributions of EPFRs to the adverse effect on human health and highlighting the need for an improved understanding of the impacts of EPFRs on the risk assessment of TWP released into the environment.
Collapse
Affiliation(s)
- Ze Liu
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajiao Sun
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jianqun Wang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiahui Li
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
23
|
Zhao Y, Song M, Cao Q, Sun P, Chen Y, Meng F. The superoxide radicals' production via persulfate activated with CuFe 2O 4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122887. [PMID: 32947726 DOI: 10.1016/j.jhazmat.2020.122887] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
CuFe2O4 nanoparticles are decorated on biochar (BC) by modified sol-gel method to form the CuFe2O4@BC catalyst for persulfate (PS) activation in a wide pH range. The application of CuFe2O4@BC for o-nitrochlorobenzene degradation in soil was explored in this study. The mechanism of heterogeneous PS activation was comprehensively investigated. The synergistic effects between CuFe2O4 and BC could enhance catalytic activity and stability, including well dispersed CuFe2O4 species, efficient electron transfer and abundant oxygen functional groups. The superoxide radicals (O2-) produced from CuFe2O4 and BC could mediate Cu(I)/Cu(II) and Fe(II)/Fe(III) redox pairs on CuFe2O4@BC surface to activate PS, and then generating •OH and SO4- continuously. Moreover, the reaction intermediates are identified as well to elucidate the possible degradation pathways. These findings help to achieve more comprehensive understanding of the heterogeneous activation process of PS by CuFe2O4@BC catalyst.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Qi Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yonghao Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Fanyue Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
24
|
Guo H, Jin L, Huang S. Effect of PM characterization on PM oxidative potential by acellular assays: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:461-470. [PMID: 32589608 DOI: 10.1515/reveh-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The health risks brought by particles cannot be present via a sole parameter. Instead, the particulate matter oxidative potential (PM OP), which expresses combined redox properties of particles, is used as an integrated metric to assess associated hazards and particle-induced health effects. OP definition provides the capacity of PM toward target oxidation. The latest technologies of a cellular OP measurement has been growing in relevant studies. In this review, OP measurement techniques are focused on discussing along with PM characterization because of many related studies via OP measurements investigating relationship with human health. Many OP measurement methods, such as dithiothreitol (DTT), ascorbic acid (AA), glutathione (GSH) assay and other a cellular assays, are used to study the association between PM toxicity and PM characterization that make different responses, including PM components, size and sources. Briefly, AA and DTT assays are sensitive to metals (such as copper, manganese and iron etc.) and organics (quinones, VOCs and PAH). Measured OP have significant association with certain PM-related end points, for example, lung cancer, COPD and asthma. Literature has found that exposure to measured OP has higher risk ratios than sole PM mass, which may be containing the PM health-relevant fraction. PM characterization effect on health via OP measurement display a promising method.
Collapse
Affiliation(s)
- Huibin Guo
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Lei Jin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Sijing Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Zhang Y, Yin M, Sun X, Zhao J. Implication for adsorption and degradation of dyes by humic acid: Light driven of environmentally persistent free radicals to activate reactive oxygen species. BIORESOURCE TECHNOLOGY 2020; 307:123183. [PMID: 32217436 DOI: 10.1016/j.biortech.2020.123183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Humic acid (HA) was applied as the biosorbent for the adsorption and degradation of dyes in the presence of environmentally persistent free radicals (EPFRs). Scanning Electron Microscope (SEM) analysis showed that the microstructure of the HA surface and the thermal stability was analyzed by thermogravimetric analysis (TGA). Following irradiation, semiquinone EPFRs (g-factor > 2.0045) were generated on the HA surface. Both O2 and the addition of H2O2 were able to promote the generation of hydroxyl and superoxide radicals for the degradation of dye in aqueous solution. Furthermore, adsorption was observed to remove large amounts of the dyes, while the instantaneous free radical degradation process reduced the dyes to the lower concentration. In addition, a linear relationship was observed between the consumption of EPFRs and dye degradation rates. In ternary systems, HA conformed to Langmuir (476.19-1250.12 mg/L) and pseudo-second-order kinetic models. This work offers new insights into HA-EPFRs and their potential applications.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Muchen Yin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xuedi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
26
|
Zhang X, Gu W, Ma Z, Liu Y, Ru H, Zhou J, Zang Y, Xu Z, Qian G. Short-term exposure to ZnO/MCB persistent free radical particles causes mouse lung lesions via inflammatory reactions and apoptosis pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114039. [PMID: 32220747 DOI: 10.1016/j.envpol.2020.114039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are easily generated in the combustion processes of municipal solid waste (MSW) and can cause adverse effects on human health. This study focuses on understanding the toxicity of EPFR particles (ZnO/MCB containing EPFRs) to human bronchial epithelial cell lines BEAS-2B and 16HBE, murine macrophages Raw264.7, and the lung of BALB/c mice after a short exposure (7 days). Exposure of BEAS-2B, 16HBE, and Raw264.7 cells to ZnO/MCB particles significantly increased the reactive oxygen species (ROS) production and perturbed levels of intracellular redox conditions (decreased the intracellular GSH level and the activity of cytosolic SOD, and stimulated oxidative stress related proteins such as HO-1 and Nrf2). EPFR particles decreased the mitochondrial membrane potential (MMP) and induced cell apoptosis, including the activation of Caspase-3, Bax, and Bcl-2 apoptotic signalling pathways. A signature inflammatory condition was observed in both cell models and the mouse model for lung lesions. Our data suggest that EPFRs in particles have greater toxicity to lung cells and tissues that are potential health hazards to human lung.
Collapse
Affiliation(s)
- Xing Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD, 4072, Australia
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yun Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Hongbo Ru
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, No.19A, China
| | - Jizhi Zhou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Yi Zang
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, No.19A, China
| | - ZhiPing Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD, 4072, Australia
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China.
| |
Collapse
|
27
|
Shi Y, Zhu K, Dai Y, Zhang C, Jia H. Evolution and stabilization of environmental persistent free radicals during the decomposition of lignin by laccase. CHEMOSPHERE 2020; 248:125931. [PMID: 32000035 DOI: 10.1016/j.chemosphere.2020.125931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 05/28/2023]
Abstract
Soil microbial enzymes may induce lignin decomposition, accompanied by generation of free radicals. The evolution of environmentally persistent free radicals (EPFRs) and reactive oxygen species (ROS) during laccase-catalyzed lignin decomposition remains unclear. Characterization by electron paramagnetic resonance spectroscopy revealed gradually increased concentration of EPFRs, with maximum levels within 6 h that remained constant, accompanied by the increase in g-factor from 2.0037 to 2.0041. The results suggested the generation of oxygen-centered radicals on lignin. The EPFRs produced on solid samples slowly decreased by 17.2% over 17 d. ROS were also detected to have a similar trend as that of the evolution of EPFRs. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, gel permeation chromatography and nuclear magnetic resonance analyses suggested the demethylation and oxidation of lignin. We clarify the biogeochemical transformation of lignin and potential contributions to the generation of EPFRs and ROS in soil.
Collapse
Affiliation(s)
- Yafang Shi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Yunchao Dai
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
28
|
Wu L, Zhao S, Zhu K, Shi Y, Nie X, Jia H. Role of coke-bounded environmentally persistent free radicals in phenanthrene degradation by hydrogen peroxide. ENVIRONMENTAL TECHNOLOGY 2020; 41:2122-2129. [PMID: 30522415 DOI: 10.1080/09593330.2018.1556347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Emission of polycyclic aromatic hydrocarbons (PAHs) is accompanied with the discharge of carbonaceous particles during the coke production. To degrade the adsorbed PAHs, hydrogen peroxide (H2O2) was applied as an oxidising agent, which might be activated by the inherent environmentally persistent free radicals (EPFRs) on coke particles. The transformation of phenanthrene (PHE), selected as model molecule, was achieved in H2O2/coke particle system without the addition of additional activating agent. This process consumed the particle-bounded EPFRs, inducing the decreasing of spin density from 1.92 × 1018 to 4.4 × 1017 spins g-1 in 30 min of reaction time. Electron paramagnetic resonance (EPR) technique coupled with spin-trapping agent 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) was used to probe the potential formation of reactive oxygen species. A higher capture [[Formula: see text]] concentration was observed with larger decreases in EPFRs concentration, indicating that EPFRs were the main contributor to the formation of [Formula: see text]. The obtained results suggested that the activation of H2O2 by EPFRs on coke particles resulted in the generation of hydroxyl radical ([Formula: see text]), which then back-reacted with adsorbed PHE. The finding of this study shed light on a new remediation technology for toxic carbonaceous byproducts discharged during the coke production.
Collapse
Affiliation(s)
- Lan Wu
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Song Zhao
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Kecheng Zhu
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Yafang Shi
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Xiaofeng Nie
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| |
Collapse
|
29
|
Jia H, Li S, Wu L, Li S, Sharma VK, Yan B. Cytotoxic Free Radicals on Air-Borne Soot Particles Generated by Burning Wood or Low-Maturity Coals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5608-5618. [PMID: 32083475 DOI: 10.1021/acs.est.9b06395] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The traditional cook stove is a major contributor to combustion-derived soot particles, which contain various chemical species that may cause a significant impact to human health and ecosystems. However, properties and toxicity associated with environmentally persistent free radicals (EPFRs) in such emissions are not well known. This paper investigated the characteristics and cytotoxicity of soot-associated EPFRs discharged from Chinese household stoves. Our results showed that the concentrations of EPFRs were related to fuel types, and they were higher in wood-burning soot (8.9-10.5 × 1016 spins/g) than in coal-burning soot (3.9-9.7 × 1016 spins/g). Meanwhile, EPFR concentrations in soot decreased with an increase of coal maturity. The soot EPFRs, especially reactive fractions, readily induced the generation of reactive oxygen species (ROS). Potential health effects of soot EPFRs were also examined using normal human bronchial epithelial cell line 16HBE as a model. Soot particles were internalized by 16HBE cells inducing cytotoxicity. The main toxicity inducers were identified to be reactive EPFR species, which generated ROS inside human cells. Our findings provided valuable insights into potential contributions of soot EPFRs associated with different types of fuel to health problems. This information will support regulations to end or limit current stove usage in numerous households.
Collapse
Affiliation(s)
- Hanzhong Jia
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Shuaishuai Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lan Wu
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
30
|
Zhu N, Li C, Bu L, Tang C, Wang S, Duan P, Yao L, Tang J, Dionysiou DD, Wu Y. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi 2O 3 for a high photocatalytic performance. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121258. [PMID: 32028547 DOI: 10.1016/j.jhazmat.2019.121258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/01/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
An innovative advanced oxidation process was successfully developed to photocatalytic-degradation of estrone through the synergistic effect of biochar and Bi/Bi2O3 in bismuth-containing photocatalytic biochar (BiPB). The highest reaction rate constant (kobs) of estrone degradation by BiPB was 0.045 min-1 under the conditions of initial concentration of estrone =10.4 μmol L-1, [BiPB] =1 g L-1, pH = 7.0. The kobs was almost tenfold and more than 20 times than that of biochar without bismuth impregnation and pristine Bi/Bi2O3, respectively. The best photocatalytic performance of BiPB composites for the degradation of estrone was primarily attributed to generation of OH radicals. Impregnation of bismuth helped control the concentration of persistent free radicals (PFRs) and develop a hierarchical porous structure of biochar. The presence of biochar facilitated pre-concentration estrone on BiPB and improved the separation and transfer efficiency of charge carriers. The synergistic effect between biochar and Bi/Bi2O3 contributed to the generation of OH radicals for estrone degradation under neutral pH conditions. The transformation pathway of estrone was also proposed based on the measured transformation products in the presence of BiPB. The high efficiency of BiPB composites indicated that this easily-obtained material was promising for estrone-wastewater treatment applications as a low-cost composite photocatalyst.
Collapse
Affiliation(s)
- Ningyuan Zhu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Hubei Yichang 443002, China
| | - Sichu Wang
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Jun Tang
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 USA
| | - Yonghong Wu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Hubei Yichang 443002, China.
| |
Collapse
|
31
|
Lyu H, Zhang Q, Shen B. Application of biochar and its composites in catalysis. CHEMOSPHERE 2020; 240:124842. [PMID: 31574436 DOI: 10.1016/j.chemosphere.2019.124842] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
With a wide range of raw materials, low cost and large specific surface area, biochar has been widely used in environmental remediation. However, the biochar has a saturated adsorption capacity when it is used as a pollutant adsorbent. Recent efforts have been made to prepare biochar and biochar-based catalysts with enhanced catalytic properties to expand their potential applications. The environmental persistent free radicals (EPFRs) of biochar could react with O2 to induce hydroxyl radicals (•OH) without the addition of oxidants. When oxidants were added, biochar and biochar-based catalysts could activate them to generate •OH and sulfate radicals (SO4•-), respectively. Moreover, biochar could act as an electron acceptor to improve the photodegradation capacity of catalysts. With reference to the information regarding biochar and biochar-based catalysts, this work provides a critical review on recent research development as follows: 1) the preparations of various types of biochar and biochar-based catalysts are summarized; 2) the effects of the synthetic conditions and transition metals on the catalytic activity of biochar-based catalysts are discussed; (3) methods for characterizing the active sites of the biochar-based catalysts are described; and (4) the environmental applications of biochar and biochar-based catalysts are discussed with regards to three aspects based on the interaction mechanisms, namely, oxidation, reduction, and photocatalysis. The synthesis conditions and loading of metal/metal-free catalyst are key parameters controlling the catalysis activity of biochar and biochar-based catalysts. This review provides new insights into the application of biochar in catalysis. Key challenges and further research directions are proposed as well.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Qianru Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
32
|
Xi Z, Cheng X, Gao Z, Wang M, Cai T, Muzzio M, Davidson E, Chen O, Jung Y, Sun S, Xu Y, Xia X. Strain Effect in Palladium Nanostructures as Nanozymes. NANO LETTERS 2020; 20:272-277. [PMID: 31821008 DOI: 10.1021/acs.nanolett.9b03782] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While various effects of physicochemical parameters (e.g., size, facet, composition, and internal structure) on the catalytic efficiency of nanozymes (i.e., nanoscale enzyme mimics) have been studied, the strain effect has never been reported and understood before. Herein, we demonstrate the strain effect in nanozymes by using Pd octahedra and icosahedra with peroxidase-like activities as a model system. Strained Pd icosahedra were found to display 2-fold higher peroxidase-like catalytic efficiency than unstrained Pd octahedra. Theoretical analysis suggests that tensile strain is more beneficial to OH radical (a key intermediate for the catalysis) generation than compressive strain. Pd icosahedra are more active than Pd octahedra because icosahedra amplify the surface strain field. As a proof-of-concept demonstration, the strained Pd icosahedra were applied to an immunoassay of biomarkers, outperforming both unstrained Pd octahedra and natural peroxidases. The findings in this research may serve as a strong foundation to guide the design of high-performance nanozymes.
Collapse
Affiliation(s)
| | - Xun Cheng
- Cain Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | | | | | - Tong Cai
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Michelle Muzzio
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | | | - Ou Chen
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | | | - Shouheng Sun
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Ye Xu
- Cain Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | | |
Collapse
|
33
|
Odinga ES, Waigi MG, Gudda FO, Wang J, Yang B, Hu X, Li S, Gao Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. ENVIRONMENT INTERNATIONAL 2020; 134:105172. [PMID: 31739134 DOI: 10.1016/j.envint.2019.105172] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 05/22/2023]
Abstract
Biochars are used globally in agricultural crop production and environmental remediation. However, environmentally persistent free radicals (EPFRs), which are stable emerging pollutants, are generated as a characteristic feature during biomass pyrolysis. EPFRs can induce the formation of reactive oxygen species, which poses huge agro-environmental and human health risks. Their half-lives and persistence in both biochar residues and in the atmosphere may lead to potentially adverse risks in the environment. This review highlights the comprehensive research into these bioreactive radicals, as well as the bottlenecks of biochar production leading up to the formation and persistence of EPFRs. Additionally, a way forward has been proposed, based on two main recommendations. A global joint initiative to create an all-encompassing regulations policy document that will improve both the technological and the quality control aspects of biochars to reduce EPFR generation at the production level. Furthermore, environmental impact and risk assessment studies should be conducted in the extensive applications of biochars in order to protect the environmental and human health. The highlighted key research directions proposed herein will shape the production, research, and adoption aspects of biochars, which will mitigate the considerable concerns raised on EPFRs.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunyao Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Zhang Y, Guo X, Si X, Yang R, Zhou J, Quan X. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:348-354. [PMID: 31207524 DOI: 10.1016/j.scitotenv.2019.06.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are detected in the clay, mineral or humic part of the soil, especially in soil contaminated with phenolic compounds. To clarify the detailed information on the formation of EPFRs, we used the contaminated soil with catechol to mimic their formation process in laboratory scale and tested their biotoxicity with luminescent bacteria (Photobacterium phosphoreum, P. phosphoreum). Our results showed that the concentration of EPFRs reached the maximum at pyrolysis temperature of 300 °C, and EPFRs could significantly inhibit the luminescence of P. phosphoreum. Based on the detection of OH radicals in the aquatic system we used, we speculated that the generation of OH may be a crucial contributor to the toxicity of EPFRs. Our results aid to understand the detailed process on the formation of EPFRs in contaminated soil, as well as the basic biotoxicity data of EPFRs, which will be helpful and essential for their potential environmental risk assessments.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xi Guo
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Si
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruixin Yang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
Wang G, Yu J, Su Y, Shi G. Distribution and regeneration of hydroxyl free radicals in gaseous and particulate phases of pollutants in near-ground ambient air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:221-230. [PMID: 31132701 DOI: 10.1016/j.scitotenv.2019.05.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Hydroxyl free radicals play the main role in atmospheric oxidative capacity. The formation of secondary fine particulate matter and the degradation of gaseous pollutants in the troposphere are dominated by hydroxyl free radical reactions. The harmful effect of particulate matters to human health is closely related to the free radicals distributed in the particulate matter phase. In this paper, the distribution of hydroxyl free radicals in near-ground ambient air was studied. The hydroxyl free radicals exist not only in the gaseous phase but also in the particulate phase, especially during heavy haze pollution. It is noteworthy that the concentration of hydroxyl free radicals in the particulate phase is about two times higher than that in the gaseous phase. The possible regeneration mechanisms are proposed. The excited electrons (e-) and holes (h+) formed e- - h+ pairs in particulate matters are identified to play a key role in promoting the regeneration of hydroxyl free radicals in particulate phase. Environmentally persistent free radicals in particulate phase could also further promote the chain reaction of free radicals and ultimately result in explosive regeneration in an environment that has been excited. The correlation between radical concentrations in gas species, particulate phases and particulate number concentration has been summary based on the actual monitoring site including Thermal power plant, Yumen street and Chemical street sites.
Collapse
Affiliation(s)
- Guoying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jianglei Yu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ying Su
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Gaofeng Shi
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China.
| |
Collapse
|
36
|
Zhao S, Gao P, Miao D, Wu L, Qian Y, Chen S, Sharma VK, Jia H. Formation and Evolution of Solvent-Extracted and Nonextractable Environmentally Persistent Free Radicals in Fly Ash of Municipal Solid Waste Incinerators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10120-10130. [PMID: 31403286 DOI: 10.1021/acs.est.9b03453] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging contaminants occurring in combustion-borne particulates and atmospheric particulate matter, but information on their formation and behavior on fly ash from municipal solid waste (MSW) incinerators is scarce. Here, we have found that MSW-associated fly ash samples contain an EPFR concentration of 3-10 × 1015 spins g-1, a line width (ΔHp-p) of ∼8.6 G, and a g-factor of 2.0032-2.0038. These EPFRs are proposed to be mixtures of carbon-centered and oxygen-centered free radicals. Fractionation of the fly ash-associated EPFRs into solvent-extracted and nonextractable radicals suggests that the solvent-extracted part accounts for ∼45-73% of the total amount of EPFRs. Spin densities of solvent-extracted EPFRs correlate positively with the concentrations of Fe, Cu, Mn, Ti, and Zn, whereas similar correlations are comparatively insignificant for nonextractable EPFRs. Under natural conditions, these two types of EPFRs exhibit different stabilization that solvent-extracted EPFRs are relatively unstable, whereas the nonextractable fraction possesses a long life span. Significant correlations between concentrations of solvent-extracted EPFRs and generation of hydroxyl and superoxide radicals are found. Overall, our results suggest that the fractionated solvent-extracted and nonextractable EPFRs may experience different formation and stabilization processes and health effects.
Collapse
Affiliation(s)
- Song Zhao
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| | - Pin Gao
- College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Duo Miao
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| | - Lan Wu
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| | - Yajie Qian
- College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Shanping Chen
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd. , Shanghai 200232 , China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health , Texas A&M University , College Station , Texas 77843 , United States
| | - Hanzhong Jia
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| |
Collapse
|
37
|
Zhao S, Miao D, Zhu K, Tao K, Wang C, Sharma VK, Jia H. Interaction of benzo[a]pyrene with Cu(II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. ENVIRONMENT INTERNATIONAL 2019; 129:154-163. [PMID: 31128436 DOI: 10.1016/j.envint.2019.05.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
This paper presents the interaction of benzo[a]pyrene (B[a]P) with Cu(II)-montmorillonite to investigate the formation, evolution and potential toxicity of environmentally persistent free radicals (EPFRs) under dark and visible light irradiation conditions. Degradation of B[a]P and the generated transformative products on clay mineral are monitored by gas chromatography-mass spectrometry (GC-MS) technique. Hydroxyl-B[a]P and B[a]P-diones are observed during the transformation of B[a]P under dark condition. B[a]P-3,6-dione and B[a]P-6,12-dione are the main products under visible light irradiation. B[a]P transformation is accompanied by the formation of EPFRs, which are quantified by electron paramagnetic resonance (EPR) spectroscopy. With increasing reaction time, the concentrations of the produced EPFRs are initially increased and then gradually decrease to an undetectable level. The deconvolution results of EPR spectra reveal formation of three types of organic radicals (carbon-centered radicals, oxygen-centered radicals, and carbon-centered radicals with a conjugated oxygen), which also co-exist. Correspondingly, visible-light irradiation promotes the formation and the decay of these EPFRs. The produced B[a]P-type EPFRs induce the generation of reactive oxygen species (ROS), such as superoxide (O2-) and hydroxide radicals (OH), which may cause oxidative stress to cells and tissues of organisms. The toxicity of degradation products is evaluated by the livability of human gastric epithelial GES-1cells. The toxicity is initially increased and then decreases with the elapsed reaction time, which correlates with the evolution of EPFRs concentrations. The present work provides direct evidence that the formation of EPFRs in interaction of PAHs with metal-contaminated clays may result in negative effects to human health.
Collapse
Affiliation(s)
- Song Zhao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Duo Miao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kelin Tao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chuanyi Wang
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
38
|
Ruan X, Sun Y, Du W, Tang Y, Liu Q, Zhang Z, Doherty W, Frost RL, Qian G, Tsang DCW. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. BIORESOURCE TECHNOLOGY 2019; 281:457-468. [PMID: 30827730 DOI: 10.1016/j.biortech.2019.02.105] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 05/22/2023]
Abstract
Due to abundant biomass and eco-friendliness, biochar is exemplified as one of the most promising candidates to mediate the degradation of environmental contaminants. Recently, environmentally persistent free radicals (EPFRs) have been detected in biochars, which can activate S2O82- or H2O2 to generate reactive oxygen species for effective degradation of organic and inorganic contaminants. Comprehending the formation mechanisms of EPFRs in biochars and their interactions with contaminants is indispensable to further develop their environmental applications, e.g., direct and indirect EPFR-mediated removal of organics/inorganics by biochars. With reference to the information of EPFRs in environmental matrices, this article critically reviews the formation mechanisms, characteristics, interactions, and environmental applications of EPFRs in biochars. Synthesis conditions and loading of metals/organics are considered as key parameters controlling their concentrations, types, and activities. This review provides new and important insights into the fate and emerging applications of surface-bound EPFRs in biochars.
Collapse
Affiliation(s)
- Xiuxiu Ruan
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weimeng Du
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Yuyuan Tang
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Zhanying Zhang
- Centre of Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - William Doherty
- Centre of Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Ray L Frost
- Centre of Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China; Center of Green Urban Mining & Industry Ecology, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
39
|
Zhang Y, Yang R, Si X, Duan X, Quan X. The adverse effect of biochar to aquatic algae- the role of free radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:429-437. [PMID: 30826605 DOI: 10.1016/j.envpol.2019.02.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The application of biochar in remediation and recovery of heavy metals and/or organic contaminants in water and soil is increasing. However, the adverse effect of biochar to aquatic organisms has not received enough attention. In this study, we conducted a study on the biotoxicity of biochar pyrolyzed from pine needle under oxygen-limited conditions. The toxicity of biochar was expressed with the following endpoints: cell growth, chlorophyll-a (Chl-a), reactive oxygen species (ROS), superoxide dismutase (SOD) content of Scenedesmus obliquus (S. obliquus) and the luminescence of Photobacterium phosphoreum (P. phosphoreum). Here, the effect of free radicals (FRs) contained in biochar was stressed. Our results show that the toxicity of biochar is significantly correlated with the concentration of FRs in biochar particles. Meanwhile, we found the FRs-containing biochar could induce the production of acellular ROS (such as ·OH) in water, which would also induce the production of interior cellular ROS in aquatic organisms. Our findings provide a new insight into the mechanism of toxicity aroused by biochar applications and aid in understanding its potential ecological risk.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ruixin Yang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaohui Si
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xingwei Duan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
40
|
Pan B, Li H, Lang D, Xing B. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:320-331. [PMID: 30802746 DOI: 10.1016/j.envpol.2019.02.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are defined as organic free radicals stabilized on or inside particles. They are persistent because of the protection by the particles and show significant toxicity to organisms. Increasing research interests have been attracted to study the potential environmental implications of EPFRs. Because of their different physical forms from conventional contaminants, it is not applicable to use the commonly used technique and strategy to predict and assess the behavior and risks of EPFRs. Current studies on EPFRs are scattered and not systematic enough to draw clear conclusions. Therefore, this review is organized to critically discuss the current research progress on EPFRs, highlighting their occurrence and transport, generation mechanisms, as well as their environmental implications (including both toxicity and reactivity). EPFR formation and stabilization as affected by the precursors and environmental factors are useful breakthrough to understand their formation mechanisms. To better understand the major differences between EPFRs and common contaminants, we identified the unique processes and/or mechanisms related to EPFRs. The knowledge gaps will be also addressed to highlight the future research while summarizing the research progress. Quantitative analysis of the interactions between organic contaminants and EPFRs will greatly improve the predictive accuracy of the multimedia environmental fate models. In addition, the health risks will be better evaluated when considering the toxicity contributed by EFPRs.
Collapse
Affiliation(s)
- Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Di Lang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
41
|
Dolios G, Patel D, Arora M, Andra SS. Mass defect filtering for suspect screening of halogenated environmental chemicals: A case study of chlorinated organophosphate flame retardants. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:503-519. [PMID: 30548241 PMCID: PMC9375139 DOI: 10.1002/rcm.8370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Organophosphate flame retardants (OPFRs) are a class of flame retardants widely found in environmental and biological matrices that have been extensively studied due to their adverse health effects in humans. OPFRs are loosely bound chemicals that can detach from treated products and be released into indoor and outdoor environments, where they have the potential to further undergo transformation and degradation processes, in particular the chlorinated OPFRs (Cl-PFRs). Their detection remains a moving target for analysts, and traditional targeted mass spectrometry methods are suitable only for those compounds with authentic standards. METHODS Mass defect filter (MDF) is a strategy to filter molecular features using thresholds applied to the mass defect value of a target ion or molecular feature of interest. We have developed an MDF strategy for the detection and tentative identification of twelve potential Cl-PFR transformation products in a study mixture of six known Cl-PFRs using MS/MS data acquired on a high-resolution mass spectrometer. Most compounds in the Cl-PFRs family share a ClO4 P group as a core structure, of which modification results in a significant shift in the exact masses of the resulting compounds but show only a minimal shift in their mass defects. Subsequently, the MDF strategy was employed to tentatively identify Cl-PFRs retrospectively in six human urine samples that had previously been analyzed. RESULTS MDF in combination with product ion filtering for the characteristic [H2 O3 P]+ and [H4 O4 P]+ ions and neutral loss filtering for the characteristic Cn H2n-x Clx group resulted in revealing suspects and homologues in the Cl-PFRs family. Furthermore, the MDF of the product ions detected additional Cl-PFR-related compounds that differed significantly in the exact masses of both precursor and product ions but had minimal shift in the mass defects of product ions. The mass defect of one or more common product ions helped to detect a few Cl-PFR analogs that had not been identified by MDF of the core structure precursor ion. CONCLUSIONS MDF helped to detect some Cl-PFRs present in lower concentrations, which went undetected without data filters. MDF also helped to detect chromatographic peaks for Cl-PFR homologues that are likely structural analogs that resulted from impurities and/or derivatives and transformation products. The methodology was applied to demonstrate and tentatively detect known and suspect Cl-PFRs in human urine samples retrospectively.
Collapse
Affiliation(s)
| | | | | | - Syam S. Andra
- Correspondence to Syam S. Andra (), Division of Environmental Health, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1057, New York City, NY 10029, USA
| |
Collapse
|
42
|
Qin Y, Li G, Gao Y, Zhang L, Ok YS, An T. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. WATER RESEARCH 2018; 137:130-143. [PMID: 29547776 DOI: 10.1016/j.watres.2018.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
With the increased concentrations and kinds of refractory organic contaminants (ROCs) in aquatic environments, many previous reviews systematically summarized the applications of carbon-based materials in the adsorption and catalytic degradation of ROCs for their economically viable and environmentally friendly behavior. Interestingly, recent studies indicated that carbon-based materials in natural environment can also mediate the transformation of ROCs directly or indirectly due to their abundant persistent free radicals (PFRs). Understanding the formation mechanisms of PFRs in carbo-based materials and their interactions with ROCs is essential to develop their further applications in environment remediation. However, there is no comprehensive review so far about the direct and indirect removal of ROCs mediated by PFRs in amorphous, porous and crystalline carbon-based materials. The review aims to evaluate the formation mechanisms of PFRs in carbon-based materials synthesized through pyrolysis and hydrothermal carbonization processes. The influence of synthesis conditions (temperature and time) and carbon sources on the types as well as the concentrations of PFRs in carbon-based materials are also discussed. In particular, the effects of metals on the concentrations and types of PFRs in carbon-based materials are highlighted because they are considered as the catalysts for the formation of PFRs. The formation mechanisms of reactive species and the further transformation mechanisms of ROCs are briefly summarized, and the surface properties of carbon-based materials including surface area, types and number of functional groups, etc. are found to be the key parameters controlling their activities. However, due to diversity and complexity of carbon-based materials, the exact relationships between the activities of carbon-based materials and PFRs are still uncertain. Finally, the existing problems and current challenges for the ROCs transformation with carbon-based materials are also pointed out.
Collapse
Affiliation(s)
- Yaxin Qin
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
43
|
Jia H, Zhao S, Shi Y, Zhu L, Wang C, Sharma VK. Transformation of Polycyclic Aromatic Hydrocarbons and Formation of Environmentally Persistent Free Radicals on Modified Montmorillonite: The Role of Surface Metal Ions and Polycyclic Aromatic Hydrocarbon Molecular Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5725-5733. [PMID: 29658709 DOI: 10.1021/acs.est.8b00425] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper presents the transformation of PAHs (phenanthrene, anthracene, benzo[a]anthracene, pyrene, and benzo[a]pyrene) on montmorillonite clays that are modified by transition-metal ions [Fe(III), Cu(II), Ni(II), Co(II), or Zn(II)] at room temperature (∼23 °C). The decay of these PAHs follows first-order kinetics, and the dependence of the observed rate constants ( kobs, day-1) on the presence of metal ions follows the order Fe(III) > Cu(II) > Ni(II) > Co(II) > Zn(II). The values of kobs show reasonable linear relationships with the oxidation potentials of the PAHs and the redox potentials of the metal ions. Notably, transformation of these PAHs results in the formation of environmentally persistent free radicals (EPFRs), which are of major concern due to their adverse effects on human health. The potential energy surface (PES) calculations using density functional theory were performed to understand the trends in kobs and the plausible mechanisms for radical formation from the PAHs on modified clays. The yields and stability of these EPFRs from anthracene and benzo[a]pyrene on clay surfaces varies with both the parent PAH and the metal ion. The results demonstrated the potential role of metals in the formation and fate of PAH-induced EPFR at co-contaminated sites.
Collapse
Affiliation(s)
- Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment , Northwest A&F University , Yangling 712100 , China
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Song Zhao
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Yafang Shi
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment , Northwest A&F University , Yangling 712100 , China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment , Northwest A&F University , Yangling 712100 , China
| | - Chuanyi Wang
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
44
|
Liu W, Jin L, Chen K, Li Y, Dahlgren RA, Ma M, Wang X. Inhibitory effects of natural organic matter on methyltriclosan photolysis kinetics. RSC Adv 2018; 8:21265-21271. [PMID: 35539952 PMCID: PMC9080868 DOI: 10.1039/c8ra03512a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the effects and related mechanisms of natural organic matter (NOM) on the photolysis of methyltriclosan (MTCS), a metabolite of triclosan. Addition of two representative NOM isolates, Pony Lake fulvic acid (PLFA-microbial origin) and Suwannee River fulvic acid (SRFA-terrestrial origin), significantly inhibited the direct photolytic rate of MTCS by ∼70%. The MTCS photolytic rate in the presence of PLFA was greater than for SRFA. NOM not only suppressed photolysis by light-shielding, but also produced ROS to oxidatively degrade MTCS and/or triplet NOM (3NOM*) to sensitize degradation. The dual effects of light-screening and photo-sensitization led to an overall decrease in photolysis of MTCS with a positive concentration-dependence. Upon addition of NOM, EPR documented the occurrence of 1O2 and ˙OH in the photolytic process, and the bimolecular k value for the reaction of 1O2 with MTCS was 1.86 × 106 M−1 s−1. ROS-quenching experiments indicated that the contribution of ˙OH (19.1–29.5%) to indirect photolysis of MTCS was lower than for 1O2 (38.3–58.7%). Experiments with D2O further demonstrated that 1O2 participated in MTCS photodegradation. Moreover, the addition of sorbic acid and O2 gas to the reaction confirmed the participation of 3NOM* as a key reactant in the photochemical transformation of MTCS. This is the first comprehensive analysis of NOM effects on the indirect photolysis of MTCS, which provides new insights for understanding the environmental fate of MTCS in natural environments. We demonstrate that PLFA and SRFA inhibit the MTCS photolysis by synergistic effects of light-shielding and photo-sensitization.![]()
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Lide Jin
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Kai Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Yanyan Li
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Randy A. Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Meiping Ma
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province
- Southern Zhejiang Water Research Institute
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| |
Collapse
|
45
|
Sauvain JJ, Rossi MJ. Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:996-1004. [PMID: 26683500 DOI: 10.1021/acs.est.5b04958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The catalytic nature of particulate matter is often advocated to explain its ability to generate reactive oxygen species, but quantitative data are lacking. We have performed molecular characterization of three different carbonaceous nanoparticles (NP) by 1. identifying and quantifying their surface functional groups based on probe gas-particle titration; 2. studying the kinetics of dissolved oxygen consumption in the presence of suspended NP's and dithiothreitol (DTT). We show that these NP's can reversibly change their oxidation state between oxidized and reduced functional groups present on the NP surface. By comparing the amount of O2 consumed and the number of strongly reducing sites on the NP, its average turnover ranged from 35 to 600 depending on the type of NP. The observed quadratic rate law for O2 disappearance points to a Langmuir-Hinshelwood surface-based reaction mechanism possibly involving semiquinone radical. In the proposed model, the strongly reducing surface site is assumed to be a polycyclic aromatic hydroquinone whose oxidation to the corresponding conjugated quinone is rate-limiting in the catalytic chain reaction. The presence and strength of the reducing surface functional groups are important for explaining the catalytic activity of NP in the presence of oxygen and a reducing agent like DTT.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Institute for Work and Health (IST), University of Lausanne and Geneva , Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
| | - Michel J Rossi
- Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry (LAC) , CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
46
|
Fang G, Liu C, Gao J, Dionysiou DD, Zhou D. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5645-53. [PMID: 25864382 DOI: 10.1021/es5061512] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study investigated the effects of metals (Fe3+, Cu2+, Ni2+, and Zn2+) and phenolic compounds (PCs: hydroquinone, catechol, and phenol) loaded on biomass on the formation of persistent free radicals (PFRs) in biochar. It was found that metal and phenolic compound treatments not only increased the concentrations of PFRs in biochar but also changed the types of PFRs formed, which indicated that manipulating the amount of metals and PCs in biomass may be an efficient method to regulate PFRs in biochar. These results provided direct evidence to elucidate the mechanism of PFR formation in biochar. Furthermore, the catalytic ability of biochar toward persulfate activation for the degradation of contaminants was evaluated. The results indicated that biochar activates persulfate to produce sulfate radicals (SO4•-) and degraded polychlorinated biphenyls (PCBs) efficiently. It was found that both the concentration and type of PFRs were the dominant factors controlling the activation of persulfate by biochar and that superoxide radical anions account for 20-30% of sulfate radical generation in biochar/persulfate. This conclusion was supported by linear correlations between the concentration of PFRs consumed and the formation of SO4•- and between λ (λ=[formed sulfate radicals]/[consumed PFRs]) and g-factors. The findings of this study provide new methods to manipulate PFR concentration in biochar for the transformation of contaminants and development of new alternative activators for persulfate-based remediation of contaminated soils.
Collapse
Affiliation(s)
- Guodong Fang
- †Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 Jiangsu, P. R. China
| | - Cun Liu
- †Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 Jiangsu, P. R. China
| | - Juan Gao
- †Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 Jiangsu, P. R. China
| | - Dionysios D Dionysiou
- §Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Dongmei Zhou
- †Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 Jiangsu, P. R. China
| |
Collapse
|