1
|
Li J, Wang T, Liang E. Carbon and hydrogen isotopic evidence for atrazine degradation by electro-activated persulfate: Radical contributions and comparisons with heat-activated persulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122892. [PMID: 37952922 DOI: 10.1016/j.envpol.2023.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
The activation ways of persulfate (PS) were dominate for pollutant degradation and energy consumption. For the first time, this research compared electro-activated PS and heat-activated PS from the perspective of isotope fractionation, in order to "fingerprinted" and precisely interpretate reaction contributions and degradation pathways. As results, PS can be electrochemically activated with atrazine (ATZ) removal rates of 84.8% and 88.8% at pH 4 and 7. The two-dimensional isotope plots (ɅC/H) values were 6.20 at pH 4 and 7.46 at pH 7, rather different from that of SO4·- -dominated process with ɅC/H value of -4.80 at pH 4 and -23.0 at pH 7, suggesting the weak contribution of SO4·-. ATZ degradation by electro-activated PS was controlled by direct electron transfer (DET) and ·OH radical, and ·OHPS (derived from PS activation) played the crucial role with contributing rate of 63.2%-69.1%, while DET and ·OHBDD (derived from electrolysis of H2O) contributed to 4.5-7.9% and 23.0%-30.8%, respectively. This was different from heat activation of PS, of which the latter was dominated by SO4·- with contributions of 83.9%-100%. The discrepant dominating reactive oxygen species should be responsible for their different degradation capabilities and pathways. This research provided isotopic interpretations for differences of PS activation mode, and further efforts can be made to realize the selective degradation by enhancing the specific reaction process.
Collapse
Affiliation(s)
- Jie Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
2
|
Liang E, Huang T, Li J, Wang T. Degradation pathways of atrazine by electrochemical oxidation at different current densities: Identifications from compound-specific isotope analysis and DFT calculation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121987. [PMID: 37301451 DOI: 10.1016/j.envpol.2023.121987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Current density was the key factor that impacted pollutant degradation by electrochemical oxidation, and reaction contributions at various current densities were non-negligible for the cost-effective treatments of organic pollutants. This research introduced compound specific isotope analysis (CSIA) into atrazine (ATZ) degradation by boron doped diamond (BDD) with current density of 2.5-20 mA/cm2, in order to provide "in-situ" and "fingerprint" analysis of reaction contributions with changed current densities. As results, the increased current density displayed a positive impact on ATZ removal. The ɅC/H values (correlations of Δδ13C and Δδ2H) were 24.58, 9.18 and 8.74 when current densities were 20, 4, and 2.5 mA/cm2, with ·OH contribution of 93.5%, 77.2% and 80.35%, respectively. While DET process favored lower current density with contribution rates up to ∼20%. What's more interesting, though the carbon and hydrogen isotope enrichment factors (εC and εH) were fluctuate, the ɅC/H linearly increased accompanied with applied current densities. Therefore, increasing current density was effective due to the larger ·OH contribution even though side reactions may occur. DFT calculations proved the increase of C-Cl bond length and the delocalization of Cl atom, confirming dechlorination reaction mainly occurred in the direct electron transfer process. While ·OH radical mainly attack the C-N bond on the side chain, which was more benefit to the fast decomposition of ATZ molecule and intermediates. It was forceful to discuss pollutant degradation mechanism by combining CSIA and DFT calculations. Target bond cleavage (i.e., dehalogenation reaction) can be conducted by changing reaction conditions like current density due to the significantly different isotope fractionation and bond cleavage.
Collapse
Affiliation(s)
- Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Jie Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
3
|
Min N, Yao J, Li H, Chen Z, Pang W, Zhu J, Kümmel S, Schaefer T, Herrmann H, Richnow HH. Humic Substance Photosensitized Degradation of Phthalate Esters Characterized by 2H and 13C Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1930-1939. [PMID: 36689325 PMCID: PMC9910037 DOI: 10.1021/acs.est.2c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (-4 ± 1, -4 ± 2, and -4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.
Collapse
Affiliation(s)
- Ning Min
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Jun Yao
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Hao Li
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Zhihui Chen
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Wancheng Pang
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Junjie Zhu
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Steffen Kümmel
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric
Chemistry Department (ACD), Leibniz Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric
Chemistry Department (ACD), Leibniz Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Isodetect
Leipzig GmbH, Deutscher
Platz 5b, Leipzig 04103, Germany
| |
Collapse
|
4
|
Junginger T, Payraudeau S, Imfeld G. Transformation and stable isotope fractionation of the urban biocide terbutryn during biodegradation, photodegradation and abiotic hydrolysis. CHEMOSPHERE 2022; 305:135329. [PMID: 35709839 DOI: 10.1016/j.chemosphere.2022.135329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Terbutryn is a widely used biocide in construction materials like paint and render to prevent the growth of microorganisms, algae and fungi. Terbutryn is released from the facades into the environment during rainfall, contaminating surface waters, soil and groundwater. Knowledge of terbutryn dissipation from the facades to aquatic ecosystems is scarce. Here, we examined in laboratory microcosms degradation half-lives, formation of transformation products and carbon and nitrogen isotope fractionation during terbutryn direct (UV light with λ = 254 nm and simulated sunlight) and indirect (simulated sunlight with nitrate) photodegradation, abiotic hydrolysis (pH = 1, 7 and 13), and aerobic biodegradation (stormwater pond sediment, soil and activated sludge). Biodegradation half-lives of terbutryn were high (>80 d). Photodegradation under simulated sunlight and hydrolysis at extreme pH values indicated slow degradability and accumulation in the environment. Photodegradation resulted in a variety of transformation products, whereas abiotic hydrolysis lead solely to terbutryn-2-hydroxy in acidic and basic conditions. Biodegradation indicates degradation to terbutryn-2-hydroxy through terbutryn-sulfoxide. Compound-specific isotope analysis (CSIA) of terbutryn holds potential to differentiate degradation pathways. Carbon isotope fractionation values (εC) ranged from -3.4 ± 0.3‰ (hydrolysis pH 1) to +0.8 ± 0.1‰ (photodegradation under UV light), while nitrogen isotope fractionation values ranged from -1.0 ± 0.4‰ (simulated sunlight photodegradation with nitrate) to +3.4 ± 0.2‰ (hydrolysis at pH 1). In contrast, isotope fractionation during biodegradation was insignificant. ΛN/C values ranged from -1.0 ± 0.1 (hydrolysis at pH 1) to 2.8 ± 0.3 (photodegradation under UV light), allowing to differentiate degradation pathways. Combining the formation of transformation products and stable isotope fractionation enabled identifying distinct degradation pathways. Altogether, this study highlights the potential of CSIA to follow terbutryn degradation in situ and differentiate prevailing degradation pathways, which may help to monitor urban biocide remediation and mitigation strategies.
Collapse
Affiliation(s)
- Tobias Junginger
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France.
| |
Collapse
|
5
|
Yao Y, Hu X, Zhang Y, He H, Li S. Visible light promoted the removal of tetrabromobisphenol A from water by humic acid-FeS colloid. CHEMOSPHERE 2022; 289:133192. [PMID: 34890606 DOI: 10.1016/j.chemosphere.2021.133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
Ferrous sulfide (FeS) and humic acid (HA) are typical black substances in black bloom water. Based on the strong reduction ability of FeS and the photosensitivity of HA, the transformation of toxic organic pollutants by the combination of FeS and HA (HA-FeS) is not clear. In order to explore this issue, the stability of HA-FeS was analyzed by measuring the hydrodynamic diameter and zeta potential of HA-FeS, and then the removal mechanism and possible degradation pathway of tetrabromobisphenol A (TBBPA) by HA-FeS under continuous illumination were discussed. The results showed that the hydrodynamic diameter of FeS was reduced and the stability of FeS was improved, and it was easily suspended after FeS combined with the HA in the water. The combination of HA and FeS promoted the removal of TBBPA in water, no matter it was in the presence or absence of light. Besides, compared with the absence of light, the removal efficiency of TBBPA was improved by HA-FeS with continuous light. There were two reasons for the increase in the removal efficiency of TBBPA by HA-FeS. On the one hand, Fe2+ and S2- of HA-FeS had more stable chemical valence and obtained better reducibility under continuous light than that in the dark. On the other hand, light induced the release of active species (O2-, 1O2, and OH) in the HA-FeS composite colloid and further promoted the degradation of organic pollutants. Therefore, the black substances (FeS) of black blooms may play a beneficial role in the removal of pollutants under sunlight.
Collapse
Affiliation(s)
- Youru Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China
| | - Xin Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
6
|
Drouin G, Droz B, Leresche F, Payraudeau S, Masbou J, Imfeld G. Direct and indirect photodegradation of atrazine and S-metolachlor in agriculturally impacted surface water and associated C and N isotope fractionation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1791-1802. [PMID: 34709265 DOI: 10.1039/d1em00246e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of direct and indirect photodegradation of pesticides and associated isotope fractionation can help to assess pesticide degradation in surface waters. Here, we investigated carbon (C) and nitrogen (N) isotope fractionation during direct and indirect photodegradation of the herbicides atrazine and S-metolachlor in synthetic agriculturally impacted surface waters containing nitrates (20 mg L-1) and dissolved organic matter (DOM, 5.4 mgC L-1). Atrazine and S-metolachlor were quickly photodegraded by both direct and indirect processes (half-lives <5 and <7 days, respectively). DOM slowed down photodegradation while nitrates increased degradation rates. The analysis of transformation products showed that oxidation mediated by hydroxyl radicals (HO˙) predominated during indirect photodegradation. UV light (254 nm) led to significant C and N isotope fractionation, yielding isotopic fractionation values εC = 2.7 ± 0.3 and 0.8 ± 0.1‰, and εN = 2.4 ± 0.3 and -2.6 ± 0.7‰ for atrazine and S-metolachlor, respectively. In contrast, photodegradation under simulated sunlight led to negligible C and slight N isotope fractionation, emphasizing the effect of the radiation wavelengths on the isotope fractionation induced by direct photodegradation. Altogether, these results highlight the importance of using simulated sunlight to obtain environmentally-relevant isotopic fractionation values and to distinguish photodegradation and other dissipation pathways in surface waters.
Collapse
Affiliation(s)
- Guillaume Drouin
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Boris Droz
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado 80309, USA
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Jérémy Masbou
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| |
Collapse
|
7
|
Wu L, Suchana S, Flick R, Kümmel S, Richnow H, Passeport E. Carbon, hydrogen and nitrogen stable isotope fractionation allow characterizing the reaction mechanisms of 1H-benzotriazole aqueous phototransformation. WATER RESEARCH 2021; 203:117519. [PMID: 34391022 DOI: 10.1016/j.watres.2021.117519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
1H-benzotriazole is part of a larger family of benzotriazoles, which are widely used as lubricants, polymer stabilizers, corrosion inhibitors, and anti-icing fluid components. It is frequently detected in urban runoff, wastewater, and receiving aquatic environments. 1H-benzotriazole is typically resistant to biodegradation and hydrolysis, but can be transformed via direct photolysis and photoinduced mechanisms. In this study, the phototransformation mechanisms of 1H-benzotriazole were characterized using multi-element compound-specific isotope analysis (CSIA). The kinetics, transformation products, and isotope fractionation results altogether revealed that 1H-benzotriazole direct photolysis and indirect photolysis induced by OH radicals involved two alternative pathways. In indirect photolysis, aromatic hydroxylation dominated and was associated with small carbon (εC = -0.65 ± 0.03‰), moderate hydrogen (εH = -21.6‰), and negligible nitrogen isotope enrichment factors and led to hydroxylated forms of benzotriazole. In direct photolysis of 1H-benzotriazole, significant nitrogen (εN = -8.4 ± 0.4 to -4.2 ± 0.3‰) and carbon (εC = -4.3 ± 0.2 to -1.64 ± 0.04‰) isotope enrichment factors indicated an initial N-N bond cleavage followed by nitrogen elimination with a C-N bond cleavage. The results of this study highlight the potential for multi-element CSIA application to track 1H-benzotriazole degradation in aquatic environments.
Collapse
Affiliation(s)
- Langping Wu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON M5S 1A4, Canada
| | - Shamsunnahar Suchana
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON M5S 1A4, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Elodie Passeport
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON M5S 1A4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
8
|
Cui G, Lartey-Young G, Chen C, Ma L. Photodegradation of pesticides using compound-specific isotope analysis (CSIA): a review. RSC Adv 2021; 11:25122-25140. [PMID: 35478915 PMCID: PMC9037106 DOI: 10.1039/d1ra01658j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Pesticides are commonly applied in agriculture to protect crops from pests, weeds, and harmful pathogens. However, chronic, low-level exposure to pesticides can be toxic to humans. Photochemical degradation of pesticides in water, soil, and other environmental media can alter their environmental fate and toxicity. Compound-specific isotope analysis (CSIA) is an advanced diagnostic tool to quantify the degradation of organic pollutants and provide insight into reaction mechanisms without the need to identify transformation products. CSIA allows for the direct quantification of organic degradation, including pesticides. This review summarizes the recent developments observed in photodegradation studies on different categories of pesticides using CSIA technology. Only seven pesticides have been studied using photodegradation, and these studies have mostly occurred in the last five years. Knowledge gaps in the current literature, as well as potential approaches for CSIA technology for pesticide monitoring, are discussed in this review. Furthermore, the CSIA analytical method is challenged by chemical element types, the accuracy of instrument analysis, reaction conditions, and the stability of degradation products. Finally, future research applications and the operability of this method are also discussed.
Collapse
Affiliation(s)
- Guolu Cui
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - George Lartey-Young
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Chong Chen
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| |
Collapse
|
9
|
Wang T, Huang T, Jiang H, Ma R. Electrochemical degradation of atrazine by BDD anode: Evidence from compound-specific stable isotope analysis and DFT simulations. CHEMOSPHERE 2021; 273:129754. [PMID: 33524760 DOI: 10.1016/j.chemosphere.2021.129754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Direct charge transfer (DCT) and •OH attack played important roles in contaminant degradation by BDD electrochemical oxidation. Their separate contributions and potential bond-cleavage processes were required but lacking. Here, we carried out promising compound-specific isotope fractionation analysis (CSIA) to explore 13C and 2H isotope fractionation of atrazine (ATZ), followed by assessing the reaction pathway by BDD anode. The correlation of 2H and 13C fractionation allows to remarkably differentiate DCT process and •OH attack, with Λ values of 18.99 and 53.60, respectively. Radical quenching identified that •OH accounted for 79.0%-88.5% in the whole reaction. While CSIA methods provided biased results, which suggested that ATZ degradation exhibited two stages with •OH contributions of 24.6% and 84.3% respectively, confirming CSIA was more sensitive and provided more possibilities to estimate degradation processes. Combined with Fukui index and intermediate products identification, we deduced that dechlorination-hydroxylation mainly occurred in the first 30 min by DCT reaction. While lateral chain oxidation with C-N broken was the governing route once •OH was largely generated, with the production of DEA (m/z 188), DIA (m/z 174), DEIA (m/z 146) and DEIHA (m/z 128). Our results demonstrated that isotope fractionation can offer "isotopic footprints" for identifying the rate-limiting steps and bond breakage process, and opens new avenues for degradation pathways of contaminants.
Collapse
Affiliation(s)
- Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Huan Jiang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| |
Collapse
|
10
|
He M, Wan Z, Tsang DCW, Sun Y, Khan E, Hou D, Graham NJD. Performance indicators for a holistic evaluation of catalyst-based degradation-A case study of selected pharmaceuticals and personal care products (PPCPs). JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123460. [PMID: 32683158 DOI: 10.1016/j.jhazmat.2020.123460] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Considerable efforts have been made to develop effective and sustainable catalysts, e.g., carbon-/biochar-based catalyst, for the decontamination of organic pollutants in water/wastewater. Most of the published studies evaluated the catalytic performance mainly upon degradation efficiency of parent compounds; however, comprehensive and field-relevant performance assessment is still in need. This review critically analysed the performance indicators for carbon-/biochar-based catalytic degradation from the perspectives of: (1) degradation of parent compounds, i.e., concentrations, kinetics, reactive oxidative species (ROS) analysis, and residual oxidant concentration; (2) formation of intermediates and by-products, i.e., intermediates analysis, evolution of inorganic ions, and total organic carbon (TOC); and (3) impact assessment of treated samples, i.e., toxicity evolution, disinfection effect, and biodegradability test. Five most frequently detected pharmaceuticals and personal care products (PPCPs) (sulfamethoxazole, carbamazepine, ibuprofen, diclofenac, and acetaminophen) were selected as a case study to articulate the performance indicators for a holistic evaluation of carbon-/biochar-based catalytic degradation. This review also encourages the development of alternative performance indicators to facilitate the rational design of catalysts in future studies.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nigel J D Graham
- Faculty of Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Liu J, Fan J, He T, Xu X, Ai Y, Tang H, Gu H, Lu T, Liu Y, Liu G. The mechanism of aquatic photodegradation of organophosphorus sensitized by humic acid-Fe 3+ complexes. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121466. [PMID: 31679891 DOI: 10.1016/j.jhazmat.2019.121466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Organic phosphorus is an important source of eutrophication. In this study, to understand the mechanism of organophosphorus photodegradation, humic acid-Fe3+ (HA-Fe3+) complexes were prepared as a sensitizer, and glyphosate (GP) was used as a substrate for photodegradation. The effects of the initial GP concentration, HA concentration, Fe3+ concentration and microbial factors on photodegradation were investigated. The initial concentrations of GP, HA and Fe3+ could significantly affect the degradation rate of GP. Phosphate is the main product of GP photodegradation. Based on the identification of the active species in the reaction process, t-butanol was found to have the most significant inhibitory effect on the degradation. The reaction rate after t-butanol treatment was reduced from 0.017 to 0.003. This confirmed that OH was the main oxidant in the system, which was also demonstrated by EPR spectroscopy. A possible mechanism of GP photodegradation sensitized by HA-Fe3+ complexes was revealed for the first time. The HA-Fe3+ complexes in the reaction system were photodegraded and oxidized to finally produce OH, which promotes GP photodegradation. This study facilitates understanding the phosphorus cycle in a water environment and provides a scientific basis for the restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jiajun Fan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Tianyu He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Xiaofang Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yulu Ai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Haoran Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Hao Gu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Tao Lu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yanhui Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, People's Republic of China.
| |
Collapse
|
12
|
Liang R, Tang F, Wang J, Yue Y. Photo-degradation dynamics of five neonicotinoids: Bamboo vinegar as a synergistic agent for improved functional duration. PLoS One 2019; 14:e0223708. [PMID: 31622381 PMCID: PMC6797178 DOI: 10.1371/journal.pone.0223708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
The effects of photo-degradation on the utilization of pesticides in agricultural production has been investigated. Various influencing factors were compared, with results showing that the initial pesticide concentration, light source, water quality and pH possessed different effects on neonicotinoids photo-degradation. The initial concentration and pH were found to be most critical effects. The photo-degradation rate decreased by a factor of 2-4 when the initial concentration increased from 5 mg L-1 to 20 mg L-1, particularly for acetamiprid and imidacloprid. The photo-degradation pathways and products of the five neonicotinoids were also investigated, with similar pathways found for each pesticide, except for acetamiprid. Degradation pathways mainly involved photo-oxidation processes, with products identified using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) found to be consistent with literature reported results. Bamboo vinegar exerted a photo-quenching effect on the neonicotinoids, with an improved efficiency at higher vinegar concentrations. The photo-quenching rates of thiamethoxam and dinotefuran were 381.58% and 310.62%, respectively, when a 30-fold dilution of vinegar was employed. The photo-degradation products in bamboo vinegar were identical to those observed in methanol, with acetic acid being the main factor influencing the observed quenching effects.
Collapse
Affiliation(s)
- Rui Liang
- School of Resource & Environment, Anhui Agricultural University, Hefei, China
| | - Feng Tang
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Jin Wang
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Yongde Yue
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| |
Collapse
|
13
|
Lian S, Wu L, Nikolausz M, Lechtenfeld OJ, Richnow HH. 2H and 13C isotope fractionation analysis of organophosphorus compounds for characterizing transformation reactions in biogas slurry: Potential for anaerobic treatment of contaminated biomass. WATER RESEARCH 2019; 163:114882. [PMID: 31352241 DOI: 10.1016/j.watres.2019.114882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The ability of anaerobic digestion (AD) to eliminate organophosphorus model compounds (OPs) with structural elements of phosphate, phosphorothioate and phosphorodithioate esters was studied. The enzymatic mechanism of the first irreversible degradation reaction was characterized using metabolite pattern and kinetic 2H/13C-isotope effect in original, cell-free and heat sterilized biogas slurry. The isotope fractionation study suggests different modes of degradation reactions. Representatives for phosphate ester, tris(2-chloroethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate, were hydrolyzed in biogas slurry without carbon or hydrogen isotope fractionation. Representatives for phosphorodithioate, Dimethoate and Malathion, were degraded in original slurry yielding carbon enrichment factor (εC) of -0.6 ± 0.1‰ and -5.5 ± 0.1‰ (-0.9 ± 0.1‰ and -7.2 ± 0.5‰ in cell-free slurry), without hydrogen isotope fractionation. Phosphorothioate degradation represented by Parathion and Parathion-methyl yielded surprisingly different εC (-0.7 ± 0.2 and -3.6 ± 0.4‰) and εH (-33 ± 5 and -5 ± 1‰) in original slurry compared to cell-free slurry (εC = -2.5 ± 0.5 and -8.6 ± 1.4‰; εH = -61 ± 10 and -10 ± 3‰) suggesting H-C bond cleavage. Degradation of Parathion and Parathion-methyl in sterilized slurry gave carbon but not hydrogen fractionation implying relative thermostable enzymatic activity with different mechanism. The correlation of 2H and 13C stable isotope fractionation of Parathion in biogas slurry showed distinct pattern (Λoriginal = 31 ± 11, Λcell-free = 20 ± 2), indicating different mechanism from chemical hydrolysis. Overall, AD can be a potential treatment for OPs contaminated biomass or contaminated organic waste material.
Collapse
Affiliation(s)
- Shujuan Lian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
14
|
A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis. Anal Chim Acta 2019; 1064:56-64. [DOI: 10.1016/j.aca.2019.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 01/30/2023]
|
15
|
Huang B, Lai C, Dai H, Mu K, Xu Z, Gu L, Pan X. Microbially reduced humic acid promotes the anaerobic photodegradation of 17α--ethinylestradiol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:313-320. [PMID: 30612019 DOI: 10.1016/j.ecoenv.2018.12.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Photolysis and microbial activity are relatively obvious in shallow, eutrophic waters with low dissolved oxygen content. Ubiquitous humic acid (HA) can act as electron acceptor and be reduced by bacterial under such conditions, and the reduced form of humic acid (RHA) plays an important role in the photolysis contaminants. In this study, anaerobic 17α-ethinylestradiol (EE2) photodegradation was performed along with biodegradation by Shewanella putrefaciens mediated by HA. The mechanism of such coupled photolysis and biodegradation of EE2 was thus elucidated. The removal rate in such coupled degradation in the presence of 10 mgC L-1 of HA at pH 8.0 was greater than that of either photolysis or biodegradation alone. HA which had been reduced in a double-chamber microbial fuel cell showed better promotion to EE2 photodegradation than fresh HA. Reactive species scavenging experiments indicated that hydroxyl radical and excited triplet states of HA were primary contributors to EE2 photodegradation in anaerobic conditions. More of them were produced from RHA than from pristine HA. Besides, the degraded EE2 solutions inhibited the proliferation of MCF-7 human cancer Cells. These findings improve our understanding of the environmental transformation of EE2 in the shallow, anoxic waters.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Han Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kailin Mu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Chen Y, Zhang X, Feng S. Contribution of the Excited Triplet State of Humic Acid and Superoxide Radical Anion to Generation and Elimination of Phenoxyl Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8283-8291. [PMID: 29916697 DOI: 10.1021/acs.est.8b00890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Contributions of excited triplet state of humic acid (3HA*) and superoxide radical anion (O2•-), which is mainly generated via the reaction of O2 with HA-derived reducing intermediates (HA•-), to phenol transformation were revealed using acetaminophen, 2,4,6-trimethylphenol and tyrosine as probe molecules. Phenol transformation was initiated by 3HA*, leading to the formation of the phenoxyl radical (PhO•), but the distribution of transformation intermediates was codetermined by 3HA* and HA•-. The influence of HA•- essentially resulted from the production of O2•-, which affected the fate of PhO•. PhO• could undergo dimerization, or react with O2•-, leading to either phenol peroxide formation (radical addition) or phenol regeneration (electron transfer). In addition, PhO• could bind to HA or react with HA radicals, particularly in the absence of O2 and O2•-. These PhO• reactions were dependent on the reduction potential and structure of PhO•. This study also proved that the reaction of phenol with 1O2 and the reaction of PhO• with O2•- lead to the same oxidation product. The contributions of 3HA* and its generated 1O2, HA•- and its generated O2•- to phenol transformation were pH-dependent.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Environmental Science , School of Resources and Environmental Science, Wuhan University , Wuhan 430079 , P.R. China
| | - Xu Zhang
- Department of Environmental Science , School of Resources and Environmental Science, Wuhan University , Wuhan 430079 , P.R. China
| | - Shixiang Feng
- Department of Environmental Science , School of Resources and Environmental Science, Wuhan University , Wuhan 430079 , P.R. China
| |
Collapse
|
17
|
Passeport E, Zhang N, Wu L, Herrmann H, Sherwood Lollar B, Richnow HH. Aqueous photodegradation of substituted chlorobenzenes: Kinetics, carbon isotope fractionation, and reaction mechanisms. WATER RESEARCH 2018; 135:95-103. [PMID: 29459118 DOI: 10.1016/j.watres.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Substituted chlorobenzenes are the basic substructure of many surface water contaminants. In this study, the isotope fractionation and reaction mechanisms involved during the aqueous direct and indirect photodegradation of CH3-, Cl-, and NO2- substituted chlorobenzenes were investigated in laboratory experiments. Only 4-nitrochlorobenzene showed slow but isotopically fractionating direct photolysis. During indirect photodegradation using UV/H2O2-generated OH radicals, the pseudo first-order reaction rate constants increased in the order of the NO2- < Cl- < CH3- substituted chlorobenzenes. The most pronounced carbon enrichment factors were observed for nitrochlorobenzenes (up to -4.8 ± 0.5‰), whereas the lowest were for chlorotoluenes (≤-1.0 ± 0.1‰). As the substituents became more electron-withdrawing, the activation energy barrier increased, leading to slower reaction rates, and the transition state changed to a more symmetrical or less reactant-like structure, resulting in larger apparent kinetic isotope effects. The results suggest that the rate-determining step in the reaction with OH radicals was the addition of the electrophile to the benzene ring. Even though further research is needed to quantify isotope fractionation during other transformation processes, these results showed evidence that compound specific isotope analysis can be used as a diagnostic tool for the fate of substituted chlorobenzenes in water.
Collapse
Affiliation(s)
- Elodie Passeport
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada.
| | - Ning Zhang
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- TROPOS Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Barbara Sherwood Lollar
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Wu L, Chládková B, Lechtenfeld OJ, Lian S, Schindelka J, Herrmann H, Richnow HH. Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:20-28. [PMID: 28961438 DOI: 10.1016/j.scitotenv.2017.09.233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Continuous and excessive use of organophosphorus compounds (OPs) has led to environmental contaminations which raise public concerns. This study investigates the isotope fractionation patterns of OPs in the aquatic environment dependence upon hydrolysis, photolysis and radical oxidation processes. The hydrolysis of parathion (EP) and methyl parathion (MP) resulted in significant carbon fractionation at lower pH (pH2-7, εC=-6.9~-6.0‰ for EP, -10.5~-9.9‰ for MP) but no detectable carbon fractionation at higher pH (pH12). Hydrogen fractionation was not observed during any of the hydrolysis experiments. These results indicate that compound specific isotope analysis (CSIA) allows distinction of two different pH-dependent pathways of hydrolysis. Carbon and hydrogen isotope fractionation were determined during UV/H2O2 photolysis of EP and tris(2-chloroethyl) phosphate (TCEP). The constant δ2H values determined during the OH radical reaction of EP suggested that the rate-limiting step proceeded through oxidative attack by OH radical on the PS bond. The significant H isotope enrichment suggested that OH radical oxidation of TCEP was caused by an H-abstraction during the UV/H2O2 processes (εH=-56±3‰). Fenton reaction was conducted to validate the H isotope enrichment of TCEP associated with radical oxidation, which yielded εH of -34±5‰. Transformation products of OPs during photodegradation were identified using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). This study highlights that the carbon and hydrogen fractionation patterns have the potential to elucidate the transformation of OPs in the environment.
Collapse
Affiliation(s)
- Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Barbora Chládková
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Shujuan Lian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Janine Schindelka
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
19
|
Corrochano P, Nachtigallová D, Klán P. Photooxidation of Aniline Derivatives Can Be Activated by Freezing Their Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13763-13770. [PMID: 29148724 DOI: 10.1021/acs.est.7b04510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combined experimental and computational approach was used to investigate the spectroscopic properties of three different aniline derivatives (aniline, N,N-dimethylaniline, and N,N-diethylaniline) in aqueous solutions and at the air-ice interface in the temperature range of 243-298 K. The absorption and diffuse reflectance spectra of ice samples prepared by different techniques, such as slow or shock freezing of the aqueous solutions or vapor deposition on ice grains, exhibited unequivocal bathochromic shifts of 10-15 nm of the absorption maxima of anilines in frozen samples compared to those in liquid aqueous solutions. DFT and SCS-ADC(2) calculations showed that contaminant-contaminant and contaminant-ice interactions are responsible for these shifts. Finally, we demonstrate that irradiation of anilines in the presence of a hydrogen peroxide/O2 system by wavelengths that overlap only with the red-shifted absorption tails of anilines in frozen samples (while having a marginal overlap with their spectra in liquid solutions) can almost exclusively trigger a photochemical oxidation process. Mechanistic and environmental considerations are discussed.
Collapse
Affiliation(s)
- Pablo Corrochano
- RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Klán
- RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
20
|
Kopinke FD, Georgi A. What Controls Selectivity of Hydroxyl Radicals in Aqueous Solution? Indications for a Cage Effect. J Phys Chem A 2017; 121:7947-7955. [DOI: 10.1021/acs.jpca.7b05782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frank-Dieter Kopinke
- Department of Environmental
Engineering, Helmholtz Centre for Environmental Research − UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Anett Georgi
- Department of Environmental
Engineering, Helmholtz Centre for Environmental Research − UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| |
Collapse
|
21
|
Ren D, Huang B, Xiong D, He H, Meng X, Pan X. Photodegradation of 17α-ethynylestradiol in dissolved humic substances solution: Kinetics, mechanism and estrogenicity variation. J Environ Sci (China) 2017; 54:196-205. [PMID: 28391929 DOI: 10.1016/j.jes.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 06/07/2023]
Abstract
17α-Ethynylestradiol (EE2) in natural waters may cause adverse effects on organisms due to its high estrogenic potency. Laboratory studies were performed to study the effects of a local humic acid (LHA), fulvic acid (LFA) and Aldrich humic acid (AHA) on the photochemical behavior and estrogenic potency of EE2. Here photolytic experiments demonstrated that pure aqueous EE2 could undergo direct and self-sensitized photodegradation at a global rate of 0.0068hr-1. Photodegradation rate of EE2 in 5.0mg/L dissolved humic substances (DHS) was determined to be 0.0274, 0.0296 and 0.0254hr-1 for LHA, LFA and AHA, respectively. Reactive oxygen species (ROS) and triplet dissolved humic substances (3DHS*) scavenging experiments indicated that the promotion effect of DHS on EE2 photodegradation was mainly aroused by the reactions of HO (35%-50%), 1O2 (<10%) and 3DHS* (22%-34%). However, the photodegradation of EE2 could also be inhibited when DHS exceeded the threshold of 10mg/L. Three hydroxylation products of EE2 were identified using GC-MS and their formation pathways were also proposed. In vitro estrogenicity tests showed that EE2 was transformed into chemicals without estrogenic potency. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens in sunlit natural waters.
Collapse
Affiliation(s)
- Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Dan Xiong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiangqi Meng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
22
|
Wu L, Kümmel S, Richnow HH. Validation of GC-IRMS techniques for δ 13C and δ 2H CSIA of organophosphorus compounds and their potential for studying the mode of hydrolysis in the environment. Anal Bioanal Chem 2017; 409:2581-2590. [PMID: 28168550 DOI: 10.1007/s00216-017-0203-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
Compound-specific stable isotope analysis (CSIA) is among the most promising tools for studying the fate of organic pollutants in the environment. However, the feasibility of multidimensional CSIA was limited by the availability of a robust method for precise isotope analysis of heteroatom-bearing organic compounds. We developed a method for δ 13C and δ 2H analysis of eight organophosphorus compounds (OPs) with different chemical properties. In particular, we aimed to compare high-temperature conversion (HTC) and chromium-based HTC (Cr/HTC) units to explore the limitations of hydrogen isotope analysis of heteroatom-bearing compounds. Analysis of the amount dependency of the isotope values (linearity analysis) of OPs indicated that the formation of HCl was a significant isotope fractionation process leading to inaccurate δ 2H analysis in HTC. In the case of nonchlorinated OPs, by-product formation of HCN, H2S, or PH3 in HTC was observed but did not affect the dynamic range of reproducible isotope values above the limit of detection. No hydrogen-containing by-products were found in the Cr/HTC process by use of ion trap mass spectrometry analysis. The accuracy of gas chromatography - isotope ratio mass spectrometry was validated in comparison with elemental analyzer - isotope ratio mass spectrometry. Dual-isotope fractionation yielded Λ values of 0 ± 0 at pH 7, 7 ± 1 at pH 9, and 30 ± 6 at pH 12, indicating the potential of 2D CSIA to characterize the hydrolysis mechanisms of OPs. This is the first report on the combination of δ 2H and δ 13C isotope analysis of OPs, and this is the first study providing a systematic evaluation of HTC and Cr/HTC for hydrogen isotope analysis using OPs as target compounds. Graphical Abstract Comparison of δ2H measurement of non-chlorinated and chlorinated OPs via GC-Cr/HTC-IRMS and GC-HTC-IRMS system.
Collapse
Affiliation(s)
- Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
23
|
Finlayson-Pitts BJ. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discuss 2017; 200:11-58. [DOI: 10.1039/c7fd00161d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.
Collapse
|
24
|
Vogt C, Dorer C, Musat F, Richnow HH. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons — from enzymes to the environment. Curr Opin Biotechnol 2016; 41:90-98. [DOI: 10.1016/j.copbio.2016.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
25
|
Kuntze K, Kozell A, Richnow HH, Halicz L, Nijenhuis I, Gelman F. Dual Carbon-Bromine Stable Isotope Analysis Allows Distinguishing Transformation Pathways of Ethylene Dibromide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9855-9863. [PMID: 27526716 DOI: 10.1021/acs.est.6b01692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The present study investigated dual carbon-bromine isotope fractionation of the common groundwater contaminant ethylene dibromide (EDB) during chemical and biological transformations, including aerobic and anaerobic biodegradation, alkaline hydrolysis, Fenton-like degradation, debromination by Zn(0) and reduced corrinoids. Significantly different correlation of carbon and bromine isotope fractionation (ΛC/Br) was observed not only for the processes following different transformation pathways, but also for abiotic and biotic processes with, the presumed, same formal chemical degradation mechanism. The studied processes resulted in a wide range of ΛC/Br values: ΛC/Br = 30.1 was observed for hydrolysis of EDB in alkaline solution; ΛC/Br between 4.2 and 5.3 were determined for dibromoelimination pathway with reduced corrinoids and Zn(0) particles; EDB biodegradation by Ancylobacter aquaticus and Sulfurospirillum multivorans resulted in ΛC/Br = 10.7 and 2.4, respectively; Fenton-like degradation resulted in carbon isotope fractionation only, leading to ΛC/Br ∞. Calculated carbon apparent kinetic isotope effects ((13)C-AKIE) fell with 1.005 to 1.035 within expected ranges according to the theoretical KIE, however, biotic transformations resulted in weaker carbon isotope effects than respective abiotic transformations. Relatively large bromine isotope effects with (81)Br-AKIE of 1.0012-1.002 and 1.0021-1.004 were observed for nucleophilic substitution and dibromoelimination, respectively, and reveal so far underestimated strong bromine isotope effects.
Collapse
Affiliation(s)
- Kevin Kuntze
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Anna Kozell
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Ludwik Halicz
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , 02-089 Warsaw, Poland
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Faina Gelman
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel
| |
Collapse
|
26
|
Bernard F, Ciuraru R, Boréave A, George C. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8678-86. [PMID: 27434860 PMCID: PMC4990006 DOI: 10.1021/acs.est.6b03520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins.
Collapse
Affiliation(s)
- F. Bernard
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - R. Ciuraru
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - A. Boréave
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - C. George
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
- Phone: (33) (0)4 72 44 54
92; e-mail:
| |
Collapse
|
27
|
Zhang N, Geronimo I, Paneth P, Schindelka J, Schaefer T, Herrmann H, Vogt C, Richnow HH. Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (δ(13)C and δ(2)H). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:484-494. [PMID: 26520272 DOI: 10.1016/j.scitotenv.2015.10.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
OH radicals generated by the photolysis of H2O2 can degrade aromatic contaminants by either attacking the aromatic ring to form phenolic products or oxidizing the substituent. We characterized these competing pathways by analyzing the carbon and hydrogen isotope fractionation (εC and εH) of various substituted benzenes. For benzene and halobenzenes that only undergo ring addition, low values of εC (-0.7‰ to -1.0‰) were observed compared with theoretical values (-7.2‰ to -8‰), possibly owing to masking effect caused by pre-equilibrium between the substrate and OH radical preceding the rate-limiting step. In contrast, the addition of OH radicals to nitrobenzene ring showed a higher εC (-3.9‰), probably due to the lower reactivity. Xylene isomers, anisole, aniline, N,N-dimethylaniline, and benzonitrile yielded normal εH values (-2.8‰ to -29‰) indicating the occurrence of side-chain reactions, in contrast to the inverse εH (11.7‰ to 30‰) observed for ring addition due to an sp(2) to sp(3) hybridization change at the reacting carbon. Inverse εH values for toluene (14‰) and ethylbenzene (30‰) were observed despite the formation of side-chain oxidation products, suggesting that ring addition has a larger contribution to isotope fractionation. Dual element isotope slopes (∆δ(2)H/∆δ(13)C) therefore allow identification of significant degradation pathways of aromatic compounds by photochemically induced OH radicals. Issues that should be addressed in future studies include quantitative determination of the contribution of each competing pathway to the observed isotope fractionation and characterization of physical processes preceding the reaction that could affect isotope fractionation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Inacrist Geronimo
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Janine Schindelka
- Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|