1
|
Shabbir A, Iqbal MM, Assiri MA, Javid T, Pervaiz A, Khan AH, Hassan A, Shahzad SA. Triazine based probes for nitroaniline: Comprehensive optical and DFT approach for dual-phase detection and fingerprint sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125895. [PMID: 39955910 DOI: 10.1016/j.saa.2025.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Extended conjugation in fluorescent probes is crucial for efficient optical characteristics. Herein, two novel triazine based organic compounds ITA and DIT with extraordinary photophysical properties were synthesized through palladium catalyzed Suzuki and Sonogashira coupling reactions, respectively. Solvatochromism and solid-state based comprehensive study of photophysical properties of probes ITA and DIT was investigated for developing dual phase and extremely sensitive and selective fluorescent probes for detection of 4-nitroanilne (4-NA). The probes ITA and DIT were also utilized in the formulation of latent fingerprint sensing and invisible ink. Furthermore, the outstanding fluorescence properties of probes ITA and DIT were efficiently used for the selective sensing of 4-nitroanilne (4-NA) in real samples and portable paper-strips were constructed for the on-site sensing of 4-NA. The sensing approach for selective detection of 4-NA was comprehensively evaluated with the help of spectroscopic analysis including titration NMR, UV-visible spectroscopy, fluorescence studies, dynamic light scattering (DLS) and DFT calculations. DFT calculations included the calculation of RDG analysis, thermodynamic stability, charge transfer and molecular orbital studies as well as QTAIM. All the analysis and theoretical studies supported the existence of non-covalent interactions between probes and 4-NA.
Collapse
Affiliation(s)
- Alam Shabbir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | | | - Mohammed A Assiri
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tayyeba Javid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Aqsa Pervaiz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Abid Hussain Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates.
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
2
|
Che Y, Yu T, Dong Z, Yan L, Wang Y, Shuang S. Highly selective dual-signal readout H 2S probe: Applications in monitoring of water samples, food spoilage and live cell imaging. Talanta 2025; 284:127271. [PMID: 39591866 DOI: 10.1016/j.talanta.2024.127271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
We present a new probe (DN) for colorimetric and fluorimetric detecting hydrogen sulfide (H2S) on the basis of the H2S-triggered thiolysis of 4-nitro-2,1,3-benzoxadiazoyl (NBD) ether. In H2O/DMSO medium (9/1, v/v, pH 7.4), the aryl ether bond in DN was cleaved by H2S via nucleophilic aromatic substitution to yield a phenolate product with lighting up red fluorescence accompanied with a distinguished color transformation from yellow to pink. Probe DN features near-infrared emission (660 nm), large Stokes Shift (168 nm), good sensitivity (LOD: 15.1 nM) and relative fast response time (5 min) for specific sensing of H2S. Conveniently, a paper strips-based test kit was developed for tracking and assessing meat freshness by monitoring the release of H2S. What is more, DN is demonstrated to image both exogenous and endogenous H2S in live cells with relative short analysis time (30-60 min), providing a new research tool for exploring the relationship between H2S and clinical diseases.
Collapse
Affiliation(s)
- Yiran Che
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ting Yu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zhenming Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Lele Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
3
|
Gandin A, Brigo L, Giacomazzo S, Torresan V, Brusatin G, Franco A. Reversible fluorescent solid porous films for detection of zinc ions in biological media. J Biol Eng 2025; 19:17. [PMID: 39966905 PMCID: PMC11837437 DOI: 10.1186/s13036-025-00484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
The need for a sensitive, selective, non-invasive and reversible fluorescent sensor for Zn2+ monitoring is addressed in this work. A novel guest-host system is developed, including a Zn2+ sensitive fluorescent probe, Zinpyr-1, embedded in a porous optically transparent hybrid film. The entrapped probe molecules are accessible and can interact with the external analyte. The immobilized Zinpyr-1 confirms its specificity and selectivity for Zn2+, as shown by sensing tests conducted in buffer solutions that mimic the ionic composition of biological media. The uniqueness of the developed sensor system lies in its reversibility, combined with a fast and selective response, allowing dynamic measurements of zinc concentrations in the 1 µM to 1 mM range within few tens of seconds. Unlike most Zn2+ sensors, this system is a film-based sensor, making it an interesting minimally invasive tool for future studies on how live cells cultured on it dynamically regulate the Zn2+ concentration under controlled physiological conditions.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy.
- INSTM Padova RU, University of Padova, Padova, 35131, Italy.
| | - Laura Brigo
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
- INSTM Padova RU, University of Padova, Padova, 35131, Italy
| | - Sujatha Giacomazzo
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
- INSTM Padova RU, University of Padova, Padova, 35131, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
- INSTM Padova RU, University of Padova, Padova, 35131, Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
- INSTM Padova RU, University of Padova, Padova, 35131, Italy
| | - Alfredo Franco
- Department of Applied Physics, University of Cantabria, Santander, 39005, Spain.
| |
Collapse
|
4
|
Lee L, Tirukoti ND, Subramani B, Goren E, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. A Reactive and Specific Sensor for Activity-Based 19F-MRI Sensing of Zn 2. ACS Sens 2024; 9:5770-5775. [PMID: 39445901 PMCID: PMC11590105 DOI: 10.1021/acssensors.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The rapid fluctuations of metal ion levels in biological systems are faster than the time needed to map fluorinated sensors designed for the 19F-MRI of cations. An attractive modular solution might come from the activity-based sensing approach. Here, we propose a highly reactive but still ultimately specific synthetic fluorinated sensor for 19F-MRI mapping of labile Zn2+. The sensor comprises a dipicolylamine scaffold for Zn2+ recognition conjugated to a fluorophenyl acetate entity. Upon binding to Zn2+, the synthetic sensor is readily hydrolyzed, and the frequency of its 19F-functional group in 19F-NMR is shifted by 12 ppm, allowing the display of the Zn2+ distribution as an artificial MRI-colored map highlighting its specificity compared to other metal ions. The irreversible Zn2+-induced hydrolysis results in a "turn-on" 19F-MRI, potentially detecting the cation even upon a transient elevation of its levels. We envision that additional metal-ion sensors can be developed based on the principles demonstrated in this work, expanding the molecular toolbox currently used for 19F-MRI.
Collapse
Affiliation(s)
- Lucia
M. Lee
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Nishanth D. Tirukoti
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Calico
Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Balamurugan Subramani
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elad Goren
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Subach OM, Piatkevich KD, Subach FV. NeMeHg, genetically encoded indicator for mercury ions based on mNeonGreen green fluorescent protein and merP protein from Shigella flexneri. Front Bioeng Biotechnol 2024; 12:1407874. [PMID: 39050684 PMCID: PMC11266101 DOI: 10.3389/fbioe.2024.1407874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
The detection of mercury ions is an important task in both environmental monitoring and cell biology research. However, existing genetically encoded sensors for mercury ions have certain limitations, such as negative fluorescence response, narrow dynamic range, or the need for cofactor supplementation. To address these limitations, we have developed novel sensors by fusing a circularly permutated version of the mNeonGreen green fluorescent protein with the merP mercury-binding protein from Gram-negative bacteria Shigella flexneri. The developed NeMeHg and iNeMeHg sensors responded to mercury ions with positive and negative fluorescence changes, respectively. We characterized their properties in vitro. Using the developed biosensors, we were able to successfully visualize changes in mercury ion concentration in mammalian cultured cells.
Collapse
Affiliation(s)
- Oksana M. Subach
- Complex of NBICS Technologies, National Research Center, Kurchatov Institute, Moscow, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center, Kurchatov Institute, Moscow, Russia
| |
Collapse
|
6
|
Liu Y, Wang X, Liu J. Unexpected enrichment of DNA aptamers for Zn 2+ ions from an insulin selection. Chem Commun (Camb) 2024; 60:6280-6283. [PMID: 38809225 DOI: 10.1039/d4cc01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We serendipitously discovered Zn2+-binding DNA aptamers when selecting insulin aptamers. The Zn-1 aptamer binds to Zn2+ with a dissociation constant (Kd) of ∼1 μM, and has 450-fold higher selectivity for Zn2+ over Cd2+. A strand-displacement based fluorescent sensor achieved a limit of detection of 0.2 μM Zn2+.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
7
|
Chen Y. Advances in Organic Fluorescent Probes for Intracellular Zn 2+ Detection and Bioimaging. Molecules 2024; 29:2542. [PMID: 38893419 PMCID: PMC11173588 DOI: 10.3390/molecules29112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Zinc ions (Zn2+) play a key role in maintaining and regulating protein structures and functions. To better understand the intracellular Zn2+ homeostasis and signaling role, various fluorescent sensors have been developed that allow the monitoring of Zn2+ concentrations and bioimaging in live cells in real time. This review highlights the recent development of organic fluorescent probes for the detection and imaging of intracellular Zn2+, including the design and construction of the probes, fluorescent response mechanisms, and their applications to intracellular Zn2+ detection and imaging on-site. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
9
|
Che Y, Yang J, Dong Z, Wang J, Yan X, Wang Y, Shuang S. A sensitive "turn-on" Schiff-base fluorescent probe for the selective detection of Fe 3+ and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123799. [PMID: 38134651 DOI: 10.1016/j.saa.2023.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
A novel Schiff-base fluorescent probe, 4-(N-(2- hydroxyl-1-naphthalymethylimino)-ethylamino) -7-nitro-1,2,3-benzoxadiazole (HENB) was synthesized and utilized for spectral sensing of Fe3+ ions at neutral pH. The binding of Fe3+ to HENB in C2H5OH-HEPES buffer (1:1 v/ v, 25 mM, pH 7.2) resulted in a pronounced emission enhancement at 530 nm, which is possibly due to the inhibition of photo-induced electron transfer (PET) process as well as the chelation enhanced fluorescence (CHEF) effect. HENB shows good selectivity and sensitivity toward Fe3+ with the detection limit as low as 4.51 nM. Test strips made of HENB was used for rapid "naked-eye" detection of Fe3+ ions in aqueous medium. Moreover, HENB was successfully applied in fluorescence imaging of exogenous and endogenous Fe3+ in live Hela cells as well as zebrafish. Importantly, HENB is capable of effectively monitoring the variations of Fe3+ in living cells during ferroptosis process.
Collapse
Affiliation(s)
- Yiran Che
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jingying Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhenming Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jianhua Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoqing Yan
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
10
|
Maji A, Naskar R, Mitra D, Gharami S, Murmu N, Mondal TK. Fabrication of a New Coumarin Based Fluorescent "turn-on" Probe for Distinct and Sequential Recognition of Al 3+ and F - Along With Its Application in Live Cell Imaging. J Fluoresc 2023; 33:2403-2414. [PMID: 37084063 DOI: 10.1007/s10895-023-03208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).
Collapse
Affiliation(s)
- Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | |
Collapse
|
11
|
Fang H, Li Y, Yang X, Chen Y, Guo Z, He W. Recent advances in Zn 2+ imaging: From organelles to in vivo applications. Curr Opin Chem Biol 2023; 76:102378. [PMID: 37633062 DOI: 10.1016/j.cbpa.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Zn2+ is involved in various physiological and pathological processes in living systems. Monitoring the dynamic spatiotemporal changes of Zn2+ levels in organelles, cells, and in vivo is of great importance for the investigation of the physiological and pathological functions of Zn2+. However, this task is quite challenging since Zn2+ in living systems is present at low concentrations and undergoes rapid dynamic changes. In this review, we summarize the design and application of fluorescent probes for Zn2+ imaging in organelles, cells, and live organisms reported over the past two years. We aim to provide inspiration for the design of novel Zn2+ probes for multi-level monitoring and deepen the understanding of Zn2+ biology.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yaheng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiuzhi Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China.
| |
Collapse
|
12
|
Xiao G, Li H, Zhao M, Zhou B. Assessing metal ion transporting activity of ZIPs: Intracellular zinc and iron detection. Methods Enzymol 2023; 687:157-184. [PMID: 37666631 DOI: 10.1016/bs.mie.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Zrt/Irt-like proteins (ZIPs or SLC39A) are a large family of metal ion transporters mainly responsible for zinc uptake. Some ZIPs have been shown to specifically transport zinc, whereas others have broader substrate specificity in divalent metal ion trafficking, notably those of zinc and iron ions. Measuring intracellular zinc and iron levels helps assess their molecular and physiological activities. This chapter presents step-by-step methods for evaluating intracellular metal ion concentrations, including direct measurement using inductively coupled plasma-mass spectrometry (ICP-MS), chemical staining, fluorescent probes, and indirect reporter assays such as activity analysis of enzymes whose activities are dependent on metal ion availability.
Collapse
Affiliation(s)
- Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China
| | - Huihui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Mengran Zhao
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bing Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China.
| |
Collapse
|
13
|
Hübner C, Keil C, Jürgensen A, Barthel L, Haase H. Comparison of Three Low-Molecular-Weight Fluorescent Probes for Measuring Free Zinc Levels in Cultured Mammary Cells. Nutrients 2023; 15:nu15081873. [PMID: 37111093 PMCID: PMC10141224 DOI: 10.3390/nu15081873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Free zinc is a critical regulator in signal transduction and affects many cellular processes relevant to cancer, including proliferation and cell death. Acting as a second messenger, altered free intracellular zinc has fundamental effects on regulating enzymes such as phosphatases and caspases. Therefore, the determination of free intracellular zinc levels is essential to assess its influence on the signaling processes involved in cancer development and progression. In this study, we compare three low-molecular-weight fluorescent probes, ZinPyr-1, TSQ, and FluoZin-3, for measuring free zinc in different mammary cell lines (MCF10A, MCF7, T47D, and MDA-MB-231). In summary, ZinPyr-1 is the most suitable probe for free Zn quantification. It responds well to calibration based on minimal fluorescence in the presence of the chelator TPEN (N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine) and maximal fluorescence by saturation with ZnSO4, resulting in the detection of free intracellular zinc in breast cancer subtypes ranging from 0.62 nM to 1.25 nM. It also allows for measuring the zinc fluxes resulting from incubation with extracellular zinc, showing differences in the zinc uptake between the non-malignant MCF10A cell line and the other cell lines. Finally, ZinPyr-1 enables the monitoring of sub-cellular distributions by fluorescence microscopy. Altogether, these properties provide a basis for the further exploration of free zinc in order to realize its full potential as a possible biomarker or even therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Christopher Hübner
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anton Jürgensen
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Lars Barthel
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
14
|
Fang H, Chen Y, Jiang Z, He W, Guo Z. Fluorescent Probes for Biological Species and Microenvironments: from Rational Design to Bioimaging Applications. Acc Chem Res 2023; 56:258-269. [PMID: 36652599 DOI: 10.1021/acs.accounts.2c00643] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some important biological species and microenvironments maintain a complex and delicate dynamic balance in life systems, participating in the regulation of various physiological processes and playing indispensable roles in maintaining the healthy development of living bodies. Disruption of their homeostasis in living organisms can cause various diseases and even death. Therefore, real time monitoring of these biological species and microenvironments during different physiological and pathological processes is of great significance. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for real time imaging in biological samples. In this Account, we introduce the representative works from our group in the field of fluorescent probes for biological imaging capable of detecting metal ions, small bioactive molecules, and the microenvironment. The design strategies of small molecule fluorescent probes and their applications in biological imaging will be discussed. By regulating the design strategy and mechanism (e.g., ICT, PeT, and FRET) of the electronic and spectral characteristics of the fluorescent platforms, these chemical probes show high selectivity and diverse functions, which can be used for imaging of various physiological and pathological processes. Through the exploration of the rational response mechanism and design strategy, combined with a variety of imaging techniques, such as super-resolution imaging, photoacoustic (PA) imaging, etc., we have realized multimode imaging of the important biological analytes from the subcellular level to the in vivo level, which provides powerful means to study the physiological and pathological functions of these species and microenvironments. This Account aims to offer insights and inspiration for the development of novel fluorescent probes for biological imaging, which could provide powerful tools for the study of chemical biology. Overall, we represent a series of turn-on/turn-off/ratiometric fluorescent/PA probes to visually and dynamically trace biological species and microenvironments in cells and even in vivo that seek higher resolution and depth molecular imaging to improve diagnostic methods and clarify new discoveries related to chemical biology. Our future efforts will be devoted to developing multiorganelle targeted fluorescent probes to study the mechanism of subcellular organelle interaction and employing various dual-mode probes of NIR II and PA imaging to investigate the development of related diseases and treat the related diseases at subcellular and in vivo levels.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| |
Collapse
|
15
|
Zhang J, Yan W, Hu W, Guo D, Zhang D, Quan X, Bu X, Chen S. Design and Synthesis of a Zn 2+ Fluorescent Probe Based on Aggregation Induced Luminescence Properties. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
17
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Yamaguchi I, Yoshizawa S, Wang A. Fluorescence turn‐off and turn‐on sensors of Zn
2+
based on π‐conjugated poly(aryleneethynylene)s comprising alloxazine‐6,9‐diyl and 2,7‐diethynylene‐9,9‐dialkylfluorene units. J Appl Polym Sci 2022. [DOI: 10.1002/app.53551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Isao Yamaguchi
- Department of Materials Chemistry Shimane University Matsue Japan
| | - Soma Yoshizawa
- Department of Materials Chemistry Shimane University Matsue Japan
| | - Aohan Wang
- Department of Materials Chemistry Shimane University Matsue Japan
| |
Collapse
|
19
|
Dinesan H, Kumar SS. Laser-Induced Fluorescence (LIF) Spectroscopy of Trapped Molecular Ions in the Gas Phase. APPLIED SPECTROSCOPY 2022; 76:1393-1411. [PMID: 36263923 DOI: 10.1177/00037028221120830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This review focuses on the laser-induced fluorescence (LIF) spectroscopy of trapped gas-phase molecular ions, a developing field of research. Following a brief description of the theory and experimental approaches employed in general for fluorescence spectroscopy, the review summarizes the current state-of-the-art intrinsic fluorescence measurement techniques employed for gas-phase ions. Whereas the LIF spectroscopy of condensed matter systems is a well-developed area of research, the instrumentation used for such studies is not directly applicable to gas-phase ions. However, some measurement schemes employed in condensed-phase experiments could be highly beneficial for gas-phase investigations. We have included a brief discussion on some of these techniques as well. Quadrupole ion traps are commonly used for spatial confinement of ions in the ion-trap-based LIF. One of the main challenges involved in such experiments is the poor signal-to-noise ratio (SNR) arising due to weak gas-phase fluorescence emission, high background noise, and small solid angle for the fluorescence collection optics. The experimental approaches based on the integrated high-finesse optical cavities employed for the condensed-phase measurements provide a better (typically an order of magnitude more) SNR in the detected fluorescence than the single-pass detection schemes. Another key to improving the SNR is to exploit the maximum solid angle of light collection by choosing high numerical aperture (NA) collection optics. A combination of these two approaches integrated with ion traps could transmogrify this field, allowing one to study even weak fluorescence emission from gas-phase molecular ions. The review concludes by discussing the scope of the advances in the LIF instrumentation for detailed spectral characterization of fluorophores of weak gas-phase fluorescence emission, considering fluorescein as one example.
Collapse
Affiliation(s)
- Hemanth Dinesan
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), 443874Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - S Sunil Kumar
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), 443874Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
20
|
Ratiometric Zinc Biosensor Based on Bioluminescence Resonance Energy Transfer: Trace Metal Ion Determination with Tunable Response. Int J Mol Sci 2022; 23:ijms232314936. [PMID: 36499262 PMCID: PMC9738544 DOI: 10.3390/ijms232314936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Determination of metal ions such as zinc in solution remains an important task in analytical and biological chemistry. We describe a novel zinc ion biosensing approach using a carbonic anhydrase-Oplophorus luciferase fusion protein that employs bioluminescence resonance energy transfer (BRET) to transduce the level of free zinc as a ratio of emission intensities in the blue and orange portions of the spectrum. In addition to high sensitivity (below nanomolar levels) and selectivity, this approach allows both quantitative determination of "free" zinc ion (also termed "mobile" or "labile") using bioluminescence ratios and determination of the presence of the ion above a threshold simply by the change in color of bioluminescence, without an instrument. The carbonic anhydrase metal ion sensing platform offers well-established flexibility in sensitivity, selectivity, and response kinetics. Finally, bioluminescence labeling has proven an effective approach for molecular imaging in vivo since no exciting light is required; the expressible nature of this sensor offers the prospect of imaging zinc fluxes in vivo.
Collapse
|
21
|
Liu Y, Chen X, Yin S, Chang X, Lv C, Zang J, Leng X, Zhang T, Zhao G. Directed Self-Assembly of Dimeric Building Blocks into Networklike Protein Origami to Construct Hydrogels. ACS NANO 2022; 16:19472-19481. [PMID: 36315654 DOI: 10.1021/acsnano.2c09391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering proteins to construct self-assemblies is of crucial significance not only for understanding the sophisticated living systems but also for fabricating advanced materials with unexplored functions. However, due to the inherent chemical heterogeneity and structural complexity of the protein surface, designing complex protein assemblies in an anisotropic fashion remains challenging. Here, we describe a self-assembly approach to fabricating protein origami with a networklike structure by designing dual noncovalent interactions on the different positions of a single protein building block. With dimeric proteins as building blocks, 1D protein filaments were constructed by the designed metal coordination at key protein interfaces. Subsequently, the network superstructures were created by the cross-linking of the 1D protein filaments at branch point linkages through the second designed π-π stacking interactions. Notably, upon increasing the protein concentration, the formed protein networks convert into hydrogels with reversible, injectable, and self-healing properties, which have the ability to promote bone regeneration. This strategy could be used to fabricate other protein-based materials with unexplored functions.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xuemin Chen
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaoxi Chang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
22
|
Zhang K, Ma R, Feng L, Liu P, Cai S, Tong C, Zheng J. Albumin alleviated esketamine-induced neuronal apoptosis of rat retina through downregulation of Zn2+-dependent matrix metalloproteinase 9 during the early development. BMC Neurosci 2022; 23:66. [PMID: 36384553 PMCID: PMC9670403 DOI: 10.1186/s12868-022-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Aims Esketamine upregulates Zn2+-dependent matrix metalloproteinase 9 (MMP9) and increases the neuronal apoptosis in retinal ganglion cell layer during the early development. We aimed to test whether albumin can alleviate esketamine-induced apoptosis through downregulating Zn2+-dependent MMP9. Methods We investigate the role of Zn2+ in esketamine-induced neuronal apoptosis by immunofluorescence. MMP9 protein expression and enzyme activity were investigated by zymography in situ., western blot and immunofluorescence. Whole-mount retinas from P7 Sprague-Dawley rats were used. Results We demonstrated that esketamine exposure increased Zn2+ in the retinal GCL during the early development. Zn2+-dependent MMP9 expression and enzyme activity up-regulated, which eventually aggravated apoptosis. Albumin effectively down-regulated MMP9 expression and activity via binding of free zinc, ultimately protected neurons from apoptosis. Meanwhile albumin treatment promoted activated microglia into multi-nucleated macrophagocytes and decreased the inflammation. Conclusion Albumin alleviates esketamine-induced neuronal apoptosis through decreasing Zn2+ accumulation in GCL and downregulating Zn2+-dependent MMP9. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00753-5.
Collapse
|
23
|
Honnappa N, Anil AG, Shekar S, Behera SK, Ramamurthy PC. Design of a Highly Selective Benzimidazole-Based Derivative for Optical and Solid-State Detection of Zinc Ion. Inorg Chem 2022; 61:15085-15097. [PMID: 36083867 DOI: 10.1021/acs.inorgchem.2c02175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel series of benzimidazole-based molecules mimicking biological receptors, which exhibit selective coordination with zinc ions, were designed and synthesized. The photochromic behavior of these derivatives with various metal ions suggests a selective interaction of one of the receptors 2-(pyridin-2-yl)-4,7-di(thiophen-2-yl)-3H-benzo[d]imidazole (2c) with zinc ion. The lower limit of detection by photoluminescence quenching was determined to be 16 nM. The mechanism of selective complexation was elucidated by 1H nuclear magnetic resonance titrations and dynamic light scattering analysis. The stoichiometry of the formation of the Zn(2c)2 complex was evaluated by single-crystal X-ray diffraction and mass spectral techniques and calculated to be 2:1 (L:M). A change in the electronic energy levels on the sensor analyte interaction was observed by both ultraviolet photoelectron spectroscopy analysis and by density functional theory calculations, suggesting an electroactive semiconductor behavior. A symmetric Schottky structured sensor device was fabricated using the receptor 2c as the active sensing layer. A distinct change in current-voltage characteristics between the receptor and the complex suggests that the fabricated device could be used as a solid-state sensor for detecting zinc ion.
Collapse
Affiliation(s)
- Nagarajaiah Honnappa
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Amith G Anil
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Shweta Shekar
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Sushant Kumar Behera
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Praveen C Ramamurthy
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| |
Collapse
|
24
|
Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022; 9:960926. [PMID: 35990359 PMCID: PMC9381994 DOI: 10.3389/fnut.2022.960926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP–Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP–Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP–Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP–Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP–Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.
Collapse
Affiliation(s)
- Tengfei Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
25
|
Liu M, Zhang J, Chen Z. Emerging Trends in Fluorescence Bioimaging of Divalent Metal Cations Using Small‐Molecule Indicators. Chemistry 2022; 28:e202200587. [DOI: 10.1002/chem.202200587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mingqiao Liu
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
- Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing China
| | - Junwei Zhang
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
| | - Zhixing Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
- Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing China
- Peking-Tsinghua Center for Life Science Peking University 100871 Beijing China
| |
Collapse
|
26
|
Maity S, Maity AC, Das AK, Bhattacharyya N. Dual-mode chemosensor for the fluorescence detection of zinc and hypochlorite on a fluorescein backbone and its cell-imaging applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2739-2744. [PMID: 35775440 DOI: 10.1039/d2ay00855f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescein coupled with 3-(aminomethyl)-4,6-dimethylpyridin-2(1H)-one (FAD) was synthesized for the selective recognition of Zn2+ over other interfering metal ions in acetonitrile/aqueous buffer (1 : 1). Interestingly, there was a significant fluorescence enhancement of FAD in association with Zn2+ at 426 nm by strong chelation-induced fluorescence enhancement (CHEF) without interrupting the cyclic spirolactam ring. A binding stoichiometric ratio of 1 : 2 for the ligand FAD with metal Zn2+ was proven by a Jobs plot. However, the cyclic spirolactam ring was opened by hypochlorite (OCl-) as well as oxidative cleavage of the imine bond, which resulted in the emission enhancement of the wavelength at 520 nm. The binding constant and detection limit of FAD towards Zn2+ were determined to be 1 × 104 M-1 and 1.79 μM, respectively, and the detection limit for OCl- was determined as 2.24 μM. We introduced here a dual-mode chemosensor FAD having both the reactive functionalities for the simultaneous detection of Zn2+ and OCl- by employing a metal coordination (Zn2+) and analytes (OCl-) induced chemodosimetric approach, respectively. Furthermore, for the practical application, we studied the fluorescence imaging inside HeLa cells by using FAD, which demonstrated it can be very useful as a selective and sensitive fluorescent probe for zinc.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Department of Applied Sciences, Haldia Institute of Technology, Hatiberia, Haldia 721657, West Bengal, India.
| | - Annada C Maity
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India.
| | | |
Collapse
|
27
|
McCann JT, Benlian BR, Yaeger-Weiss SK, Knudson IJ, He M, Miller EW. Flipping the Switch: Reverse-Demand Voltage-Sensitive Fluorophores. J Am Chem Soc 2022; 144:13050-13054. [PMID: 35834763 PMCID: PMC9462387 DOI: 10.1021/jacs.2c05385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence microscopy with fluorescent reporters that respond to environmental cues is a powerful method for interrogating biochemistry and biophysics in living systems. Photoinduced electron transfer (PeT) is commonly used as a trigger to modulate fluorescence in response to changes in the biological environment. PeT-based indicators rely on PeT either into the excited state (acceptor PeT) or out of the excited state (donor PeT). Our group has been developing voltage-sensitive fluorophores (VF dyes) that respond to changes in biological membrane potential (Vm). We hypothesize that the mechanism of voltage sensitivity arises from acceptor PeT (a-PeT) from an electron-rich aniline-containing molecular wire into the excited-state fluorophore, resulting in decreased fluorescence at negative Vm. In this work, we reversed the direction of electron flow to access donor-excited PeT (d-PeT) VF dyes by introducing electron-withdrawing rather than electron-rich molecular wires. VF dyes containing electron-withdrawing groups show voltage-sensitive fluorescence, but with the opposite polarity: hyperpolarizing Vm now gives fluorescence increases. We used a combination of computation and experiment to design and synthesize five d-PeT VF targets, two of which are voltage-sensitive.
Collapse
|
28
|
Chillon TS, Maares M, Demircan K, Hackler J, Sun Q, Heller RA, Diegmann J, Bachmann M, Moghaddam A, Haase H, Schomburg L. Serum Free Zinc Is Associated With Vaccination Response to SARS-CoV-2. Front Immunol 2022; 13:906551. [PMID: 35844578 PMCID: PMC9280661 DOI: 10.3389/fimmu.2022.906551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Zinc (Zn) is an essential trace element with high relevance for the immune system, and its deficiency is associated with elevated infection risk and severe disease course. The association of Zn status with the immune response to SARS-CoV-2 vaccination is unknown. Methods A cohort of adult health care workers (n=126) received two doses of BNT162B2, and provided up to four serum samples over a time course of 6 months. Total SARS-CoV-2 IgG and neutralizing antibody potency was determined, along with total as well as free Zn concentrations. Results The SARS-CoV-2 antibodies showed the expected rise in response to vaccination, and decreased toward the last sampling point, with highest levels measured three weeks after the second dose. Total serum Zn concentrations were relatively stable over time, and showed no significant association with SARS-CoV-2 antibodies. Baseline total serum Zn concentration and supplemental intake of Zn were both unrelated to the antibody response to SARS-CoV-2 vaccination. Time resolved analysis of free Zn indicated a similar dynamic as the humoral response. A positive correlation was observed between free Zn concentrations and both the induced antibodies and neutralizing antibody potency. Conclusion While the biomarkers of Zn status and supplemental Zn intake appeared unrelated to the humoral immune response to SARS-CoV-2 vaccination, the observed correlation of free Zn to the induced antibodies indicates a diagnostic value of this novel biomarker for the immune system.
Collapse
Affiliation(s)
- Thilo Samson Chillon
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Hackler
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Qian Sun
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raban A. Heller
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, Berlin, Germany
- Department of General Practice and Health Services Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Diegmann
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Manuel Bachmann
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | | | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Lutz Schomburg, ; Hajo Haase,
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Lutz Schomburg, ; Hajo Haase,
| |
Collapse
|
29
|
Recent development in chemosensor probes for the detection and imaging of zinc ions: a systematic review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
van der Laan M, Büttgenbach A, Wolf J, Rink L, Wessels I. The Role of Zinc in GM-CSF-Induced Signaling in Human Polymorphonuclear Leukocytes. Mol Nutr Food Res 2022; 66:e2101106. [PMID: 35593658 DOI: 10.1002/mnfr.202101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Zinc is suggested to be necessary for functional signaling induced by certain growth factors. The granulocyte-macrophage colony-stimulating factor (GM-CSF) is a key factor for differentiation and activation of myeloid cells. This report analyses the impact of different zinc concentrations on GM-CSF-induced signaling in mature polymorphonuclear leukocytes (PMN). METHODS AND RESULTS As measured by flow cytometry, zinc increases surface GM-CSF receptor (GM-CSFR) in PMN, whereas monocytes respond with decreased GM-CSFR surface expression. Since total cellular GM-CSFR expression remains unaffected, the observed zinc-induced GM-CSFR surface dynamics may be explained by receptor redistribution. In PMN, zinc enhanced phosphorylation of mitogen-activated protein kinases (MAPK) in a dose-dependent manner as found in western blot. Zinc-induced MAPK phosphorylation is additionally augmented by moderate GM-CSF stimulation. CONCLUSION The present study demonstrates the opposing influence of zinc on GM-CSFR surface expression in monocytes and PMN. Zinc and GM-CSF, use in optimized concentrations, augment MAPK signaling, and increase expression of MAPK-induced myeloid cell leukemia-1 (Mcl-1) in PMN. Thus, this study concludes that zinc strengthens growth factor-induced signaling. Hence, the study provides a basis for further in vivo studies, focusing on the therapeutic value of zinc in patients with a disturbed GM-CSF signaling.
Collapse
Affiliation(s)
- Marijke van der Laan
- Medical Faculty, Institute of Immunology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Anna Büttgenbach
- Medical Faculty, Institute of Immunology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Wolf
- Medical Faculty, Institute of Immunology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lothar Rink
- Medical Faculty, Institute of Immunology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Inga Wessels
- Medical Faculty, Institute of Immunology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
32
|
Rojas-Montoya SM, Vonlanthen M, Martínez-Serrano RD, Cuétara-Guadarrama F, Burillo G, Rivera E. “New photoluminescent polyethylene films grafted with a fluorescein derivative using gamma radiation”. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Maspero M, Dallanoce C, Wängler B, Wängler C, Hübner R. The Exception That Proves the Rule: How Sodium Chelation Can Alter the Charge-Cell Binding Correlation of Fluorescein-Based Multimodal Imaging Agents. ChemMedChem 2022; 17:e202100739. [PMID: 35137522 PMCID: PMC9303573 DOI: 10.1002/cmdc.202100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Abstract
In the present study we describe and explain an aberrant behavior in terms of receptor binding profile of a fluorescein-based multimodal imaging agent for gastrin releasing peptide receptor (GRPR) visualization by elucidating a chelating mechanism on sodium ions of its fluorescent dye moiety. This hypothesis is supported by both biological results and spectroscopic analyses of different fluorescein-carrying conjugates and an equally charged set of analogous tartrazine-based GRPR-binding imaging agents. Fluorescein interacts with sodium which reduces the overall negative charge of the dye molecule by one. This reduction in apparent total net charge explains the exceptional behavior found for the fluorescein-based multimodal bioconjugate in the context of the charge-cell binding correlation hypothesis.
Collapse
Affiliation(s)
- Marco Maspero
- Biomedical ChemistryClinic of Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
- Department of Pharmaceutical SciencesMedicinal Chemistry Section “Pietro Pratesi”University of MilanVia L. Mangiagalli 2520133MilanItaly
| | - Clelia Dallanoce
- Department of Pharmaceutical SciencesMedicinal Chemistry Section “Pietro Pratesi”University of MilanVia L. Mangiagalli 2520133MilanItaly
| | - Björn Wängler
- Molecular Imaging and RadiochemistryDepartment of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Carmen Wängler
- Biomedical ChemistryClinic of Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Ralph Hübner
- Biomedical ChemistryClinic of Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg UniversityTheodor-Kutzer-Ufer 1–368167MannheimGermany
| |
Collapse
|
34
|
Maares M, Hackler J, Haupt A, Heller RA, Bachmann M, Diegmann J, Moghaddam A, Schomburg L, Haase H. Free Zinc as a Predictive Marker for COVID-19 Mortality Risk. Nutrients 2022; 14:nu14071407. [PMID: 35406020 PMCID: PMC9002649 DOI: 10.3390/nu14071407] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper−zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
| | - Alessia Haupt
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
| | - Raban Arved Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Bundeswehr Hospital Berlin, Department of Traumatology and Orthopaedics, Septic and Reconstructive Surgery, 10115 Berlin, Germany
- Department of General Practice and Health Services Research, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Manuel Bachmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Joachim Diegmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| |
Collapse
|
35
|
Wang P, Wang Q, Guo Z, Xue S, Chen B, Liu Y, Ren W, Yang X, Wen S. A bifunctional peptide-based fluorescent probe for ratiometric and "turn-on" detection of Zn(II) ions and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120653. [PMID: 34838424 DOI: 10.1016/j.saa.2021.120653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In this work, a bifunctional peptide-based fluorescent probe L containing a tetrapeptide scaffold (Pro-Gly-His-Trp-NH2) and a dansyl group was synthesized using solid phase peptide synthesis (SPPS) technology. As designed, L, based on a FRET mechanism, exhibited high selectivity, excellent ratiometric signals, and fast response to Zn2+ in aqueous solutions at an excitation wavelength of 280 nm. In addition, when excited at 320 nm, L exhibited a fluorescent "turn-on" response towards Zn2+ based on PET mechanism. More importantly, the stoichiometry of L and Zn2+ was determined to be 2:1 by fluorescent titration, Job's plot method, and ESI-MS spectrometry. The association constant for Zn2+ ions was determined to be 6.26 × 108 M-2, while the limit of detection (LOD) of L was estimated as 5.43 nM, which is a much lower value than WHO and EPA guidelines for drinking water. Moreover, L was successfully applied to detect both Zn2+ and Cu2+ in living cells due to good biocompatibility and excellent low toxicity.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Shirui Xue
- School of Journalism and Communications, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wang Ren
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| | - Shaohua Wen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, China.
| |
Collapse
|
36
|
Dual mode of cyanide detection by Fluorescein-Based “Turn-ON” Bi-Signaling fluorescence and colorimetric sensing: Agricultural product and cellular studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
Matsuura Y, Asami M, Ito S. Dual-channel recognition of Al 3+ and Cu 2+ ions using a chiral pyrene-based fluorescent sensor. NEW J CHEM 2022. [DOI: 10.1039/d2nj00801g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specific recognition between Al3+ and Cu2+ has been achieved based on the new mechanism of Cu2+ detection by pyrene dimerization.
Collapse
Affiliation(s)
- Yuki Matsuura
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masatoshi Asami
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
39
|
Zhang J, Peng X, Wu Y, Ren H, Sun J, Tong S, Liu T, Zhao Y, Wang S, Tang C, Chen L, Chen Z. Red‐ and Far‐Red‐Emitting Zinc Probes with Minimal Phototoxicity for Multiplexed Recording of Orchestrated Insulin Secretion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junwei Zhang
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
| | - Xiaohong Peng
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
- State Key Laboratory of Membrane Biology Peking University Beijing 100871 China
| | - Yunxiang Wu
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
| | - Huixia Ren
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
- Center for Quantitative Biology Peking University Beijing 100871 China
| | - Jingfu Sun
- PKU-Nanjing Institute of Translational Medicine Nanjing 211800 China
| | - Shiyan Tong
- School of Life Science Peking University Beijing 100871 China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Yiwen Zhao
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
| | - Shusen Wang
- Organ Transplant Center Tianjin First Central Hospital Nankai University Tianjin 300192 China
| | - Chao Tang
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
- Center for Quantitative Biology Peking University Beijing 100871 China
| | - Liangyi Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
- State Key Laboratory of Membrane Biology Peking University Beijing 100871 China
| | - Zhixing Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
- PKU-Nanjing Institute of Translational Medicine Nanjing 211800 China
| |
Collapse
|
40
|
The ion channel TRPM7 regulates zinc-depletion-induced MDMX degradation. J Biol Chem 2021; 297:101292. [PMID: 34627839 PMCID: PMC8561006 DOI: 10.1016/j.jbc.2021.101292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc deficiency has been linked to human diseases, including cancer. MDMX, a crucial zinc-containing negative regulator of p53, has been found to be amplified or overexpressed in various cancers and implicated in the cancer initiation and progression. We report here that zinc depletion by the ion chelator TPEN or Chelex resin results in MDMX protein degradation in a ubiquitination-independent and 20S proteasome-dependent manner. Restoration of zinc led to recovery of cellular levels of MDMX. Further, TPEN treatment inhibits growth of the MCF-7 breast cancer cell line, which is partially rescued by overexpression of MDMX. Moreover, in a mass-spectrometry-based proteomics analysis, we identified TRPM7, a zinc-permeable ion channel, as a novel MDMX-interacting protein. TRPM7 stabilizes and induces the appearance of faster migrating species of MDMX on SDS-PAGE. Depletion of TRPM7 attenuates, while TRPM7 overexpression facilitates, the recovery of MDMX levels upon adding back zinc to TPEN-treated cells. Importantly, we found that TRPM7 inhibition, like TPEN treatment, decreases breast cancer cell MCF-7 proliferation and migration. The inhibitory effect on cell migration upon TRPM7 inhibition is also partially rescued by overexpression of MDMX. Together, our data indicate that TRPM7 regulates cellular levels of MDMX in part by modulating the intracellular Zn2+ concentration to promote tumorigenesis.
Collapse
|
41
|
Cation sensing by a novel triazine-cored intermediate as a fluorescent chemosensor incorporating benzothiazole fluorophore. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Fear-of-intimacy-mediated zinc transport controls fat body cell dissociation through modulating Mmp activity in Drosophila. Cell Death Dis 2021; 12:874. [PMID: 34564691 PMCID: PMC8464599 DOI: 10.1038/s41419-021-04147-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases that have been implicated in tumour invasion and metastasis. Drosophila fat body is important for energy storage and utilization, as well as biosynthetic and metabolic activities. The fat body undergoes remodelling during metamorphosis which is characterized by the dissociation of the fat body into individual cells. Mmps play important roles in the regulation of fat body cell dissociation. Here we show that a zinc transporter fear-of-intimacy (foi) is necessary for the cell dissociation of fat body in Drosophila. The progression of fat body cell dissociation was delayed by fat body-specific foi knockdown while it was accelerated by foi overexpression (OE). In essence, these phenotypes are closely associated with intracellular zinc homeostasis, which can be modulated by dietary zinc intervention or genetic modulation of other zinc transporters. Further study indicated that Mmp1 and Mmp2 levels could be transcriptionally regulated by zinc in vivo. Consistently, the retarded fat body cell dissociation caused by Mmp1 or Mmp2 RNAi could be regulated by modulating the expression of foi. Further, by using Drosophila models of malignant tumour RafGOFscrib−/− and RasV12lgl−/−, we showed that the tumour growth, invasion and migration could be markedly inhibited by foi knockdown. These findings demonstrate a close connection between zinc levels and cell dissociation in vivo, and also suggest that manipulation of zinc levels may provide a novel therapeutic strategy for cancer.
Collapse
|
43
|
A highly selective turn-on fluorescent chemosensor for detecting zinc ions in living cells using symmetrical pyrene system. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Huang C, Yang Y, Li Y, Lv G. A two-photon fluorescent lipid raft probe derived from dicyanostilbene and similar to cholesterol’s structure. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Zhang J, Peng X, Wu Y, Ren H, Sun J, Tong S, Liu T, Zhao Y, Wang S, Tang C, Chen L, Chen Z. Red- and Far-Red-Emitting Zinc Probes with Minimal Phototoxicity for Multiplexed Recording of Orchestrated Insulin Secretion. Angew Chem Int Ed Engl 2021; 60:25846-25855. [PMID: 34423531 DOI: 10.1002/anie.202109510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/12/2022]
Abstract
Zinc biology, featuring intertwining signaling networks and critical importance to human health, witnesses exciting opportunities in the big data era of physiology. Here, we report a class of red- and far-red-emitting Zn2+ probes with Kd values ranging from 190 nM to 74 μM, which are particularly suitable for real-time monitoring the high concentration of Zn2+ co-released with insulin during vesicular secretory events. Compared to the prototypical rhodamine-based Zn2+ probes, the new class exploits morpholino auxochromes which eliminates phototoxicity during long-term live recording of isolated islets. A Si-rhodamine-based Zn2+ probe with high turn-on ratio (>100), whose synthesis was enabled by a new route featuring late-stage N-alkylation, allowed simultaneous recording of Ca2+ influx, mitochondrial signal, and insulin secretion in isolated mouse islets. The time-lapse multicolor fluorescence movies and their analysis, enabled by red-shifted Zn2+ and other orthogonal physiological probes, highlight the potential impact of biocompatible fluorophores on the fields of islet endocrinology and system biology.
Collapse
Affiliation(s)
- Junwei Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xiaohong Peng
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.,State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Yunxiang Wu
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Huixia Ren
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Jingfu Sun
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China
| | - Shiyan Tong
- School of Life Science, Peking University, Beijing, 100871, China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
| | - Yiwen Zhao
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Chao Tang
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Liangyi Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.,State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China.,PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China
| |
Collapse
|
46
|
Genshaft AS, Ziegler CGK, Tzouanas CN, Mead BE, Jaeger AM, Navia AW, King RP, Mana MD, Huang S, Mitsialis V, Snapper SB, Yilmaz ÖH, Jacks T, Van Humbeck JF, Shalek AK. Live cell tagging tracking and isolation for spatial transcriptomics using photoactivatable cell dyes. Nat Commun 2021; 12:4995. [PMID: 34404785 PMCID: PMC8371137 DOI: 10.1038/s41467-021-25279-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
A cell's phenotype and function are influenced by dynamic interactions with its microenvironment. To examine cellular spatiotemporal activity, we developed SPACECAT-Spatially PhotoActivatable Color Encoded Cell Address Tags-to annotate, track, and isolate cells while preserving viability. In SPACECAT, samples are stained with photocaged fluorescent molecules, and cells are labeled by uncaging those molecules with user-patterned near-UV light. SPACECAT offers single-cell precision and temporal stability across diverse cell and tissue types. Illustratively, we target crypt-like regions in patient-derived intestinal organoids to enrich for stem-like and actively mitotic cells, matching literature expectations. Moreover, we apply SPACECAT to ex vivo tissue sections from four healthy organs and an autochthonous lung tumor model. Lastly, we provide a computational framework to identify spatially-biased transcriptome patterns and enriched phenotypes. This minimally perturbative and broadly applicable method links cellular spatiotemporal and/or behavioral phenotypes with diverse downstream assays, enabling insights into the connections between tissue microenvironments and (dys)function.
Collapse
Affiliation(s)
- Alex S Genshaft
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
| | - Carly G K Ziegler
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
| | - Constantine N Tzouanas
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
| | - Benjamin E Mead
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
| | - Alex M Jaeger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Andrew W Navia
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
| | - Ryan P King
- Department of Chemistry, MIT, Cambridge, MA, USA
| | - Miyeko D Mana
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Siyi Huang
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA.
- Department of Chemistry, MIT, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
47
|
Tirukoti ND, Avram L, Haris T, Lerner B, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. Fast Ion-Chelate Dissociation Rate for In Vivo MRI of Labile Zinc with Frequency-Specific Encodability. J Am Chem Soc 2021; 143:11751-11758. [PMID: 34297566 PMCID: PMC8397314 DOI: 10.1021/jacs.1c05376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fast ion-chelate
dissociation rates and weak ion-chelate affinities
are desired kinetic and thermodynamic features for imaging probes
to allow reversible binding and to prevent deviation from basal ionic
levels. Nevertheless, such properties often result in poor readouts
upon ion binding, frequently result in low ion specificity, and do
not allow the detection of a wide range of concentrations. Herein,
we show the design, synthesis, characterization, and implementation
of a Zn2+-probe developed for MRI that possesses reversible
Zn2+-binding properties with a rapid dissociation rate
(koff = 845 ± 35 s–1) for the detection of a wide range of biologically relevant concentrations.
Benefiting from the implementation of chemical exchange saturation
transfer (CEST), which is here applied in the 19F-MRI framework
in an approach termed ion CEST (iCEST), we demonstrate the ability
to map labile Zn2+ with spectrally resolved specificity
and with no interference from competitive cations. Relying on fast koff rates for enhanced signal amplification,
the use of iCEST allowed the designed fluorinated chelate to experience
weak Zn2+-binding affinity (Kd at the mM range), but without compromising high cationic specificity,
which is demonstrated here for mapping the distribution of labile
Zn2+ in the hippocampal tissue of a live mouse. This strategy
for accelerating ion-chelate koff rates
for the enhancement of MRI signal amplifications without affecting
ion specificity could open new avenues for the design of additional
probes for other metal ions beyond zinc.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Talia Haris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
48
|
Ghosh P, Pramanik K, Paul S, Dey D, Kumar Chandra S, Kanti Mukhopadhyay S, Chandra Murmu N, Banerjee P. Zn
2+
Recognition for Pathogenesis of
Pick's Disease
via a Luminescent Test Kit. ChemistrySelect 2021. [DOI: 10.1002/slct.202100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
| | - Koushik Pramanik
- Department of Chemistry Visva-Bharati University Santiniketan 731235 India
| | - Suparna Paul
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Debanjan Dey
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | | | | | - Naresh Chandra Murmu
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
49
|
Keil C, Klein J, Schmitt F, Zorlu Y, Haase H, Yücesan G. Arylphosphonate-Tethered Porphyrins: Fluorescence Silencing Speaks a Metal Language in Living Enterocytes*. Chembiochem 2021; 22:1925-1931. [PMID: 33554446 PMCID: PMC8252553 DOI: 10.1002/cbic.202100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Indexed: 12/22/2022]
Abstract
We report the application of a highly versatile and engineerable novel sensor platform to monitor biologically significant and toxic metal ions in live human Caco-2 enterocytes. The extended conjugation between the fluorescent porphyrin core and metal ions through aromatic phenylphosphonic acid tethers generates a unique turn off and turn on fluorescence and, in addition, shifts in absorption and emission spectra for zinc, cobalt, cadmium and mercury. The reported fluorescent probes p-H8 TPPA and m-H8 TPPA can monitor a wide range of metal ion concentrations via fluorescence titration and also via fluorescence decay curves. Cu- and Zn-induced turn off fluorescence can be differentially reversed by the addition of common chelators. Both p-H8 TPPA and m-H8 TPPA readily pass the mammalian cellular membrane due to their amphipathic character as confirmed by confocal microscopic imaging of living enterocytes.
Collapse
Affiliation(s)
- Claudia Keil
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Julia Klein
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Franz‐Josef Schmitt
- Martin-Luther-Universität Halle-WittenbergDepartment of Physicsvon-Danckelmann-Platz 306120Halle/SaaleGermany
| | - Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400Gebze-KocaeliTurkey
| | - Hajo Haase
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Gündoğ Yücesan
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
50
|
Alker W, Haase H. Comparison of Free Zinc Levels Determined by Fluorescent Probes in THP1 Cells Using Microplate Reader and Flow Cytometer. Biol Trace Elem Res 2021; 199:2414-2419. [PMID: 32865725 PMCID: PMC8055576 DOI: 10.1007/s12011-020-02355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
Free zinc is involved in signal transduction within mammalian cells, acting as a second messenger. Gold standard for its analysis is currently the use of metal-responsive fluorescent probes. The present study elucidates the impact of instrumentation used for measuring the resulting fluorescence. The free zinc concentration of THP-1 cells loaded with the fluorescent probes Zinpyr-1 (ZP1) or Fluozin-3 AM (FZ3) was determined using a microplate reader (MPR) and a flow cytometer (FC). Depending on the instrumentation, either low nanomolar (MPR) or picomolar (FC) concentrations of free zinc were observed. The concentrations measured from identical samples by MPR were about 40 (ZP1) or 165 (FZ3) times higher compared with FC. These results demonstrate that the choice of instrumentation has a fundamental impact on the determination of intracellular free zinc concentrations by low molecular weight fluorescent probes.
Collapse
Affiliation(s)
- Wiebke Alker
- Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
- TraceAge - DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany
| | - Hajo Haase
- Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
- TraceAge - DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|