1
|
Välimets S, Sun P, Virginia LJ, van Erven G, Sanders MG, Kabel MA, Peterbauer C. Characterization of Amycolatopsis 75iv2 dye-decolorizing peroxidase on O-glycosides. Appl Environ Microbiol 2024; 90:e0020524. [PMID: 38625022 PMCID: PMC11107159 DOI: 10.1128/aem.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.
Collapse
Affiliation(s)
- Silja Välimets
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Ludovika Jessica Virginia
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mark G. Sanders
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Clemens Peterbauer
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| |
Collapse
|
2
|
Riyadi FA, Azman NF, Nadia Md Akhir F, Othman N, Hara H. Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia. J GEN APPL MICROBIOL 2024; 69:278-286. [PMID: 37612074 DOI: 10.2323/jgam.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.
Collapse
Affiliation(s)
- Fatimah Azizah Riyadi
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nadia Farhana Azman
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nor'azizi Othman
- Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Hirofumi Hara
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
3
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
4
|
Ma W, Lin L, Peng Q. Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates. MICROBIAL ECOLOGY 2023; 86:1589-1603. [PMID: 36717391 DOI: 10.1007/s00248-023-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Terrestrial microbial consortia were reported to play fundamental roles in the global carbon cycle and renewable energy production through the breakdown of complex organic carbon. However, we have a poor understanding of how biotic/abiotic factors combine to influence consortia assembly and lignocellulose degradation in aquatic ecosystems. In this study, we used 96 in situ lignocellulose enriched, coastal intertidal zone-derived bacterial consortia as the initial inoculating consortia and developed 384 cultured consortia under different lignocellulose substrates (aspen, pine, rice straw, and purified Norway spruce lignin) with gradients of salinity and temperature. As coastal consortia, salinity was the strongest driver for assembly, followed by Norway spruce lignin, temperature, and aspen. Moreover, a conceptual model was proposed to demonstrate different succession dynamics between consortia under herbaceous and woody lignocelluloses. The succession of consortium under Norway spruce lignin is greatly related with abiotic factors, while its substrate degradation is mostly correlated with biotic factors. A discrepant pattern was observed in the consortium under rice straw. Finally, we developed four groups of versatile, yet specific consortia. Our study not only reveals that coastal intertidal wetlands are important natural resources to enrich lignocellulolytic degrading consortia but also provides insights into the succession and ecological function of coastal consortium.
Collapse
Affiliation(s)
- Wenwen Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| |
Collapse
|
5
|
Chen R, Gong Y, Xie M, Rao C, Zhou L, Pang Y, Lou H, Yang D, Qiu X. Functionalized Regulation of Metal Defects in ln 2S 3 of p-n Homojunctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5065-5077. [PMID: 36972499 DOI: 10.1021/acs.langmuir.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The introduction of metal vacancies into n-type semiconductors could efficiently construct intimate contact interface p-n homojunctions to accelerate the separation of photogenerated carriers. In this work, a cationic surfactant occupancy method was developed to synthesize an indium-vacancy (VIn)-enriched p-n amorphous/crystal homojunction of indium sulfide (A/C-IS) for sodium lignosulfonate (SL) degradation. The amount of VIn in the A/C-IS could be regulated by varying the content of added cetyltrimethylammonium bromide (CTAB). Meanwhile, the steric hindrance of CTAB produced mesopores and macropores, providing transfer channels for SL. The degradation rates of A/C-IS to SL were 8.3 and 20.9 times higher than those of crystalline In2S3 and commercial photocatalyst (P25), respectively. The presence of unsaturated dangling bonds formed by VIn reduced the formation energy of superoxide radicals (•O2-). In addition, the inner electric field between the intimate contact interface p-n A/C-IS promoted the migration of electron-hole pairs. A reasonable degradation pathway of SL by A/C-IS was proposed based on the above mechanism. Moreover, the proposed method could also be applicable for the preparation of p-n homojunctions with metal vacancies from other sulfides.
Collapse
Affiliation(s)
- Runlin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yufeng Gong
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Maoliang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng Rao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lan Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Silva D, Rodrigues F, Lorena C, Borges PT, Martins LO. Biocatalysis for biorefineries: The case of dye-decolorizing peroxidases. Biotechnol Adv 2023; 65:108153. [PMID: 37044267 DOI: 10.1016/j.biotechadv.2023.108153] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Dye-decolorizing Peroxidases (DyPs) are heme-containing enzymes in fungi and bacteria that catalyze the reduction of hydrogen peroxide to water with concomitant oxidation of various substrates, including anthraquinone dyes, lignin-related phenolic and non-phenolic compounds, and metal ions. Investigation of DyPs has shed new light on peroxidases, one of the most extensively studied families of oxidoreductases; still, details of their microbial physiological role and catalytic mechanisms remain to be fully disclosed. They display a distinctive ferredoxin-like fold encompassing anti-parallel β-sheets and α-helices, and long conserved loops surround the heme pocket with a role in catalysis and stability. A tunnel routes H2O2 to the heme pocket, whereas binding sites for the reducing substrates are in cavities near the heme or close to distal aromatic residues at the surface. Variations in reactions, the role of catalytic residues, and mechanisms were observed among different classes of DyP. They were hypothetically related to the presence or absence of distal H2O molecules in the heme pocket. The engineering of DyPs for improved properties directed their biotechnological applications, primarily centered on treating textile effluents and degradation of other hazardous pollutants, to fields such as biosensors and valorization of lignin, the most abundant renewable aromatic polymer. In this review, we track recent research contributions that furthered our understanding of the activity, stability, and structural properties of DyPs and their biotechnological applications. Overall, the study of DyP-type peroxidases has significant implications for environmental sustainability and the development of new bio-based products and materials with improved end-of-life options via biodegradation and chemical recyclability, fostering the transition to a sustainable bio-based industry in the circular economy realm.
Collapse
Affiliation(s)
- Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Constança Lorena
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
7
|
Pazhavelikkakath Purushothaman RK, van Erven G, van Es DS, Rohrbach L, Frissen AE, van Haveren J, Gosselink RJA. New insights into the base catalyzed depolymerization of technical lignins: a systematic comparison. RSC Adv 2023; 13:4898-4909. [PMID: 36762076 PMCID: PMC9906982 DOI: 10.1039/d2ra06998a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
A first systematic approach on the base catalyzed depolymerization (BCD) of five technical lignins derived from various botanical origins (herbaceous, hardwood and softwood) and covering the main three industrial pulping methods (soda, kraft and organosolv) is reported. This study provides a first of its kind in-depth quantification and structural characterization of two main BCD fractions namely lignin oil and lignin residue, describing the influence of the BCD process conditions. Depolymerization is evaluated in terms of lignin conversion, lignin oil yield, phenolic monomer selectivity and the production of lignin residue and char. Lignin oils were extensively characterized by size exclusion chromatography (SEC), GC-MS, GC-FID, 13C-NMR, HSQC NMR and elemental analysis. GC × GC-FID was used to identify and quantify distinct groups of monomeric compounds (methoxy phenols, phenols, dihydroxy-benzenes) in the lignin oil. The lignin oil yields (w/w) ranged from 20-31% with total monomer contents ranging from 48 to 57% w/w. SEC analysis indicated the presence of dimers/oligomers in the lignin oil, which through HSQC NMR analysis were confirmed to contain new, non-native interunit linkages. 13C NMR analyses of the lignin oils suggest the presence of diaryl type linkages (i.e. aryl-aryl, aryl C-O) evidencing deconstruction and recombination of lignin fragments during BCD. Irrespective of the lignin source, a residue, often regarded as 'unreacted' residual lignin was the main product of BCD (43 to 70% w/w). Our study highlights that this residue has different structural properties and should not be considered as unreacted lignin, but rather as an alkali soluble condensed aromatic material. HSQC, DEPT-135, 13C, and 31P NMR and SEC analyses confirm that the BCD residues are indeed more condensed, with increased phenolic hydroxyl content and lower molecular weights compared to all feed lignins. Subsequent BCD of solid residual fractions produced only low oil yields (6-9% w/w) with lower phenolic monomer yields (4% w/w) compared to original lignin, confirming the significantly more recalcitrant structure. Our study improves the overall understanding of the BCD process, highlights important feedstock-dependent outcomes and ultimately contributes to the complete valorization of BCD-derived lignin streams.
Collapse
Affiliation(s)
| | - Gijs van Erven
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
- Wageningen University & Research, Laboratory of Food Chemistry Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Daan S van Es
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Léon Rohrbach
- Green Chemical Reaction Engineering, ENTEG, University of Groningen Nijenborgh 4 9747 AG Groningen the Netherlands
| | - Augustinus E Frissen
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Jacco van Haveren
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Richard J A Gosselink
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
8
|
Feng M, Xie Y, Mao W, Lu Y, Wang Y, Li H, Zhang C. Efficient biodegradation of tris-(2-chloroisopropyl) phosphate by a novel strain Amycolatopsis sp. FT-1: Process optimization, mechanism studies and toxicity changes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130149. [PMID: 36252405 DOI: 10.1016/j.jhazmat.2022.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, a newly isolated strain Amycolatopsis sp. FT-1 was confirmed to be an efficient tris-(2-chloroisopropyl) phosphate (TCPP) degrader. The maximum degradation efficiency of 100 % was achieved when glucose concentration was 6.0 g/L, TCPP concentration was 1.1 mg/L, pH was 6.3 and temperature was 35 °C. Proteome analysis indicated that TCPP was transformed into diester, monoester and ketone product through hydrolysis by phosphoesterase and oxidation mediated by proteins involved in bio-Fenton reaction. The increased expression of proteins serving as organic hydroperoxides scavenger and two subunits of xanthine dehydrogenase enabled Amycolatopsis sp. FT-1 to defend against TCPP-induced oxidative damage. Meanwhile, proteins involved in the resistance to proteotoxic stress were found to be up-regulated, including Hsp70 protein, ATP-dependent Clp protease proteolytic subunit, elongation factor G and trehalose synthesis-related enzymes. The overexpression of TetR/AcrR family transcriptional regulator and multidrug efflux transporter also benefited the survival of Amycolatopsis sp. FT-1 under TCPP stress. Luminescent bacteria test showed that biotoxicity of TCPP was remarkably decreased after biodegradation by Amycolatopsis sp. FT-1. To the best of our knowledge, this is the first study to report the biotransformation of TCPP by pure strain and to offer important insights into the proteomic mechanisms of TCPP microbial degradation.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yantian Xie
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yanqin Lu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yanwu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Haixia Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Chenhao Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|
9
|
Li J, Dong C, Sen B, Lai Q, Gong L, Wang G, Shao Z. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158714. [PMID: 36113801 DOI: 10.1016/j.scitotenv.2022.158714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A large amount of terrigenous organic matter (TOM) is constantly transported to the deep sea. However, relatively little is known about the microbial mineralization of TOM therein. Our recent in situ enrichment experiments revealed that Vibrio is especially enriched as one of the predominant taxa in the cultures amended with natural plant materials in the deep sea. Yet their role in the mineralization of plant-derived TOM in the deep sea remains largely unknown. Here we isolated Vibrio strains representing dominant members of the enrichments and verified their potential to degrade lignin and xylan. The isolated strains were closely related to Vibrio harveyi, V. alginolyticus, V. diabolicus, and V. parahaemolyticus. Extracellular enzyme assays, and genome and transcriptome analyses revealed diverse peroxidases, including lignin peroxidase (LiP), catalase-peroxidase (KatG), and decolorizing peroxidase (DyP), which played an important role in the depolymerization and oxidation of lignin. Superoxide dismutase was found to likely promote lignin oxidation by supplying H2O2 to LiP, DyP, and KatG. Interestingly, these deep-sea Vibrio strains could oxidize lignin and hydrolyze xylan not only through aerobic pathway, but also through anaerobic pathway. Genome analysis revealed multiple anaerobic respiratory mechanisms, including the reductions of nitrate, arsenate, tetrathionate, and dimethyl sulfoxide. The strains showed the potential to anaerobically reduce sulfite and metal oxides of iron and manganese, in contrast the non-deep-sea Vibrio strains were not retrieved of genes involved in reduction of metal oxides. This is the first report about the lignin oxidation mechanisms in Vibrio and their role in TOM mineralization in anoxic and oxic environments of the marginal sea.
Collapse
Affiliation(s)
- Jianyang Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
10
|
A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl Microbiol Biotechnol 2022; 107:201-217. [DOI: 10.1007/s00253-022-12263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
|
11
|
Shinde R, Shahi DK, Mahapatra P, Naik SK, Thombare N, Singh AK. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115843. [PMID: 36056484 DOI: 10.1016/j.jenvman.2022.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic crop residues (LCCRs) hold a significant share of the terrestrial biomass, estimated at 5 billion Mg per annum globally. A massive amount of these LCCRs are burnt in many countries resulting in immense environmental pollution; hence, its proper disposal in a cost-effective and eco-friendly manner is a significant challenge. Among the different options for management of LCCRs, the use of lignocellulose degrading microorganisms (LCDMOs), like fungi and bacteria, has emerged as an eco-friendly and effective way for its on-site disposal. LCDMOs achieve degradation through various mechanisms, including multiple supportive enzymes, causing oxidative attacks by which recalcitrance of lignocellulose material is reduced, paving the way to further activity by depolymerizing enzymes. This improves the physical properties of soil, recycles plant nutrients, promotes plant growth and thus helps improve productivity. Rapid and proper microbial degradation may be achieved through the correct combination of the LCDMOs, supplementing nutrients and controlling different factors affecting microbial activity in the field. The review is a critical discussion of previous studies revealing the potential of individuals or a set of LCDMOs, factors controlling the rate of degradation and the key researchable areas for better understanding of the role of these decomposers for future use.
Collapse
Affiliation(s)
- Reshma Shinde
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India.
| | | | | | - Sushanta Kumar Naik
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| | - Nandkishore Thombare
- ICAR- Indian Institute of Natural Resin and Gums, Ranchi, 834010, Jharkhand, India
| | - Arun Kumar Singh
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
12
|
Zhu D, Qaria MA, Zhu B, Sun J, Yang B. Extremophiles and extremozymes in lignin bioprocessing. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 157:112069. [DOI: 10.1016/j.rser.2021.112069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Zhao ZM, Meng X, Scheidemantle B, Pu Y, Liu ZH, Li BZ, Wyman CE, Cai CM, Ragauskas AJ. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion. BIORESOURCE TECHNOLOGY 2022; 347:126367. [PMID: 34801717 DOI: 10.1016/j.biortech.2021.126367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Cosolvent Enhanced Lignocellulosic Fractionation (CELF) is an emerging solvolysis pretreatment to fractionate lignocellulosic biomass. Herein, the bioconversion performance of CELF lignin was fully evaluated for the first time. Results showed that CELF lignin possessed higher content of carboxylic acid OH, lower molecular weight, and disappeared β-O-4 and β-5 linkages compared to other two technical lignins including a conventional ethanol organosolv lignin (EOL) and a kraft lignin (KL). Rhodococcus opacus PD630 cell count from CELF lignin fermentation reached the highest value of 3.9 × 107 CFU/mL, representing a 62.5% and 77.3% improvement over EOL and KL, respectively. Correspondingly, lipid yield reached 143 mg/L from CELF lignin, which was 36.2% and 26.5% higher than from EOL and KL, respectively. Principal component analysis (PCA) revealed that more carboxylic acid groups and lower molecular weight contributed to the enhanced bioconversion performance of CELF lignin. This study demonstrates that CELF lignin is a promising candidate for bioconversion.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Brent Scheidemantle
- Bourns College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, United States
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Zhi-Hua Liu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Charles E Wyman
- Bourns College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, United States
| | - Charles M Cai
- Bourns College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, United States
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Center for Bioenergy Innovation (CBI), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| |
Collapse
|
14
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
15
|
Yang J, Sun M, Jiao L, Dai H. Molecular Weight Distribution and Dissolution Behavior of Lignin in Alkaline Solutions. Polymers (Basel) 2021; 13:polym13234166. [PMID: 34883669 PMCID: PMC8659866 DOI: 10.3390/polym13234166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Lignin, as the sole renewable aromatic resource in nature, has great potential for replacing fossil resources. However, the complexity of its structure limits its high value utilization, and the molecular weight distribution and dissolution behavior of lignin in alkaline solutions is still unclear. In this study, a conventional lignin separation during the pulping process in an alkaline hydrothermal system was performed by controlling the amount of NaOH, reaction temperature and holding time. Various analysis methods, including GPC, 2D–HSQC NMR and FTIR were used to study the characteristics of lignin fragments dissolved from wood. We were aiming to understand the rule of lignin dissolution and the recondensation mechanism during the process. The results showed dissolution of lignin due to ether bond fracturing by OH− attacking the Cα or Cβ positions of the side chain with penetration of NaOH, and the lignin fragments in solution recondensed into complex lignin with more stable C–C bonds. The experimental results also prove that the average molecular weight increased from 4337 g/mol to 11,036 g/mol and that holding time from 60 min to 120 min at 150 °C with 14 wt% of NaOH.
Collapse
|
16
|
Vuong TV, Singh R, Eltis LD, Master ER. The Comparative Abilities of a Small Laccase and a Dye-Decoloring Peroxidase From the Same Bacterium to Transform Natural and Technical Lignins. Front Microbiol 2021; 12:723524. [PMID: 34733245 PMCID: PMC8559727 DOI: 10.3389/fmicb.2021.723524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
The relative ability of the small laccase (sLac) and dye-decoloring peroxidase (DyP2) from Amycolatopsis sp. 75iv2 to transform a variety of lignins was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The enzymes modified organosolv hardwood lignin to different extents even in the absence of an added mediator. More particularly, sLac decreased the lignin modification metric S (S-lignin)/Ar (total aromatics) by 58% over 16h, while DyP2 lowered this ratio by 31% in the absence of exogenous H2O2. When used on their own, both sLac and DyP2 also modified native lignin present in aspen wood powder, albeit to lesser extents than in the organosolv lignin. The addition of ABTS for sLac and Mn2+ as well as H2O2 for DyP2 led to increased lignin modification in aspen wood powder as reflected by a decrease in the G/Ar metric by up to a further 13%. This highlights the importance of exogenous mediators for transforming lignin within its native matrix. Furthermore, the addition of ABTS reduced the selectivity of sLac for S-lignin over G-lignin, indicating that the mediator also altered the product profiles. Finally, when sLac was included in reactions containing DyP2, in part to generate H2O2in situ, the relative abundance of lignin products differed from individual enzymatic treatments. Overall, these results identify possible routes to tuning lignin modification or delignification through choice of enzyme and mediator. Moreover, the current study expands the application of ToF-SIMS to evaluating enzyme action on technical lignins, which can accelerate the discovery and engineering of industrially relevant enzymes for lignin valorization.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rahul Singh
- Department of Microbiology and Immunology, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada.,Genome British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
17
|
Stravoravdis S, Shipway JR, Goodell B. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Front Microbiol 2021; 12:665001. [PMID: 34322098 PMCID: PMC8312274 DOI: 10.3389/fmicb.2021.665001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin – a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute’s Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - J Reuben Shipway
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Barry Goodell
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
18
|
A Review on the Utilization of Lignin as a Fermentation Substrate to Produce Lignin-Modifying Enzymes and Other Value-Added Products. Molecules 2021; 26:molecules26102960. [PMID: 34065753 PMCID: PMC8156730 DOI: 10.3390/molecules26102960] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The lignocellulosic biomass is comprised of three major components: cellulose, hemicellulose, and lignin. Among these three, cellulose and hemicellulose were already used for the generation of simple sugars and subsequent value-added products. However, lignin is the least applied material in this regard because of its complex and highly variable nature. Regardless, lignin is the most abundant material, and it can be used to produce value-added products such as lignin-modifying enzymes (LMEs), polyhydroxyalkanoates (PHAs), microbial lipids, vanillin, muconic acid, and many others. This review explores the potential of lignin as the microbial substrate to produce such products. A special focus was given to the different types of lignin and how each one can be used in different microbial and biochemical pathways to produce intermediate products, which can then be used as the value-added products or base to make other products. This review paper will summarize the effectiveness of lignin as a microbial substrate to produce value-added products through microbial fermentations. First, basic structures of lignin along with its types and chemistry are discussed. The subsequent sections highlight LMEs and how such enzymes can enhance the value of lignin by microbial degradation. A major focus was also given to the value-added products that can be produced from lignin.
Collapse
|
19
|
Responsiveness of Aromatoleum aromaticum EbN1 T to Lignin-Derived Phenylpropanoids. Appl Environ Microbiol 2021; 87:AEM.03140-20. [PMID: 33741621 DOI: 10.1128/aem.03140-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
The betaproteobacterial degradation specialist Aromatoleum aromaticum EbN1T utilizes several plant-derived 3-phenylpropanoids coupled to denitrification. In vivo responsiveness of A. aromaticum EbN1T was studied by exposing nonadapted cells to distinct pulses (spanning 100 µM to 0.1 nM) of 3-phenylpropanoate, cinnamate, 3-(4-hydroxyphenyl)propanoate, or p-coumarate. Time-resolved, targeted transcript analyses via quantitative reverse transcription-PCR of four selected 3-phenylpropanoid genes revealed a response threshold of 30 to 50 nM for p-coumarate and 1 to 10 nM for the other three tested 3-phenylpropanoids. At these concentrations, transmembrane effector equilibration is attained by passive diffusion rather than active uptake via the ABC transporter, presumably serving the studied 3-phenylpropanoids as well as benzoate. Highly substrate-specific enzyme formation (EbA5316 to EbA5321 [EbA5316-21]) for the shared peripheral degradation pathway putatively involves the predicted TetR-type transcriptional repressor PprR. Accordingly, relative transcript abundances of ebA5316-21 are lower in succinate- and benzoate-grown wild-type cells than in an unmarked in-frame ΔpprR mutant. In trans-complementation of pprR into the ΔpprR background restored wild-type-like transcript levels. When adapted to p-coumarate, the three genotypes had relative transcript abundances similar to those of ebA5316-21 despite a significantly longer lag phase of the pprR-complemented mutant (∼100-fold higher pprR transcript level than the wild type). Notably, transcript levels of ebA5316-21 were ∼10- to 100-fold higher in p-coumarate- than succinate- or benzoate-adapted cells across all three genotypes. This indicates the additional involvement of an unknown transcriptional regulator. Furthermore, physiological, transcriptional, and (aromatic) acyl-coenzyme A ester intermediate analyses of the wild type and ΔpprR mutant grown with binary substrate mixtures suggest a mode of catabolite repression of superior order to PprR.IMPORTANCE Lignin is a ubiquitous heterobiopolymer built from a suite of 3-phenylpropanoid subunits. It accounts for more than 30% of the global plant dry material, and lignin-related compounds are increasingly released into the environment from anthropogenic sources, i.e., by wastewater effluents from the paper and pulp industry. Hence, following biological or industrial decomplexation of lignin, vast amounts of structurally diverse 3-phenylpropanoids enter terrestrial and aquatic habitats, where they serve as substrates for microbial degradation. This raises the question of what signaling systems environmental bacteria employ to detect these nutritionally attractive compounds and to adjust their catabolism accordingly. Moreover, determining in vivo response thresholds of an anaerobic degradation specialist such as A. aromaticum EbN1T for these aromatic compounds provides insights into the environmental fate of the latter, i.e., when they could escape biodegradation due to too low ambient concentrations.
Collapse
|
20
|
Dos Santos MBC, Scarpassa JA, Monteiro DA, Ladino-Orjuela G, Da Silva R, Boscolo M, Gomes E. Evaluation of the tolerance and biotransformation of ferulic acid by Klebsiella pneumoniae TD 4.7. Braz J Microbiol 2021; 52:1181-1190. [PMID: 33660233 DOI: 10.1007/s42770-021-00462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/23/2021] [Indexed: 11/28/2022] Open
Abstract
Derived compounds from lignin have been used as substrates for chemical and biological processes for obtainment bioproducts. The ferulic acid is a lignocellulosic biomass whose biotransformation in flavors compounds was described. The objective of this study was the bioconversion of ferulic acid to 4-vinylguaiacol by Klebsiella pneumoniae TD 4.7. The biotransformation of commercial ferulic acid into 4-vinylguaiacol in a semi synthetic liquid medium containing the ferulic acid at an initial concentration of 300 mg L-1 reached 32.4%. The ferulic acid obtained from alkaline hydrolysis of the sugar cane bagasse at 300 mg L-1 allowed the yield of 1.3 mmol L-1 of 4-vinylguaiacol, corresponding to 81.7% of the ferulic acid content. The data indicated that the bacterial strain decarboxylated the ferulic acid to 4-vinylguaiacol and the presence of an active cell associated ferulic acid decarboxylase. The enzyme showed maximum activity at pH 5.5 and 40 °C and was stable at pH range 4.5 to 9.0 and temperature up 20 to 45 °C. According to these biochemical properties and performance to bioconversion of ferulic acid to 4-vinylguaiacol, this enzyme could be viable for application in food industry.
Collapse
Affiliation(s)
- Maitê Bernardo Correia Dos Santos
- Department of Biology, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil.
| | - Josiane Aniele Scarpassa
- Department of Biology, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Diego Alves Monteiro
- Department of Biology, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Guillermo Ladino-Orjuela
- Department of Biology, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Roberto Da Silva
- Department of Chemistry and Environment Science, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil
| | - Mauricio Boscolo
- Department of Chemistry and Environment Science, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil
| | - Eleni Gomes
- Department of Biology, São Paulo State University-UNESP, Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| |
Collapse
|
21
|
Hemati A, Aliasgharzad N, Khakvar R, Khoshmanzar E, Asgari Lajayer B, van Hullebusch ED. Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:122-134. [PMID: 33059162 DOI: 10.1016/j.wasman.2020.09.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the effect of lignin content and thermophilic lignocellulolytic bacteria bioaugmentation on composting process. Treatments including bioaugmentation with thermophilic lignocellulolytic bacteria isolates such as Paenibacillus validus, Paenibacillus koreensis, Bacillus nealsonii, a mixture of the three mentioned bacterial isolates and control were compared at two level of organic media (high lignin content and low lignin content) in the form of nested factorial design. Several indices such as humification and enzymatic activities were monitored to evaluate the composting rate. The results revealed that high lignin treatments displayed higher ligninase, xylanase, protease and urease enzymatic activities compared to low lignin treatments. On the other hand, low lignin treatments showed higher level of humification indices, cellulase, beta-glucosidase and alkaline phosphomonoesterase enzymatic activities in comparison with high lignin treatments. Also, all measured enzymatic activities are at their highest between the second and the tenth weeks; however, this trend decreased to reach a steady point from the 18th weeks to the 24th weeks, but for urease enzymatic activity, a totally different trend in high and low lignin treatments was observed. Moreover, the highest humification indices as well as the cellulase and β-glucosidase enzymatic activities were associated to the Bacillus nealsonii isolate and the full consortium. They also displayed the highest ligninase, xylanase, protease, and urease and phosphatase activities. The efficient isolates shortened the time required for completing the composting process for about 2 to 4 weeks compared to the control treatments. For all measured indices, the control treatment had the lowest values.
Collapse
Affiliation(s)
- Arash Hemati
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Nasser Aliasgharzad
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Khakvar
- Department of Plant Pathology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Khoshmanzar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France.
| |
Collapse
|
22
|
Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. J Fungi (Basel) 2020; 6:jof6040384. [PMID: 33371491 PMCID: PMC7767570 DOI: 10.3390/jof6040384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Phytase is an enzyme that breaks down phytates to release phosphorus in an available form. This enzyme plays an important role in animals, especially monogastric animals. It serves to improve phytate digestion along with phosphorus absorption, which are required for optimal growth performance and health. In this study, five mushroom species (Amauroderma rugosum SDBR-CMU-A83, Ganoderma mastoporum SDBR-CMU-NK0244, Marusmius sp.1 SDBR-CMU-NK0215, Pholiota adiposa SDBR-CMU-R32 and Piptoporellus triqueter SDBR-CMU-P234) out of 27 mushroom species displayed positive phytase production by agar plate assay. Consequently, these five mushroom species were selected for determination of their potential ability to produce phytase under solid-state fermentation using five agricultural residues (coffee parchment, oil palm empty fruit bunches, rice bran, sawdust, and water hyacinth) as substrates. The highest yield of phytase production (17.02 ± 0.92 units/gram dry substrate) was obtained after one week of fermentation. Optimization for phytase production was determined by statistical approaches using a Plackett-Burman design to screen ten parameters of relevant substrate components. Two significant parameters, the amount of water hyacinth and the moisture content, were found to affect the production process of phytase. Furthermore, the optimal temperature, pH value, and fermentation period were evaluated. The results indicated that the highest degree of phytase production at 53.66 ± 1.68 units/gram dry substrate (3.15-fold increase) was obtained in water hyacinth containing 85% moisture content by addition with a suitable basal liquid medium at a pH value of 6.5 after being incubated at 30 °C for seven days. The crude phytase of P. adiposa was precipitated and the precipitated extract was then used to determine partial characterizations. The precipitated extract displayed high activities after exposure to conditions of 42 °C and pH 5.0. Furthermore, Fe2+ enhanced phytase activity and precipitated extract displayed the best stability at a pH value of 8.0 and a temperature of 4 °C.
Collapse
|
23
|
Gonçalves CC, Bruce T, Silva CDOG, Fillho EXF, Noronha EF, Carlquist M, Parachin NS. Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods. Front Microbiol 2020; 11:1081. [PMID: 32582068 PMCID: PMC7295907 DOI: 10.3389/fmicb.2020.01081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
Lignin is an abundant cell wall component, and it has been used mainly for generating steam and electricity. Nevertheless, lignin valorization, i.e. the conversion of lignin into high value-added fuels, chemicals, or materials, is crucial for the full implementation of cost-effective lignocellulosic biorefineries. From this perspective, rapid screening methods are crucial for time- and resource-efficient development of novel microbial strains and enzymes with applications in the lignin biorefinery. The present review gives an overview of recent developments and applications of a vast arsenal of activity and sequence-based methodologies for uncovering novel microbial strains with ligninolytic potential, novel enzymes for lignin depolymerization and for unraveling the main metabolic routes during growth on lignin. Finally, perspectives on the use of each of the presented methods and their respective advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Carolyne Caetano Gonçalves
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | - Thiago Bruce
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | | | | | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Faculty of Engineering, Lund University, Lund, Sweden
| | - Nádia Skorupa Parachin
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| |
Collapse
|
24
|
Tao X, Feng J, Yang Y, Wang G, Tian R, Fan F, Ning D, Bates CT, Hale L, Yuan MM, Wu L, Gao Q, Lei J, Schuur EAG, Yu J, Bracho R, Luo Y, Konstantinidis KT, Johnston ER, Cole JR, Penton CR, Tiedje JM, Zhou J. Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. MICROBIOME 2020; 8:84. [PMID: 32503635 PMCID: PMC7275452 DOI: 10.1186/s40168-020-00838-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/15/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. RESULTS The β-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. CONCLUSIONS Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract.
Collapse
Affiliation(s)
- Xuanyu Tao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Jiajie Feng
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Gangsheng Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Renmao Tian
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Daliang Ning
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Colin T Bates
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Lauren Hale
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Mengting M Yuan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Linwei Wu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Julian Yu
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Rosvel Bracho
- School of Forest Resources and Conservation, Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, School of Biology, and Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eric R Johnston
- School of Civil and Environmental Engineering, School of Biology, and Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - C Ryan Penton
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
25
|
Contreras-Jácquez V, Rodríguez-González J, Mateos-Díaz JC, Valenzuela-Soto EM, Asaff-Torres A. Differential Activation of Ferulic Acid Catabolic Pathways of Amycolatopsis sp. ATCC 39116 in Submerged and Surface Cultures. Appl Biochem Biotechnol 2020; 192:494-516. [PMID: 32399842 DOI: 10.1007/s12010-020-03336-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and β-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 μg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into β-oxidative pathway and/or vanillin oxidation to produce vanillic acid.
Collapse
Affiliation(s)
- Victor Contreras-Jácquez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, CP, 83304, Hermosillo, Sonora, Mexico
| | - Jorge Rodríguez-González
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (Unidad de Biotecnología Industrial), Camino el Arenero 1227, El Bajío del Arenal, CP, 45019, Zapopan, Jalisco, Mexico
| | - Juan Carlos Mateos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (Unidad de Biotecnología Industrial), Camino el Arenero 1227, El Bajío del Arenal, CP, 45019, Zapopan, Jalisco, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, CP, 83304, Hermosillo, Sonora, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, CP, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
26
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
27
|
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101498] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
29
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
30
|
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. CHEMOSPHERE 2019; 231:588-606. [PMID: 31154237 DOI: 10.1016/j.chemosphere.2019.05.142] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 05/15/2023]
Abstract
Tremendous explosion of population has led to about 200% increment of total energy consumptions in last twenty-five years. Apart from conventional fossil fuel as limited energy source, alternative non-conventional sources are being explored worldwide to cater the energy requirement. Lignocellulosic biomass conversion for biofuel production is an important alternative energy source due to its abundance in nature and creating less harmful impacts on the environment in comparison to the coal or petroleum-based sources. However, lignocellulose biopolymer, the building block of plants, is a recalcitrant substance and difficult to break into desirable products. Commonly used chemical and physical methods for pretreating the substrate are having several limitations. Whereas, utilizing microbial potential to hydrolyse the biomass is an interesting area of research. Because of the complexity of substrate, several enzymes are required that can act synergistically to hydrolyse the biopolymer producing components like bioethanol or other energy substances. Exploring a range of microorganisms, like bacteria, fungi, yeast etc. that utilizes lignocelluloses for their energy through enzymatic breaking down the biomass, is one of the options. Scientists are working upon designing organisms through genetic engineering tools to integrate desired enzymes into a single organism (like bacterial cell). Studies on designer cellulosomes and bacteria consortia development relating consolidated bioprocessing are exciting to overcome the issue of appropriate lignocellulose digestions. This review encompasses up to date information on recent developments for effective microbial degradation processes of lignocelluloses for improved utilization to produce biofuel (bioethanol in particular) from the most plentiful substances of our planet.
Collapse
Affiliation(s)
- Rajesh Kumar Prasad
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India; Assam University, Silchar, 788011, Assam, India
| | | | | | | | - Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | | | | | | | - Dharmendra Kumar Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), HerrenhäuserStr. 2, 30419, Hannover, Germany
| |
Collapse
|
31
|
Exoproduction and Molecular Characterization of Peroxidase from Ensifer adhaerens. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increased industrial application potentials of peroxidase have led to high market demand, which has outweighed the commercially available peroxidases. Hence, the need for alternative and efficient peroxidase-producers is imperative. This study reported the process parameters for enhanced exoperoxidase production by Ensifer adhaerens NWODO-2 (accession number: KX640918) for the first time, and characterized the enzyme using molecular methods. Peroxidase production by the bacteria was optimal at 48 h, with specific productivity of 12.76 U mg−1 at pH 7, 30 °C and 100 rpm in an alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen source. Upon assessment of some agricultural residues as sources of carbon for the enzyme production, sawdust gave the highest peroxidase productivity (37.50 U mg−1) under solid-state fermentation. A search of the polymerase chain reaction (PCR)-amplified peroxidase gene in UniProtKB using blastx showed 70.5% similarity to an uncharacterized protein in Ensifer adhaerens but phylogenetic analysis suggests that the gene may encode a catalase-peroxidase with an estimated molecular weight of approximately 31 kDa and isoelectric point of about 11. The nucleotide sequence of the detected gene was deposited in the GenBank under the accession number MF374336. In conclusion, the ability of the strain to utilize lignocellulosic materials for peroxidase production augurs well for biotechnological application as this would greatly reduce cost, which is a major challenge in industrial enzyme production.
Collapse
|
32
|
Ravi K, García-Hidalgo J, Brink DP, Skyvell M, Gorwa-Grauslund MF, Lidén G. Physiological characterization and sequence analysis of a syringate-consuming Actinobacterium. BIORESOURCE TECHNOLOGY 2019; 285:121327. [PMID: 30991184 DOI: 10.1016/j.biortech.2019.121327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Hardwood lignin is made of up to 75% syringyl-units and the bioconversion of syringate and syringaldehyde is therefore of considerable interest for biological valorization of lignin. In the current study, we have isolated a syringate-consuming bacterium identified as Microbacterium sp. RG1 and characterized its growth on several lignin model compounds. Growth was observed on syringate, 3-O-methylgallate, vanillate, 4-hydroxybenzoate, ferulate and p-coumarate. Toxic aromatic aldehydes such as vanillin and syringaldehyde were converted to their respective alcohols/acids which were eventually consumed with a maximum specific uptake rate of 0.02 and 0.1 mmol (gCDW h)-1 respectively. The isolate was further subjected to whole genome sequencing and putative genes related to the metabolism of syringyl-compounds were mapped for the first time in a Gram-positive bacterium. These findings will be of high significance when designing future host microorganisms and bioprocesses for the efficient valorization of pre-treated lignin feedstocks.
Collapse
Affiliation(s)
- Krithika Ravi
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Javier García-Hidalgo
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Daniel P Brink
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Martin Skyvell
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
33
|
Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 2019; 56:179-186. [DOI: 10.1016/j.copbio.2018.11.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
|
34
|
Mathews SL, Epps MJ, Blackburn RK, Goshe MB, Grunden AM, Dunn RR. Public questions spur the discovery of new bacterial species associated with lignin bioconversion of industrial waste. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180748. [PMID: 31031986 PMCID: PMC6458430 DOI: 10.1098/rsos.180748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
A citizen science project found that the greenhouse camel cricket (Diestrammena asynamora) is common in North American homes. Public response was to wonder 'what good are they anyway?' and ecology and evolution guided the search for potential benefit. We predicted that camel crickets and similar household species would likely host bacteria with the ability to degrade recalcitrant carbon compounds. Lignocellulose is particularly relevant as it is difficult to degrade yet is an important feedstock for pulp and paper, chemical and biofuel industries. We screened gut bacteria of greenhouse camel crickets and another household insect, the hide beetle (Dermestes maculatus) for the ability to grow on and degrade lignocellulose components as well as the lignocellulose-derived industrial waste product black liquor. From three greenhouse camel crickets and three hide beetles, 14 bacterial strains were identified that were capable of growth on lignocellulosic components, including lignin. Cedecea lapagei was selected for further study due to growth on most lignocellulose components. The C. lapagei secretome was identified using LC/MS/MS analysis. This work demonstrates a novel source of lignocellulose-degrading bacteria and introduces an effective workflow to identify bacterial enzymes for transforming industrial waste into value-added products. More generally, our research suggests the value of ecologically guided discovery of novel organisms.
Collapse
Affiliation(s)
- Stephanie L. Mathews
- Department of Biological Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Mary Jane Epps
- Department of Biology, Mary Baldwin University, Staunton, VA 24401, USA
| | - R. Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen, 2100Denmark
| |
Collapse
|
35
|
Li X, He Y, Zhang L, Xu Z, Ben H, Gaffrey MJ, Yang Y, Yang S, Yuan JS, Qian WJ, Yang B. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:60. [PMID: 30923568 PMCID: PMC6423811 DOI: 10.1186/s13068-019-1395-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Biological routes for utilizing both carbohydrates and lignin are important to reach the ultimate goal of bioconversion of full carbon in biomass into biofuels and biochemicals. Recent biotechnology advances have shown promises toward facilitating biological transformation of lignin into lipids. Natural and engineered Rhodococcus strains (e.g., R. opacus PD630, R. jostii RHA1, and R. jostii RHA1 VanA-) have been demonstrated to utilize lignin for lipid production, and co-culture of them can promote lipid production from lignin. RESULTS In this study, a co-fermentation module of natural and engineered Rhodococcus strains with significant improved lignin degradation and/or lipid biosynthesis capacities was established, which enabled simultaneous conversion of glucose, lignin, and its derivatives into lipids. Although Rhodococci sp. showed preference to glucose over lignin, nearly half of the lignin was quickly depolymerized to monomers by these strains for cell growth and lipid synthesis after glucose was nearly consumed up. Profiles of metabolites produced by Rhodococcus strains growing on different carbon sources (e.g., glucose, alkali lignin, and dilute acid flowthrough-pretreated poplar wood slurry) confirmed lignin conversion during co-fermentation, and indicated novel metabolic capacities and unexplored metabolic pathways in these organisms. Proteome profiles suggested that lignin depolymerization by Rhodococci sp. involved multiple peroxidases with accessory oxidases. Besides the β-ketoadipate pathway, the phenylacetic acid (PAA) pathway was another potential route for the in vivo ring cleavage activity. In addition, deficiency of reducing power and cellular oxidative stress probably led to lower lipid production using lignin as the sole carbon source than that using glucose. CONCLUSIONS This work demonstrated a potential strategy for efficient bioconversion of both lignin and glucose into lipids by co-culture of multiple natural and engineered Rhodococcus strains. In addition, the involvement of PAA pathway in lignin degradation can help to further improve lignin utilization, and the combinatory proteomics and bioinformatics strategies used in this study can also be applied into other systems to reveal the metabolic and regulatory pathways for balanced cellular metabolism and to select genetic targets for efficient conversion of both lignin and carbohydrates into biofuels.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Yucai He
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Libing Zhang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Zhangyang Xu
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Haoxi Ben
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Joshua S. Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840 USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
36
|
Zhu D, Si H, Zhang P, Geng A, Zhang W, Yang B, Qian WJ, Gabriel M, Sun J. Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:338. [PMID: 30603046 PMCID: PMC6307125 DOI: 10.1186/s13068-018-1341-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/15/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways involved in the degradation of lignin and the catabolic pathway of intermediate aromatic metabolites. To address these subjects, we characterized the deconstruction and mineralization of lignin with milled wood lignin (MWL, the most representative molecule of lignin in its native state) and alkali lignin (AL), and elucidated metabolic pathways of their intermediate metabolites by a bacterium named Comamonas serinivorans SP-35. RESULTS The degradation rate of MWL reached 30.9%, and its particle size range was decreased from 6 to 30 µm to 2-4 µm-when cultured with C. serinivorans SP35 over 7 days. FTIR analysis showed that the C-C and C-O-C bonds between the phenyl propane structures of lignin were oxidized and cleaved and the side chain structure was modified. More than twenty intermediate aromatic metabolites were identified in the MWL and AL cultures based on GC-MS analysis. Through genome sequencing and annotation, and from GC-MS analysis, 93 genes encoding 33 enzymes and 5 regulatory factors that may be involved in lignin degradation were identified and more than nine metabolic pathways of lignin and its intermediates were predicted. Of particular note is that the metabolic pathway to form the powerful antioxidant 3,4-dihydroxyphenylglycol is described for the first time in bacteria. CONCLUSION Elucidation of the β-aryl ether cleavage pathway in the strain SP-35 indicates that the β-aryl ether catabolic system is not only present in the family of Sphingomonadaceae, but also other species of bacteria kingdom. These newly elucidated catabolic pathways of lignin in strain SP-35 and the enzymes responsible for them provide exciting biotechnological opportunities for lignin valorization in future.
Collapse
Affiliation(s)
- Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haibing Si
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Peipei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Alei Geng
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354 USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Murillo Gabriel
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| |
Collapse
|
37
|
Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. BIORESOURCE TECHNOLOGY 2018; 269:557-566. [PMID: 30219494 DOI: 10.1016/j.biortech.2018.08.118] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.
Collapse
Affiliation(s)
- Rong Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Daolin Du
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
38
|
Functional characterization of ligninolytic Klebsiella spp. strains associated with soil and freshwater. Arch Microbiol 2018; 200:1267-1278. [PMID: 29947838 DOI: 10.1007/s00203-018-1532-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
Abstract
Overcoming recalcitrance of lignin has motivated bioprospecting of high-yielding enzymes from environmental ligninolytic microorganisms associated with lignocellulose degrading-systems. Here, we performed isolation of 21 ligninolytic strains belonging to the genus Klebsiella spp., driven by the presence of lignin in the media. The fastest-growing strains (FP10-5.23, FP10-5.22 and P3TM1) reached the stationary phase in approximately 24 h, in the media containing lignin as the main carbon source. The strains showed biochemical evidence of ligninolytic potential in liquid- and solid media-converting dyes, which the molecular structures are similar to lignin fragments. In liquid medium, higher levels of dye decolorization was observed for P3TM.1 in the presence of methylene blue, reaching 98% decolorization in 48 h. The highest index values (1.25) were found for isolates P3TM.1 and FP10-5.23, in the presence of toluidine blue. The genomic analysis revealed the presence of more than 20 genes associated with known prokaryotic lignin-degrading systems. Identification of peroxidases (lignin peroxidase-LiP, dye-decolorizing peroxidase-DyP, manganese peroxidase-MnP) and auxiliary activities (AA2, AA3, AA6 and AA10 families) among the genetic repertoire suggest the ability to produce extracellular enzymes able to attack phenolic and non-phenolic lignin structures. Our results suggest that the Klebsiella spp. associated with fresh water and soil may play important role in the cycling of recalcitrant molecules in the Caatinga (desert-like Brazilian biome), and represent a potential source of lignin-degrading enzymes with biotechnological applications.
Collapse
|
39
|
Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:154. [PMID: 29991962 PMCID: PMC5987411 DOI: 10.1186/s13068-018-1148-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/17/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysaccharide-based biorefinery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to find the important enzymes for polymer utilization. RESULTS Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin degradation and PHA production. We also applied label-free quantitative proteomic approach to identify the expression profile on monoaromatic compound vanillic acid (VA) and polyaromatic kraft lignin (KL). Genomic and proteomic analysis simultaneously discovered Dyp-type peroxidase, peroxidases, glycolate oxidase, aldehyde oxidase, GMC oxidoreductase, laccases, quinone oxidoreductase, dioxygenases, monooxygenases, glutathione-dependent etherases, dehydrogenases, reductases, and methyltransferases and various other recently reported enzyme systems such as superoxide dismutases or catalase-peroxidase for lignin degradation. A strong stress response and detoxification mechanism was discovered. The two important gene clusters for lignin degradation and three PHA polymerase spanning gene clusters were identified and all the clusters were functionally active on KL-VA. CONCLUSIONS The unusual aerobic '-CoA'-mediated degradation pathway of phenylacetate and benzoate (reported only in 16 and 4-5% of total sequenced bacterial genomes), peroxidase-accessory enzyme system, and fenton chemistry based are the major pathways observed for lignin degradation. Both ortho and meta ring cleavage pathways for aromatic compound degradation were observed in expression profile. Genomic and proteomic approaches provided validation to this strain's robust machinery for the metabolism of recalcitrant compounds and PHA production and provide an opportunity to target important enzymes for lignin valorization in future.
Collapse
Affiliation(s)
- Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sandhya Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Rajesh Kumar Gazara
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow, 226 001 India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
40
|
Zhuo S, Yan X, Liu D, Si M, Zhang K, Liu M, Peng B, Shi Y. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:146. [PMID: 29796087 PMCID: PMC5964970 DOI: 10.1186/s13068-018-1146-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/11/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Biological pretreatment is an important alternative strategy for biorefining lignocellulose and has attracted increasing attention in recent years. However, current designs for this pretreatment mainly focus on using various white rot fungi, overlooking the bacteria. To the best of our knowledge, for the first time, we evaluated the potential contribution of bacteria to lignocellulose pretreatment, with and without a physicochemical process, based on the bacterial strain Pandoraea sp. B-6 (hereafter B-6) that was isolated from erosive bamboo slips. Moreover, the mechanism of the improvement of reducing sugar yield by bacteria was elucidated via analyses of the physicochemical changes of corn stover (CS) before and after pretreatment. RESULTS The digestibility of CS pretreated with B-6 was equivalent to that of untreated CS. The recalcitrant CS surface provided fewer mediators for contact with the extracellular enzymes of B-6. A pre-erosion strategy using a tetrahydrofuran-water co-solvent system was shown to destroy the recalcitrant CS surface. The optimal condition for pre-erosion showed a 6.5-fold increase in enzymatic digestibility compared with untreated CS. The pre-erosion of CS can expose more phenolic compounds that were chelated to oxidized Mn3+ and also provided mediators for combination with laccase, which was attributable to B-6 pretreatment. B-6 pretreatment following pre-erosion exhibited a sugar yield that was 91.2 mg/g greater than that of pre-erosion alone and 7.5-fold higher than that of untreated CS. This pre-erosion application was able to destroy the recalcitrant CS surface, thus leading to a rough and porous architecture that better facilitated the diffusion and transport of lignin derivatives. This enhanced the ability of laccase and manganese peroxidase secreted by B-6 to improve the efficiency of this biological pretreatment. CONCLUSION Bacteria were not found useful alone as a biological pretreatment, but they significantly improved enzymatic digestion after lignocellulose breakdown via other physicochemical methods. Nonetheless, phenyl or phenoxy radicals were used by laccase and manganese peroxidase in B-6 for lignin attack or lignin depolymerization. These particular mediators released from the recalcitrance network of lignocellulose openings are important for the efficacy of this bacterial pretreatment. Our findings thus offer a novel perspective on the effective design of biological pretreatment methods for lignocellulose.
Collapse
Affiliation(s)
- Shengnan Zhuo
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 China
| | - Dan Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Mingren Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Bing Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083 China
| |
Collapse
|
41
|
Cauley AN, Wilson JN. Functionalized lignin biomaterials for enhancing optical properties and cellular interactions of dyes. Biomater Sci 2018; 5:2114-2121. [PMID: 28831468 DOI: 10.1039/c7bm00518k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report a library of functionalized lignins and demonstrate their utility as nanocontainers for organic dyes in biologically relevant applications. Kraft lignin was modified via SN2 reaction at the phenolic -OH group utilizing a mild base, potassium carbonate, and various alkyl halides, several bearing additional functionalities, with dimethylsulfoxide as solvent. The resulting phenoxy ethers were characterized by 1H-NMR and IR spectroscopy, as well as DLS and SEM to evaluate their morphology and supramolecular organization. Lignin modified with long-chain hydrocarbon tails was found to effectively encapsulate DiD, a cyanine dye, decrease aggregation, enhance optical transitions and exert a photoprotective effect. The dye-lignin assemblies were also examined as imaging agents, via confocal microscopy, and found to accumulate intracellularly with no leaching of the dye to hydrophobic subcellular components observed. Lignin functionalized with short chain carboxylic acids interacts with ligands directed at the norepinephrine transporter (NET), suggesting applications in sequestration of neuroactive compounds.
Collapse
Affiliation(s)
- Anthony N Cauley
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33124, USA.
| | | |
Collapse
|
42
|
Ravi K, García-Hidalgo J, Nöbel M, Gorwa-Grauslund MF, Lidén G. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express 2018; 8:32. [PMID: 29500726 PMCID: PMC5834416 DOI: 10.1186/s13568-018-0563-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 11/10/2022] Open
Abstract
Bacterial strains were isolated from the sediments of the Baltic Sea using ferulic acid, guaiacol or a lignin-rich softwood waste stream as substrate. In total nine isolates were obtained, five on ferulic acid, two on guaiacol and two on a lignin-rich softwood stream as a carbon source. Three of the isolates were found to be Pseudomonas sp. based on 16S rRNA sequencing. Among them, isolate 9.1, which showed the fastest growth in defined M9 medium, was tentatively identified as a Pseudomonas deceptionensis strain based on the gyrB sequencing. The growth of isolate 9.1 was further examined on six selected lignin model compounds (ferulate, p-coumarate, benzoate, syringate, vanillin and guaiacol) from different upper funneling aromatic pathways and was found able to grow on four out of these six compounds. No growth was detected on syringate and guaiacol. The highest specific growth and uptake rates were observed for benzoate (0.3 h-1 and 4.2 mmol g CDW-1 h-1) whereas the lowest were for the compounds from the coniferyl branch. Interestingly, several pathway intermediates were excreted during batch growth. Vanillyl alcohol was found to be excreted during growth on vanillin. Several other intermediates like cis,cis-muconate, catechol, vanillate and 4-hydroxybenzoate from the known bacterial catabolic pathways were excreted during growth on the model compounds.
Collapse
Affiliation(s)
- Krithika Ravi
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Javier García-Hidalgo
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Matthias Nöbel
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
43
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
44
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
45
|
Marques RG, Ferrari-Lima AM, Slusarski-Santana V, Fernandes-Machado NRC. Ag 2O and Fe 2O 3 modified oxides on the photocatalytic treatment of pulp and paper wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 195:242-248. [PMID: 27652582 DOI: 10.1016/j.jenvman.2016.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/30/2016] [Accepted: 08/10/2016] [Indexed: 05/24/2023]
Abstract
The effects of doping of ZnO and Nb2O5 solids with Fe2O3 (1.4 wt%) and Ag2O (1.4 wt%) on its surface and catalytic properties were investigated, as well as its photocatalytic performance on the degradation of a pulp and paper wastewater (PPW). The catalysts were characterized by XRD, SEM, photoacoustic spectroscopy (PAS), NH3-TPD and textural analysis. The results obtained revealed that Fe2O3 doping of Nb2O5 conducted at 500 °C resulted in an increase of about 116% for SBET while Ag2O treatment exerted a decrease of 33% for SBET of the doped adsorbents. Doping ZnO with Fe2O3 or Ag2O led to an increase of 80% for SBET. Iron and silver doping also led to a decrease in band gap energy of at least 6%. The addition of 1.4 wt% Ag2O on ZnO followed by calcination at 500 °C resulted in an increase of 11% in the value of the reaction rate constant (kap) for COD reduction under UV radiation. The treatment of Nb2O5 with 1.4 wt% Ag2O increased by a factor of 2.04 the value of kap for the reaction taking place under VIS radiation. The catalysts partially reduced the organic load and the real colour of the wastewater, allowing the achievement of the specifications for release into rivers, so photocatalysis could be an alternative for pulp and paper wastewater final polishing.
Collapse
Affiliation(s)
- R G Marques
- Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, Brazil
| | - A M Ferrari-Lima
- Universidade Tecnológica Federal do Paraná, Rua Marcílio Dias, 635, Apucarana, PR, Brazil.
| | - V Slusarski-Santana
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade, 645, Toledo, PR, Brazil
| | | |
Collapse
|
46
|
Jackson CA, Couger MB, Prabhakaran M, Ramachandriya KD, Canaan P, Fathepure BZ. Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass. J Appl Microbiol 2017; 122:940-952. [PMID: 28092137 DOI: 10.1111/jam.13401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this work was to isolate novel lignin-degrading organisms. METHODS AND RESULTS Several pure cultures of bacteria that degrade lignin were isolated from bacterial consortia developed from decaying biomass. Among the isolates, Rhizobium sp. strain YS-1r (closest relative of Rhizobium petrolearium strain SL-1) was explored for its lignin-degrading ability. Microcosm studies showed that strain YS-1r was able to degrade a variety of lignin monomers, dimers and also native lignin in switchgrass and alfalfa. The isolate demonstrated lignin peroxidase (LiP) activity when grown on alkali lignin, p-anisoin, switchgrass or alfalfa, and only negligible activity was measured in glucose-grown cells suggesting inducible nature of the LiP activity. Analysis of the strain YS-1r genome revealed the presence of a variety of genes that code for various lignin-oxidizing, H2 O2 -producing as well as polysaccharide-hydrolysing enzymes. CONCLUSIONS This study shows both the genomic and physiological capability of bacteria in the genus Rhizobium to metabolize lignin and lignin-like compounds. This is the first detailed report on the lignocellulose-degrading ability of a Rhizobium species and thus this study expands the role of alpha-proteobacteria in the degradation of lignin. SIGNIFICANCE AND IMPACT OF THE STUDY The organism's ability to degrade lignin is significant since Rhizobia are widespread in soil, water and plant rhizospheres and some fix atmospheric nitrogen and also have the ability to degrade aromatic hydrocarbons.
Collapse
Affiliation(s)
- C A Jackson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M Prabhakaran
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - K D Ramachandriya
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - P Canaan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - B Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
47
|
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:44. [PMID: 28239416 PMCID: PMC5320714 DOI: 10.1186/s13068-017-0735-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/14/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. RESULTS To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. CONCLUSIONS GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.
Collapse
Affiliation(s)
- Daochen Zhu
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
- State Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong China
| | - Peipei Zhang
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Changxiao Xie
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Weimin Zhang
- State Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong China
| | - Jianzhong Sun
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354 USA
| |
Collapse
|
48
|
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol 2016; 236:110-9. [DOI: 10.1016/j.jbiotec.2016.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|
49
|
Chen C, Li T. Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Tian JH, Pourcher AM, Klingelschmitt F, Le Roux S, Peu P. Class P dye-decolorizing peroxidase gene: Degenerated primers design and phylogenetic analysis. J Microbiol Methods 2016; 130:148-153. [PMID: 27686379 DOI: 10.1016/j.mimet.2016.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) were classified as a new family of heme peroxidase in 2007. Produced by various bacteria, they are the first bacterial enzymes known able to degrade lignin and dyes, for which their application in waste treatment and pretreatment of lignocellulosic biomass could be envisaged. In this work, a PCR primer pair was created and tested that enabled the detection and quantification of a wide range of bacterial genes of P class DyP in complex matrices. In addition, a phylogenetic tree was built with all available sequences of DyP genes available, offering a first overview of their presence in the bacteria kingdom.
Collapse
Affiliation(s)
- J-H Tian
- IRSTEA, UR GERE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Européenne de Bretagne, France
| | - A-M Pourcher
- IRSTEA, UR GERE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Européenne de Bretagne, France.
| | - F Klingelschmitt
- IRSTEA, UR GERE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Européenne de Bretagne, France
| | - S Le Roux
- IRSTEA, UR GERE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Européenne de Bretagne, France
| | - P Peu
- IRSTEA, UR GERE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Européenne de Bretagne, France
| |
Collapse
|