1
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
2
|
Wulf V, Bisker G. Integrating Single-Walled Carbon Nanotubes into Supramolecular Assemblies: From Basic Interactions to Emerging Applications. ACS NANO 2024; 18:29380-29393. [PMID: 39428637 PMCID: PMC11526426 DOI: 10.1021/acsnano.4c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Integrating single-walled carbon nanotubes (SWCNTs) into supramolecular self-assemblies harnesses the distinctive mechanical, optical, and electronic properties of the nanoparticles alongside the structural and chemical properties of the assemblies. Organic molecules capable of forming supramolecular assemblies through hydrophobic, van der Waals, and π-π interactions have been demonstrated to be particularly effective in dispersing and functionalizing SWCNTs, as these same interactions facilitate the binding to the hydrophobic graphene-like surface of the SWCNTs. This review discusses a variety of self-assembling structures that were shown to integrate SWCNTs, ranging from simple micelles and ring structures to complex DNA origami and three-dimensional hydrogels formed by low-molecular-weight gelators. We explore the integration of SWCNTs into various supramolecular assemblies and highlight emerging applications of these composite materials, such as the mechanical enforcement of self-assembling hydrogels and leveraging the near-infrared (NIR) fluorescence properties of SWCNTs for monitoring the molecular self-assembly process. Notably, the distinctive NIR fluorescence of SWCNTs, which overlaps with the biological transparency window, offers significant opportunities for noninvasive sensing applications within the supramolecular platforms. Future research into a deeper understanding of the interactions between SWCNTs and different supramolecular frameworks will expand the potential applications of SWCNT-integrated supramolecular assemblies in fields like biomedical engineering, electronic devices, and environmental sensing.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Basu S, Hendler-Neumark A, Bisker G. Ratiometric Normalization of Near-Infrared Fluorescence in Defect-Engineered Single-Walled Carbon Nanotubes for Cholesterol Detection. J Phys Chem Lett 2024; 15:10425-10434. [PMID: 39388300 PMCID: PMC11514023 DOI: 10.1021/acs.jpclett.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Ratiometric probing of analytes presents a substantial advancement in molecular recognition, offering self-calibrating signals that enhance the measurement accuracy and reliability. We present a dual-emitting probe based on (6,5) chirality-enriched single-walled carbon nanotubes (SWCNTs) with oxygen defects for cholesterol (Chol) detection using ratiometric fluorescence readouts. The interaction with Chol induced significant intensity variations in the E11 and E11* emission peaks of oxygen defect-induced SWCNTs, giving rise to ratiometric fluorescence changes. The sensitivity of these probes toward Chol in water and serum was 0.28 ± 0.01 and 0.72 ± 0.05 μM, respectively, which is comparable to that of common gold standards for cholesterol detection used in clinical samples. By utilizing ratiometric readouts, our approach enhanced selectivity over numerous competing analytes, including amino acids, sugars, cations, anions, proteins, steroid hormones, surfactants, and phospholipids. Mechanistic investigations revealed that Chol detection by defect-integrated SWCNTs was facilitated by Chol incorporation within micelles formed by sodium cholate, the surfactant dispersant used for the SWCNT suspension. Oxygen defects played a crucial role by directly interacting with Chol. This strategy employing defect-integrated dual-peak NIR-emitting SWCNTs as sensors for Chol in aqueous and serum environments not only enables background-free detection of biologically relevant analytes but also advances biosensing using SWCNTs through tailored surface functionalization and advanced read-out concepts.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Hill BF, Mohr JM, Sandvoss IK, Gretz J, Galonska P, Schnitzler L, Erpenbeck L, Kruss S. Ratiometric near infrared fluorescence imaging of dopamine with 1D and 2D nanomaterials. NANOSCALE 2024; 16:18534-18544. [PMID: 39279544 DOI: 10.1039/d4nr02358g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Neurotransmitters are released by neuronal cells to exchange information. Resolving their spatiotemporal patterns is crucial to understand chemical neurotransmission. Here, we present a ratiometric sensor for the neurotransmitter dopamine that combines Egyptian blue (CaCuSi4O10) nanosheets (EB-NS) and single-walled carbon nanotubes (SWCNTs). They both fluoresce in the near infrared (NIR) region, which is beneficial due to their ultra-low background and phototoxicity. (GT)10-DNA-functionalized monochiral (6,5)-SWCNTs increase their fluorescence (1000 nm) in response to dopamine, while EB-NS serve as a stable reference (936 nm). A robust ratiometric imaging scheme is implemented by directing these signals on two different NIR sensitive cameras. Additionally, we demonstrate stability against mechanical perturbations and image dopamine release from differentiated dopaminergic Neuro 2a cells. Therefore, this technique enables robust ratiometric and non-invasive imaging of cellular responses.
Collapse
Affiliation(s)
- Bjoern F Hill
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Jennifer M Mohr
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | | | - Juliana Gretz
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Phillip Galonska
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Lena Schnitzler
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
5
|
Basu S, Hendler-Neumark A, Bisker G. Dynamic Tracking of Biological Processes Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377262 PMCID: PMC11492180 DOI: 10.1021/acsami.4c10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Biological processes are characterized by dynamic and elaborate temporal patterns driven by the interplay of genes, proteins, and cellular components that are crucial for adaptation to changing environments. This complexity spans from molecular to organismal scales, necessitating their real-time monitoring and tracking to unravel the active processes that fuel living systems and enable early disease detection, personalized medicine, and drug development. Single-walled carbon nanotubes (SWCNTs), with their unique physicochemical and optical properties, have emerged as promising tools for real-time tracking of such processes. This perspective highlights the key properties of SWCNTs that make them ideal for such monitoring. Subsequently, it surveys studies utilizing SWCNTs to track dynamic biological phenomena across hierarchical levels─from molecules to cells, tissues, organs, and whole organisms─acknowledging their pivotal role in advancing this field. Finally, the review outlines challenges and future directions, aiming to expand the frontier of real-time biological monitoring using SWCNTs, contributing to deeper insights and novel applications in biomedicine.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Dewey HM, Lamb A, Budhathoki-Uprety J. Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies. NANOSCALE 2024; 16:16344-16375. [PMID: 39157856 DOI: 10.1039/d4nr01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess outstanding photophysical properties which has garnered interest towards utilizing these materials for biosensing and imaging applications. The near-infrared (NIR) fluorescence within the tissue transparent region along with their photostability and sizes in the nanoscale make SWCNTs valued candidates for the development of optical sensors. In this review, we discuss recent advances in the development and the applications of SWCNT-based nano-biosensors. An overview of SWCNT's structural and photophysical properties, sensor development, and sensing mechanisms are described. Examples of SWCNT-based optical nanosensors for detection of disease biomarkers, pathogens (bacteria and viruses), plant stressors, and environmental contaminants including heavy metals and disinfectants are provided. Molecular detection in biofluids, in vitro, and in vivo (small animal models and plants) are highlighted, and sensor integration into portable substrates for implantable and wearable sensing devices has been discussed. Recent advancements, which include high throughput assays and the use of machine learning models to predict more sensitive and robust sensing outcomes are discussed. Current limitations and future perspectives on translation of SWCNT optical probes into clinical practices have been provided.
Collapse
Affiliation(s)
- Hannah M Dewey
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ashley Lamb
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Nalige SS, Galonska P, Kelich P, Sistemich L, Herrmann C, Vukovic L, Kruss S, Havenith M. Fluorescence changes in carbon nanotube sensors correlate with THz absorption of hydration. Nat Commun 2024; 15:6770. [PMID: 39117612 PMCID: PMC11310214 DOI: 10.1038/s41467-024-50968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Single wall carbon nanotubes (SWCNTs) functionalized with (bio-)polymers such as DNA are soluble in water and sense analytes by analyte-specific changes of their intrinsic fluorescence. Such SWCNT-based (bio-)sensors translate the binding of a molecule (molecular recognition) into a measurable optical signal. This signal transduction is crucial for all types of molecular sensors to achieve high sensitivities. Although there is an increasing number of SWCNT-based sensors, there is yet no molecular understanding of the observed changes in the SWCNT's fluorescence. Here, we report THz experiments that map changes in the local hydration of the solvated SWCNT upon binding of analytes such as the neurotransmitter dopamine or the vitamin riboflavin. The THz amplitude signal serves as a measure of the coupling of charge fluctuations in the SWCNTs to the charge density fluctuations in the hydration layer. We find a linear (inverse) correlation between changes in THz amplitude and the intensity of the change in fluorescence induced by the analytes. Simulations show that the organic corona shapes the local water, which determines the exciton dynamics. Thus, THz signals are a quantitative predictor for signal transduction strength and can be used as a guiding chemical design principle for optimizing fluorescent biosensors.
Collapse
Affiliation(s)
- Sanjana S Nalige
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| | - Phillip Galonska
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Linda Sistemich
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr University Bochum, Bochum, Germany
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Sebastian Kruss
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
8
|
Settele S, Stammer F, Sebastian FL, Lindenthal S, Wald SR, Li H, Flavel BS, Zaumseil J. Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction. ACS NANO 2024; 18:20667-20678. [PMID: 39051444 PMCID: PMC11308917 DOI: 10.1021/acsnano.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here, we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright E11* emission (1105 nm) with 3.2 times higher peak intensities than the pristine E11 emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg L-1), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultrashort SWNTs with oxygen defects also enables high photoluminescence quantum yields. Their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in vivo NIR-II imaging and dopamine sensing.
Collapse
Affiliation(s)
- Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Florian Stammer
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon R. Wald
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Dewey H, Mahmood N, Abello SM, Sultana N, Jones J, Gluck JM, Budhathoki-Uprety J. Development of Optical Nanosensors for Detection of Potassium Ions and Assessment of Their Biocompatibility with Corneal Epithelial Cells. ACS OMEGA 2024; 9:27338-27348. [PMID: 38947780 PMCID: PMC11209934 DOI: 10.1021/acsomega.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Imbalance of potassium-ion levels in the body can lead to physiological dysfunctions, which can adversely impact cardiovascular, neurological, and ocular health. Thus, quantitative measurement of potassium ions in a biological system is crucial for personal health monitoring. Nanomaterials can be used to aid in disease diagnosis and monitoring therapies. Optical detection technologies along with molecular probes emitting within the near-infrared (NIR) spectral range are advantageous for biological measurements due to minimal interference from light scattering and autofluorescence within this spectral window. Herein, we report the development of NIR fluorescent nanosensors, which can quantitatively detect potassium ions under biologically relevant conditions. The optical nanosensors were developed by using photoluminescent single-walled carbon nanotubes (SWCNTs) encapsulated in polymers that contain potassium chelating moieties. The nanosensors, polystyrene sulfonate [PSS-SWCNTs, nanosensor 1 (NS1)] or polystyrene-co-polystyrene sulfonate [PS-co-PSS-SWCNTs, nanosensor 2 (NS2)], exhibited dose-dependent optical responses to potassium ion level. The nanosensors demonstrated their biocompatibility via the evaluation of cellular viability, proliferation assays, and expression of cytokeratin 12 in corneal epithelial cells (CEpiCs). Interestingly, the nanosensors' optical characteristics and their responses toward CEpiCs were influenced by encapsulating polymers. NS2 exhibited a 10 times higher fluorescence intensity along with a higher signal-to-noise ratio as compared to NS1. NS2 showed an optical response to potassium ion level in solution within 5 min of addition and a limit of detection of 0.39 mM. Thus, NS2 was used for detailed investigations including potassium ion level detection in serum. NS2 showed a consistent response to potassium ions at the lower millimolar range in serum. These results on optical sensing along with biocompatibility show a great potential for nanotube sensors in biomedical research.
Collapse
Affiliation(s)
| | | | - Sofia Mariapaz Abello
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nigar Sultana
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jaron Jones
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessica M. Gluck
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering,
Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Cohen Z, Alpert DJ, Weisel AC, Ryan A, Roach A, Rahman S, Gaikwad PV, Nicoll SB, Williams RM. Noninvasive Injectable Optical Nanosensor-Hydrogel Hybrids Detect Doxorubicin in Living Mice. ADVANCED OPTICAL MATERIALS 2024; 12:2303324. [PMID: 39450264 PMCID: PMC11498898 DOI: 10.1002/adom.202303324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 10/26/2024]
Abstract
While the tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNTs) imparts substantial potential for use in non-invasive biosensors, development of non-invasive systems is yet to be realized. Here, we investigated the functionality of a SWCNT-based nanosensor in several injectable SWCNT-hydrogel systems, ultimately finding SWCNT encapsulation in a sulfonated methylcellulose hydrogel optimal for detection of ions, small molecules, and proteins. We found that the hydrogel system and nanosensor signal were stable for several weeks in live mice. We then found that this system successfully detects local injections of the chemotherapeutic agent doxorubicin in mice. We anticipate future studies to adapt this device for detection of other analytes in animals and, ultimately, patients.
Collapse
Affiliation(s)
- Zachary Cohen
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Dave J Alpert
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Adam C Weisel
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Amelia Ryan
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Arantxa Roach
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Syeda Rahman
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Pooja V Gaikwad
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| | - Steven B Nicoll
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Ryan M Williams
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| |
Collapse
|
12
|
Levin N, Hendler-Neumark A, Kamber D, Bisker G. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent. J Colloid Interface Sci 2024; 664:650-666. [PMID: 38490040 DOI: 10.1016/j.jcis.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Functionalized single-walled carbon nanotubes (SWCNTs) hold immense potential for diverse biomedical applications due to their biocompatibility and optical properties, including near-infrared fluorescence. Specifically, SWCNTs have been utilized to target cells as a vehicle for drug delivery and gene therapy, and as sensors for various intracellular biomarkers. While the main internalization route of SWCNTs into cells is endocytosis, methods for enhancing the cellular uptake of SWCNTs are of great importance. In this research, we demonstrate the use of a transfecting reagent for promoting cell internalization of functionalized SWCNTs. We explore different types of SWCNT functionalization, namely single-stranded DNA (ssDNA) or polyethylene glycol (PEG)-lipids, and two different cell types, embryonic kidney cells and adenocarcinoma cells. We show that internalizing PEGylated functionalized SWCNTs is enhanced in the presence of the transfecting reagent, where the effect is more pronounced for negatively charged PEG-lipid. However, ssDNA-SWCNTs tend to form aggregates in the presence of the transfecting reagent, rendering it unsuitable for promoting internalization. For all cases, cellular uptake is visualized by near-infrared fluorescence microscopy, showing that the SWCNTs are typically localized within the lysosome. Generally, cellular internalization was higher in the adenocarcinoma cells, thereby paving new avenues for drug delivery and sensing in malignant cells.
Collapse
Affiliation(s)
- Naamah Levin
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
13
|
Ramirez IA, Sadak O, Sohail W, Huang X, Lu Y, Iverson NM. Development and Evaluation of an Expedited System for Creation of Single Walled Carbon Nanotube Platforms. CARBON LETTERS 2024; 34:1343-1354. [PMID: 39015541 PMCID: PMC11250639 DOI: 10.1007/s42823-024-00691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 07/18/2024]
Abstract
Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.
Collapse
Affiliation(s)
- Ivon Acosta Ramirez
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Omer Sadak
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
- Department of Electrical and Electronics Engineering, Ardahan University, Ardahan 75000, Turkey
| | - Wali Sohail
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Xi Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA
| | - Nicole M. Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| |
Collapse
|
14
|
Basu S, Hendler-Neumark A, Bisker G. Rationally Designed Functionalization of Single-Walled Carbon Nanotubes for Real-Time Monitoring of Cholinesterase Activity and Inhibition in Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309481. [PMID: 38358018 DOI: 10.1002/smll.202309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.
Collapse
Affiliation(s)
- Srestha Basu
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
15
|
Kelich P, Adams J, Jeong S, Navarro N, Landry MP, Vuković L. Predicting Serotonin Detection with DNA-Carbon Nanotube Sensors across Multiple Spectral Wavelengths. J Chem Inf Model 2024; 64:3992-4001. [PMID: 38739914 DOI: 10.1021/acs.jcim.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Owing to the value of DNA-wrapped single-walled carbon nanotube (SWNT)-based sensors for chemically specific imaging in biology, we explore machine learning (ML) predictions DNA-SWNT serotonin sensor responsivity as a function of DNA sequence based on the whole SWNT fluorescence spectra. Our analysis reveals the crucial role of DNA sequence in the binding modes of DNA-SWNTs to serotonin, with a smaller influence of SWNT chirality. Regression ML models trained on existing data sets predict the change in the fluorescence emission in response to serotonin, ΔF/F, at over a hundred wavelengths for new DNA-SWNT conjugates, successfully identifying some high- and low-response DNA sequences. Despite successful predictions, we also show that the finite size of the training data set leads to limitations on prediction accuracy. Nevertheless, incorporating entire spectra into ML models enhances prediction robustness and facilitates the discovery of novel DNA-SWNT sensors. Our approaches show promise for identifying new chemical systems with specific sensing response characteristics, marking a valuable advancement in DNA-based system discovery.
Collapse
Affiliation(s)
- Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jaquesta Adams
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sanghwa Jeong
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
| | - Nicole Navarro
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94702, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
16
|
Basu S, Hendler-Neumark A, Bisker G. Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS Sens 2024; 9:2237-2253. [PMID: 38669585 PMCID: PMC11129355 DOI: 10.1021/acssensors.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Enzymes serve as pivotal biological catalysts that accelerate essential chemical reactions, thereby influencing a variety of physiological processes. Consequently, the monitoring of enzyme activity and inhibition not only yields crucial insights into health and disease conditions but also forms the basis of research in drug discovery, toxicology, and the understanding of disease mechanisms. In this context, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have emerged as effective tools for tracking enzyme activity and inhibition through diverse strategies. This perspective explores the physicochemical attributes of SWCNTs that render them well-suited for such monitoring. Additionally, we delve into the various strategies developed so far for successfully monitoring enzyme activity and inhibition, emphasizing the distinctive features of each principle. Furthermore, we contrast the benefits of SWCNT-based NIR probes with conventional gold standards in monitoring enzyme activity. Lastly, we highlight the current challenges faced in this field and suggest potential solutions to propel it forward. This perspective aims to contribute to the ongoing progress in biodiagnostics and seeks to engage the wider community in developing and applying enzymatic assays using SWCNTs.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Hagir Omer MA, Zhang D, Zhou W, Yang X, Qi H. Turn-on fluorescent aptasensing for the determination of serotonin via target-induced knot displacement at corona. Chem Commun (Camb) 2024; 60:4926-4929. [PMID: 38629227 DOI: 10.1039/d4cc00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A turn-on fluorescence aptasensing approach for the highly sensitive and selective determination of 5-HT was proposed via target-induced knot displacement. 5-HT can be determined in a range from 0.5 nM to 100 nM with a limit of detection as low as 0.1 nM and a low dissociation constant of 2.3 nM.
Collapse
Affiliation(s)
- M A Hagir Omer
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Danyang Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| |
Collapse
|
18
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Metternich JT, Hill B, Wartmann JAC, Ma C, Kruskop RM, Neutsch K, Herbertz S, Kruss S. Signal Amplification and Near-Infrared Translation of Enzymatic Reactions by Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202316965. [PMID: 38100133 DOI: 10.1002/anie.202316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/18/2024]
Abstract
Enzymatic reactions are used to detect analytes in a range of biochemical methods. To measure the presence of an analyte, the enzyme is conjugated to a recognition unit and converts a substrate into a (colored) product that is detectable by visible (VIS) light. Thus, the lowest enzymatic turnover that can be detected sets a limit on sensitivity. Here, we report that substrates and products of horseradish peroxidase (HRP) and β-galactosidase change the near-infrared (NIR) fluorescence of (bio)polymer modified single-walled carbon nanotubes (SWCNTs). They translate a VIS signal into a beneficial NIR signal. Moreover, the affinity of the nanosensors leads to a higher effective local concentration of the reactants. This causes a non-linear sensor-based signal amplification and translation (SENSAT). We find signal enhancement up to ≈120x for the HRP substrate p-phenylenediamine (PPD), which means that reactions below the limit of detection in the VIS can be followed in the NIR (≈1000 nm). The approach is also applicable to other substrates such as 3,3'-5,5'-tetramethylbenzidine (TMB). An adsorption-based theoretical model fits the observed signals and corroborates the sensor-based enhancement mechanism. This approach can be used to amplify signals, translate them into the NIR and increase sensitivity of biochemical assays.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Björn Hill
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Janus A C Wartmann
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Chen Ma
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Rebecca M Kruskop
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Krisztian Neutsch
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| |
Collapse
|
20
|
Ma C, Mohr JM, Lauer G, Metternich JT, Neutsch K, Ziebarth T, Reiner A, Kruss S. Ratiometric Imaging of Catecholamine Neurotransmitters with Nanosensors. NANO LETTERS 2024; 24:2400-2407. [PMID: 38345220 DOI: 10.1021/acs.nanolett.3c05082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neurotransmitters are important signaling molecules in the brain and are relevant in many diseases. Measuring them with high spatial and temporal resolutions in biological systems is challenging. Here, we develop a ratiometric fluorescent sensor/probe for catecholamine neurotransmitters on the basis of near-infrared (NIR) semiconducting single wall carbon nanotubes (SWCNTs). Phenylboronic acid (PBA)-based quantum defects are incorporated into them to interact selectively with catechol moieties. These PBA-SWCNTs are further modified with poly(ethylene glycol) phospholipids (PEG-PL) for biocompatibility. Catecholamines, including dopamine, do not affect the intrinsic E11 fluorescence (990 nm) of these (PEG-PL-PBA-SWCNT) sensors. In contrast, the defect-related E11* emission (1130 nm) decreases by up to 35%. Furthermore, this dual functionalization allows tuning selectivity by changing the charge of the PEG polymer. These sensors are not taken up by cells, which is beneficial for extracellular imaging, and they are functional in brain slices. In summary, we use dual functionalization of SWCNTs to create a ratiometric biosensor for dopamine.
Collapse
Affiliation(s)
- Chen Ma
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Jennifer Maria Mohr
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - German Lauer
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Justus Tom Metternich
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, North Rhine-Westphalia 47057, Germany
| | - Krisztian Neutsch
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Tim Ziebarth
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, North Rhine-Westphalia 47057, Germany
| |
Collapse
|
21
|
Nishitani S, Tran T, Puglise A, Yang S, Landry MP. Engineered Glucose Oxidase-Carbon Nanotube Conjugates for Tissue-Translatable Glucose Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202311476. [PMID: 37990059 PMCID: PMC11003487 DOI: 10.1002/anie.202311476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Continuous and non-invasive glucose monitoring and imaging is important for disease diagnosis, treatment, and management. However, glucose monitoring remains a technical challenge owing to the dearth of tissue-transparent glucose sensors. In this study, we present the development of near-infrared fluorescent single-walled carbon nanotube (SWCNT) based nanosensors directly functionalized with glucose oxidase (GOx) capable of immediate and reversible glucose imaging in biological fluids and tissues. We prepared GOx-SWCNT nanosensors by facile sonication of SWCNT with GOx in a manner that-surprisingly-does not compromise the ability of GOx to detect glucose. Importantly, we find by using denatured GOx that the fluorescence modulation of GOx-SWCNT is not associated with the catalytic oxidation of glucose but rather triggered by glucose-GOx binding. Leveraging the unique response mechanism of GOx-SWCNT nanosensors, we developed catalytically inactive apo-GOx-SWCNT that enables both sensitive and reversible glucose imaging, exhibiting a ΔF/F0 of up to 40 % within 1 s of exposure to glucose without consuming the glucose analyte. We finally demonstrate the potential applicability of apo-GOx-SWCNT in biomedical applications by glucose quantification in human plasma and glucose imaging in mouse brain slices.
Collapse
Affiliation(s)
- Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Tiffany Tran
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Andrew Puglise
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Sounghyun Yang
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), 94720, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, 94720, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, 94158, San Francisco, CA, USA
| |
Collapse
|
22
|
Settele S, Schrage CA, Jung S, Michel E, Li H, Flavel BS, Hashmi ASK, Kruss S, Zaumseil J. Ratiometric fluorescent sensing of pyrophosphate with sp³-functionalized single-walled carbon nanotubes. Nat Commun 2024; 15:706. [PMID: 38267487 PMCID: PMC10808354 DOI: 10.1038/s41467-024-45052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Inorganic pyrophosphate is a key molecule in many biological processes from DNA synthesis to cell metabolism. Here we introduce sp3-functionalized (6,5) single-walled carbon nanotubes (SWNTs) with red-shifted defect emission as near-infrared luminescent probes for the optical detection and quantification of inorganic pyrophosphate. The sensing scheme is based on the immobilization of Cu2+ ions on the SWNT surface promoted by coordination to covalently attached aryl alkyne groups and a triazole complex. The presence of Cu2+ ions on the SWNT surface causes fluorescence quenching via photoinduced electron transfer, which is reversed by copper-complexing analytes such as pyrophosphate. The differences in the fluorescence response of sp3-defect to pristine nanotube emission enables reproducible ratiometric measurements in a wide concentration window. Biocompatible, phospholipid-polyethylene glycol-coated SWNTs with such sp3 defects are employed for the detection of pyrophosphate in cell lysate and for monitoring the progress of DNA synthesis in a polymerase chain reaction. This robust ratiometric and near-infrared luminescent probe for pyrophosphate may serve as a starting point for the rational design of nanotube-based biosensors.
Collapse
Affiliation(s)
- Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Sebastian Jung
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Elena Michel
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
- Department of Mechanical and Materials Engineering, University of Turku, Turku, FI-20014, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
| | - A Stephen K Hashmi
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany.
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, D-47057, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany.
| |
Collapse
|
23
|
An S, Suh Y, Kelich P, Lee D, Vukovic L, Jeong S. Directed Evolution of Near-Infrared Serotonin Nanosensors with Machine Learning-Based Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:247. [PMID: 38334518 PMCID: PMC10856788 DOI: 10.3390/nano14030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In this study, we employed a novel approach to improve the serotonin-responsive ssDNA-wrapped single-walled carbon nanotube (ssDNA-SWCNT) nanosensors, combining directed evolution and machine learning-based prediction. Our iterative optimization process is aimed at the sensitivity and selectivity of ssDNA-SWCNT nanosensors. In the three rounds for higher serotonin sensitivity, we substantially improved sensitivity, achieving a remarkable 2.5-fold enhancement in fluorescence response compared to the original sequence. Following this, we directed our efforts towards selectivity for serotonin over dopamine in the two rounds. Despite the structural similarity between these neurotransmitters, we achieved a 1.6-fold increase in selectivity. This innovative methodology, offering high-throughput screening of mutated sequences, marks a significant advancement in biosensor development. The top-performing nanosensors, N2-1 (sensitivity) and L1-14 (selectivity) present promising reference sequences for future studies involving serotonin detection.
Collapse
Affiliation(s)
- Seonghyeon An
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yeongjoo Suh
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Dakyeon Lee
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sanghwa Jeong
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
24
|
Rosenberg DJ, Cunningham FJ, Hubbard JD, Goh NS, Wang JWT, Nishitani S, Hayman EB, Hura GL, Landry MP, Pinals RL. Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry. J Am Chem Soc 2024; 146:386-398. [PMID: 38158616 DOI: 10.1021/jacs.3c09549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)n-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied. We demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two (GT)n ssDNA oligomer lengths (n = 6, 15) that are used on SWCNTs in the context of dopamine sensing and measure the ssDNA conformational changes as a function of ionic strength and during dopamine interaction. We show that the shorter oligomer, (GT)6, adopts a more periodically ordered ring structure along the SWCNT axis (inter-ssDNA distance of 8.6 ± 0.3 nm), compared to the longer (GT)15 oligomer (most probable 5'-to-5' distance of 14.3 ± 1.1 nm). During molecular recognition, XSI reveals that dopamine elicits simultaneous axial elongation and radial constriction of adsorbed ssDNA on the SWCNT surface. Our approach using XSI to probe solution-phase morphologies of polymer-functionalized SWCNTs can be applied to yield insights into sensing mechanisms and inform future design strategies for nanoparticle-based sensors.
Collapse
Affiliation(s)
- Daniel J Rosenberg
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Joshua D Hubbard
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey Wei-Ting Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Emily B Hayman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rebecca L Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571773. [PMID: 38168430 PMCID: PMC10760104 DOI: 10.1101/2023.12.14.571773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H 2 O 2 ) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H 2 O 2 , confirm the nanosensor can image H 2 O 2 in real-time, and assess the nanosensor's selectivity for H 2 O 2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
|
26
|
Pattanaik S, Vishwkarma AK, Yadav T, Shakerzadeh E, Sahu D, Chakroborty S, Tripathi PK, Zereffa EA, Malviya J, Barik A, Sarankar SK, Sharma P, Upadhye VJ, Wagadre S. In silico investigation on sensing of tyramine by boron and silicon doped C 60 fullerenes. Sci Rep 2023; 13:22264. [PMID: 38097755 PMCID: PMC10721924 DOI: 10.1038/s41598-023-49414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
The present communication deals with the adsorption of tyramine neurotransmitter over the surface of pristine, Boron (B) and Silicon (Si) doped fullerenes. Density functional theory (DFT) calculations have been used to investigate tyramine adsorption on the surface of fullerenes in terms of stability, shape, work function, electronic characteristics, and density of state spectra. The most favourable adsorption configurations for tyramine have been computed to have adsorption energies of - 1.486, - 30.889, and - 31.166 kcal/mol, respectively whereas for the rest three configurations, it has been computed to be - 0.991, - 6.999, and - 8.796 kcal/mol, respectively. The band gaps for all six configurations are computed to be 2.68, 2.67, 2.06, 2.17, 2.07, and 2.14 eV, respectively. The band gap of pristine, B and Si doped fullerenes shows changes in their band gaps after adsorption of tyramine neurotransmitters. However, the change in band gaps reveals more in B doped fullerene rather than pristine and Si doped fullerenes. The change in band gaps of B and Si doped fullerenes leads a change in the electrical conductivity which helps to detect tyramine. Furthermore, natural bond orbital (NBO) computations demonstrated a net charge transfer of 0.006, 0.394, and 0.257e from tynamine to pristine, B and Si doped fullerenes.
Collapse
Affiliation(s)
- S Pattanaik
- Sri Satya Sai University of Technology and Medical Sciences, Sehore, Bhopal, M.P., India
| | - A K Vishwkarma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - T Yadav
- Department of Basic Sciences, IITM, IES University, Bhopal, M.P., India
| | - E Shakerzadeh
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - D Sahu
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - S Chakroborty
- Department of Basic Sciences, IITM, IES University, Bhopal, M.P., India.
| | - P K Tripathi
- Department of Physics, Sharda University, Greater Noida, U.P., India.
| | - E A Zereffa
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia.
| | - J Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, M.P., India
| | - A Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - S K Sarankar
- Faculty of Pharmacy, Mansarovar Global University, Sehore, M.P., 466111, India
| | - P Sharma
- Department of Pharmacy, Barkatullah University, Bhopal, India
| | - V J Upadhye
- Departmentt of Microbiology, Parul Institute of Applied Sciences (PIAS), Parul University, PO Limda, Tal Waghodia, 391760, Vadodara, Gujarat, India
| | - S Wagadre
- Department of Basic Sciences, IITM, IES University, Bhopal, M.P., India
| |
Collapse
|
27
|
Bayat R, Bekmezci M, Akin M, Isik I, Sen F. Nitric Oxide Detection Using a Corona Phase Molecular Recognition Site on Chiral Single-Walled Carbon Nanotubes. ACS APPLIED BIO MATERIALS 2023; 6:4828-4835. [PMID: 37830479 DOI: 10.1021/acsabm.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNT) are structures that fluoresce in the near-infrared region. By coating SWCNT surfaces with polymeric materials such as single-chain DNA, changes in fluorescence emission occur in the presence of reagents. In this way, polymer-coated SWCNT structures allow them to be used as optical sensors for single molecule detection. Especially today, the inadequacy of the methods used in the detection of cellular molecules makes the early diagnosis of diseases such as cancer difficult at the single-molecule level. In this study, the detection of nitric oxide (NO) signals, which are a marker of cancer, was carried out at the single-molecule level. In this context, a sensor structure was formed by coating the 7,6-chiral s-SWCNT surface with ssDNA with different oligonucleotide lengths (AT). The sensor structure was characterized by using UV-vis spectroscopy and Raman spectroscopy microscopy. After formation of the sensor structure, a selectivity library was created using various molecules. As a result of the coating of the SWCNT (7,6) surface with DNA corona phase formation, Raman peaks at 195 and 276 cm-1 were observed to shift to the right. Additionally, the selectivity library results showed that the (AT)30 sequence can be used in NO detection. As a result of the studies using SWCNT (7.6)- (AT)30, the limit of detection (LOD) and limit of determination (LOQ) values of the sensor against NO were found to be 1.24 and 4.13 μM, respectively.
Collapse
Affiliation(s)
- Ramazan Bayat
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Merve Akin
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Iskender Isik
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- SRG Incorporated Company, Kutahya Design Technopole, Calca OSB Neighbourhood, 431000 Kütahya, Türkiye
| |
Collapse
|
28
|
Hendler-Neumark A, Wulf V, Bisker G. Single-Walled Carbon Nanotube Sensor Selection for the Detection of MicroRNA Biomarkers for Acute Myocardial Infarction as a Case Study. ACS Sens 2023; 8:3713-3722. [PMID: 37700465 PMCID: PMC10616859 DOI: 10.1021/acssensors.3c00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding short ribonucleic acid sequences that take part in many cellular and biological processes. Recent studies have shown that altered expression of miRNAs is involved in pathological processes, and they can thus be considered biomarkers for the early detection of various diseases. Here, we demonstrate a selection and elimination process of fluorescent single-walled carbon nanotube (SWCNT) sensors for miRNA biomarkers based on RNA-DNA hybridization with a complementary DNA recognition unit bound to the SWCNT surface. We use known miRNA biomarkers for acute myocardial infarction (AMI), commonly known as a heart attack, as a case study. We have selected five possible miRNA biomarkers which are selective and specific to AMI and tested DNA-SWCNT sensor candidates with the target DNA and RNA sequences in different environments. Out of these five miRNA sensors, three could recognize the complementary DNA or RNA sequence in a buffer, showing fluorescence modulation of the SWCNT in response to the target sequence. Out of the three working sensors in buffer, only one could function in serum and was selected for further testing. The chosen sensor, SWCNT-miDNA208a, showed high specificity and selectivity toward the target sequence, with better performance in serum compared to a buffer environment. The SWCNT sensor selection pipeline highlights the importance of testing sensor candidates in the appropriate environment and can be extended to other libraries of biomarkers.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
29
|
Kuo MT, Raffaelle JF, Waller EM, Varaljay VA, Wagner D, Kelley-Loughnane N, Reuel NF. Screening Enzymatic Degradation of Polyester Polyurethane with Fluorescent Single-walled Carbon Nanotube and Polymer Nanoparticle Conjugates. ACS NANO 2023; 17:17021-17030. [PMID: 37606935 DOI: 10.1021/acsnano.3c04347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Enzymatic biodegradation is a promising method to reclaim plastic materials. However, to date, a high-throughput method for screening potential enzyme candidates for biodegradation is still lacking. Here, we propose a single-walled carbon nanotube (SWCNT) fluorescence sensor for screening the enzymatic degradation of polyester polyurethane nanoparticles. Through wrapping the SWCNT with cationic chitosan, an electrostatic bond is formed between the SWCNT and Impranil, a widely applied model substrate of polyester polyurethane. As Impranil is being degraded by the enzymes, a characteristic quenching at a short reaction time followed by a brightening at a longer reaction time in the fluorescence signal is observed. The time-dependent fluorescence response is compared with turbidity measurement, and we conclude that the brightening in fluorescence results from the binding of the degradation product with the SWCNT. The proposed SWCNT sensor design has the potential to screen enzyme candidates for selective degradation of other plastic particles.
Collapse
Affiliation(s)
- Mei-Tsan Kuo
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jack F Raffaelle
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ellise McKenna Waller
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Vanessa A Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | | | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Nigel F Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
30
|
Nadeem A, Kindopp A, Wyllie I, Hubert L, Joubert J, Lucente S, Randall E, Jena PV, Roxbury D. Enhancing Intracellular Optical Performance and Stability of Engineered Nanomaterials via Aqueous Two-Phase Purification. NANO LETTERS 2023; 23:6588-6595. [PMID: 37410951 PMCID: PMC11068083 DOI: 10.1021/acs.nanolett.3c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Supramolecular hybrids of DNA and single-walled carbon nanotubes (SWCNTs) have been introduced in numerous biosensing applications due to their unique optical properties. Recent aqueous two-phase (ATP) purification methods for SWCNTs have gained popularity by introducing specificity and homogeneity into the sensor design process. Using murine macrophages probed by near-infrared and Raman microscopies, we show that ATP purification increases the retention time of DNA-SWCNTs within cells while simultaneously enhancing the optical performance and stability of the engineered nanomaterial. Over a period of 6 h, we observe 45% brighter fluorescence intensity and no significant change in emission wavelength of ATP-purified DNA-SWCNTs relative to as-dispersed SWCNTs. These findings provide strong evidence of how cells differentially process engineered nanomaterials depending on their state of purification, lending to the future development of more robust and sensitive biosensors with desirable in vivo optical parameters using surfactant-based ATP systems with a subsequent exchange to biocompatible functionalization.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ian Wyllie
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lauren Hubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - James Joubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sophie Lucente
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ewelina Randall
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
31
|
Zheng Y, Li Y. Past, present, and future of tools for dopamine detection. Neuroscience 2023:S0306-4522(23)00295-6. [PMID: 37419404 DOI: 10.1016/j.neuroscience.2023.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Dopamine (DA) is a critical neuromodulator involved in various brain functions. To understand how DA regulates neural circuits and behaviors in the physiological and pathological conditions, it is essential to have tools that enable the direct detection of DA dynamics in vivo. Recently, genetically encoded DA sensors based on G protein-coupled receptors revolutionized this field, as it allows us to track in vivo DA dynamic with unprecedented spatial-temporal resolution, high molecular specificity, and sub-second kinetics. In this review, we first summarize traditional DA detection methods. Then we focus on the development of genetically encoded DA sensors and feature its significance to understanding dopaminergic neuromodulation across diverse behaviors and species. Finally, we present our perspectives about the future direction of the next-generation DA sensors and extend their potential applications. Overall, this review offers a comprehensive perspective on the past, present, and future of DA detection tools, with important implications for the study of DA functions in health and disease.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; National Biomedical Imaging Center, Peking University, 100871 Beijing, China.
| |
Collapse
|
32
|
Metternich JT, Wartmann JAC, Sistemich L, Nißler R, Herbertz S, Kruss S. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors. J Am Chem Soc 2023. [PMID: 37367958 DOI: 10.1021/jacs.3c03336] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores. They are noncovalently modified to create sensors that change their fluorescence when interacting with biomolecules. However, noncovalent chemistry has several limitations and prevents a consistent way to molecular recognition and reliable signal transduction. Here, we introduce a widely applicable covalent approach to create molecular sensors without impairing the fluorescence in the NIR (>1000 nm). For this purpose, we attach single-stranded DNA (ssDNA) via guanine quantum defects as anchors to the SWCNT surface. A connected sequence without guanines acts as flexible capture probe allowing hybridization with complementary nucleic acids. Hybridization modulates the SWCNT fluorescence and the magnitude increases with the length of the capture sequence (20 > 10 ≫ 6 bases). The incorporation of additional recognition units via this sequence enables a generic route to NIR fluorescent biosensors with improved stability. To demonstrate the potential, we design sensors for bacterial siderophores and the SARS CoV-2 spike protein. In summary, we introduce covalent guanine quantum defect chemistry as rational design concept for biosensors.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | | | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Robert Nißler
- Nanoparticle Systems Engineering Laboratory, ETH Zürich, 8092 Zürich, Switzerland
- Laboratory for Particles-Biology Interactions, Empa, 9014 St. Gallen, Switzerland
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
| |
Collapse
|
33
|
Gerstman E, Hendler-Neumark A, Wulf V, Bisker G. Monitoring the Formation of Fibrin Clots as Part of the Coagulation Cascade Using Fluorescent Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21866-21876. [PMID: 37128896 PMCID: PMC10176323 DOI: 10.1021/acsami.3c00828] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Blood coagulation is a critical defense mechanism against bleeding that results in the conversion of liquid blood into a solid clot through a complicated cascade, which involves multiple clotting factors. One of the final steps in the coagulation pathway is the conversion of fibrinogen to insoluble fibrin mediated by thrombin. Because coagulation disorders can be life-threatening, the development of novel methods for monitoring the coagulation cascade dynamics is of high importance. Here, we use near-infrared (NIR)-fluorescent single-walled carbon nanotubes (SWCNTs) to image and monitor fibrin clotting in real time. Following the binding of fibrinogen to a tailored SWCNT platform, thrombin transforms the fibrinogen into fibrin monomers, which start to polymerize. The SWCNTs are incorporated within the clot and can be clearly visualized in the NIR-fluorescent channel, where the signal-to-noise ratio is improved compared to bright-field imaging in the visible range. Moreover, the diffusion of individual SWCNTs within the fibrin clot gradually slows down after the addition of thrombin, manifesting a coagulation rate that depends on both fibrinogen and thrombin concentrations. Our platform can open new opportunities for coagulation disorder diagnostics and allow for real-time monitoring of the coagulation cascade with a NIR optical signal output in the biological transparency window.
Collapse
Affiliation(s)
- Efrat Gerstman
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
34
|
Galonska P, Mohr JM, Schrage CA, Schnitzler L, Kruss S. Guanine Quantum Defects in Carbon Nanotubes for Biosensing. J Phys Chem Lett 2023; 14:3483-3490. [PMID: 37011259 DOI: 10.1021/acs.jpclett.3c00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.
Collapse
Affiliation(s)
- Phillip Galonska
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jennifer M Mohr
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Lena Schnitzler
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
35
|
Zhang K, Chen FR, Wang L, Hu J. Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206044. [PMID: 36670072 DOI: 10.1002/smll.202206044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
For a long time, optical imaging of the deep brain with high resolution has been a challenge. Recently, with the advance in second near-infrared (NIR-II) bioimaging techniques and imaging contrast agents, NIR-II window bioimaging has attracted great attention to monitoring deeper biological or pathophysiological processes with high signal-to-noise ratio (SNR) and spatiotemporal resolution. Assisted with NIR-II bioimaging, the modulation of structure and function of brain is promising to be noninvasive and more precise. Herein, in this review, first the advantage of NIR-II light in brain imaging from the interaction between NIR-II and tissue is elaborated. Then, several specific NIR-II bioimaging technologies are introduced, including NIR-II fluorescence imaging, multiphoton fluorescence imaging, and photoacoustic imaging. Furthermore, the corresponding contrast agents are summarized. Next, the application of various NIR-II bioimaging technologies in visualizing the characteristics of cerebrovascular network and monitoring the changes of the pathology signals will be presented. After that, the modulation of brain structure and function based on NIR-II bioimaging will be discussed, including treatment of glioblastoma, guidance of cell transplantation, and neuromodulation. In the end, future perspectives that would help improve the clinical translation of NIR-II light are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
36
|
Ackermann J, Stegemann J, Smola T, Reger E, Jung S, Schmitz A, Herbertz S, Erpenbeck L, Seidl K, Kruss S. High Sensitivity Near-Infrared Imaging of Fluorescent Nanosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206856. [PMID: 36610045 DOI: 10.1002/smll.202206856] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Biochemical processes are fast and occur on small-length scales, which makes them difficult to measure. Optical nanosensors based on single-wall carbon nanotubes (SWCNTs) are able to capture such dynamics. They fluoresce in the near-infrared (NIR, 850-1700 nm) tissue transparency window and the emission wavelength depends on their chirality. However, NIR imaging requires specialized indium gallium arsenide (InGaAs) cameras with a typically low resolution because the quantum yield of normal Si-based cameras rapidly decreases in the NIR. Here, an efficient one-step phase separation approach to isolate monochiral (6,4)-SWCNTs (880 nm emission) from mixed SWCNT samples is developed. It enables imaging them in the NIR with high-resolution standard Si-based cameras (>50× more pixels). (6,4)-SWCNTs modified with (GT)10 -ssDNA become highly sensitive to the important neurotransmitter dopamine. These sensors are 1.7× brighter and 7.5× more sensitive and allow fast imaging (<50 ms). They enable high-resolution imaging of dopamine release from cells. Thus, the assembly of biosensors from (6,4)-SWCNTs combines the advantages of nanosensors working in the NIR with the sensitivity of (Si-based) cameras and enables broad usage of these nanomaterials.
Collapse
Affiliation(s)
- Julia Ackermann
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
| | - Jan Stegemann
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Tim Smola
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
| | - Eline Reger
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
| | - Sebastian Jung
- ZEMOS Center for Solvation Science, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Anne Schmitz
- Department of Dermatology, University Hospital Münster, Von-Esmarch-Strasse 58, 48149, Münster, Germany
| | - Svenja Herbertz
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Von-Esmarch-Strasse 58, 48149, Münster, Germany
| | - Karsten Seidl
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| |
Collapse
|
37
|
Boonyaves K, Ang MCY, Park M, Cui J, Khong DT, Singh GP, Koman VB, Gong X, Porter TK, Choi SW, Chung K, Chua NH, Urano D, Strano MS. Near-Infrared Fluorescent Carbon Nanotube Sensors for the Plant Hormone Family Gibberellins. NANO LETTERS 2023; 23:916-924. [PMID: 36651830 DOI: 10.1021/acs.nanolett.2c04128] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.
Collapse
Affiliation(s)
- Kulaporn Boonyaves
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas Koizumi Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Seo Woo Choi
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwanghun Chung
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Daisuke Urano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian Jazi F, Lynch I. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Crit Rev Anal Chem 2023; 54:2398-2421. [PMID: 36724894 DOI: 10.1080/10408347.2023.2171277] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Teqwa Ragdi
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai, India
- CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Chaumuhan, Uttar Pradesh, India
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
39
|
Card M, Alejandro R, Roxbury D. Decoupling Individual Optical Nanosensor Responses Using a Spin-Coated Hydrogel Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1772-1783. [PMID: 36548478 DOI: 10.1021/acsami.2c16596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Significant advances have been made in fields such as nanotechnology and biomedicine using the unique properties of single-walled carbon nanotubes (SWCNTs). Specifically, SWCNTs are used as near-infrared fluorescence sensors in the solution phase to detect a wide array of biologically relevant analytes. However, solution-based sensing has several limitations, including limited sensitivity and poor spatial resolution. We have therefore devised a new spin-coated poly(ethylene glycol) diacrylate (PEG-DA) hydrogel platform to examine individual DNA-functionalized SWCNTs (DNA-SWCNTs) in their native aqueous state and have subsequently used this platform to investigate the temporal modulations of each SWCNT in response to a model analyte. A strong surfactant, sodium deoxycholate (SDC), was chosen as the model analyte as it rapidly exchanges with DNA oligonucleotides on the SWCNT surface, modulating several optical properties of the SWCNTs and demonstrating multiparameter analyte detection. Upon addition of SDC, we observed time-dependent spectral modulations in the emission center wavelengths and peak intensities of the individual SWCNTs, indicative of a DNA-to-surfactant exchange process. Interestingly, we found that the modulations in the peak intensities, as determined by kinetic data, were significantly delayed when compared to their center wavelength counterparts, suggesting a potential decoupling of the response of these two spectral features. We used a 1-D diffusion model to relate the local SDC concentration to the spectral response of each SWCNT and created dose-response curves. The peak intensity shifts at a higher SDC concentration than the center wavelength, indicating a potential change in the conformation of the surfactant molecules adsorbed to the SWCNT sidewall after the initial exchange process. This platform allows for a unique single-molecule analysis technique that is significantly more sensitive and modifiable than utilizing SWCNTs in the solution phase.
Collapse
Affiliation(s)
- Matthew Card
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Raisa Alejandro
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| |
Collapse
|
40
|
Wulf V, Bisker G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. NANO LETTERS 2022; 22:9205-9214. [PMID: 36259520 PMCID: PMC9706665 DOI: 10.1021/acs.nanolett.2c01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Indexed: 05/20/2023]
Abstract
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
41
|
Clément P, Ackermann J, Sahin-Solmaz N, Herbertz S, Boero G, Kruss S, Brugger J. Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters. Biosens Bioelectron 2022; 216:114642. [DOI: 10.1016/j.bios.2022.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
|
42
|
Loewenthal D, Kamber D, Bisker G. Monitoring the Activity and Inhibition of Cholinesterase Enzymes using Single-Walled Carbon Nanotube Fluorescent Sensors. Anal Chem 2022; 94:14223-14231. [PMID: 36206351 PMCID: PMC9583068 DOI: 10.1021/acs.analchem.2c02471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinesterase enzymes are involved in a wide range of bodily functions, and their disruption is linked to pathologies such as neurodegenerative diseases and cancer. While cholinesterase inhibitors are used as drug treatments for diseases such as Alzheimer and dementia at therapeutic doses, acute exposure to high doses, found in pesticides and nerve agents, can be lethal. Therefore, measuring cholinesterase activity is important for numerous applications ranging from the search for novel treatments for neurodegenerative disorders to the on-site detection of potential health hazards. Here, we present the development of a near-infrared (near-IR) fluorescent single-walled carbon nanotube (SWCNT) optical sensor for cholinesterase activity and demonstrate the detection of both acetylcholinesterase and butyrylcholinesterase, as well as their inhibition. We show sub U L-1 sensitivity, demonstrate the optical response at the level of individual nanosensors, and showcase an optical signal output in the 900-1400 nm range, which overlaps with the biological transparency window. To the best of our knowledge, this is the longest wavelength cholinesterase activity sensor reported to date. Our near-IR fluorescence-based approach opens new avenues for spatiotemporal-resolved detection of cholinesterase activity, with numerous applications such as advancing the research of the cholinergic system, detecting on-site potential health hazards, and measuring biomarkers in real-time.
Collapse
Affiliation(s)
- Dan Loewenthal
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv6997801, Israel.,Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona7410001, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv6997801, Israel.,Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv6997801, Israel.,Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
43
|
Niidome Y, Wakabayashi R, Goto M, Fujigaya T, Shiraki T. Protein-structure-dependent spectral shifts of near-infrared photoluminescence from locally functionalized single-walled carbon nanotubes based on avidin-biotin interactions. NANOSCALE 2022; 14:13090-13097. [PMID: 35938498 DOI: 10.1039/d2nr01440h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) emit photoluminescence (PL) in the near-infrared (NIR) region (>900 nm). To enhance their PL properties, defect doping via local chemical functionalization has been developed. The locally functionalized SWCNTs (lf-SWCNTs) emit red-shifted and bright E11* PL originating from the excitons localized at the defect-doped sites. Here, we observe the E11* PL energy shifts induced by protein adsorption via the avidin-biotin interactions at the doped sites of lf-SWCNTs. We establish that the difference in the structures of the avidin derivatives notably influences the energy shifts. First, lf-SWCNT-tethering biotin groups (lf-SWCNTs-b) are synthesized based on diazonium chemistry, followed by post-modification. The responsiveness of the lf-SWCNTs-b to different microenvironments is investigated, and a correlation between the E11* PL energy shift and the induction-polarity parameters of surrounding solvents is established. The adsorption of neutravidin onto the lf-SWCNTs-b induces an increase in the induction-polarity parameters around the biotin-doped sites, resulting in the red-shift of the E11* PL peak. The E11* PL shift behaviors of the lf-SWCNTs-b change noticeably when avidin and streptavidin are introduced compared to the case with neutravidin. This is due to the different microenvironments formed at the biotin-doped sites, attributed to the difference in the structural features of the introduced avidin derivatives. Moreover, we successfully enhance the detection signals of lf-SWCNTs-b (>three fold) for streptavidin detection using a fabricated film device. Therefore, lf-SWCNTs exhibit significant promise for application in advanced protein detection/recognition devices based on NIR PL.
Collapse
Affiliation(s)
- Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry (CFC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Paviolo C, Ferreira JS, Lee A, Hunter D, Calaresu I, Nandi S, Groc L, Cognet L. Near-Infrared Carbon Nanotube Tracking Reveals the Nanoscale Extracellular Space around Synapses. NANO LETTERS 2022; 22:6849-6856. [PMID: 36038137 PMCID: PMC9479209 DOI: 10.1021/acs.nanolett.1c04259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We provide evidence of a local synaptic nanoenvironment in the brain extracellular space (ECS) lying within 500 nm of postsynaptic densities. To reveal this brain compartment, we developed a correlative imaging approach dedicated to thick brain tissue based on single-particle tracking of individual fluorescent single wall carbon nanotubes (SWCNTs) in living samples and on speckle-based HiLo microscopy of synaptic labels. We show that the extracellular space around synapses bears specific properties in terms of morphology at the nanoscale and inner diffusivity. We finally show that the ECS juxta-synaptic region changes its diffusion parameters in response to neuronal activity, indicating that this nanoenvironment might play a role in the regulation of brain activity.
Collapse
Affiliation(s)
- Chiara Paviolo
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Joana S. Ferreira
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Antony Lee
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Daniel Hunter
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Ivo Calaresu
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Somen Nandi
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Laurent Groc
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Cognet
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| |
Collapse
|
45
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
46
|
Bulumulla C, Krasley AT, Cristofori-Armstrong B, Valinsky WC, Walpita D, Ackerman D, Clapham DE, Beyene AG. Visualizing synaptic dopamine efflux with a 2D composite nanofilm. eLife 2022; 11:78773. [PMID: 35786443 PMCID: PMC9363124 DOI: 10.7554/elife.78773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Chemical neurotransmission constitutes one of the fundamental modalities of communication between neurons. Monitoring release of these chemicals has traditionally been difficult to carry out at spatial and temporal scales relevant to neuron function. To understand chemical neurotransmission more fully, we need to improve the spatial and temporal resolutions of measurements for neurotransmitter release. To address this, we engineered a chemi-sensitive, two-dimensional composite nanofilm that facilitates visualization of the release and diffusion of the neurochemical dopamine with synaptic resolution, quantal sensitivity, and simultaneously from hundreds of release sites. Using this technology, we were able to monitor the spatiotemporal dynamics of dopamine release in dendritic processes, a poorly understood phenomenon. We found that dopamine release is broadcast from a subset of dendritic processes as hotspots that have a mean spatial spread of ≈ 3.2 µm (full width at half maximum [FWHM]) and are observed with a mean spatial frequency of one hotspot per ≈ 7.5 µm of dendritic length. Major dendrites of dopamine neurons and fine dendritic processes, as well as dendritic arbors and dendrites with no apparent varicose morphology participated in dopamine release. Remarkably, these release hotspots co-localized with Bassoon, suggesting that Bassoon may contribute to organizing active zones in dendrites, similar to its role in axon terminals. To form the vast and complex network necessary for an organism to sense and react to the world, neurons must connect at highly specialized junctions. Individual cells communicate at these ‘synapses’ by releasing chemical signals (or neurotransmitters) such as dopamine, a molecule involved in learning and motivation. Despite the central role that synapses play in the brain, it remains challenging to measure exactly where neurotransmitters are released and how far they travel from their release site. Currently, most tools available to scientists only allow bulk measurements of neurotransmitter release. To tackle this limitation, Bulumulla et al. developed a new way to measure neurotransmitter release from neurons, harnessing a technique which uses fluorescent nanosensors that glow brighter when exposed to dopamine. These sensors form a very thin film upon which neurons can grow; when the cells release dopamine, the sensors ‘light up’ as they encounter the molecule. Dubbed DopaFilm, the technology reveals exactly where the neurotransmitter comes from and how it spreads between cells in real time. In particular, the approach showed that dopamine emerges from 'hot spots' at specific sites in cells; it also helped Bulumulla et al. study how dopamine is released from subcellular compartments that have previously not been well characterized. Improving the sensors so that the film could detect other neurotransmitters besides dopamine would broaden the use of this approach. In the future, combining this technology with other types of imaging should enable studies of individual synapses with intricate detail.
Collapse
|
47
|
Nißler R, Ackermann J, Ma C, Kruss S. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Anal Chem 2022; 94:9941-9951. [PMID: 35786856 DOI: 10.1021/acs.analchem.2c01321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR), and the emission wavelength depends on their structure (chirality). Interactions with other molecules affect their fluorescence, which has successfully been used for SWCNT-based molecular sensors. So far, most such sensors are assembled from crude mixtures of different SWCNT chiralities, which causes polydisperse sensor responses as well as spectral congestion and limits their performance. The advent of chirality-pure SWCNTs is about to overcome this limitation and paves the way for the next generation of biosensors. Here, we discuss the first examples of chirality-pure SWCNT-based fluorescent biosensors. We introduce routes to such sensors via aqueous two-phase extraction-assisted purification of SWCNTs and highlight the critical interplay between purification and surface modification procedures. Applications include the NIR detection and imaging of neurotransmitters, reactive oxygen species, lipids, bacterial motives, and plant metabolites. Most importantly, we outline a path toward how such monodisperse (chirality-pure) sensors will enable advanced multiplexed sensing with enhanced bioanalytical performance.
Collapse
Affiliation(s)
- Robert Nißler
- Nanoparticle Systems Engineering Lab, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.,Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.,Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Julia Ackermann
- Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| | - Chen Ma
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany.,Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| |
Collapse
|
48
|
A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution. Proc Natl Acad Sci U S A 2022; 119:e2202842119. [PMID: 35613050 DOI: 10.1073/pnas.2202842119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SignificanceThe neurotransmitter dopamine controls normal behavior and dopaminergic dysfunction is prevalent in multiple brain diseases. To reach a detailed understanding of how dopamine release and signaling are regulated at the subcellular level, we developed a near infrared fluorescent dopamine nanosensor 'paint' (AndromeDA) to directly image dopamine release and its spatiotemporal characteristics. With AndromeDA, we can ascribe discrete DA release events to defined axonal varicosities, directly assess the heterogeneity of DA release events across such release sites, and determine the molecular components of the DA release machinery. AndromeDA thus provides a new method for gaining fundamental insights into the core mechanisms of dopamine release, which with greatly benefit our knowledge of dopamine biology and pathobiology.
Collapse
|
49
|
Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. NANOMATERIALS 2022; 12:nano12111799. [PMID: 35683655 PMCID: PMC9182140 DOI: 10.3390/nano12111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features.
Collapse
|
50
|
Antman-Passig M, Wong E, Frost GR, Cupo C, Shah J, Agustinus A, Chen Z, Mancinelli C, Kamel M, Li T, Jonas LA, Li YM, Heller DA. Optical Nanosensor for Intracellular and Intracranial Detection of Amyloid-Beta. ACS NANO 2022; 16:7269-7283. [PMID: 35420796 PMCID: PMC9710299 DOI: 10.1021/acsnano.2c00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid-beta (Aβ) deposition occurs in the early stages of Alzheimer's disease (AD), but the early detection of Aβ is a persistent challenge. Herein, we engineered a near-infrared optical nanosensor capable of detecting Aβ intracellularly in live cells and intracranially in vivo. The sensor is composed of single-walled carbon nanotubes functionalized with Aβ wherein Aβ-Aβ interactions drive the response. We found that the Aβ nanosensors selectively responded to Aβ via solvatochromic modulation of the near-infrared emission of the nanotube. The sensor tracked Aβ accumulation in live cells and, upon intracranial administration in a genetic model of AD, signaled distinct responses in aged mice. This technology enables the interrogation of molecular mechanisms underlying Aβ neurotoxicity in the development of AD in living systems.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Janki Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Albert Agustinus
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Ziyu Chen
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Chiara Mancinelli
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Maikel Kamel
- Sophie Davis School of Biomedical Education, CUNY School of Medicine, New York, New York 10031, United States
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Lauren A Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| |
Collapse
|