1
|
Song Y, Zhang S, Cao C, Yan J, Li M, Li X, Chen F, Gu N. Imaging Structural and Electrical Changes of Aging Cells Using Scanning Ion Conductance Microscopy. SMALL METHODS 2024; 8:e2301315. [PMID: 38072619 DOI: 10.1002/smtd.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 08/18/2024]
Abstract
The local charge density and distribution of extracellular membranes play a crucial role in the various cellular processes, such as regulation and localization of membrane proteins, electrophysiological signal transduction, transcriptional control, cell growth, and cell death. In this study, a novel scanning ion conductance microscopy-based method is employed to extracellular membrane mapping. This method allows to not only visualize the dynamic topography and surface charge distribution around individual cells, but also distinguish the charge difference. To validate the accuracy and effectiveness of this method, the charge density on model sample surfaces are initially manipulated and the charge sensing mechanism using finite element modeling (FEM) is explored subsequently. By applying this method, both the extracellular charge distributions and topography structures of normal and senescent human dental pulp stem cells (hDPSCs) are able to monitor. Interestingly, it is observed that the surface charge became significantly more negative after cellular senescence. This innovative approach enables us to gain valuable insights into surface charge changes during cellular senescence, which can contribute to a better understanding of the underlying mechanisms and potential therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Shuting Zhang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Mei Li
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Xinyu Li
- The first school of clinical medicine, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Feng Chen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
- School of Medicine, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
2
|
Babar M, Viswanathan V. Modeling Scanning Electrochemical Cell Microscopy (SECCM) in Twisted Bilayer Graphene. J Phys Chem Lett 2024; 15:7371-7378. [PMID: 38995158 DOI: 10.1021/acs.jpclett.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Twisted 2D-flat band materials host exotic quantum phenomena and novel moiré patterns, showing immense promise for advanced spintronic and quantum applications. Here, we evaluate the nanostructure-activity relationship in twisted bilayer graphene by modeling it under the scanning electrochemical cell microscopy setup to resolve its spatial moiré domains. We solve the steady state ion transport inside a 3D nanopipette to isolate the current response at AA and AB domains. Interfacial reaction rates are obtained from a modified Marcus-Hush-Chidsey theory combining input from a tight binding model that describes the electronic structure of bilayer graphene. High rates of redox exchange are observed at the AA domains, an effect that reduces with diminished flat bands or a larger cross-sectional area of the nanopipette. Using voltammograms, we identify an optimal voltage that maximizes the current difference between the domains. Our study lays down the framework to electrochemically capture prominent features of the band structure that arise from spatial domains and deformations in 2D flat-band materials.
Collapse
Affiliation(s)
- Mohammad Babar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Venkatasubramanian Viswanathan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Zhao Y, Lin L, Liu R, Liu Y, Wang Y, Wang D. Dynamic and Asymmetrical Ion Concentration Polarization in Dual Nanopipettes. Anal Chem 2024; 96:4190-4196. [PMID: 38411587 DOI: 10.1021/acs.analchem.3c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Dual nanopipettes with two channels have been receiving great attention due to the convenient experimental setup and multiple measuring channels in sensing applications at nanoscale, while the involved dynamic and asymmetrical ion transport processes have not been fully elucidated. In this paper, both experimental and simulation methods are used to investigate the dynamic mass transport processes inside dual nanopipettes with two well-separated channels. The results present that the ion transport resistance through the two channels (R12) is always the add-up of the individual ones (R13 + R23) with respect to the bulk solutions, at various ionic strengths and scan rates. A constant zero-current potential is obtained when loading an asymmetrical electrolyte concentration in the two channels, and the zero-potential current displays a good linear relationship with the bulk concentration outside the pipet. Besides revealing the dynamic and asymmetrical concentration polarization in the dual nanopipettes, these results would also further promote the better usage of dual nanopipettes in electrochemical sensing and imaging applications.
Collapse
Affiliation(s)
- Yingjie Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lan Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yun Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, P. R. China
| |
Collapse
|
5
|
Takahashi Y, Takamatsu D, Korchev Y, Fukuma T. Correlative Analysis of Ion-Concentration Profile and Surface Nanoscale Topography Changes Using Operando Scanning Ion Conductance Microscopy. JACS AU 2023; 3:1089-1099. [PMID: 37124299 PMCID: PMC10131198 DOI: 10.1021/jacsau.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
Although various spectroscopic methods have been developed to capture ion-concentration profile changes, it is still difficult to visualize the ion-concentration profile and surface topographical changes simultaneously during the charging/discharging of lithium-ion batteries (LIBs). To tackle this issue, we have developed an operando scanning ion conductance microscopy (SICM) method that can directly visualize an ion-concentration profile and surface topography using a SICM nanopipette while controlling the sample potential or current with a potentiostat for characterizing the polarization state during charging/discharging. Using operando SICM on the negative electrode (anode) of LIBs, we have characterized ion-concentration profile changes and the reversible volume changes related to the phase transition during cyclic voltammetry (CV) and charge/discharge of the graphite anode. Operando SICM is a versatile technique that is likely to be of major value for evaluating the correlation between the electrolyte concentration profile and nanoscale surface topography changes.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- Department
of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Daiko Takamatsu
- Center
for Exploratory Research, Research &
Development Group, Hitachi, Ltd., Hatoyama-machi, Saitama 350-0395, Japan
| | - Yuri Korchev
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department
of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Takeshi Fukuma
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division
of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Rabinowitz J, Hartel AJW, Dayton H, Fabbri JD, Jo J, Dietrich LEP, Shepard KL. Charge Mapping of Pseudomonas aeruginosa Using a Hopping Mode Scanning Ion Conductance Microscopy Technique. Anal Chem 2023; 95:5285-5292. [PMID: 36920847 PMCID: PMC10359948 DOI: 10.1021/acs.analchem.2c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping. We validate our method usingPseudomonas aeruginosaPA14 (PA) cells and observe a surface charge density of σPA = -2.0 ± 0.45 mC/m2 that is homogeneous within the ∼80 nm lateral scan resolution. This biological surface charge is detected from at least 1.7 μm above the membrane (395× the Debye length), and the long-range charge detection is attributed to electroosmotic amplification. We show that imaging with a nanobubble-plugged probe reduces perturbation of the underlying sample. We extend the technique to PA biofilms and observe a charge density exceeding -20 mC/m2. We use a solid-state calibration to quantify surface charge density and show that HP-SICM cannot be quantitatively described by a steady-state finite element model. This work contributes to the body of scanning probe methods that can uniquely contribute to microbiology and cellular biology.
Collapse
Affiliation(s)
- Jake Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.,Department of Biology, Columbia University, New York, New York 10027, United States
| | - Hannah Dayton
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Jason D Fabbri
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeanyoung Jo
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Lars E P Dietrich
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
9
|
Response of Osteoblasts to Electric Field Line Patterns Emerging from Molecule Stripe Landscapes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular surface gradients can constitute electric field landscapes and serve to control local cell adhesion and migration. Cellular responses to electric field landscapes may allow the discovery of routes to improve osseointegration of implants. Flat molecule aggregate landscapes of amine- or carboxyl-teminated dendrimers, amine-containing protein and polyelectrolytes were prepared on glass to provide lateral electric field gradients through their differing zeta potentials compared to the glass substrate. The local as well as the mesoscopic morphological responses of adhered osteoblasts (MG-63) with respect to the stripes were studied by means of Scanning Ion Conductance Microscopy (SICM) and Fluorescence Microscopy, in situ. A distinct spindle shape oriented parallel to the surface pattern as well as a preferential adhesion of the cells on the glass site have been observed at a stripe and spacing width of 20 μm. Excessive ruffling is observed at the spindle poles, where the cells extend. To explain this effect of material preference and electro-deformation, we put forward a retraction mechanism, a localized form of double-sided cathodic taxis.
Collapse
|
10
|
Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:247-267. [PMID: 35259914 DOI: 10.1146/annurev-anchem-121521-122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| |
Collapse
|
11
|
Gao T, Xu C, Chen ML, Wang JH, Mao L, Yu P. Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Anal Chem 2022; 94:8187-8193. [DOI: 10.1021/acs.analchem.1c05579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tienan Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li Y, Jin R, Xu L, Jiang D, Chen HY, Jiang D. Electrochemically Imaging the Response of Ion-Selective Membranes with an Ultralow Detection Limit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14097-14102. [PMID: 35298148 DOI: 10.1021/acsami.2c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of ion-selective membranes for the selective response of a particular ion has been studied for many years; however, imaging the response of the membrane with a low detection limit is challenging. Here, high spatial-resolution electrochemical imaging of this response down to picomolar is achieved using scanning ion conductive microscopy. The detection strategy relies on the exclusion of a small amount of counter ions from the membrane in the presence of a low concentration of target ions in the solution. These excluded counter ions are adsorbed at the membrane-solution interface, leading to more positive charges at the surface. The resultant elevation of the ionic current in the approach curve behaves as the response for the target ions down to 10-11 M, which is much more sensitive than that using potentiometric measurement. The constant-current scanning of the membrane exhibits the fluctuation of the apparent surface height that is correlated with the ionic concentration, permitting the imaging of the response at the nanoscale. The achievement of highly sensitive and spatial-resolution imaging for the ionic response enable the collection of spatial response at the ion-selective membrane, which will greatly advance the study of ion-selective electrodes.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Rong Jin
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Lingfang Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital Chongqing Medical University, Chongqing 400010, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital Chongqing Medical University, Chongqing 400010, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
13
|
Xu L, Li Y, Jin R, Jiang D, Jiang D. High spatial resolution observation of Temporin A at cell membranes using scanning ion conductive microscopy. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2021.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
14
|
Chen F, He J, Manandhar P, Yang Y, Liu P, Gu N. Gauging surface charge distribution of live cell membrane by ionic current change using scanning ion conductance microscopy. NANOSCALE 2021; 13:19973-19984. [PMID: 34825684 DOI: 10.1039/d1nr05230f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The distribution of surface charge and potential of cell membrane plays an indispensable role in cellular activities. However, probing surface charge of live cells under physiological conditions, until recently, remains an arduous challenge owing to the lack of effective methods. Scanning ion conductance microscopy (SICM) is an emerging imaging technique for imaging a live cell membrane in its native state. Here, we introduce a simple SICM based imaging technique to effectively map the surface charge contrast distribution of soft substrates including cell membranes by utilizing the higher surface charge sensitivity of the ionic current when the nanopipette tip is close to the substrate with a relatively high current change. This technique was assessed on charged model substrates made of polydimethylsiloxane, and the surface charge sensitivity of ionic current change was supported by finite element method simulations. With this method, we can distinguish the surface charge difference between the cell membrane and the supporting collagen matrix. We also observed the surface charge change induced by the small membrane damage after 1% dimethyl sulfoxide (DMSO) treatment. This new SICM technique provides opportunities to study interfacial and cell membrane processes with high spatial resolution.
Collapse
Affiliation(s)
- Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
- Physics Department, Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA.
| | - Jin He
- Physics Department, Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA.
| | - Prakash Manandhar
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yizi Yang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Peidang Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Ma Y, Wang D. Revealing Electrical Double-Layer Potential of Substrates by Hysteresis Ion Transport in Scanning Ion Conductance Microscopy. Anal Chem 2021; 93:15821-15825. [PMID: 34816713 DOI: 10.1021/acs.analchem.1c04486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrical double layer (EDL) at solid-liquid interfaces is key to interfacial transport and reaction processes and numerous emerging applications exploiting such processes. Herein, by studying hysteresis ion-transport processes in nanopipettes near charged substrates, we found the resulting cross-point potential (Vcp) to represent the surface potential of both nanopipettes and substrates. After the subtraction of Vcp in bulk solution, the remaining ΔVcp shows excellent exponential decay with respect to the separation distance from the substrates and agrees very well with the classical double-layer theory. The revealed new hysteresis ion transport in nanopipettes would provide a new way for the simple and direct EDL imaging of various interfaces of interest with nanoscale resolution in scanning ion conductance microscopy.
Collapse
Affiliation(s)
- Yingfei Ma
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Dengchao Wang
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| |
Collapse
|
16
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
17
|
Ma Y, Liu R, Shen X, Wang D. Quantification of Asymmetric Ion Transport in Glass Nanopipettes near Charged Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingfei Ma
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Rujia Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Xiaoyue Shen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Dengchao Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| |
Collapse
|
18
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
Iwata F, Shirasawa T, Mizutani Y, Ushiki T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy (Oxf) 2021; 70:423-435. [PMID: 33644794 DOI: 10.1093/jmicro/dfab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is useful for imaging soft and fragile biological samples in liquids because it probes the samples' surface topography by detecting ion currents under non-contact and force-free conditions. SICM acquires the surface topographical height by detecting the ion current reduction that occurs when an electrolyte-filled glass nanopipette approaches the sample surface. However, most biological materials have electrically charged surfaces in liquid environments, which sometimes affect the behavior of the ion currents detected by SICM and, especially, make topography measurements difficult. For measuring such charged samples, we propose a novel imaging method that uses a double-barrel nanopipette as an SICM probe. The ion current between the two apertures of the nanopipette desensitizes the surface charge effect on imaging. In this study, metaphase chromosomes of Indian muntjac were imaged by this technique because, owing to their strongly negatively charged surfaces in phosphate-buffered saline, it is difficult to obtain the topography of the chromosomes by the conventional SICM with a single-aperture nanopipette. Using the proposed method with a double-barrel nanopipette, the surfaces of the chromosomes were successfully measured, without any surface charge confounder. Since the detailed imaging of sample topography can be performed in physiological liquid conditions regardless of the sample charge, it is expected to be used for analyzing the high-order structure of chromosomes in relation to their dynamic changes in the cell division.
Collapse
Affiliation(s)
- Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | - Tatsuru Shirasawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Mizutani
- Office of Institutional Research, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
20
|
Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R, Zhou L, Bish D, Raff JD, Baker LA. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provide Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12233-12242. [PMID: 34449200 PMCID: PMC9277718 DOI: 10.1021/acs.est.1c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rebecca Abney
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Lushan Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David Bish
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
21
|
Teahan J, Perry D, Chen B, McPherson IJ, Meloni GN, Unwin PR. Scanning Ion Conductance Microscopy: Surface Charge Effects on Electroosmotic Flow Delivery from a Nanopipette. Anal Chem 2021; 93:12281-12288. [PMID: 34460243 DOI: 10.1021/acs.analchem.1c01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
Collapse
Affiliation(s)
- James Teahan
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Baoping Chen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Taira N, Nashimoto Y, Ino K, Ida H, Imaizumi T, Kumatani A, Takahashi Y, Shiku H. Micropipet-Based Navigation in a Microvascular Model for Imaging Endothelial Cell Topography Using Scanning Ion Conductance Microscopy. Anal Chem 2021; 93:4902-4908. [PMID: 33710857 DOI: 10.1021/acs.analchem.0c05174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scanning ion conductance microscopy (SICM) has enabled cell surface topography at a high resolution with low invasiveness. However, SICM has not been applied to the observation of cell surfaces in hydrogels, which can serve as scaffolds for three-dimensional cell culture. In this study, we applied SICM for imaging a cell surface in a microvascular lumen reconstructed in a hydrogel. To achieve this goal, we developed a micropipet navigation technique using ionic current to detect the position of a microvascular lumen. Combining this navigation technique with SICM, endothelial cells in a microvascular model and blebs were visualized successfully at the single-cell level. To the best of our knowledge, this is the first report on visualizing cell surfaces in hydrogels using a SICM. This technique will be useful for furthering our understanding of the mechanism of intravascular diseases.
Collapse
Affiliation(s)
- Noriko Taira
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kosuke Ino
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi 980-8578, Japan.,WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Takuto Imaizumi
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Akichika Kumatani
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,WPI-International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.,Center for Science and Innovation in Spintronics, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology (PRESTO), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
23
|
Scanning ion conductance microscopy of isolated metaphase chromosomes in a liquid environment. Chromosome Res 2021; 29:95-106. [PMID: 33694044 DOI: 10.1007/s10577-021-09659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Scanning probe microscopy (SPM) uses a probing tip which scans over a sample surface for obtaining information on the sample surface characteristics. Among various types of SPM, atomic force microscopy (AFM) has been widely applied to imaging of biological samples including chromosomes. Scanning ion conductance microscopy (SICM) has been also introduced for visualizing the surface structure of biological samples because it can obtain "contact-free" topographic images in liquid conditions by detecting ion current flow through a pipette opening. However, we recently noticed that the consistent imaging of chromosomes is difficult by SICM. In this paper, the behaviors of the ion current on the sample surfaces were precisely investigated for obtaining SICM images of isolated muntjac metaphase chromosomes more consistently than at present. The present study revealed that application of positive potential to the pipette electrode was acceptable for obtaining the topographic image of chromosomes, while application of negative potential failed in imaging. The approach curves were then studied for analyzing the relationship between the ion current and the tip sample distance when the pipette is approaching chromosomes. The current-voltage (I-V) curve further provided us the accurate interpretation of the ion current behavior during chromosome imaging. These data were further compared with those for SICM imaging of HeLa cells. Our findings indicated that chromosomes are electrically charged and the net charge is strongly negative in normal Dulbecco's phosphate buffered saline. We finally showed that the ion concentration of the bath electrolyte is important for imaging chromosomes by SICM.
Collapse
|
24
|
Li P, Li G. Advances in Scanning Ion Conductance Microscopy: Principles and Applications. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2020.3037431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Anal Chem 2020; 92:15388-15393. [PMID: 33205942 DOI: 10.1021/acs.analchem.0c02884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
Collapse
Affiliation(s)
- Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Riku Yajima
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shohei Takigaura
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masashi Tajima
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Cremin K, Jones BA, Teahan J, Meloni GN, Perry D, Zerfass C, Asally M, Soyer OS, Unwin PR. Scanning Ion Conductance Microscopy Reveals Differences in the Ionic Environments of Gram-Positive and Negative Bacteria. Anal Chem 2020; 92:16024-16032. [PMID: 33241929 DOI: 10.1021/acs.analchem.0c03653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the B. subtilis was found to be considerably more negatively charged compared to E. coli. SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of -80 to -140 mC m-2 for the Gram-negative E. coli. The Gram-positive B. subtilis show a much higher conductivity around the cell wall, and surface charge values between -350 and -450 mC m-2 were found using the same simplified model. SICM was also able to detect regions of high negative charge near B. subtilis, not detected in the topographical SICM response and attributed to the extracellular polymeric substance. To further explore how the B. subtilis cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the Gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allows investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the Gram-positive cellular microenvironment.
Collapse
Affiliation(s)
- Kelsey Cremin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Molecular Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Bryn A Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - James Teahan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Molecular Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K
| | - Gabriel N Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Orkun S Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
27
|
Chen F, Panday N, Li X, Ma T, Guo J, Wang X, Kos L, Hu K, Gu N, He J. Simultaneous mapping of nanoscale topography and surface potential of charged surfaces by scanning ion conductance microscopy. NANOSCALE 2020; 12:20737-20748. [PMID: 33030171 DOI: 10.1039/d0nr04555a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scanning ion conductance microscopy (SICM) offers the ability to obtain nanoscale resolution images of the membranes of living cells. Here, we show that a dual-barrel nanopipette probe based potentiometric SICM (P-SICM) can simultaneously map the topography and surface potential of soft, rough and heterogeneously charged surfaces under physiological conditions. This technique was validated and tested by systematic studies on model samples, and the finite element method (FEM) based simulations confirmed its surface potential sensing capability. Using the P-SICM method, we compared both the topography and extracellular potential distributions of the membranes of normal (Mela-A) and cancerous (B16) skin cells. We further monitored the structural and electrical changes of the membranes of both types of cells after exposing them to the elevated potassium ion concentration in extracellular solution, known to depolarize and damage the cell. From surface potential imaging, we revealed the dynamic appearance of heterogeneity of the surface potential of the individual cell membrane. This P-SICM method provides new opportunities to study the structural and electrical properties of cell membrane at the nanoscale.
Collapse
Affiliation(s)
- Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China and Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Namuna Panday
- Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Xiaoshuang Li
- Department of Biological Science, Florida International University, Miami, FL 33199, USA
| | - Tao Ma
- Physics Department, Florida International University, Miami, FL 33199, USA. and School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Jing Guo
- Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Xuewen Wang
- Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Lidia Kos
- Department of Biological Science, Florida International University, Miami, FL 33199, USA and Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| | - Jin He
- Physics Department, Florida International University, Miami, FL 33199, USA. and Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
28
|
Shkirskiy V, Kang M, McPherson IJ, Bentley CL, Wahab OJ, Daviddi E, Colburn AW, Unwin PR. Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy. Anal Chem 2020; 92:12509-12517. [PMID: 32786472 DOI: 10.1021/acs.analchem.0c02358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.
Collapse
Affiliation(s)
- Viacheslav Shkirskiy
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oluwasegun J Wahab
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex W Colburn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
29
|
Liu X, Zeng Q, Liu C, Wang L. A Fourier Transform-Induced Data Process for Label-Free Selective Nanopore Analysis under Sinusoidal Voltage Excitations. Anal Chem 2020; 92:11635-11643. [PMID: 32786474 DOI: 10.1021/acs.analchem.0c01339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanopore analysis based on a resistive-pulse technique is an attractive tool for single-molecule detection in different fields, but it suffers a great drawback in selectivity. A common solution to this challenge is to add extra sensing aptamers and labels to analytes by improving the sensitivity of their pulses for distinguishing. Compared to the labeling methods, we alternatively develop and demonstrate a novel data process for label-free nanopore analysis that enables the conversion of resistive current signals to more specific frequency domain phase angle features with the contribution from both sinusoidal voltage excitation and Fourier transform. In particular, we find that the transmural capacitance induced by nanoparticle translocations under a sinusoidal voltage plays an important role in this process, making phase angle features more pronounced. In practical applications, the method is successfully applied to directly distinguish the translocation events through a nanopipette by their unique phase angles for similarly sized SiO2, Ag, and Au nanoparticles and soft living organisms of HeLa and LoVo and even in a more complicated case of a SiO2, Ag, and Au nanoparticle mixture.
Collapse
Affiliation(s)
- Xuye Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Holub M, Adobes-Vidal M, Frutiger A, Gschwend PM, Pratsinis SE, Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS NANO 2020; 14:7358-7369. [PMID: 32426962 DOI: 10.1021/acsnano.0c02798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 μs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.
Collapse
Affiliation(s)
- Martin Holub
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maria Adobes-Vidal
- Wood Materials Science Group, Institute for Building Materials, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
31
|
Jiang Y, Ma W, Qiao Y, Xue Y, Lu J, Gao J, Liu N, Wu F, Yu P, Jiang L, Mao L. Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yanan Jiang
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yujuan Qiao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahao Lu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
| | - Jun Gao
- Faculty of Science and Technology University of Twente 7500AE Enschede The Netherlands
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
32
|
Jiang Y, Ma W, Qiao Y, Xue Y, Lu J, Gao J, Liu N, Wu F, Yu P, Jiang L, Mao L. Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angew Chem Int Ed Engl 2020; 59:12795-12799. [DOI: 10.1002/anie.202005084] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Yanan Jiang
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yujuan Qiao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahao Lu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
| | - Jun Gao
- Faculty of Science and Technology University of Twente 7500AE Enschede The Netherlands
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
33
|
Zhu H, Ma G, Wan Z, Wang H, Tao N. Detection of Molecules and Charges with a Bright Field Optical Microscope. Anal Chem 2020; 92:5904-5909. [DOI: 10.1021/acs.analchem.9b05750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
34
|
Ostromohov N, Rofman B, Bercovici M, Kaigala G. Electrokinetic Scanning Probe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904268. [PMID: 31885215 DOI: 10.1002/smll.201904268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The theoretical analysis and experimental demonstration of a new concept are presented for a non-contact scanning probe, in which transport of fluid and molecules is controlled by electric fields. The electrokinetic scanning probe (ESP) enables local chemical and biochemical interactions with surfaces in liquid environments. The physical mechanism and design criteria for such a probe are presented, and its compatibility with a wide range of processing solutions and pH values are demonstrated. The applicability of the probe is shown for surface patterning in conjunction with localized heating and 250-fold analyte stacking.
Collapse
Affiliation(s)
- Nadya Ostromohov
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803, Rueschlikon, Switzerland
| | - Baruch Rofman
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Govind Kaigala
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803, Rueschlikon, Switzerland
| |
Collapse
|
35
|
Jiao X, Zhang W, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. Rational design of oxygen deficient TiO 2-x nanoparticles conjugated with chlorin e6 (Ce6) for photoacoustic imaging-guided photothermal/photodynamic dual therapy of cancer. NANOSCALE 2020; 12:1707-1718. [PMID: 31894823 DOI: 10.1039/c9nr09423g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxygen deficient TiO2-x nanoparticles (NPs) have been recognized as a category of new-fashioned photothermal agents to offer safer PTT. However, the surface of TiO2-x NPs is deficient in free active groups or radicals to conjugate functional therapeutic molecules, which seriously impedes their in-depth development for versatile medical applications. In this study, surface activation of TiO2-x NPs was realized by the facile conjugation of (3-aminopropyl)triethoxysilane (APTES) through the formation of a stable Si-O-Ti bond, and photosensitizer chlorin e6 (Ce6) was successfully modified onto the TiO2-x NP surface and with a considerably high loading content. The resultant TiO2-x@APTES/Ce6 (TAC) NPs displayed decent biosafety, rapid tumor enrichment and outstanding performance in photoacoustic (PA) imaging. Taking advantage of the intense photo-absorption in the near-infrared (NIR) region and high dose of conjugated Ce6, a powerful antitumor effect was realized based on the combination of hyperthermia-induced cell ablation and cytotoxic reactive oxygen species (ROS)-triggered apoptosis both in vitro and in vivo. Moreover, PA imaging guidance was exceptionally useful for locating the tumor position and optimizing the treatment regimens. Apart from Ce6, this elaborate modification strategy for TiO2-x is believed to be universal for steadily binding more versatile therapeutic agents, which would definitely favor the development of multifunctional TiO2-x-based nanocomplexes for enhanced tumor treatment.
Collapse
Affiliation(s)
- Xiaodan Jiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Jin R, Huang Y, Cheng L, Lu H, Jiang D, Chen HY. In situ observation of heterogeneous charge distribution at the electrode unraveling the mechanism of electric field-enhanced electrochemical activity. Chem Sci 2020. [DOI: 10.1039/d0sc00223b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ observation of heterogeneous charge distribution at the Pt–graphite surface in the hydrogen evolution reaction is realized using scanning ion conductive microscopy.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Yuchen Huang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Lei Cheng
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Hongyan Lu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| |
Collapse
|
37
|
Li L, Zhong C, Feng B, Chen N, Dai J, Bin Lu H, Hu W. Optical imaging of the potential distribution at transparent electrode/solution interfaces. Chem Commun (Camb) 2020; 56:4531-4534. [DOI: 10.1039/d0cc01500h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optical monitoring of the electrode potential and imaging of its distribution on transparent electrodes are achieved by using OIRD technology.
Collapse
Affiliation(s)
- Ling Li
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Changyin Zhong
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Bomin Feng
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Nan Chen
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Jun Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Hui Bin Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Weihua Hu
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
38
|
Payne NA, Dawkins JIG, Schougaard SB, Mauzeroll J. Effect of Substrate Permeability on Scanning Ion Conductance Microscopy: Uncertainty in Tip-Substrate Separation and Determination of Ionic Conductivity. Anal Chem 2019; 91:15718-15725. [PMID: 31741380 DOI: 10.1021/acs.analchem.9b03907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Composite electrodes can significantly improve the performance of an electrochemical device by maximizing surface area and active material loading. Typically, additives such as carbon are used to improve conductivity and a polymer is used as a binder, leading to a heterogeneous surface film with thickness on the order of 10s of micrometers. For such composite electrodes, good ionic conduction within the film is critical to capitalize on the increased loading of active material and surface area. Ionic conductivity within a film can be tricky to measure directly, and homogenization models based on porosity are often used as a proxy. SICM has traditionally been a topography-mapping microscopy method for which we here outline a new function and demonstrate its capacity for measuring ion conductivity within a lithium-ion battery film.
Collapse
Affiliation(s)
- Nicholas A Payne
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| | - Jeremy I G Dawkins
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| | - Steen B Schougaard
- Département de Chimie and NanoQAM , Université du Québec à Montréal , Montréal , Quebec Canada
| | - Janine Mauzeroll
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| |
Collapse
|
39
|
Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T. Development of high-speed ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123704. [PMID: 31893861 DOI: 10.1063/1.5118360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning ion conductance microscopy (SICM) can image the surface topography of specimens in ionic solutions without mechanical probe-sample contact. This unique capability is advantageous for imaging fragile biological samples but its highest possible imaging rate is far lower than the level desired in biological studies. Here, we present the development of high-speed SICM. The fast imaging capability is attained by a fast Z-scanner with active vibration control and pipette probes with enhanced ion conductance. By the former, the delay of probe Z-positioning is minimized to sub-10 µs, while its maximum stroke is secured at 6 μm. The enhanced ion conductance lowers a noise floor in ion current detection, increasing the detection bandwidth up to 100 kHz. Thus, temporal resolution 100-fold higher than that of conventional systems is achieved, together with spatial resolution around 20 nm.
Collapse
Affiliation(s)
- Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoko Kitazawa
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
40
|
Sun L, Shigyou K, Ando T, Watanabe S. Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production. Anal Chem 2019; 91:14080-14084. [PMID: 31589026 DOI: 10.1021/acs.analchem.9b03848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.
Collapse
Affiliation(s)
- Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| |
Collapse
|
41
|
Rabinowitz J, Edwards MA, Whittier E, Jayant K, Shepard KL. Nanoscale Fluid Vortices and Nonlinear Electroosmotic Flow Drive Ion Current Rectification in the Presence of Concentration Gradients. J Phys Chem A 2019; 123:8285-8293. [PMID: 31264868 PMCID: PMC6911310 DOI: 10.1021/acs.jpca.9b04075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ion current rectification (ICR) is a transport phenomenon in which an electrolyte conducts unequal currents at equal and opposite voltages. Here, we show that nanoscale fluid vortices and nonlinear electroosmotic flow (EOF) drive ICR in the presence of concentration gradients. The same EOF can yield negative differential resistance (NDR), in which current decreases with increasing voltage. A finite element model quantitatively reproduces experimental ICR and NDR recorded across glass nanopipettes under concentration gradients. The model demonstrates that spatial variations of electrical double layer properties induce the nanoscale vortices and nonlinear EOF. Experiments are performed in conditions directly related to scanning probe imaging and show that quantitative understanding of nanoscale transport under concentration gradients requires accounting for EOF. This characterization of nanopipette transport physics will benefit diverse experimentation, pushing the resolution limits of chemical and biophysical recordings.
Collapse
Affiliation(s)
| | - Martin A Edwards
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | | | | |
Collapse
|
42
|
Daviddi E, Gonos KL, Colburn AW, Bentley CL, Unwin PR. Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis. Anal Chem 2019; 91:9229-9237. [PMID: 31251561 DOI: 10.1021/acs.analchem.9b02091] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) has been applied for nanoscale (electro)activity mapping in a range of electrochemical systems but so far has almost exclusively been performed in controlled-potential (amperometric/voltammetric) modes. Herein, we consider the use of SECCM operated in a controlled-current (galvanostatic or chronopotentiometric) mode, to synchronously obtain spatially resolved electrode potential (i.e., electrochemical activity) and topographical "maps". This technique is first applied, as proof of concept, to study the electrochemically reversible [Ru(NH3)6]3+/2+ electron transfer process at a glassy carbon electrode surface, where the experimental data are in good agreement with well-established chronopotentiometric theory under quasi-radial diffusion conditions. The [Ru(NH3)6]3+/2+ process has also been imaged at "aged" highly ordered pyrolytic graphite (HOPG), where apparently enhanced electrochemical activity is measured at the edge plane relative to the basal plane surface, consistent with potentiostatic measurements. Finally, chronopotentiometric SECCM has been employed to benchmark a promising electrocatalytic system, the hydrogen evolution reaction (HER) at molybdenum disulfide (MoS2), where higher electrocatalytic activity (i.e., lower overpotential at a current density of 2 mA cm-2) is observed at the edge plane compared to the basal plane surface. These results are in excellent agreement with previous controlled-potential SECCM studies, confirming the viability of the technique and thereby opening up new possibilities for the use of chronopotentiometric methods for quantitative electroanalysis at the nanoscale, with promising applications in energy storage (battery) studies, electrocatalyst benchmarking, and corrosion research.
Collapse
Affiliation(s)
- Enrico Daviddi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Katerina L Gonos
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Alex W Colburn
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Cameron L Bentley
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Patrick R Unwin
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
43
|
Kolagatla S, Subramanian P, Schechter A. Simultaneous Mapping of Oxygen Reduction Activity and Hydrogen Peroxide Generation on Electrocatalytic Surfaces. CHEMSUSCHEM 2019; 12:2708-2714. [PMID: 30972916 DOI: 10.1002/cssc.201900656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Electrochemical scanning probe microscopies have become valuable experimental tools, owing to their capability of capturing topographic features in addition to mapping the electrochemical activity of nanoscale oxygen reduction catalysts. However, most scanning probe techniques lack the ability to correlate topographic features with the electrochemical oxygen reduction and peroxide formation in real time. In this report, we show that it is indeed possible to construct high-resolution catalytic current maps at an electrified solid-liquid interface by placing a specially made Au-coated SiO2 Pt atomic force microscopy and scanning electrochemical microscopy (AFM-SECM) dual electrode tip approximately 4-8 nm above the reaction center. The catalytic current measured every 16 nm and high collection efficiency (≈90 %) of the reverse current of peroxide byproducts was also demonstrated with the help of the dual electrode tip. Simultaneous oxygen reduction and intermediate peroxide oxidation current mapping was demonstrated using this Au-coated SiO2 Pt probe on two model surfaces, namely highly oriented pyrolytic graphite and Pt nanoparticles (NPs) supported on a glassy carbon surface.
Collapse
Affiliation(s)
| | | | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
44
|
Dong Y, Cheng Y, Xu G, Cheng H, Huang K, Duan J, Mo D, Zeng J, Bai J, Sun Y, Liu J, Yao H. Selectively Enhanced Ion Transport in Graphene Oxide Membrane/PET Conical Nanopore System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14960-14969. [PMID: 30921512 DOI: 10.1021/acsami.9b01071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has become a promising 2D material in many areas, such as gas separation, seawater desalination, antibacterial materials, and so on because of its abundant oxygen-containing functional groups and excellent dispersibility in various solvents. The graphene oxide membrane (GOM), a laminar and channel-rich structure assembled by stacked GO nanosheets, served as a kind of precise and ultrafast separation material has attracted widespread attention in membrane separation field. To break the trade-off between ion permeability and ion selectivity of separation membrane based on GOM, GOM/conical nanopore system is obtained by spin-coating ultrathin GOM on PET conical nanopore, which possesses ion rectification property. Comparing to pure PET conical nanopore, the existence of GOM not only enhances the cation conductance but also makes the ion rectification ratio increase from 4.6 to 238.0 in KCl solution. Assisted by COMSOL simulation, it is proved that the GOM can absorb large amount of cations and act as cation source to improve the ion selectivity and rectification effect of GOM/conical nanopore system. Finally, the chemical stability of GOM/conical nanopore is also investigated and the corresponding results reveal that the GOM/conical nanopore system can perform the ion rectification behavior in a wider pH range than pure PET conical nanopore. The presented findings demonstrate the great potential applications of GOM/conical nanopore system in ionic logic circuits and sensor systems.
Collapse
Affiliation(s)
- Yuhua Dong
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yaxiong Cheng
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guoheng Xu
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- School of Physical Science and Technology , Southwest Jiaotong University , Chengdu 610031 , China
| | - Hongwei Cheng
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kejing Huang
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jinglai Duan
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dan Mo
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Zeng
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Bai
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Youmei Sun
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
45
|
Zhu H, Zhang F, Wang H, Lu Z, Chen HY, Li J, Tao N. Optical Imaging of Charges with Atomically Thin Molybdenum Disulfide. ACS NANO 2019; 13:2298-2306. [PMID: 30636406 DOI: 10.1021/acsnano.8b09010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mapping local surface charge distribution is critical to the understanding of various surface processes and also allows the detection of molecules binding to the surface. We show here that the optical absorption of monolayer MoS2 is highly sensitive to charge and demonstrate optical imaging of local surface charge distribution with this atomically thin material. We validate the imaging principle and perform charge sensitivity calibration with an electrochemical gate. We further show that binding of charged molecules to the atomically thin material leads to a large change in the image contrast, allowing determination of the charge of the adsorbed molecules. This capability opens possibilities for characterizing impurities and defects in two-dimensional materials and for label-free optical detection and charge analysis of molecules.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Zhixing Lu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Center for Bioelectronics and Biosensors, Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
46
|
|
47
|
Jin R, Ye X, Fan J, Jiang D, Chen HY. In Situ Imaging of Photocatalytic Activity at Titanium Dioxide Nanotubes Using Scanning Ion Conductance Microscopy. Anal Chem 2019; 91:2605-2609. [PMID: 30672278 DOI: 10.1021/acs.analchem.8b05311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this letter, in situ imaging of the photocatalytic activity of titanium dioxide (TiO2) nanotubes for the degradation of an organic pollutant (i.e., Rhodamine B (RhB)) is realized with nanometer resolution using scanning ion conductance microscopy (SICM). Upon illumination, the separated electrons and holes at the nanotubes induce oxidation of RhB to produce the more positively charged Rhodamine 123 (Rh 123), which leads to increased ionic current through the capillary orifice and an elevated apparent altitude in the SICM image. Active sites with higher activity on the nanotubes exhibit a significant high spatial-resolution character. The successful imaging of the photocatalytic activity of TiO2 nanotubes should provide an in situ approach for local investigation of the photocatalytic process at the catalyst.
Collapse
Affiliation(s)
- Rong Jin
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Xiangdong Ye
- School of Mechanical and Electrical Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jia Fan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| |
Collapse
|
48
|
Tao L, Qiao M, Jin R, Li Y, Xiao Z, Wang Y, Zhang N, Xie C, He Q, Jiang D, Yu G, Li Y, Wang S. Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angew Chem Int Ed Engl 2019; 58:1019-1024. [DOI: 10.1002/anie.201810207] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Man Qiao
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Rong Jin
- School of Chemistry and Chemical EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Yan Li
- College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Zhaohui Xiao
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Yuqing Wang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Nana Zhang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Qinggang He
- College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Dechen Jiang
- School of Chemistry and Chemical EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Gang Yu
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Yafei Li
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| |
Collapse
|
49
|
Chen B, Perry D, Page A, Kang M, Unwin PR. Scanning Ion Conductance Microscopy: Quantitative Nanopipette Delivery-Substrate Electrode Collection Measurements and Mapping. Anal Chem 2019; 91:2516-2524. [PMID: 30608117 DOI: 10.1021/acs.analchem.8b05449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Scanning ion conductance microscopy (SICM) is becoming a powerful multifunctional tool for probing and analyzing surfaces and interfaces. This work outlines methodology for the quantitative controlled delivery of ionic redox-active molecules from a nanopipette to a substrate electrode, with a high degree of spatial and temporal precision. Through control of the SICM bias applied between a quasi-reference counter electrode (QRCE) in the SICM nanopipette probe and a similar electrode in bulk solution, it is shown that ionic redox species can be held inside the nanopipette, and then pulse-delivered to a defined region of a substrate positioned beneath the nanopipette. A self-referencing hopping mode imaging protocol is implemented, where reagent is released in bulk solution (reference measurement) and near the substrate surface at each pixel in an image, with the tip and substrate currents measured throughout. Analysis of the tip and substrate current data provides an improved understanding of mass transport and nanoscale delivery in SICM and a new means of synchronously mapping electrode reactivity, surface topography, and charge. Experiments on Ru(NH3)63+ reduction to Ru(NH3)62+ and dopamine oxidation in aqueous solution at a carbon fiber ultramicroelectrode (UME), used as the substrate, illustrate these aspects. Finite element method (FEM) modeling provides quantitative understanding of molecular delivery in SICM. The approach outlined constitutes a new methodology for electrode mapping and provides improved insights on the use of SICM for controlled delivery to interfaces generally.
Collapse
|
50
|
Tao L, Qiao M, Jin R, Li Y, Xiao Z, Wang Y, Zhang N, Xie C, He Q, Jiang D, Yu G, Li Y, Wang S. Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810207] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Man Qiao
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Rong Jin
- School of Chemistry and Chemical EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Yan Li
- College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Zhaohui Xiao
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Yuqing Wang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Nana Zhang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Qinggang He
- College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Dechen Jiang
- School of Chemistry and Chemical EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Gang Yu
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Yafei Li
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| |
Collapse
|