1
|
Zhao J, Deng C, Zhang L, Zhang J, Rong Q, Wang F, Liu ZQ. NHPI-Catalyzed Electro-Oxidation of Alcohols to Aldehydes and Ketones. J Org Chem 2024. [PMID: 39437145 DOI: 10.1021/acs.joc.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A practical and recyclable electro-oxidation of alcohols to aldehydes and ketones by using N-hydroxyphthalimide (NHPI) as the catalyst is presented. Through an undivided pool, under constant current conditions, various alcohols can be oxidized to the corresponding aldehydes or ketones in a high yield. Compared with previous methods, this system has the following characteristics: (1) the catalyst, electrode, electrolyte, and solvent (mainly water) are recyclable; (2) it has many advantages such as mild reaction conditions, easy operation, and good tolerance of functional groups; and (3) it can be smoothly scaled up to kilogram-scale production.
Collapse
Affiliation(s)
- Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengling Deng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lanlan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiatai Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quanjin Rong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
3
|
Tateishi Y, McCarty KD, Martin MV, Yoshimoto FK, Guengerich FP. Roles of Ferric Peroxide Anion Intermediates (Fe 3+O 2 -, Compound 0) in Cytochrome P450 19A1 Steroid Aromatization and a Cytochrome P450 2B4 Secosteroid Oxidation Model. Angew Chem Int Ed Engl 2024; 63:e202406542. [PMID: 38820076 DOI: 10.1002/anie.202406542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Martha V Martin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Francis K Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| |
Collapse
|
4
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Zhang D, Tian T, Han L, Du J, Zhu T, Lei C, Song H, Li S. Expression characteristics of the cyp19a1b aromatase gene and its response to 17β-estradiol treatment in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:575-588. [PMID: 38216846 DOI: 10.1007/s10695-023-01291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024]
Abstract
To investigate the regulatory role of the cyp19a1b aromatase gene in the sexual differentiation of largemouth bass (Micropterus salmoides, LMB), we obtained the full-length cDNA sequence of cyp19a1b using rapid amplification of cDNA ends technique. Tissue expression characteristics and feedback with 17-β-estradiol (E2) were determined using quantitative real-time PCR (qRT-PCR), while gonad development was assessed through histological section observations. The cDNA sequence of LMB cyp19a1b was found to be1950 base pairs (bp) in length, including a 5' untranslated region of 145 bp, a 3' untranslated region of 278 bp, and an open reading frame encoding a protein consisting of 1527 bp that encoded 508 amino acids. The qRT-PCR results indicated that cyp19a1b abundantly expressed in the brain, followed by the gonads, and its expression in the ovaries was significantly higher than that observed in the testes (P < 0.05). After feeding fish with E2 for 30 days, the expression of cyp19a1b in the pseudo-female gonads (XY-F) was significantly higher than that in males (XY-M) (P < 0.05), whereas expression did not differ significantly between XX-F and XY-F fish (P > 0.05). Although the expression of cyp19a1b in XY-F and XX-F fish was not significantly different after 60 days (P>0.05), both exhibited significantly higher levels than that of XY-M fish (P<0.05). Histological sections analysis showed the presence of oogonia in both XY-F and XX-F fish at 30 days, while spermatogonia were observed in XY-M fish. At 60 days, primary oocytes were abundantly observed in both XY-F and XX-F fish, while a few spermatogonia were visible in XY-M fish. At 90 days, the histological sections' results showed that a large number of oocytes were visible in XY-F and XX-F fish. Additionally, the gonads of XY-M fish contained numerous spermatocytes. These results suggest that cyp19a1b plays a pivotal role in the development of ovaries and nervous system development in LMB.
Collapse
Affiliation(s)
- Dongyun Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China
- College of Life Science, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Taihang Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Linqiang Han
- Guangdong province Liangshi Aquaculture Seed Industry, Foshan, 528100, Guangdong, China
| | - Jinxing Du
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China
| | - Tao Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China
| | - Caixia Lei
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China
| | - Hongmei Song
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China.
| | - Shengjie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou, 510380, China.
| |
Collapse
|
6
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
McCarty KD, Tateishi Y, Hargrove TY, Lepesheva GI, Guengerich FP. Oxygen-18 Labeling Reveals a Mixed Fe-O Mechanism in the Last Step of Cytochrome P450 51 Sterol 14α-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317711. [PMID: 38206808 PMCID: PMC11494732 DOI: 10.1002/anie.202317711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The 14α-demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three-step reaction terminates in a C-C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2 - ) or Compound I (perferryl oxygen, FeO3+ ) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18 O incorporation into formic acid from 18 O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18 O (one atom) into formic acid, consistent with a major but not exclusive FeO2 - mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both mechanisms. An X-ray crystal structure of the human enzyme showed the aldehyde oxygen atom 3.5 Å away from the heme iron atom. Experiments with human P450 51A1 and H2 18 O yielded primarily one 18 O atom but 14 % of the formic acid product with two 18 O atoms, indicative of a minor contribution of a Compound I mechanism. LC-MS evidence for a Compound 0-derived Baeyer-Villiger reaction product (a 14α-formyl ester) was also found.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
8
|
Dinicola S, Unfer V, Soulage CO, Margarita Yap-Garcia MI, Bevilacqua A, Benvenga S, Barbaro D, Wdowiak A, Nordio M, Dewailly D, Appetecchia M, Aragona C, Bezerra Espinola MS, Bizzarri M, Cavalli P, Colao A, D’Anna R, Vazquez-Levin MH, Marin IH, Kamenov Z, Laganà AS, Monastra G, Oliva MM, Özay AC, Pintaudi B, Porcaro G, Pustotina O, Pkhaladze L, Prapas N, Roseff S, Salehpour S, Stringaro A, Tugushev M, Unfer V, Vucenik I, Facchinetti F. <sc>d</sc>-Chiro-Inositol in Clinical Practice: A Perspective from the Experts Group on Inositol in Basic and Clinical Research (EGOI). Gynecol Obstet Invest 2024; 89:284-294. [PMID: 38373412 PMCID: PMC11309080 DOI: 10.1159/000536081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND d-Chiro-inositol is a natural molecule that, in association with its well-studied isomer myo-inositol, may play a role in treating various metabolic and gynecological disorders. OBJECTIVES This perspective seeks to explore the mechanisms and functions of d-chiro-inositol, laying the foundations to discuss its use in clinical practice, across dysmetabolism, obesity, and hormonal dysregulation. METHODS A narrative review of all the relevant papers known to the authors was conducted. OUTCOME d-Chiro-inositol acts through a variety of mechanisms, acting as an insulin sensitizer, inhibiting the transcription of aromatase, in addition to modulating white adipose tissue/brown adipose tissue transdifferentiation. These different modes of action have potential applications in a variety of therapeutic fields, including PCOS, dysmetabolism, obesity, hypoestrogenic/hyperandrogenic disorders, and bone health. CONCLUSIONS d-Chiro-inositol mode of action has been studied in detail in recent years, resulting in a clear differentiation between d-chiro-inositol and its isomer myo-inositol. The insulin-sensitizing activities of d-chiro-inositol are well understood; however, its potential applications in other fields, in particular obesity and hyperestrogenic/hypoandrogenic disorders in men and women, represent promising avenues of research that require further clinical study.
Collapse
Affiliation(s)
- Simona Dinicola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- UniCamillus – Saint Camillus International University of Health Sciences, Rome, Italy
| | - Christophe O. Soulage
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- INSERM U1060, INSA de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Isidora Margarita Yap-Garcia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- St. Luke’s Medical Center College of Medicine, William H. Quasha Memorial, Quezon, Philippines
| | - Arturo Bevilacqua
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Dynamic, Clinical Psychology and Health, Sapienza University of Rome, Rome, Italy
| | - Salvatore Benvenga
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Daniele Barbaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Director of U.O. Endocrinology in Livorno Hospital, Livorno, Italy
| | - Artur Wdowiak
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.S.L. RMF, Civitavecchia, Italy
| | - Didier Dewailly
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine Henri Warembourg, University of Lille, Lille Cedex, France
| | - Marialuisa Appetecchia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Cesare Aragona
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Maria Salomè Bezerra Espinola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Mariano Bizzarri
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Cavalli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Annamaria Colao
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Italian Society of Endocrinology, Federico II University of Naples, Naples, Italy
| | - Rosario D’Anna
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Mónica Hebe Vazquez-Levin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Council of Scientific and Technical Research, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Imelda Hernàndez Marin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Human Reproduction Department, Hospital Juárez de México, and Universidad Nacional Autónoma de México (UNAM), México, Mexico
| | - Zdravko Kamenov
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Internal Medicine, University Hospital “Alexandrovska”, Clinic of Endocrinology and Metabolism, Medical University, Sofia, Bulgaria
| | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giovanni Monastra
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, Rome, Italy
| | - Ali Cenk Özay
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Basilio Pintaudi
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppina Porcaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Women's Health Centre, USL UMBRIA 2, Terni, Italy
| | - Olga Pustotina
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology with Reproductive Medicine, F.I. Inozemtsev Academy of Medical Education, Saint Petersburg, Russia
| | - Lali Pkhaladze
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi, Georgia
| | - Nikos Prapas
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Third Department of OB-GYNAE, Aristotle University of Thessaloniki, and IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | - Scott Roseff
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Jupiter, FL, USA
| | - Saghar Salehpour
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Annarita Stringaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy
| | - Marat Tugushev
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Reproductive Medicine, Clinical Embryology and Genetics of Samara State Medical University, Samara, Russia
| | - Virginia Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.G.Un.Co. Obstetrics and Gynecology Center, Rome, Italy
| | - Ivana Vucenik
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Medical and Research Technology and Pathology, University of Maryland School of Medicine in Baltimore, Baltimore, MD, USA
| | - Fabio Facchinetti
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- University of Modena and Reggio Emilia, Modena, Italy
- President Italian Society of Perinatal Medicine (SIMP), Modena, Italy
| |
Collapse
|
9
|
Tateishi Y, McCarty KD, Martin MV, Guengerich FP. Oxygen-18 Labeling Defines a Ferric Peroxide (Compound 0) Mechanism in the Oxidative Deformylation of Aldehydes by Cytochrome P450 2B4. ACS Catal 2024; 14:2388-2394. [PMID: 38384943 PMCID: PMC10877606 DOI: 10.1021/acscatal.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Most cytochrome P450 (P450) oxidations are considered to occur with the active oxidant being a perferryl oxygen (FeO3+, Compound I). However, a ferric peroxide (FeO2®, Compound 0) mechanism has been proposed, as well, particularly for aldehyde substrates. We investigated three of these systems, the oxidative deformylation of the model substrates citronellal, 2-phenylpropionaldehyde, and 2-methyl-2-phenylpropionaldehyde by rabbit P450 2B4, using 18O labeling. The formic acid product contained one 18O derived from 18O2, which is indicative of a dominant Compound 0 mechanism. The formic acid also contained only one 18O derived from H218O, which ruled out a Compound I mechanism. The possibility of a Baeyer-Villiger reaction was examined by using synthesized possible intermediates, but our data do not support its presence. Overall, these findings unambiguously demonstrate the role of the Compound 0 pathway in these aldehyde oxidative deformylation reactions.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United
States
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United
States
| | - Martha V. Martin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United
States
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United
States
| |
Collapse
|
10
|
Gui C, Kalkreuter E, Liu YC, Li G, Steele AD, Yang D, Chang C, Shen B. Cofactorless oxygenases guide anthraquinone-fused enediyne biosynthesis. Nat Chem Biol 2024; 20:243-250. [PMID: 37945897 DOI: 10.1038/s41589-023-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster. Here we identify two consecutively acting cofactorless oxygenases derived from methyltransferase and α/β-hydrolase protein folds, TnmJ and TnmK2, respectively, that are responsible for F-ring tailoring in tiancimycin biosynthesis by comparative genomics. Further biochemical and structural characterizations reveal that the electron-rich AFE anthraquinone moiety assists in catalyzing deformylation, epoxidation and oxidative ring cleavage without exogenous cofactors. These enzymes therefore fill important knowledge gaps for the biosynthesis of this class of molecules and the underappreciated family of cofactorless oxygenases.
Collapse
Affiliation(s)
- Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Yu-Chen Liu
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Gengnan Li
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
11
|
Guengerich FP. Ninety-eight semesters of cytochrome P450 enzymes and related topics-What have I taught and learned? J Biol Chem 2024; 300:105625. [PMID: 38185246 PMCID: PMC10847173 DOI: 10.1016/j.jbc.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have never lost the enthusiasm for research that I learned in the summer of 1968 with Harry Broquist, and I have tried to instill this in the many trainees I have worked with. A sentence I use on closing slides is "It's not just a laboratory-it's a fraternity."
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Fu K, Hua J, Zhang Y, Du M, Han J, Li N, Wang Q, Yang L, Li R, Zhou B. Integrated Studies on Male Reproductive Toxicity of Bis(2-ethylhexyl)-tetrabromophthalate: in Silico, in Vitro, ex Vivo, and in Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:194-206. [PMID: 38113192 DOI: 10.1021/acs.est.3c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bis(2-ethylhexyl)tetrabromophthalate (TBPH) has been widely detected in the environment and organisms; thus, its toxic effects on male reproduction were systematically studied. First, we found that TBPH can stably bind to the androgen receptor (AR) based on in silico molecular docking results and observed an antagonistic activity, but not agonistic activity, on the AR signaling pathway using a constructed AR-GRIP1 yeast assay. Subsequently, we validated the adverse effects on male germ cells by observing inhibited androgen production and proliferation in Leydig cells upon in vitro exposure and affected general motility and motive tracks of zebrafish sperm upon ex vivo exposure. Finally, the in vivo reproductive toxicity was demonstrated in male zebrafish by reduced mating behavior in F0 generation when paired with unexposed females and abnormal development of their offspring. In addition, reduced sperm motility and impaired germ cells in male zebrafish were also observed, which may be related to the disturbed homeostasis of sex hormones. Notably, the specifically suppressed AR in the brain provides further evidence for the antagonistic effects as above-mentioned. These results confirmed that TBPH affected male reproduction through a classical nuclear receptor-mediated pathway, which would be helpful for assessing the ecological and health risks of TBPH.
Collapse
Affiliation(s)
- Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingpu Du
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ruiwen Li
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Immenschuh J, Thalhammer SB, Sundström-Poromaa I, Biegon A, Dumas S, Comasco E. Sex differences in distribution and identity of aromatase gene expressing cells in the young adult rat brain. Biol Sex Differ 2023; 14:54. [PMID: 37658400 PMCID: PMC10474706 DOI: 10.1186/s13293-023-00541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Aromatase catalyzes the synthesis of estrogens from androgens. Knowledge on its regional expression in the brain is of relevance to the behavioral implications of these hormones that might be linked to sex differences in mental health. The present study investigated the distribution of cells expressing the aromatase coding gene (Cyp19a1) in limbic regions of young adult rats of both sexes, and characterized the cell types expressing this gene. METHODS Cyp19a1 mRNA was mapped using fluorescent in situ hybridization (FISH). Co-expression with specific cell markers was assessed with double FISH; glutamatergic, gamma-aminobutyric acid (GABA)-ergic, glial, monoaminergic, as well as interneuron markers were tested. Automated quantification of the cells expressing the different genes was performed using CellProfiler. Sex differences in the number of cells expressing Cyp19a1 was tested non-parametrically, with the effect size indicated by the rank-biserial correlation. FDR correction for multiple testing was applied. RESULTS In the male brain, the highest percentage of Cyp19a1+ cells was found in the medial amygdaloid nucleus and the bed nucleus of stria terminalis, followed by the medial preoptic area, the CA2/3 fields of the hippocampus, the cortical amygdaloid nucleus and the amygdalo-hippocampal area. A lower percentage was detected in the caudate putamen, the nucleus accumbens, and the ventromedial hypothalamus. In females, the distribution of Cyp19a1+ cells was similar but at a lower percentage. In most regions, the majority of Cyp19a1+ cells were GABAergic, except for in the cortical-like regions of the amygdala where most were glutamatergic. A smaller fraction of cells co-expressed Slc1a3, suggesting expression of Cyp19a1 in astrocytes; monoaminergic markers were not co-expressed. Moreover, sex differences were detected regarding the identity of Cyp19a1+ cells. CONCLUSIONS Females show overall a lower number of cells expressing Cyp19a1 in the limbic brain. In both sexes, aromatase is expressed in a region-specific manner in GABAergic and glutamatergic neurons. These findings call for investigations of the relevance of sex-specific and region-dependent expression of Cyp19a1 in the limbic brain to sex differences in behavior and mental health.
Collapse
Affiliation(s)
- Jana Immenschuh
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bernhard Thalhammer
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY USA
| | | | - Erika Comasco
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Ayobahan SU, Alvincz J, Reinwald H, Strompen J, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Comprehensive identification of gene expression fingerprints and biomarkers of sexual endocrine disruption in zebrafish embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114514. [PMID: 36608563 DOI: 10.1016/j.ecoenv.2023.114514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.
Collapse
Affiliation(s)
- Steve U Ayobahan
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jannis Strompen
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
15
|
Dickson MJ, Sheldon IM, Bromfield JJ. Lipopolysaccharide alters CEBPβ signaling and reduces estradiol production in bovine granulosa cells. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:66. [PMID: 37576606 PMCID: PMC10419969 DOI: 10.1186/s43170-022-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 08/15/2023]
Abstract
Background Bacterial infection of the uterus in postpartum dairy cows limits ovarian follicle growth, reduces blood estradiol concentrations, and leads to accumulation of bacterial lipopolysaccharide (LPS) in ovarian follicular fluid. Although treating granulosa cells with LPS in vitro decreases the expression of the estradiol synthesis enzyme CYP19A1 and reduces estradiol secretion, the molecular mechanisms are unclear. The transcription factor CCAAT enhancer binding protein beta (CEBPβ) not only facilitates the transcription of LPS regulated cytokines, but also binds to the promoter region of CYP19A1 in humans, mice, and buffalo. We hypothesized that LPS alters CEBPβ signaling to reduce CYP19A1 expression, resulting in decreased estradiol secretion. Methods Bovine granulosa cells were isolated from small/medium or large follicles and treated with LPS in the presence of FSH and androstenedione for up to 24 h. Results Treatment with LPS increased CXCL8 and IL6 gene expression and reduced estradiol secretion in granulosa cells from both small/medium and large follicles. However, LPS only reduced CYP19A1 expression in granulosa cells from large follicles. Treatment with LPS increased CEBPB expression and reduced CEBPβ nuclear localization in granulosa cells from small/medium follicles, but not granulosa cells from large follicles. Conclusions Although LPS reduces estradiol synthesis in bovine granulosa cells, the effects of LPS on CYP19A1 and CEBPβ are dependent on follicle size.
Collapse
Affiliation(s)
| | - I. Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
16
|
Offei SD, Arman HD, Yoshimoto FK. Copper oxidation chemistry using a 19-iminopyridine-bearing steroidal ligand: (i) C5-C6 olefin difunctionalization and (ii) C1β-hydroxylation/C19-peroxidation. Steroids 2022; 186:109088. [PMID: 35835204 DOI: 10.1016/j.steroids.2022.109088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
The Schönecker oxidation involves the 12beta-hydroxylation of 17-imino pyridine DHEA derivatives using copper and either molecular oxygen or hydrogen peroxide as the oxidant. In this study, a 19-imino pyridine DHEA derivative was synthesized and was treated with copper nitrate and hydrogen peroxide. Our results showed the difunctionalization of an olefin for delta-5 steroid substrates to yield a 5beta-hydroxylated 6alpha-nitrate ester product. In contrast, for 19-imino pyridine precursors with a 5alpha-androstane steroid backbone: a 1beta-hydroxylation and 19-peroxidation occurred to yield a 1beta-hydroxylated 19-imidoperoxoic acid product. In conclusion, new Schönecker oxidation chemistry was discovered (C5-C6 olefin difunctionalization and C1beta-hydroxylation/C19-peroxidation) when a 19-imino pyridine DHEA derivative was used as the substrate.
Collapse
Affiliation(s)
- Samuel D Offei
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| |
Collapse
|
17
|
Zhang C, Gilardi G, Di Nardo G. Depicting the proton relay network in human aromatase: New insights into the role of the alcohol-acid pair. Protein Sci 2022; 31:e4389. [PMID: 36040260 PMCID: PMC9366932 DOI: 10.1002/pro.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Human aromatase is the cytochrome P450 catalyzing the conversion of androgens into estrogens in a three steps reaction essential to maintain steroid hormones balance. Here we report the capture and spectroscopic characterization of its compound I (Cpd I), the main reactive species in cytochromes P450. The typical spectroscopic transitions indicating the formation of Cpd I are detected within 0.8 s when mixing aromatase with meta-chloroperoxybenzoic acid. The estrogen product is obtained from the same reaction mixture, demonstrating the involvement of Cpd I in aromatization reaction. Site-directed mutagenesis is applied to the acid-alcohol pair D309 and T310 and to R192, predicted to be part of the proton relay network. Mutants D309N and R192Q do not lead to Cpd I with an associated loss of activity, confirming that these residues are involved in proton delivery for Cpd I generation. Cpd I is captured for T310A mutant and shows 2.9- and 4.4-fold faster rates of formation and decay, respectively, compared to wild-type (WT). However, its activity is lower than the WT and a larger amount of H2 O2 is produced during catalysis, indicating that T310 has an essential role in proton gating for generation of Cpd 0 and Cpd I and for their stabilization. The data provide new evidences on the role of threonine belonging to the conserved "acid-alcohol" pair and known to be crucial for oxygen activation in cytochromes P450.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| |
Collapse
|
18
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
19
|
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, School of Natural Science, Shiv Nadar University Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Edmond. J. Safra Campus, Givat Ram, Jerusalem 9190400, Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Science, Shiv Nadar University Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
20
|
Akhtar M, Wright JN. A review of 18O labelling Studies to probe the mechanism of aromatase (CYP191A). J Steroid Biochem Mol Biol 2022; 216:106010. [PMID: 34757095 DOI: 10.1016/j.jsbmb.2021.106010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Our previous studies, using precursors for two classes of estrogens, estrone and estriol, have highlighted the following facets of aromatase. The overall reaction, converting androgens into estrogens, occurs in three steps, each requiring NADPH and O2. In Step 1, a 19-hydroxy intermediate is produced, which in Step 2, is converted into a 19-oxo derivative via a gem -diol intermediate with the stereospecific loss of HRe. In Step 3, a scission of the C-10-C-19 bond occurs releasing C-19 as formic acid (HCOOH) and incorporating an atom of oxygen from O2, The other oxygen atom of formic acid is derived from the hydroxyl group introduced in Step 1. These experiments were performed using the classical placental microsomal system. Our findings were confirmed and extended by (the late) Caspi's group. However, incorporation of oxygen in Step 3, has been challenged in a subsequent study using a soluble reconstituted system. The latter authors have implied the superiority of their system over the microsomal preparation. However, several assumptions under pinning their own work were derived from the use of placental microsomes. Furthermore, the authors have not considered that when a previous work is challenged it needs to be repeated under the conditions described in the original publication.
Collapse
Affiliation(s)
- Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, New Campus, Lahore 54590, Pakistan; School of Biological Sciences, University of Southampton, Building 85, SO17 1BJ, UK.
| | - J Neville Wright
- School of Biological Sciences, University of Southampton, Building 85, SO17 1BJ, UK
| |
Collapse
|
21
|
Davydov R, Herzog AE, Jodts RJ, Karlin KD, Hoffman BM. End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy. J Am Chem Soc 2022; 144:377-389. [PMID: 34981938 PMCID: PMC8785356 DOI: 10.1021/jacs.1c10252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this report, we investigate the physical and chemical properties of monocopper Cu(I) superoxo and Cu(II) peroxo and hydroperoxo complexes. These are prepared by cryoreduction/annealing of the parent [LCuI(O2)]+ Cu(I) dioxygen adducts with the tripodal, N4-coordinating, tetradentate ligands L = PVtmpa, DMMtmpa, TMG3tren and are best described as [LCuII(O2•-)]+ Cu(II) complexes that possess end-on (η1-O2•-) superoxo coordination. Cryogenic γ-irradiation (77 K) of the EPR-silent parent complexes generates mobile electrons from the solvent that reduce the [LCuII(O2•-)]+ within the frozen matrix, trapping the reduced form fixed in the structure of the parent complex. Cryoannealing, namely progressively raising the temperature of a frozen sample in stages and then cooling back to low temperature at each stage for examination, tracks the reduced product as it relaxes its structure and undergoes chemical transformations. We employ EPR and ENDOR (electron-nuclear double resonance) as powerful spectroscopic tools for examining the properties of the states that form. Surprisingly, the primary products of reduction of the Cu(II) superoxo species are metastable cuprous superoxo [LCuI(O2•-)]+ complexes. During annealing to higher temperatures this state first undergoes internal electron transfer (IET) to form the end-on Cu(II) peroxo state, which is then protonated to form Cu(II)-OOH species. This is the first time these methods, which have been used to determine key details of metalloenzyme catalytic cycles and are a powerful tools for tracking PCET reactions, have been applied to copper coordination compounds.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| |
Collapse
|
22
|
Fujiyama K, Hino T, Nagano S. Diverse reactions catalyzed by cytochrome P450 and biosynthesis of steroid hormone. Biophys Physicobiol 2022; 19:e190021. [PMID: 35859988 PMCID: PMC9260165 DOI: 10.2142/biophysico.bppb-v19.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Steroid hormones modulate numerous physiological processes in various higher organisms. Research on the physiology, biosynthesis, and metabolic degradation of steroid hormones is crucial for developing drugs, agrochemicals, and anthelmintics. Most steroid hormone biosynthetic pathways, excluding those in insects, have been elucidated, and the roles of several cytochrome P450s (CYPs, P450s), heme (iron protoporphyrin IX)-containing monooxygenases, have been identified. Specifically, P450s of the animal steroid hormone biosynthetic pathways and their three dimensional structures and reaction mechanisms have been extensively studied; however, the mechanisms of several uncommon P450 reactions involved in animal steroid hormone biosynthesis and structures and reaction mechanisms of various P450s involved in plant and insect steroid hormone biosynthesis remain unclear. Recently, we determined the crystal structure of P450 responsible for the first and rate-determining step in brassinosteroids biosynthesis and clarified the regio- and stereo-selectivity in the hydroxylation reaction mechanism. In this review, we have outlined the general catalytic cycle, reaction mechanism, and structure of P450s. Additionally, we have described the recent advances in research on the reaction mechanisms of steroid hormone biosynthesis-related P450s, some of which catalyze unusual P450 reactions including C–C bond cleavage reactions by utilizing either a heme–peroxo anion species or compound I as an active oxidizing species. This review article is an extended version of the Japanese article, Structure and mechanism of cytochrome P450s involved in steroid hormone biosynthesis, published in SEIBUTSU BUTSURI Vol. 61, p. 189–191 (2021).
Collapse
Affiliation(s)
- Keisuke Fujiyama
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science
| | - Tomoya Hino
- Center for Research on Green Sustainable Chemistry, Tottori University
| | - Shingo Nagano
- Center for Research on Green Sustainable Chemistry, Tottori University
| |
Collapse
|
23
|
Misiakiewicz-Has K, Pilutin A, Wiszniewska B. Influence of hormonal imbalance on the integrity of seminiferous epithelium in the testes of adult rats chronically exposed to letrozole and rats exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. Reprod Biol 2021; 21:100562. [PMID: 34555686 DOI: 10.1016/j.repbio.2021.100562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022]
Abstract
The structural integrity of the germ cells in the seminiferous epithelium and the correct process of spermatogenesis are made possible by proteins that participate in the formation of different types of junctions. This study was performed on samples of the testes of 4 groups (2 experimental and 2 corresponding control) of male Wistar rats. In the first experimental group, the adult rats received letrozole - a nonsteroidal inhibitor of cytochrome P450 aromatase (P450arom). The second experimental group was exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. The aim of this study was to examine the immunoexpression of β-catenin, N-cadherin, occludin, connexin43, annexin V, and advanced glycation end products (AGE) in the seminiferous epithelium of rat testes with chronic estrogen deficiency and of rats exposed to soya isoflavones. Series of sections of the testes were stained using PAS and silver impregnation. Moreover, immunohistochemistry tests were performed. A semi-quantitative determination of protein immunoexpression was performed using Image J. The number of annexin V positive Sertoli cells per tubule were counted manually. Comparisons between the experimental and corresponding control groups were performed using a non-parametric Mann-Whitney U test. The most common alterations were prematurely sloughed germ cells in the lumen of the seminiferous tubules and invaginations of the seminiferous tubules. We observed a lower number of annexin V positive Sertoli cells and a lower expression of N-cadherin and occludin in the seminiferous epithelium of both groups of rats with hormonal imbalances. Moreover, a higher expression of AGE, a lower expression of connexin 43 and a lower amount of reticular fibers in the basal lamina of seminiferous tubules was present in rats treated with letrozole and a higher expression of β-catenin was found in rats exposed to soya isoflavones. The hormonal imbalance between androgens and estrogens resulted in a decreased number of annexin V positive Sertoli cells. This may be associated with a failed clearance of apoptotic germ cells that leads to disturbances in the blood-testis-barrier (BTB) by affecting the expression of junctional proteins in the seminiferous epithelium. Moreover, a decreased level of estrogens was also associated with an increased expression of AGEs and with a changed composition of basal lamina in the seminiferous tubules of rats. These changes could lead to germ cell sloughing and invaginations of the seminiferous tubules.
Collapse
Affiliation(s)
- K Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland.
| | - A Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - B Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|
24
|
Abaffy T, Matsunami H. 19-hydroxy Steroids in the Aromatase Reaction: Review on Expression and Potential Functions. J Endocr Soc 2021; 5:bvab050. [PMID: 34095690 PMCID: PMC8169043 DOI: 10.1210/jendso/bvab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Scientific evidence related to the aromatase reaction in various biological processes spanning from mid-1960 to today is abundant; however, as our analytical sensitivity increases, a new look at the old chemical reaction is necessary. Here, we review an irreversible aromatase reaction from the substrate androstenedione. It proceeds in 3 consecutive steps. In the first 2 steps, 19-hydroxy steroids are produced. In the third step, estrone is produced. They can dissociate from the enzyme complex and either accumulate in tissues or enter the blood. In this review, we want to highlight the potential importance of these 19-hydroxy steroids in various physiological and pathological conditions. We focus primarily on 19-hydroxy steroids, and in particular on the 19-hydroxyandrostenedione produced by the incomplete aromatase reaction. Using a PubMed database and the search term “aromatase reaction,” 19-hydroxylation of androgens and steroid measurements, we detail the chemistry of the aromatase reaction and list previous and current methods used to measure 19-hydroxy steroids. We present evidence of the existence of 19-hydroxy steroids in brain tissue, ovaries, testes, adrenal glands, prostate cancer, as well as during pregnancy and parturition and in Cushing’s disease. Based on the available literature, a potential involvement of 19-hydroxy steroids in the brain differentiation process, sperm motility, ovarian function, and hypertension is suggested and warrants future research. We hope that with the advancement of highly specific and sensitive analytical methods, future research into 19-hydroxy steroids will be encouraged, as much remains to be learned and discovered.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
25
|
Souza SA, Held A, Lu WJ, Drouhard B, Avila B, Leyva-Montes R, Hu M, Miller BR, Ng HL. Mechanisms of allosteric and mixed mode aromatase inhibitors. RSC Chem Biol 2021; 2:892-905. [PMID: 34458816 PMCID: PMC8341375 DOI: 10.1039/d1cb00046b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Aromatase (CYP19) catalyzes the last biosynthetic step of estrogens in mammals and is a primary drug target for hormone-related breast cancer. However, treatment with aromatase inhibitors is often associated with adverse effects and drug resistance. In this study, we used virtual screening targeting a predicted cytochrome P450 reductase binding site on aromatase to discover four novel non-steroidal aromatase inhibitors. The inhibitors have potencies comparable to the noncompetitive tamoxifen metabolite, endoxifen. Our two most potent inhibitors, AR11 and AR13, exhibit both mixed-type and competitive-type inhibition. The cytochrome P450 reductase-CYP19 coupling interface likely acts as a transient binding site. Our modeling shows that our inhibitors bind better at different sites near the catalytic site. Our results predict the location of multiple ligand binding sites on aromatase. The combination of modeling and experimental results supports the important role of the reductase binding interface as a low affinity, promiscuous ligand binding site. Our new inhibitors may be useful as alternative chemical scaffolds that may show different adverse effects profiles than current clinically used aromatase inhibitors.
Collapse
Affiliation(s)
- Samson A Souza
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Abby Held
- Department of Chemistry, Truman State University Kirksville MO USA
| | - Wenjie J Lu
- Department of Chemistry, University of Hawai'i at Mānoa Honolulu HI USA
| | - Brendan Drouhard
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Bryant Avila
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Raul Leyva-Montes
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Michelle Hu
- Department of Chemistry, University of Hawai'i at Mānoa Honolulu HI USA
| | - Bill R Miller
- Department of Chemistry, Truman State University Kirksville MO USA
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| |
Collapse
|
26
|
Burris-Hiday SD, Scott EE. Steroidogenic cytochrome P450 17A1 structure and function. Mol Cell Endocrinol 2021; 528:111261. [PMID: 33781841 PMCID: PMC8087655 DOI: 10.1016/j.mce.2021.111261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) is a critical steroidogenic enzyme, essential for producing glucocorticoids and sex hormones. This review discusses the complex activity of CYP17A1, looking at its role in both the classical and backdoor steroidogenic pathways and the complex chemistry it carries out to perform both a hydroxylation reaction and a carbon-carbon cleavage, or lyase reaction. Functional and structural investigations have informed our knowledge of these two reactions. This review focuses on a few specific aspects of this discussion: the identities of reaction intermediates, the coordination of hydroxylation and lyase reactions, the effects of cytochrome b5, and conformational selection. These discussions improve understanding of CYP17A1 in a physiological setting, where CYP17A1 is implicated in a variety of steroidogenic diseases. This information can be used to improve ways in which CYP17A1 can be effectively modulated to treat diseases such as prostate and breast cancer, Cushing's syndrome, and glioblastoma.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Spinello A, Borišek J, Pavlin M, Janoš P, Magistrato A. Computing Metal-Binding Proteins for Therapeutic Benefit. ChemMedChem 2021; 16:2034-2049. [PMID: 33740297 DOI: 10.1002/cmdc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological states associated with metal-dependent cellular dysfunctions. In this compendium, we illustrate how the use of a computational arsenal based on docking, classical, and quantum-classical molecular dynamics simulations can contribute to extricate the minutiae of the catalytic, transport, and inhibition mechanisms of metal-binding proteins at the atomic level. This knowledge represents a fertile ground and an essential prerequisite for selectively targeting metal-binding proteins with small-molecule inhibitors aiming to (i) abrogate deregulated metal-dependent (mis)functions or (ii) leverage metal-dyshomeostasis to selectively trigger harmful cells death.
Collapse
Affiliation(s)
- Angelo Spinello
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Jure Borišek
- National Institute of Chemistry Institution Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Matic Pavlin
- Laboratory of Microsensor Structures and Electronics Faculty of Electrical Engineering, University of Ljubljana Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Pavel Janoš
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
28
|
Glass SM, Reddish MJ, Child SA, Wilkey CJ, Stec DF, Guengerich FP. Characterization of human adrenal cytochrome P450 11B2 products of progesterone and androstenedione oxidation. J Steroid Biochem Mol Biol 2021; 208:105787. [PMID: 33189850 PMCID: PMC7954869 DOI: 10.1016/j.jsbmb.2020.105787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 (P450) 11B1 and 11B2 both catalyze the 11β-hydroxylation of 11-deoxycorticosterone and the subsequent 18-hydroxylation of the product. P450 11B2, but not P450 11B1, catalyzes a further C-18 oxidation to yield aldosterone. 11-Oxygenated androgens are of interest, and 11-hydroxy progesterone has been reported to be a precursor of these. Oxidation of progesterone by purified recombinant P450 11B2 yielded a mono-hydroxy derivative as the major product, and co-chromatography with commercial standards and 2-D NMR spectroscopy indicated 11β-hydroxylation. 18-Hydroxyprogesterone and a dihydroxyprogesterone were also formed. Similarly, oxidation of androstenedione by P450 11B2 yielded 11β-hydroxyandrostenedione, 18-hydroxyandrostenedione, and a dihydroxyandrostenedione. The steady-state kinetic parameters for androstenedione and progesterone 11β-hydroxylation were similar to those reported for the classic substrate 11-deoxycorticosterone. The source of 11α-hydroxyprogesterone in humans remains unresolved.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States; Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, 28608, United States
| | - Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Donald F Stec
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37122, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
29
|
Di Nardo G, Zhang C, Marcelli AG, Gilardi G. Molecular and Structural Evolution of Cytochrome P450 Aromatase. Int J Mol Sci 2021; 22:E631. [PMID: 33435208 PMCID: PMC7827799 DOI: 10.3390/ijms22020631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Aromatase is the cytochrome P450 enzyme converting androgens into estrogen in the last phase of steroidogenesis. As estrogens are crucial in reproductive biology, aromatase is found in vertebrates and the invertebrates of the genus Branchiostoma, where it carries out the aromatization reaction of the A-ring of androgens that produces estrogens. Here, we investigate the molecular evolution of this unique and highly substrate-selective enzyme by means of structural, sequence alignment, and homology modeling, shedding light on its key role in species conservation. The alignments led to the identification of a core structure that, together with key and unique amino acids located in the active site and the substrate recognition sites, has been well conserved during evolution. Structural analysis shows what their roles are and the reason why they have been preserved. Moreover, the residues involved in the interaction with the redox partner and some phosphorylation sites appeared late during evolution. These data reveal how highly substrate-selective cytochrome P450 has evolved, indicating that the driving forces for evolution have been the optimization of the interaction with the redox partner and the introduction of phosphorylation sites that give the possibility of modulating its activity in a rapid way.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 1023 Torino, Italy; (C.Z.); (A.G.M.)
| | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 1023 Torino, Italy; (C.Z.); (A.G.M.)
| |
Collapse
|
30
|
Caciolla J, Bisi A, Belluti F, Rampa A, Gobbi S. Reconsidering Aromatase for Breast Cancer Treatment: New Roles for an Old Target. Molecules 2020; 25:molecules25225351. [PMID: 33207783 PMCID: PMC7696276 DOI: 10.3390/molecules25225351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/31/2022] Open
Abstract
The current therapeutic approach for the treatment of hormone dependent breast cancer includes interference with estrogen receptors via either selective modulators or estrogens deprivation, by preventing their biosynthesis with aromatase inhibitors. Severe side effects and acquired resistance are drawbacks of both drug classes, and the efforts to overcome these issues still allow for research in this field to be animated. This review reports on recent findings that have opened new avenues for reconsidering the role of aromatase enzymes (and estrogen receptors) leading to the possibility of looking at well-known targets in a new perspective.
Collapse
Affiliation(s)
- Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
31
|
Jiang J, Qi L, Dai H, Hu C, Lv Z, Wei Q, Shi F. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Hargrove TY, Wawrzak Z, Guengerich FP, Lepesheva GI. A requirement for an active proton delivery network supports a compound I-mediated C-C bond cleavage in CYP51 catalysis. J Biol Chem 2020; 295:9998-10007. [PMID: 32493730 DOI: 10.1074/jbc.ra120.014064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
CYP51 enzymes (sterol 14α-demethylases) are cytochromes P450 that catalyze multistep reactions. The CYP51 reaction occurs in all biological kingdoms and is essential in sterol biosynthesis. It removes the 14α-methyl group from cyclized sterol precursors by first forming an alcohol, then an aldehyde, and finally eliminating formic acid with the introduction of a Δ14-15 double bond in the sterol core. The first two steps are typical hydroxylations, mediated by an electrophilic compound I mechanism. The third step, C-C bond cleavage, has been proposed to involve either compound I (i.e. FeO3 +) or, alternatively, a proton transfer-independent nucleophilic ferric peroxo anion (compound 0, i.e. Fe3 +O2 -). Here, using comparative crystallographic and biochemical analyses of WT human CYP51 (CYP51A1) and its D231A/H314A mutant, whose proton delivery network is destroyed (as evidenced in a 1.98-Å X-ray structure in complex with lanosterol), we demonstrate that deformylation of the 14α-carboxaldehyde intermediate requires an active proton relay network to drive the catalysis. These results indicate a unified, compound I-based mechanism for all three steps of the CYP51 reaction, as previously established for CYP11A1 and CYP19A1. We anticipate that our approach can be applied to mechanistic studies of other P450s that catalyze multistep reactions, such as C-C bond cleavage.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA .,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Hu D, Gao YH, Yao XS, Gao H. Recent advances in dissecting the demethylation reactions in natural product biosynthesis. Curr Opin Chem Biol 2020; 59:47-53. [PMID: 32460136 DOI: 10.1016/j.cbpa.2020.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Demethylation is a chemical process widely distributed in nature to remove a methyl group from an organic molecule, which is a key aspect of diverse biological processes including biosynthesis of natural products, degradation of plant biomass and epigenetic regulation. This process is facilitated by diverse demethylases via distinct mechanisms. Recent studies have disclosed some novel demethylation reactions as well as their underlying demethylases in the biosynthesis of bacterial sterols, fungal terpenoids, and plant alkaloids. This article focuses on current advances in dissecting the demethylation reactions in biosynthesis of natural products and aims to point out the enzymatic mechanisms, which will further enhance our knowledge and understanding of demethylation process in nature.
Collapse
Affiliation(s)
- Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Yao-Hui Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
34
|
Li J, Tang Y, Li W, Tu Y. Mechanistic Insights into the Regio- and Stereoselectivities of Testosterone and Dihydrotestosterone Hydroxylation Catalyzed by CYP3A4 and CYP19A1. Chemistry 2020; 26:6214-6223. [PMID: 32049373 PMCID: PMC7318132 DOI: 10.1002/chem.201905272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/22/2020] [Indexed: 12/27/2022]
Abstract
The hydroxylation of nonreactive C-H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio- and stereoselectivities of substrates hydroxylated by P450s remains a great challenge. Herein, we use a multi-scale modeling approach to investigate the selectivity of testosterone (TES) and dihydrotestosterone (DHT) hydroxylation catalyzed by two important P450s, CYP3A4 and CYP19A1. For CYP3A4, two distinct binding modes for TES/DHT were predicted by dockings and molecular dynamics simulations, in which the experimentally identified sites of metabolism of TES/DHT can access to the catalytic center. The regio- and stereoselectivities of TES/DHT hydroxylation were further evaluated by quantum mechanical and ONIOM calculations. For CYP19A1, we found that sites 1β, 2β and 19 can access the catalytic center, with the intrinsic reactivity 2β>1β>19. However, our ONIOM calculations indicate that the hydroxylation is favored at site 19 for both TES and DHT, which is consistent with the experiments and reflects the importance of the catalytic environment in determining the selectivity. Our study unravels the mechanism underlying the selectivity of TES/DHT hydroxylation mediated by CYP3A4 and CYP19A1 and is helpful for understanding the selectivity of other substrates that are hydroxylated by P450s.
Collapse
Affiliation(s)
- Junhao Li
- Department of Theoretical Chemistry and BiologyKTH Royal Institute of TechnologyRoslagstullsbacken 1510691StockholmSweden
| | - Yun Tang
- Shanghai Key Laboratory of New Drug DesignEast China University of Science and TechnologyMeilong Road 130200237ShanghaiP.R. China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug DesignEast China University of Science and TechnologyMeilong Road 130200237ShanghaiP.R. China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and BiologyKTH Royal Institute of TechnologyRoslagstullsbacken 1510691StockholmSweden
| |
Collapse
|
35
|
Mukherjee M, Dey A. Catalytic C–H Bond Oxidation Using Dioxygen by Analogues of Heme Superoxide. Inorg Chem 2020; 59:7415-7425. [DOI: 10.1021/acs.inorgchem.9b03767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
36
|
Pratush A, Ye X, Yang Q, Kan J, Peng T, Wang H, Huang T, Xiong G, Hu Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl Microbiol Biotechnol 2020; 104:2385-2409. [PMID: 31993703 DOI: 10.1007/s00253-020-10374-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
The common steroid hormones are estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and testosterone (T). These steroids are reported to contaminate the environment through wastewater treatment plants. Steroid estrogens are widespread in the aquatic environment and therefore pose a potential risk, as exposure to these compounds has adverse impacts on vertebrates. Excessive exposure to steroid estrogens causes endocrine disruption in aquatic vertebrates, which affects the normal sexual life of these animals. Steroid pollutants also cause several health problems in humans and other animals. Microbial degradation is an efficient method for removing hormone pollutants from the environment by remediation. Over the last two decades, microbial metabolism of steroids has gained considerable attention due to its higher efficiency to reduce pollutants from the environment. The present review is focused on the major causes of steroid pollution, concentrations of these pollutants in surface water, groundwater, drinking water, and wastewater, their effect on humans and aquatic animals, as well as recent efforts by various research groups that seek better ways to degrade steroids by aerobic and anaerobic microbial systems. Detailed overview of aerobic and anaerobic microbial biotransformation of steroid estrogens and testosterone present in the environment along with the active enzyme systems involved in these biotransformation reactions is described in the review article, which helps readers to understand the biotransformation mechanism of steroids in depth. Other measures such as co-metabolic degradation, consortia degradation, algal, and fungal steroid biotransformation are also discussed in detail.
Collapse
Affiliation(s)
- Amit Pratush
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Xueying Ye
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Yang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Jie Kan
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tongwang Huang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
37
|
Su H, Wang B, Shaik S. Quantum-Mechanical/Molecular-Mechanical Studies of CYP11A1-Catalyzed Biosynthesis of Pregnenolone from Cholesterol Reveal a C-C Bond Cleavage Reaction That Occurs by a Compound I-Mediated Electron Transfer. J Am Chem Soc 2019; 141:20079-20088. [PMID: 31741382 DOI: 10.1021/jacs.9b08561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore here a long-standing mechanistic question by using quantum-mechanical/molecular-mechanical (QM/MM) methodology. The question concerns the mechanism of steroid hormone biosynthesis, whereby the P450 enzyme, CYP11A1, catalyzes the C20-C22 bond-cleavage in the 20,22-hydroxylated cholesterol, 20R,22R-DiOHCH, leading to pregnenolone, which is critical for the subsequent production of all steroid hormones. This is an unusual feat whereby the P450 enzyme breaks two O-H bonds and one C-C bond, while making two C═O bonds. How does the enzyme perform such a complex and highly energy-demanding reaction? Our computational results rule out the previously proposed Compound I (Cpd I) electrophilic attack mechanism via the formation of a peroxide intermediate as well as the H-abstraction-mediated C-C cleavage mechanism. Notably, oxygen-rebound cannot transpire, in spite of the fact that the classical active species, Cpd I, participates in the catalytic process. Our findings reveal a mechanism whereby C-C bond cleavage is mediated by an electron transfer from the C22-O--deprotonated substrate to Cpd I. As such, our QM/MM calculations demonstrate that Cpd I acts as an electron sink that facilitates the C-C bond cleavage.
Collapse
Affiliation(s)
- Hao Su
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| |
Collapse
|
38
|
Spinello A, Ritacco I, Magistrato A. Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers. Expert Opin Drug Discov 2019; 14:1065-1076. [DOI: 10.1080/17460441.2019.1646245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelo Spinello
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ida Ritacco
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
39
|
|
40
|
Sen A, Stark H. Role of cytochrome P450 polymorphisms and functions in development of ulcerative colitis. World J Gastroenterol 2019; 25:2846-2862. [PMID: 31249444 PMCID: PMC6589734 DOI: 10.3748/wjg.v25.i23.2846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) are terminal enzymes in CYP dependent monooxygenases, which constitute a superfamily of enzymes catalysing the metabolism of both endogenous and exogenous substances. One of their main tasks is to facilitate the excretion of these substances and eliminate their toxicities in most phase 1 reactions. Endogenous substrates of CYPs include steroids, bile acids, eicosanoids, cholesterol, vitamin D and neurotransmitters. About 80% of currently used drugs and environmental chemicals comprise exogenous substrates for CYPs. Genetic polymorphisms of CYPs may affect the enzyme functions and have been reported to be associated with various diseases and adverse drug reactions among different populations. In this review, we discuss the role of some critical CYP isoforms (CYP1A1, CYP2D6, CYP2J2, CYP2R1, CYP3A5, CYP3A7, CYP4F3, CYP24A1, CYP26B1 and CYP27B1) in the pathogenesis or aetiology of ulcerative colitis concerning gene polymorphisms. In addition, their significance in metabolism concerning ulcerative colitis in patients is also discussed showing a clear underestimation in genetic studies performed so far.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
- Biology Department, Faculty of Arts and Sciences, Pamukkale University, Denizli 20070, Turkey
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf 40225, Germany
| |
Collapse
|
41
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
42
|
Erdogan H. One small step for cytochrome P450 in its catalytic cycle, one giant leap for enzymology. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The intermediates operating in the cytochrome P450 catalytic cycle have been investigated for more than half a century, fascinating many enzymologists. Each intermediate has its unique role to carry out diverse oxidations. Natural time course of the catalytic cycle is quite fast, hence, not all of the reactive intermediates could be isolated during physiological catalysis. Different high-valent iron intermediates have been proposed as primary oxidants: the candidates are compound 0 (Cpd 0, [FeOOH][Formula: see text]P450) and compound I (Cpd I, Fe(IV)[Formula: see text]O por[Formula: see text]P450). Among them, the role of Cpd I in hydroxylation is fairly well understood due the discovery of the peroxide shunt. This review endeavors to put the outstanding research efforts conducted to isolate and characterize the intermediates together. In addition to spectral features of each intermediate in the catalytic cycle, the oxidizing powers of Cpd 0 and Cpd I will be discussed along with most recent scientific findings.
Collapse
Affiliation(s)
- Huriye Erdogan
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| |
Collapse
|
43
|
Mukherjee M, Dey A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C-H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS CENTRAL SCIENCE 2019; 5:671-682. [PMID: 31041387 PMCID: PMC6487540 DOI: 10.1021/acscentsci.9b00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 05/11/2023]
Abstract
Catalytic oxidation of organic substrates, using a green oxidant like O2, has been a long-term goal of the scientific community. In nature, these oxidations are performed by metalloenzymes that generate highly oxidizing species from O2, which, in turn, can oxidize very stable organic substrates, e.g., mono-/dioxygenases. The same oxidants are produced during O2 reduction/respiration in the mitochondria but are reduced by electron transfer, i.e., reductases. Iron porphyrin mimics of the active site of cytochrome P450 (Cyt P450) are created atop a self-assembled monolayer covered electrode. The rate of electron transfer from the electrode to the iron porphyrin site is attenuated to derive monooxygenase reactivity from these constructs that otherwise show O2 reductase activity. Catalytic hydroxylation of strong C-H bonds to alcohol and epoxidation of alkenes, using molecular O2 (with 18O2 incorporation), is demonstrated with turnover numbers >104. Uniquely, one of the two iron porphyrin catalysts used shows preferential oxidation of 2° C-H bonds of cycloalkanes to alcohols over 3° C-H bonds without overoxidation to ketones. Mechanistic investigations with labeled substrates indicate that a compound I (FeIV=O bound to a porphyrin cation radical) analogue, formed during O2 reduction, is the primary oxidant. The selectivity is determined by the shape of the distal pocket of the catalyst, which, in turn, is determined by the substituents on the periphery of the porphyrin macrocycle.
Collapse
Affiliation(s)
| | - Abhishek Dey
- Address:
Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, 2A&2B
Raja SC Mullick Road, Jadavpur, Kolkata, West Bengal, India 700032.
E-mail:
| |
Collapse
|
44
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
45
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
46
|
The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019. [DOI: 10.3390/catal9010081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by environmental factors, furnishing information often inaccessible to experimental means. In this review, after an introduction of computational methods commonly employed to tackle these systems, we report the current knowledge on three steroidogenic CYP450s—CYP11A1, CYP17A1, and CYP19A1—endowed with multiple catalytic functions and critically involved in cancer onset. In particular, besides discussing their catalytic mechanisms, we highlight how the membrane environment contributes to (i) regulate ligand channeling through these enzymes, (ii) modulate their interactions with specific protein partners, (iii) mediate post-transcriptional regulation induced by phosphorylation. The results presented set the basis for developing novel therapeutic strategies aimed at fighting diseases originating from steroid metabolism dysfunction.
Collapse
|
47
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
48
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
49
|
Nielsen AJ, McNulty J. Polyphenolic natural products and natural product–inspired steroidal mimics as aromatase inhibitors. Med Res Rev 2018; 39:1274-1293. [DOI: 10.1002/med.21536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Alexander J. Nielsen
- Department of Chemistry & Chemical BiologyMcMaster UniversityHamilton Ontario Canada
| | - James McNulty
- Department of Chemistry & Chemical BiologyMcMaster UniversityHamilton Ontario Canada
| |
Collapse
|
50
|
Zarate-Perez F, Velázquez-Fernández JB, Jennings GK, Shock LS, Lyons CE, Hackett JC. Biophysical characterization of Aptenodytes forsteri cytochrome P450 aromatase. J Inorg Biochem 2018; 184:79-87. [PMID: 29684698 PMCID: PMC5964043 DOI: 10.1016/j.jinorgbio.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 19 (CYP19, aromatase) catalyzes the conversion of androgens to estrogens in a sequence of three reactions that each depend on NADPH and O2. Aromatase is a phylogenetically-ancient enzyme and its breadth of expression in other species has highlighted distinct physiological functions. In songbirds, estrogen production is required for programming the neural circuits controlling song and in the determination of sex in fish and reptiles. This work describes the expression, purification, and biophysical characterization of Aptenodytes forsteri (Emperor penguin, af) aromatase. Using human cytochrome P450 reductase as a redox partner, afCYP19 displayed similar substrate turnover and LC/MS/MS confirmed that afCYP19 catalyzes the transformations through the intermediates 19-hydroxy- and 19-oxo-androstenedione. Androstenedione and anastrozole had the highest affinity for the enzyme and were followed closely by 19-hydroxyandrostenedione and testosterone. The affinity of 19-oxo-androstenedione for afCYP19 was ten-fold lower. The time-dependent changes in the Soret bands observed in stopped-flow mixing experiments of the steroidal ligands and the inhibitor anastrozole with afCYP19 were best described by a two-step binding mechanism. In summary, these studies describe the first biophysical characterization of an avian aromatase that displays strikingly similar enzyme kinetics and ligand binding properties to the human enzyme and could serve as a convenient model system for studies of the enigmatic transformation of androgens to estrogens.
Collapse
Affiliation(s)
- Francisco Zarate-Perez
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Jesús B Velázquez-Fernández
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Gareth K Jennings
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Lisa S Shock
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States; Department of Microbiology and Immunology, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Charles E Lyons
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - John C Hackett
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States.
| |
Collapse
|