1
|
Sun B, Liu K, Wu B, Sun S, Wu P. Low-Hysteresis and Tough Ionogels via Low-Energy-Dissipating Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408826. [PMID: 39210639 DOI: 10.1002/adma.202408826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Low-hysteresis merits can help polymeric gel materials survive from consecutive loading cycles and promote life span in many burgeoning areas. However, it is a big challenge to design low-hysteresis and tough polymeric gel materials, especially for ionogels. This can be attributed to the fact that higher viscosities of ionic liquids (ILs) would increase chain friction of polymeric gels and eventually dissipate large amounts of energy under deformation. Herein, a chemical design of ionogels is proposed to achieve low-hysteresis characteristics in both mechanical and electric aspects via hierarchical aggregates formed by supramolecular self-assembly of quadruple H-bonds in a soft IL-rich polymeric matrix. These self-assembled nanoaggregates not only can greatly reinforce the polymeric matrix and enhance resilience, but also exhibit low-energy-dissipating features under stress conditions, simultaneously benefiting for low-hysteresis properties. These aggregates can also promote toughness and subsequent anti-fatigue properties in response to external cyclic mechanical stimuli. More importantly, these ionogels are presented as a model system to elucidate the underlying mechanism of the low hysteresis and fatigue resistance. Based on these findings, it is further demonstrated that the supramolecular low-hysteresis strategy is universal.
Collapse
Affiliation(s)
- Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Kai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, Center for Advanced Low-dimension Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Yang L, Wang Y, Liu G, Zhao J, Cheng L, Zhang Z, Bai R, Liu Y, Yang M, Yu W, Yan X. Mechanically Interlocked Polyrotaxane Networks with Collective Motions of Multiple Main-Chain Mechanical Bonds. Angew Chem Int Ed Engl 2024; 63:e202410834. [PMID: 38949776 DOI: 10.1002/anie.202410834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Type I main-chain polyrotaxanes (PRs) with multiple wheels threaded onto the axle are widely employed to design slide-ring materials. However, Type II main-chain PRs with axles threading into the macrocycles on the polymer backbones have rarely been studied, although they feature special topological structures and dynamic characteristics. Herein, we report the design and preparation of Type II main-chain PR-based mechanically interlocked networks (PRMINs), based on which the relationship between microscopic motion of mechanical bonds on the PRs and macroscopic mechanical performance of materials has been revealed. The representative PRMIN-2 exhibits a robust feature in tensile tests with high stretchability (1680 %) and toughness (47.5 MJ/m3). Moreover, it also has good puncture performance with puncture energy of 22.0 mJ. Detailed rheological measurements and coarse-grained molecular dynamics (CGMD) simulation reveal that the embedded multiple [2]rotaxane mechanical bonds on the PR backbones of PRMINs could undergo a synergistic long-range sliding motion under external force, with the introduction of collective dangling chains into the network. As a result, the synchronized motions of coherent PR chains can be readily activated to accommodate network deformation and efficiently dissipate energy, thereby leading to enhanced mechanical performances of PRMINs.
Collapse
Affiliation(s)
- Li Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuanhao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mengling Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Wang Y, Liu G, Zhao J, Zhang Z, Zhang H, Ding Y, Zhang X, Liu Z, Yu W, Yan X. Mechanically Interlocked [an]Daisy Chain Adhesives with Simultaneously Enhanced Interfacial Adhesion and Cohesion. Angew Chem Int Ed Engl 2024; 63:e202409705. [PMID: 39072904 DOI: 10.1002/anie.202409705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Adhesives have been widely used to splice and repair materials to meet practical needs of humanity for thousands of years. However, developing robust adhesives with balanced adhesive and cohesive properties still remains a challenging task. Herein, we report the design and preparation of a robust mechanically interlocked [an]daisy chain network (DCMIN) adhesive by orthogonal integration of mechanical bonds and 2-ureido-4[1H]-pyrimidone (UPy) H-bonding in a single system. Specifically, the UPy moiety plays a dual role: it allows the formation of a cross-linked network and engages in multivalent interactions with the substrate for strong interfacial bonding. The mechanically interlocked [an]daisy chain, serving as the polymeric backbone of the adhesive, is able to effectively alleviate applied stress and uphold network integrity through synergistic intramolecular motions, and thus significantly improves the cohesive performance. Comparative analysis with the control made of the same quadruple H-bonding network but with non-interlocked [an]daisy chain backbones demonstrates that our DCMIN possesses superior adhesion properties over a wide temperature range. These findings not only contribute to a deep understanding of the structure-property relationship between microscopic mechanical bond motions and macroscopic adhesive properties but also provide a valuable guide for optimizing design principles of robust adhesives.
Collapse
Affiliation(s)
- Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yi Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhu Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Kong Q, Tan Y, Zhang H, Zhu T, Li Y, Xing Y, Wang X. Mimosa-Inspired Body Temperature-Responsive Shape Memory Polymer Networks: High Energy Densities and Multi-Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407596. [PMID: 39140246 PMCID: PMC11497007 DOI: 10.1002/advs.202407596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 08/15/2024]
Abstract
Inspired by the Mimosa plant, this study herein develops a unique dynamic shape memory polymer (SMP) network capable of transitioning from hard to pliable with heat, featuring reversible actuation, self-healing, recyclability, and degradability. This material is adept at simulating the functionalities of artificial muscles for a variety of tasks, with a remarkable specific energy density of 1.8 J g-1-≈46 times higher than that of human skeletal muscle. As an intelligent manipulator, it demonstrates remarkable proficiency in identifying and handling items at high temperatures. Its suitable rate of shape recovery around human body temperature indicates its promising utility as an implant material for addressing acute obstructions. The dynamic covalent bonding within the network structure not only provides excellent resistance to solvents but also bestows remarkable abilities for self-healing, reprocessing, and degradation. These attributes significantly boost its practicality and environmental sustainability. Anticipated to promote advancements in the sectors of biomedical devices, soft robotics, and smart actuators, this SMP network represents a forward leap in simulating artificial muscles, marking a stride toward the future of adaptive and sustainable technology.
Collapse
Affiliation(s)
- Qingming Kong
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yu Tan
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Haiyang Zhang
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Tengyang Zhu
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yitan Li
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Xu Wang
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| |
Collapse
|
5
|
Ahmed U, Daub CD, Sundholm D, Johansson MP. Attractive acceptor-acceptor interactions in self-complementary quadruple hydrogen bonds for molecular self-assembly. Phys Chem Chem Phys 2024; 26:24470-24476. [PMID: 39264175 DOI: 10.1039/d4cp02361g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Molecular self-assembly provides the means for creating large supramolecular structures, extending beyond the capability of standard chemical synthesis. To harness the power of self-assembly, it is necessary to understand its driving forces. A potent method is to exploit self-complementary hydrogen bonding, where a molecule interacts with its own copy by suitable positions of hydrogen-bond donor (D) and acceptor (A) groups. With four hydrogen bonds, there are two possible self complementary patterns: the DDAA/AADD and the DADA/ADAD motifs. Of these, the DDAA pattern is usually more stable. The traditional explanation assumes that the secondary interactions between equal groups, that is, between donors (D⋯D) or acceptors (A⋯A), are repulsive. DDAA arrays would then have two, and DADA arrays six repulsive interactions. Here, using high-end quantum chemical analysis, we show that contrary to the traditional explanation, the secondary A⋯A interactions are, in fact, attractive. We revise the model of secondary interactions accordingly.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FI-00014, Helsinki, Finland.
| | - Christopher D Daub
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FI-00014, Helsinki, Finland.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FI-00014, Helsinki, Finland.
| | | |
Collapse
|
6
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Wang C, Liu W, Chen R, Sun G, Yu J, Liu Q, Liu J, Li Y, Zhu J, Liu P, Wang J. Macrophage-Inspired marine antifouling coating with dynamic surfaces based on regulation of dynamic covalent bonds. J Colloid Interface Sci 2024; 670:223-233. [PMID: 38761575 DOI: 10.1016/j.jcis.2024.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wenbin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| |
Collapse
|
8
|
Chen K, Liu J, Zhang X, Sun Y, Xie H. Three-dimensional cross-linked network deep eutectic gel polymer electrolyte with the self-healing ability enable by hydrogen bonds and dynamic disulfide bonds. J Colloid Interface Sci 2024; 669:529-536. [PMID: 38729001 DOI: 10.1016/j.jcis.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Solid polymer electrolytes (SPEs) are effective solutions for the development of high-performance and flexible lithium metal batteries (LMBs). However, the key problems of SPEs including low ionic conductivity and inability to repair damage have hindered their industrialization process. In this work, a three-dimensional (3D) cross-linked network gel polymer electrolyte (CNGPE) is designed. The addition of deep eutectic solvent (DES) improves the ionic conductivity of CNGPE. The hydrogen bonds and dynamic disulfide bonds in the 3D cross-linked network endow CNGPE rapid self-healing ability at ambient temperature. In addition, the addition of lithium difluoro(oxalato)borate (LiDFOB) and lithium nitrate (LiNO3) helps to form a stable solid electrolyte interface (SEI). Due to the ingenious design, the Li/CNGPE/Li symmetrical cell exhibits excellent interface stability and no short circuit occurs for more than 800 h. The assembled LiFePO4/CNGPE/Li cell exhibits a discharge specific capacity of 126 mAh g-1 after 960 cycles at 0.5C. This work has shown that the self-healing gel polymer electrolyte containing DES provides an effective and feasible method for the development of high-performance LMBs.
Collapse
Affiliation(s)
- Kai Chen
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jun Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaorong Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuxue Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Cheng L, Zhao J, Xiong Z, Liu S, Yan X, Yu W. Hyperbranched Vitrimer for Ultrahigh Energy Dissipation. Angew Chem Int Ed Engl 2024; 63:e202406937. [PMID: 38656692 DOI: 10.1002/anie.202406937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Polymers are ideally utilized as damping materials due to the high internal friction of molecular chains, enabling effective suppression of vibrations and noises in various fields. Current strategies rely on broadening the glass transition region or introducing additional relaxation components to enhance the energy dissipation capacity of polymeric damping materials. However, it remains a significant challenge to achieve high damping efficiency through structural control while maintaining dynamic characteristics. In this work, we propose a new strategy to develop hyperbranched vitrimers (HBVs) containing dense pendant chains and loose dynamic crosslinked networks. A novel yet weak dynamic transesterification between the carboxyl and boronic acid ester was confirmed and used to prepare HBVs based on poly (hexyl methacrylate-2-(4-ethenylphenyl)-5,5-dimethyl-1,3,2-dioxaborinane) P(HMA-co-ViCL) copolymers. TheA B n ${{AB}_{n}}$ -type of macromonomers, the crosslinking points formed by the dynamic covalent connection via the associative exchange, and the weak yet dynamic exchange reaction are the three keys to developing high-performance HBV damping materials. We found that P(HMA-co-ViCL) 20k-40-60 HBV exhibited ultrahigh energy-dissipation performance over a broad frequency and temperature range, attributed to the synergistic effect of dense pendant chains and weak dynamic covalent crosslinks. This unique design concept will provide a general approach to developing advanced damping materials.
Collapse
Affiliation(s)
- Lin Cheng
- Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhongqiang Xiong
- Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sijun Liu
- Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Liu K, Wu P. Small Ionic-Liquid-Based Molecule Drives Strong Adhesives. Angew Chem Int Ed Engl 2024; 63:e202403220. [PMID: 38622058 DOI: 10.1002/anie.202403220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Nature has inspired scientists to fabricate adhesive materials for applications in many burgeoning areas. However, it is still a significant challenge to develop small-molecule adhesives with high-strength, low-temperature and recyclable properties, although these merits are of great interest in various aspects. Herein, we report a series of strong adhesives based on low-molecular-weight molecular solids driven by the terminal modification of ionic liquids (ILs) and subsequent supramolecular self-assembly. The emergence of high strength and liquid-to-solid transitions for these supramolecular aggregates relies on modifying IL with a high melting point motif and enriching the types of noncovalent interactions in the original ILs. Using this strategy, we demonstrate that our IL-based molecular solids can efficiently obtain a high adhesion strength (up to 8.95 MPa). Importantly, we elucidate the mechanism underlying the reversible and strong adhesion enabled by monomer-to-polymer transitions. These fundamental findings provide guidance for the design of high-performance supramolecular adhesive materials.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
Shi CY, Qin WY, Qu DH. Semi-crystalline polymers with supramolecular synergistic interactions: from mechanical toughening to dynamic smart materials. Chem Sci 2024; 15:8295-8310. [PMID: 38846397 PMCID: PMC11151828 DOI: 10.1039/d4sc02089h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Semi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures. Therefore, this review will focus on the design principles of SCPs by discussing supramolecular construction strategies and state-of-the-art functional applications from mechanical toughening to sophisticated functions such as dynamic adaptivity, shape memory, ion transport, etc. Current challenges and further opportunities are discussed to provide an overview of possible future directions and potential material applications.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wen-Yu Qin
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
12
|
Yuan W, Deng X, Wang Z, Ma T, Yan S, Gao X, Li J, Ma X, Yin J, Hu K, Zhang W, Jiang X. Photochemical Design for Diverse Controllable Patterns in Self-Wrinkling Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400849. [PMID: 38567824 DOI: 10.1002/adma.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Harnessing the spontaneous surface instability of pliable substances to create intricate, well-ordered, and on-demand controlled surface patterns holds great potential for advancing applications in optical, electrical, and biological processes. However, the current limitations stem from challenges in modulating multidirectional stress fields and diverse boundary environments. Herein, this work proposes a universal strategy to achieve arbitrarily controllable wrinkle patterns via the spatiotemporal photochemical boundaries. Utilizing constraints and inductive effects of the photochemical boundaries, the multiple coupling relationship is accomplished among the light fields, stress fields, and morphology of wrinkles in photosensitive polyurethane (PSPU) film. Moreover, employing sequential light-irradiation with photomask enables the attainment of a diverse array of controllable patterns, ranging from highly ordered 2D patterns to periodic or intricate designs. The fundamental mechanics of underlying buckling and the formation of surface features are comprehensively elucidated through theoretical stimulation and finite element analysis. The results reveal the evolution laws of wrinkles under photochemical boundaries and represent a new effective toolkit for fabricating intricate and captivating patterns in single-layer films.
Collapse
Affiliation(s)
- Wenqiang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlu Deng
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjiao Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiming Hu
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenming Zhang
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Zeng X, Zhou Y, Xia X, Fan J, Rao S, Ren L, Shen X, Sun R, Zeng X. Elastomer Composites with High Damping and Low Thermal Resistance via Hierarchical Interactions and Regulating Filler. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306946. [PMID: 38133511 DOI: 10.1002/smll.202306946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Modern microelectronics and emerging technologies such as wearable electronics and soft robotics require elastomers to integrate high damping with low thermal resistance to avoid damage caused by vibrations and heat accumulation. However, the strong coupling between storage modulus and loss factor makes it generally challenging to simultaneously increase both thermal conductance and damping. Here, a strategy of introducing hierarchical interaction and regulating fillers in polybutadiene/spherical aluminum elastomer composites is reported to simultaneously achieve extraordinary damping ability of tan δ > 1.0 and low thermal resistance of 0.15 cm2 K W-1, which surpasses state-of-the-art elastomers and their composites. The enhanced damping is attributed to increased energy dissipation via introducing the hierarchical hydrogen bond interactions in polybutadiene networks and the addition of spherical aluminum, which also functions as a thermally conductive filler to achieve low thermal resistance. As a proof of concept, the polybutadiene/spherical aluminum elastomer composites are used as thermal interface materials, showing effective heat dissipation for electronic devices in vibration scenarios. The combination of outstanding damping performance and extraordinary heat dissipation ability of the elastomer composites may create new opportunities for their applications in electronics.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Yu Zhou
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Jianfeng Fan
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shipeng Rao
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linlin Ren
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Rong Sun
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoliang Zeng
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
14
|
Zhao ZH, Chen SY, Zhao PC, Luo WL, Luo YL, Zuo JL, Li CH. Mechanically Adaptive Polymers Constructed from Dynamic Coordination Equilibria. Angew Chem Int Ed Engl 2024; 63:e202400758. [PMID: 38450854 DOI: 10.1002/anie.202400758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Designing materials capable of adapting their mechanical properties in response to external stimuli is the key to preventing failure and extending their service life. However, existing mechanically adaptive polymers are hindered by limitations such as inadequate load-bearing capacity, difficulty in achieving reversible changes, high cost, and a lack of multiple responsiveness. Herein, we address these challenges using dynamic coordination bonds. A new type of mechanically adaptive material with both rate- and temperature-responsiveness was developed. Owing to the stimuli-responsiveness of the coordination equilibria, the prepared polymers, PBMBD-Fe and PBMBD-Co, exhibit mechanically adaptive properties, including temperature-sensitive strength modulation and rate-dependent impact hardening. Benefitting from the dynamic nature of the coordination bonds, the polymers exhibited impressive energy dissipation, damping capacity (loss factors of 1.15 and 2.09 at 1.0 Hz), self-healing, and 3D printing abilities, offering durable and customizable impact resistance and protective performance. The development of impact-resistant materials with comprehensive properties has potential applications in the sustainable and intelligent protection fields.
Collapse
Affiliation(s)
- Zi-Han Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shi-Yi Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Pei-Chen Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wen-Lin Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan-Long Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
16
|
Qiao H, Wu B, Sun S, Wu P. Entropy-Driven Design of Highly Impact-Stiffening Supramolecular Polymer Networks with Salt-Bridge Hydrogen Bonds. J Am Chem Soc 2024; 146:7533-7542. [PMID: 38451015 DOI: 10.1021/jacs.3c13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Impact-stiffening materials that undergo a strain rate-induced soft-to-rigid transition hold great promise as soft armors in the protection of the human body and equipment. However, current impact-stiffening materials, such as polyborosiloxanes and shear-thickening fluids, often exhibit a limited impact-stiffening response. Herein, we propose a design strategy for fabricating highly impact-stiffening supramolecular polymer networks by leveraging high-entropy-penalty physical interactions. We synthesized a fully biobased supramolecular polymer comprising poly(α-thioctic acid) and arginine clusters, whose chain dynamics are governed by highly specific guanidinium-carboxylate salt-bridge hydrogen bonds. The resulting material exhibits an exceptional impact-stiffening response of ∼2100 times, transitioning from a soft dissipating state (21 kPa, 0.1 Hz) to a highly stiffened glassy state (45.3 MPa, 100 Hz) with increasing strain rates. Moreover, the material's high energy-dissipating and hot-melting properties bring excellent damping performance and easy hybridization with other scaffolds. This entropy-driven approach paves the way for the development of next-generation soft, sustainable, and impact-resistant materials.
Collapse
Affiliation(s)
- Haiyan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Garching 85748, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Liu K, Zhang X, Zhao D, Bai R, Wang Y, Yang X, Zhao J, Zhang H, Yu W, Yan X. Stretchable poly[2]rotaxane elastomers. FUNDAMENTAL RESEARCH 2024; 4:300-306. [PMID: 38933516 PMCID: PMC11197719 DOI: 10.1016/j.fmre.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanically interlocked polymers (MIPs) are promising candidates for the construction of elastomeric materials with desirable mechanical performance on account of their abilities to undergo inherent rotational and translational mechanical movements at the molecular level. However, the investigations on their mechanical properties are lagging far behind their structural fabrication, especially for linear polyrotaxanes in bulk. Herein, we report stretchable poly[2]rotaxane elastomers (PREs) which integrate numerous mechanical bonds in the polymeric backbone to boost macroscopic mechanical properties. Specifically, we have synthesized a hydroxy-functionalized [2]rotaxane that subsequently participates in the condensation polymerization with diisocyanate to form PREs. Benefitting from the peculiar structural and dynamic characteristics of the poly[2]rotaxane, the representative PRE exhibits favorable mechanical performance in terms of stretchability (∼1200%), Young's modulus (24.6 MPa), and toughness (49.5 MJ/m3). Moreover, we present our poly[2]rotaxanes as model systems to understand the relationship between mechanical bonds and macroscopic mechanical properties. It is concluded that the mechanical properties of our PREs are mainly determined by the unique topological architectures which possess a consecutive energy dissipation pathway including the dissociation of host-guest interaction and consequential sliding motion of the wheel along the axle in the [2]rotaxane motif.
Collapse
Affiliation(s)
- Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
19
|
Candia Carnevali MD, Sugni M, Bonasoro F, Wilkie IC. Mutable Collagenous Tissue: A Concept Generator for Biomimetic Materials and Devices. Mar Drugs 2024; 22:37. [PMID: 38248662 PMCID: PMC10817530 DOI: 10.3390/md22010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Echinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics. In this review, after an up-to-date account of present knowledge of the structural, physiological and molecular adaptations of MCT and the mechanisms responsible for its variable tensile properties, we focus on MCT as a concept generator surveying biomimetic systems inspired by MCT biology, showing that these include both bio-derived developments (same function, analogous operating principles) and technology-derived developments (same function, different operating principles), and suggest a strategy for the further exploitation of this promising biological resource.
Collapse
Affiliation(s)
- M. Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Iain C. Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
20
|
Li Q, Li W, Liu Z, Zheng S, Wang X, Xiong J, Yan F. Poly(Ionic Liquid) Double-Network Elastomers with High-Impact Resistance Enhanced by Cation-π Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311214. [PMID: 38150638 DOI: 10.1002/adma.202311214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Indexed: 12/29/2023]
Abstract
With the continuous development of impact protection materials, lightweight, high-impact resistance, flexibility, and controllable toughness are required. Here, tough and impact-resistant poly(ionic liquid) (PIL)/poly(hydroxyethyl acrylate) (PHEA) double-network (DN) elastomers are constructed via multiple cross-linking of polymer networks and cation-π interactions of PIL chains. Benefiting from the strong noncovalent cohesion achieved by the cation-π interactions in PIL chains, the prepared PIL DN elastomers exhibit extraordinary compressive strength (95.24 ± 2.49 MPa) and toughness (55.98 ± 0.66 MJ m-3 ) under high-velocity impact load (5000 s-1 ). The synthesized PIL DN elastomer combines strength and flexibility to protect fragile items from impact. This strategy provides a new research idea in the field of the next generation of safety and protective materials.
Collapse
Affiliation(s)
- Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
21
|
Shao L, Hua B, Zhao X, Lu S, Li G. Pillar[5]arene-Based Fluorescent Supramolecular Polymers Without Conventional Chromophores. Chemistry 2023; 29:e202303071. [PMID: 37843981 DOI: 10.1002/chem.202303071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorescent supramolecular polymers have garnered significant attention due to their successful integration of supramolecular polymers and fluorescence, offering vast potential for applications in sensing, imaging, optoelectronics, and photonics. In this study, we present a novel supramolecular polymer based on P5-OH, derived from mono-substituted pillararene macrocycles. Notably, these formed supramolecular polymeric aggregates exhibit a prominent blue emission, representing a rare instance of fluorescent polymers devoid of conventional chromophores. Furthermore, through the modification of alkyl chain ending groups attached to pillar[5]arenes, slight shifts in the emission peak could be observed. This research expands the scope of functional supramolecular polymeric systems utilizing pillararenes, providing valuable insights for the design of innovative luminescent materials and optical devices.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xueru Zhao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shuai Lu
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
22
|
Liang B, Xia D, Cheng Y, Zheng Q, Wang P. A supramolecular polymer network constructed using a pillararene-based multi-functional monomer and its application as a rewritable fluorescent paper. Dalton Trans 2023; 52:17099-17103. [PMID: 37971419 DOI: 10.1039/d3dt03284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A simple and mild stimulus-responsive fluorescent supramolecular polymer network was constructed from a pillararene-based multi-functional monomer through multiple noncovalent interactions and used as a rewritable paper.
Collapse
Affiliation(s)
- Bicong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Qiang Zheng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Luo J, Zhao X, Ju H, Chen X, Zhao S, Demchuk Z, Li B, Bocharova V, Carrillo JMY, Keum JK, Xu S, Sokolov AP, Chen J, Cao PF. Highly Recyclable and Tough Elastic Vitrimers from a Defined Polydimethylsiloxane Network. Angew Chem Int Ed Engl 2023; 62:e202310989. [PMID: 37783669 DOI: 10.1002/anie.202310989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.
Collapse
Affiliation(s)
- Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Xiao Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Hao Ju
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN-37996, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | | | - Jong K Keum
- Center for Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Jiayao Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
Liu Y, Zhang F, Chi H, Zhang H, Huang X, Wang X, Wang J, Bai Y, Wang P, Xu K, Liu C, Zhou C. Design of Intelligent Protective Composite Material with Stress Rate Sensitivity, Strong Interface Adhesion, and Recyclability. Macromol Rapid Commun 2023; 44:e2300216. [PMID: 37335892 DOI: 10.1002/marc.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Poly(dimethyl siloxane) (PDMS) elastomers play a significant role in smart materials, actuators, and flexible electronics. However, current PDMS lacks adhesion abilities and intelligent responsive properties, which limit its further application. In this study, the polydimethylsiloxane-ureidopyrimidinone impact hardening polymer (PDMS-UI) composites are manufactured by a dual cross-linking compositing tactic. PDMS, a chemically stable cross-linked network, acts as a framework owing to its excellent mechanical strength, whereas UI, a reversible dynamic physically cross-linked network with quadruple hydrogen bonding, endows the PDMS-UI with excellent self-healing ability (efficiency > 90%) and energy absorption (75.23%). Impressively, owing to multivalent hydrogen bonds, the PDMS-UI exhibits superior adhesion performance: the adhesion strength on various substrates exceed 150 kPa and that on the Ferrum substrate reaches 570 kPa. These outstanding properties make the PDMS-UI a potential candidate for application in both well-developed fields, such as, wearable protective materials, artificial skin and soft robotics.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
- Ministry of Education, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Fan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Hui Chi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Hao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
- Ministry of Education, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xiaona Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
- Ministry of Education, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - XinYue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Jiarui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
| | - Chao Liu
- Anta Sports Goods Group Co., Ltd, Xiamen, 361000, P. R. China
| | - Chao Zhou
- Ministry of Education, School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Guo Y, Liu Y, Zhao X, Zhao J, Wang Y, Zhang X, Guo Z, Yan X. Synergistic Covalent-and-Supramolecular Polymers with an Interwoven Topology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25161-25172. [PMID: 35894294 DOI: 10.1021/acsami.2c10404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Network topologies, especially some high-order topologies, are able to furnish cross-linked polymer materials with enhanced properties without altering their chemical composition. However, the fabrication of such topologically intriguing architectures at the macromolecular level and in-depth insights into their structure-property relationship remain a significant challenge. Herein, we relied on synergistic covalent-and-supramolecular polymers (CSPs) as a platform to prepare a range of polymer networks with an interwoven topology. Specifically, through the sequential supramolecular self-assemblies, the covalent polymers (CPs) and metallosupramolecular polymers (MSPs) could be interwoven in our CSPs by [2]pseudorotaxane cross-links. As a result, the obtained CSPs possessed a topological network that could not only promote the synergistic effect between CPs and MSPs to afford mechanically robust yet dynamic materials but also vest polymers with some functions, as manifested by force-induced hierarchical dissociations of supramolecular interactions and superior thermomechanical stability compared to our previously reported CSP systems. Furthermore, our CSPs exhibited tunable mechanical performance toward multiple stimuli including K+ and PPh3, demonstrating abundant stimuli-responsive properties. We hope that these findings could provide novel opportunities toward achieving topological structures at the macromolecular level and also motivate further explorations of polymeric materials via the way of controlling their topological structures.
Collapse
Affiliation(s)
- Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
26
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 226] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
27
|
Construction of photoswitchable urea-based multiple H-bonding motifs. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
28
|
Qiu Y, Wu L, Liu S, Yu W. An impact resistant hydrogel enabled by bicontinuous phase structure and hierarchical energy dissipation. J Mater Chem B 2023; 11:905-913. [PMID: 36598076 DOI: 10.1039/d2tb01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High performance hydrogels have essential applications in many fields such as tissue engineering and soft robot. Herein, we develop an impact resistant hydrogel composed of bicontinuous structures of polymer-hard phase and polymer-soft phase. This unique bicontinuous phase structure is formed by modulating various hydrogen bonding interactions. During loading, the polymer-hard phase is broken accompanied by the dissociation of hydrogen bonds to dissipate energy, while the polymer-soft phase distributes the load to avoid stress concentration, thus enabling the bicontinuous hydrogel to achieve excellent strength and toughness simultaneously. Furthermore, the fracture of hierarchical energy dissipation structures efficiently reduces impact strength and increases buffer time. Owing to the synergy of the bicontinuous phase structure and hierarchical energy dissipation, the resulting bicontinuous hydrogel remains intact even if it undergoes impact at a strain rate of ∼13 000 s-1. Based on these findings, it is expected that the bicontinuous hydrogel has a potential application in the field of articular cartilage repair.
Collapse
Affiliation(s)
- Yan Qiu
- Advanced Rheology Institute, Department of Polymer Science and Engineering Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai, 200240, P. R. China.
| | - Liang Wu
- Advanced Rheology Institute, Department of Polymer Science and Engineering Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai, 200240, P. R. China.
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai, 200240, P. R. China.
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai, 200240, P. R. China.
| |
Collapse
|
29
|
A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Wang C, Lei G, Zhang R, Zhou X, Cui J, Shen Q, Luo G, Zhang L. Shear-Thickening Covalent Adaptive Networks for Bifunctional Impact-Protective and Post-Tunable Tactile Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2267-2276. [PMID: 36573932 DOI: 10.1021/acsami.2c19492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shear-thickening materials have been widely applied in fields related to smart impact protection due to their ability to absorb large amounts of energy during sudden shock. Shear-thickening materials with multifunctional properties are expanding their applications in wearable electronics, where tactile sensors require interconnected networks. However, current bifunctional shear-thickening cross-linked polymer materials depend on supramolecular networks or slightly dynamic covalently cross-linked networks, which usually exhibit lower energy-absorption density than the highly dynamic covalently cross-linked networks. Herein, we employed boric ester-based covalent adaptive networks (CANs) to elucidate the shear-thickening property and the mechanism of energy dissipation during sudden shock. Guided by the enhanced energy-absorption capability of double networks and the requirements of the conductive networks for the wearable tactile sensors, tungsten powders (W) were incorporated into the boric ester polymer matrix to form a second network. The W networks make the materials stiffer, with a 13-fold increase in Young's modulus. Additionally, the energy-absorption capacity increased nearly 7 times. Finally, we applied these excellent energy-absorbing and conductive materials to bifunctional shock-protective and strain rate-dependent tactile sensors. Considering the self-healable and recyclable properties, we believe that these anti-impact and tactile sensing materials will be of great interest in wearable devices, smart impact-protective systems, post-tunable materials, etc.
Collapse
Affiliation(s)
- Chuanbin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Guoliang Lei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Ruizhi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Xiaozhuang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313001, China
| | - Qiang Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Hubei Longzhong Laboratory, Xiangyang441000, Hubei, China
| | - Guoqiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou521000, China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou521000, China
| |
Collapse
|
31
|
Yang X, Bai R, Zhang Z, Liu Y, Yan X. Mechanically tunable supramolecular polymer networks with different triblock backbones. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Yangang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
32
|
Jiang Z, Wu T, Wu S, Yuan J, Zhang Z, Xie TZ, Liu H, Peng Y, Li Y, Dong S, Wang P. Self-healing and elastic polymer gel via terpyridine-metal coordination. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Liu S, Wang S, Sang M, Zhou J, Zhang J, Xuan S, Gong X. Nacre-Mimetic Hierarchical Architecture in Polyborosiloxane Composites for Synergistically Enhanced Impact Resistance and Ultra-Efficient Electromagnetic Interference Shielding. ACS NANO 2022; 16:19067-19086. [PMID: 36302097 DOI: 10.1021/acsnano.2c08104] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pervasive mechanical impact is growing requirement for advanced high-performance protective materials, while the electromagnetic interference (EMI) confers severe risk to human health and equipment operation. Bioinspired structural composites achieving outstanding safeguards against a single threat have been developed, whereas the synergistic implementation of impact/EMI coupling protection remains a challenge. This work proposes the concept of nacre-mimetic hierarchical composite duplicating the "brick-and-mortar" arrangement, which consists of freeze-drying constructed chitosan/MXene lamellar architecture skeleton embedded in a shear stiffening polyborosiloxane matrix. The resulting composite effectively attenuates the impact force of 85.9%-92.8% with extraordinary energy dissipation capacity, in the coordinative manner of strain-rate enhancement, structural densification, lamella dislocation and crack propagation. Attributed to the alternate laminated structure promoting the reflection loss of electromagnetic waves, it demonstrates an ultraefficient EMI shielding effectiveness of 47.2-71.8 dB within extremely low MXene loadings of 1.1-1.3 wt %. Furthermore, it serves favorably in impact monitoring and wireless alarm systems and accomplishes performance optimization through the combination of multiple biomimetic strategies. In conclusion, this function-integrated structural composite is shown to be a competitive candidate for sophisticated environments by resisting impact damage and EMI hazards.
Collapse
Affiliation(s)
- Shuai Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
| | - Sheng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
| | - Jianyu Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
| | - Junshuo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui230027, P.R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, P.R. China
| |
Collapse
|
35
|
High strength, self-healing polyurethane elastomer based on synergistic multiple dynamic interactions in multiphase. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Xie W, Liu Y, Yu M, Wang Q. Ternary structure design based on hydrogen bonding for transparent and flame retardant
PMMA
with good mechanical properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wang Xie
- Research Center of Composite Materials School of Materials Science and Engineering, Shanghai University Shanghai China
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Yuan Liu
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Mingming Yu
- Research Center of Composite Materials School of Materials Science and Engineering, Shanghai University Shanghai China
| | - Qi Wang
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
37
|
Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat Commun 2022; 13:4868. [PMID: 35982044 PMCID: PMC9388535 DOI: 10.1038/s41467-022-32517-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Stretchable ionic conductors are considerable to be the most attractive candidate for next-generation flexible ionotronic devices. Nevertheless, high ionic conductivity, excellent mechanical properties, good self-healing capacity and recyclability are necessary but can be rarely satisfied in one material. Herein, we propose an ionic conductor design, dynamic supramolecular ionic conductive elastomers (DSICE), via phase-locked strategy, wherein locking soft phase polyether backbone conducts lithium-ion (Li+) transport and the combination of dynamic disulfide metathesis and stronger supramolecular quadruple hydrogen bonds in the hard domains contributes to the self-healing capacity and mechanical versatility. The dual-phase design performs its own functions and the conflict among ionic conductivity, self-healing capability, and mechanical compatibility can be thus defeated. The well-designed DSICE exhibits high ionic conductivity (3.77 × 10−3 S m−1 at 30 °C), high transparency (92.3%), superior stretchability (2615.17% elongation), strength (27.83 MPa) and toughness (164.36 MJ m−3), excellent self-healing capability (~99% at room temperature) and favorable recyclability. This work provides an interesting strategy for designing the advanced ionic conductors and offers promise for flexible ionotronic devices or solid-state batteries. Stretchable ionic conductors are attractive candidates for flexible ionotronics but combining high conductivity with excellent mechanical properties is challenging. Herein, the authors combine these properties in a dynamic supramolecular ionic conductive elastomer enabling lithium-ion transport in the soft phase and dynamic disulfide and supramolecular hydrogen bonding in the hard segments.
Collapse
|
38
|
Zhou X, Yang J, Yang J, Yin P. Topological Interaction among Molecular Cluster Assemblies Affords Tunable Viscoelasticity. J Phys Chem Lett 2022; 13:7009-7015. [PMID: 35895296 DOI: 10.1021/acs.jpclett.2c01817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the assemblies of subnanoscale polyhedral oligomeric silsesquioxane, topological interaction makes the dominant contribution to their viscoelasticity with broad tunability. The assembly molecules are designed with dumbbell, triangular, and tetrahedral shapes, and they demonstrate an intrinsic glassy feature with neither long-range ordering nor supramolecular assembly formation in their bulk. Their viscoelasticity can be broadly tuned through the tailoring of molecular topologies, while the trimer and tetramer assemblies afford elastic moduli comparable to those of rubbers (∼0.5 MPa) even 80 K above their glass transition temperatures. Molecular dynamics studies reveal the topological constraints resulting from the topology-disrupted cooperative dynamics among the cluster assemblies, and this finally leads to the typical caging dynamics of the structural units and the elasticity of the bulk materials. Further broadband dielectric spectroscopy studies uncover the unique hierarchical relaxation dynamics, inspiring the strategy for the decoupling of mechanical strengths and toughness for the design of impact resistant materials.
Collapse
Affiliation(s)
- Xin Zhou
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jie Yang
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
39
|
Hou Y, Peng Y, Li P, Wu Q, Zhang J, Li W, Zhou G, Wu J. Bioinspired Design of High Vibration-Damping Supramolecular Elastomers Based on Multiple Energy-Dissipation Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35097-35104. [PMID: 35858204 DOI: 10.1021/acsami.2c07604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suppressing vibrations and noises is essential for our automated society. Here, inspired by the hierarchical dynamic bonds and phase separation of mussel byssal threads, we synthesize high-damping supramolecular elastomers (HDEs) via simple one-pot radical polymerization of butyl acrylate (BA), acrylic acid (AA), and vinylimidazole (VI). Interestingly, AA and VI not only form hydrogen bonds and ionic bonds simultaneously but also segregate into aggregates of different sizes, thereby successfully mimicking the hierarchical structure of mussel byssal threads. When applying external forces, the weak hydrogen bonds are broken at first and then the ionic bonds and aggregates are disrupted progressively from small to large deformations. Such multiple energy-dissipation mechanisms lead to the outstanding damping property of the HDEs. Therefore, the HDEs outperform commercially available rubbers in terms of sound absorption and vibration damping. Furthermore, the multiple energy-dissipation mechanisms impart the HDEs with high toughness (41.1 MJ/m3), tensile strength (21.3 MPa), and self-healing ability.
Collapse
Affiliation(s)
- Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junqi Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weihang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
41
|
Park B, Shin JH, Ok J, Park S, Jung W, Jeong C, Choy S, Jo YJ, Kim TI. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 2022; 376:624-629. [PMID: 35511972 DOI: 10.1126/science.abj9912] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bioelectronics needs to continuously monitor mechanical and electrophysiological signals for patients. However, the signals always include artifacts by patients' unexpected movement (such as walking and respiration under approximately 30 hertz). The current method to remove them is a signal process that uses a bandpass filter, which may cause signal loss. We present an unconventional bandpass filter material-viscoelastic gelatin-chitosan hydrogel damper, inspired by the viscoelastic cuticular pad in a spider-to remove dynamic mechanical noise artifacts selectively. The hydrogel exhibits frequency-dependent phase transition that results in a rubbery state that damps low-frequency noise and a glassy state that transmits the desired high-frequency signals. It serves as an adaptable passfilter that enables the acquisition of high-quality signals from patients while minimizing signal process for advanced bioelectronics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Subin Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- Department of Biomedical Engineering, SKKU, Suwon 16419, Republic of Korea
| | - Seunghwan Choy
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young Jin Jo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Department of Biomedical Engineering, SKKU, Suwon 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), SKKU, Suwon 16419, Republic of Korea
| |
Collapse
|
42
|
Mo J, Wu W, Shan S, Wu X, Li D, Li R, Lin Y, Zhang A. A systematic study on Zn(II)-Iminocarboxyl complexation applied in supramolecular PDMS networks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Liu J, Liu R, Li H, Zhang F, Yao Q, Wei J, Yang Z. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202201426. [PMID: 35179293 DOI: 10.1002/anie.202201426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Biology exploits a transcription-translation approach to deliver structural information from DNA to the protein-building machines with high precision. Here, we show how the structural information of small synthetic molecules could be used to guide the assembly of inorganic nanoparticles into diversified yet long-range ordered superstructures, enabling the information transfer across four or five orders of magnitude in length scale. We designed three perylene diimide (PDI) based isomers differing by their site-specific substitutions of the methyl group, which were able to supramolecularly polymerize into diverse structures. Importantly, coassembly of these PDI isomers with nanoparticles (NPs) could produce diverse long-range ordered nanoparticle superstructures, including one-dimensional NPs chains, double helical NPs assemblies and two-dimensional NPs superlattices. Equally important, we demonstrate that the information originated from small molecules could diversify the functions of the self-assembled nanocomposites.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qingyuan Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
44
|
Liu J, Liu R, Li H, Zhang F, Yao Q, Wei J, Yang Z. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiaming Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Rongjuan Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Hui Li
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Fenghua Zhang
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qingyuan Yao
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Jingjing Wei
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Zhijie Yang
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
45
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
46
|
Bai R, Zhang H, Yang X, Zhao J, Wang Y, Zhang Z, Yan X. Supramolecular polymer networks crosslinked by crown ether-based host-guest recognition: dynamic materials with tailored mechanical properties in bulk. Polym Chem 2022. [DOI: 10.1039/d1py01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer networks (SPNs) based on host-guest recognition have attracted much research attention to develop smart supramolecular materials. However, these researches mainly focus on SPNs in solution or in gel...
Collapse
|
47
|
Liu C, Yin Q, Yuan Q, Hao L, Shi L, Bao Y, Lyu B, Ma J. A wear-resistant, self-healing and recyclable multifunctional waterborne polyurethane coating with mechanical tunability based on hydrogen bonding and an aromatic disulfide structure. Polym Chem 2022. [DOI: 10.1039/d2py00958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering a sustainable society, it is highly desirable to develop coatings that combine excellent wear-resistance, healing and recovery capabilities with tunable mechanical properties.
Collapse
Affiliation(s)
- Chao Liu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Qing Yin
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qiming Yuan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lifen Hao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Shi
- Zhejiang Hexin Science and Technology Co., Ltd, Jia Xing 314003, China
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
48
|
Zhao Z, Liu F, Yang X, Zhang D, Luan S, Xu D, Shi T. Structure and impact properties of a thermoplastic elastomer/silly putty blend. POLYM INT 2021. [DOI: 10.1002/pi.6333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhigang Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- School of Physics and Electrical Engineering Kashi University Kashi China
| | - Fang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- University of Science and Technology of China Hefei China
| | - Xue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology Yili Normal University Yining China
| | - Dan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology Yili Normal University Yining China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology Yili Normal University Yining China
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou China
| |
Collapse
|
49
|
Baba Y, Gao G, Hara M, Seki T, Satoh K, Kamigaito M, Hoshino T, Urayama K, Takeoka Y. Mechanical Properties of Homogeneous Polymer Networks Prepared by Star Polymer Synthesis Methods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yusuke Baba
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Guohao Gao
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Hoshino
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-51982, Japan
| | - Kenji Urayama
- Department of Macromolecular Science & Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
50
|
Yang Y, Li Q, Zhang H, Liu H, Ji X, Tang BZ. Codes in Code: AIE Supramolecular Adhesive Hydrogels Store Huge Amounts of Information. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105418. [PMID: 34541727 DOI: 10.1002/adma.202105418] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 05/07/2023]
Abstract
With the continuous advancement of information technology, the requirements for the information storage capacity of materials are getting higher and higher. However, information code materials usually only store a single piece of information. In order to improve their storage capacity, aggregation-induced emission (AIE) supramolecular adhesive hydrogels with different fluorescent colors are prepared, and a "Codes in Code" method is used to demonstrate the storage capacity for large amounts of information. Four kinds of poly(vinyl alcohol) (PVA) supramolecular hydrogels with different fluorescent colors are prepared; based on the hydrogen bonds on the hydrogel surface, these hydrogels can be assembled into a hydrogel, G5, which shows multiple fluorescent colors under the irradiation of UV light. When many 1D barcode patterns or/and 2D code patterns are incorporated into G5, not only a kind of 3D information but also plenty of 1D or/and 2D information can be stored. Therefore, the information codes prepared by the "Codes in Code" method can store a large amount of information.
Collapse
Affiliation(s)
- Yabi Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanwei Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| |
Collapse
|