1
|
Qin Y, Chen X, Willner I. Nucleic Acid-Modified Nanoparticles for Cancer Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500843. [PMID: 40420627 DOI: 10.1002/smll.202500843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Indexed: 05/28/2025]
Abstract
Nanomaterials including metal or metal oxide nanoparticles, carbonous nanomaterial (e.g., carbon dots) or metal-organic framework nanoparticles provide porous, catalytically active surfaces and functional interfaces for binding of ions or molecular agents. By the conjugation of nucleic acids to the nanoparticles, hybrid nanostructures revealing emerging multimodal catalytic/photocatalytic activities, high loading capacities, and effective targeted cell permeation efficacies are formed. The review article exemplifies the application of nucleic acid-modified nanoparticles conjugates for therapeutic treatment of cancer cells. Stimuli-responsive reconfiguration of nucleic acid strands and the specific recognition and catalytic function of oligonucleotides associated with porous, catalytic, and photocatalytic nanoparticles yield hybrid composites demonstrating cooperative synergistic properties for medical applications. The targeted chemodynamic, photodynamic, photothermal and chemotherapeutic treatment of cancer cells by the oligonucleotide/nanoparticle conjugates is addressed. In addition, the application of oligonucleotide/nanoparticle conjugates for gene therapy treatment of cancer cells is discussed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xinghua Chen
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
2
|
Chiang SY, Peng CH, Lin JW, Kuo JW, Lin YW, Lin CH, Chen CY. Amino-Acid-Engineered Bionanozyme Selectivity for Colorimetric Detection of Human Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20693-20704. [PMID: 40022657 DOI: 10.1021/acsami.4c22270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Nanozymes are emerging nanomaterials owing to their superior stability and enzyme-mimicking catalytic functions. However, unlike natural enzymes with inherent amino-acid-based recognition motifs for target interactions, manipulating nanozyme selectivity toward specific targets remains a major challenge. In this study, we introduce the de novo strategy using the supramolecular assembly of l-tryptophan (l-Trp) as the recognition amino acid with copper (Cu) ions for creating a human serum albumin (HSA)-responsive bionanozyme. This amino-acid-engineered bionanozyme enables selective colorimetric detection of HSA, a critical urinary biomarker for kidney diseases, overcoming the challenge that HSA is neither a typical substrate nor an inhibitor for most nanozymes. Kinetic studies and competitive tests reveal that HSA subdomain IIIA binding to l-Trp sites limits the electron-transfer-induced structural changes of l-Trp-Cu chelate rings, resulting in noncompetitive inhibition. This inhibition effect is significantly stronger than that observed for canonical amino acids, common proteins, and urinary interference species. Colorimetric monitoring of bionanozyme activity enables sensitive HSA detection with a detection limit of 1.3 nM and a quantification range of 2 nM to 10 μM. This approach is exceptionally more sensitive and offers a broader detection range compared to conventional colorimetric and fluorescent methods, suitable for diagnostics across various clinical stages of disease. This innovative rational strategy to designing and manipulating selective nanozyme-target interactions not only addresses the limitations of nanozymes but also expands their precise applications in complex biological systems.
Collapse
Affiliation(s)
- Siang-Yun Chiang
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chun-Hsiang Peng
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jhe-Wei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jia-Wei Kuo
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
3
|
Wang Y, Tian S, Chen S, Li M, Tang D. S-Modified MOF Nanozyme Cascade System with Multi-Enzyme Activity for Dual-Mode Antibiotic Assay. Anal Chem 2025; 97:7526-7535. [PMID: 40130402 DOI: 10.1021/acs.analchem.5c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The judicious utilization of antibiotics has established a robust bulwark for human health. However, their improper usage has engendered deleterious ramifications on the environment, underscoring the imperative for developing efficacious and cost-effective detection and degradation platforms. This study presents a sulfur-modified iron-cobalt bimetallic single-atom nitrogen-doped carbon catalyst (S-FeCo-NC) with a noncopper active center. In contrast to conventional laccase, which utilizes copper as its active center, the S-FeCo-NC catalyst exhibits multiple enzyme activities, including laccase-like, peroxidase-like, and catalase-like functions, with iron and cobalt serving as the active centers. As a proof of concept, the combined laccase-like and catalase-like functions of S-FeCo-NC were used as independent signal outputs, while a multienzyme cascade dual-mode assay system was designed for the rapid detection of tetracycline (TC) in combination with peroxidase-like enzymes. In this system, oxygen directly participated in the catalytic process of laccase-like as an electron acceptor, while catalase-like peroxidase efficiently catalyzed the production of O2 from H2O2. The elevated concentration of O2 offered a unique advantage for the increased catalytic activity of the laccase-like enzyme, which outputs visually resolved colorimetric signals using stable 4-aminopyridine with oxidized TC. Furthermore, the peroxidase-like activity of S-FeCo-NC catalyzed the generation of OH radicals with strong oxidative properties, and these radicals carried out effective oxidative decomposition of TC. The signal output of the response of the catalytic process was performed using differential pulse cyclic voltammetry, which further improved the sensitivity and accuracy of the detection. The experimental findings demonstrate that the detection system exhibits a favorable response signal to TC within the range of 0.005-500 μM, with its detection range reaching 0.5-500 and 0.005-1.00 μM, respectively, and the detection limit is as low as 0.22 μM and 1.68 nM, respectively. This cascade dual-mode detection system, based on multienzyme activity, has been shown to significantly enhance the catalytic activity of laccase, while also demonstrating stability in a lower detection range. This suggests that it may offer a novel approach for the sensitive detection and degradation of environmental pollutants.
Collapse
Affiliation(s)
- Yunsen Wang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shuo Tian
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shuyun Chen
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
4
|
Lei W, Zhang S, Shu J, Li F, Deng Z, Liu J, Guo X, Zhao Y, Shan C. Self-Powered Glucose Biosensor Based on Non-Enzymatic Biofuel Cells by Au Nanocluster/Pd Nanocube Heterostructure and Fe 3C@C-Fe Single-Atom Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410326. [PMID: 39981798 DOI: 10.1002/smll.202410326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Self-powered biosensors (SPBs) based on biofuel cells (BFCs) use electrical output as a sensing signal without the need of external power supplies, providing a feasible approach to constructing miniaturized implantable or portable devices. In this work, a novel nanozyme of gold nanoclusters/palladium nanocubes (AuNCs/PdNCs) heterostructure is successfully fabricated to develop an innovatively self-powered and non-enzymatic glucose sensing system. The AuNCs/PdNCs with glucose oxidase (GOD)-like activity exhibits superior electrocatalytic and non-enzymatic sensing performance toward glucose. The non-enzymatic BFCs-based SPBs system, established on the AuNCs/PdNCs (anodic catalyst) and single atomic Fe sites coupled with carbon-encapsulated Fe3C crystals (Fe3C@C-Fe SACs as a cathodic catalyst) platform, exhibits an exceptional sensitivity to glucose with 0.151 µW cm-2 mm-1 (3.4 times higher than the PdNCs), outstanding selectivity and robust stability. The outstanding performance of the BFCs-based SPBs system can be attributed to the synergistic cooperation between the PdNCs and AuNCs.
Collapse
Affiliation(s)
- Wenli Lei
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Shuang Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jiaxi Shu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Fudong Li
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zixuan Deng
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Juejing Liu
- Department of Chemistry and School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofeng Guo
- Department of Chemistry and School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuanmeng Zhao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Changsheng Shan
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
5
|
Chen X, Wu Y, Qin Y, Carmieli R, Popov I, Gutkin V, Fan C, Willner I. Molecularly Imprinted Polyaniline-Coated Cu-Zeolitic Imidazolate Framework Nanoparticles: Uricase-Mimicking "Polynanozyme" Catalyzing Uric Acid Oxidation. ACS NANO 2025; 19:9981-9993. [PMID: 40043252 PMCID: PMC11924329 DOI: 10.1021/acsnano.4c16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
One of the drawbacks of nanozyme catalytic functions rests in their moderate catalytic activities due to the lack of effective binding sites concentrating the reaction substrate at the nanozyme catalytic interface. Methods to concentrate the substrates at the catalytic interface are essential to improving nanozyme functions. The present study addresses this goal by designing uric acid (UA) molecular-imprinted polyaniline (PAn)-coated Cu-zeolitic imidazolate framework (Cu-ZIF) nanoparticles as superior nanozymes, "polynanozymes", catalyzing the H2O2 oxidation of UA to allantoin (peroxidase activity) or the aerobic, uricase mimicking, oxidation of UA to allantoin (oxidase activity). While bare Cu-ZIF nanoparticles reveal only peroxidase activity and the nonimprinted PAn-coated Cu-ZIF nanoparticles reveal inhibited peroxidase activity, the molecular-imprinted PAn-coated Cu-ZIF nanoparticles reveal a 6.1-fold enhanced peroxidase activity, attributed to the concentration of the UA substrate at the catalytic nanoparticle interface. Moreover, the catalytic aerobic oxidation of UA to allantoin by the imprinted PAn-coated Cu-ZIF nanoparticles is lacking in the bare particles, demonstrating the evolved catalytic functions in the molecularly imprinted polynanozymes. Mechanistic characterization of the system reveals that within the UA molecular imprinting process of the PAn coating, Cu+ reactive units are generated within the Cu-ZIF nanoparticles, and these provide reactive sites for generating O2-• as an intermediate agent guiding the oxidase activities of the nanoparticles. The study highlights the practical utility of molecular-imprinted polynanozymes in catalytic pathways lacking in the bare nanozymes, thus broadening the scope of nanozyme systems.
Collapse
Affiliation(s)
- Xinghua Chen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yi Wu
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Inna Popov
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vitaly Gutkin
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Yu M, Gao Y, Liu Y, Wang Z, Zhang Y, Li Y, Fan L, Li X. Substrate Specificity of Adenine-Cu-PO 4 Nanozyme: Ascorbic Acid Oxidation and Selective Cytotoxicity. Chemistry 2025; 31:e202403568. [PMID: 39777753 DOI: 10.1002/chem.202403568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Though nanozymes are becoming promising alternatives to natural enzymes due to their superior properties, constructing nanozyme with high specificity is still a great challenge. Herein, with Cu2+ as an active site and adenine as a ligand, Adenine-Cu-PO4 is synthesized in phosphate-buffered saline. As an oxidase mimic, Adenine-Cu-PO4 could selectively catalyze oxidation of ascorbic acid (AA) to dehydroascorbic acid, but not universal substrates (3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,4-dichlorophenol (2,4-DP)), small biomolecules (dopamine, glutathione, glucose, galactose), other vitamins (vitamin A acid, vitamin B1, vitamin K1) and even dithiothreitol (a common interference of AA). Such the specific AA catalytic oxidation is revealed that Adenine-Cu-PO4 selectively binds with AA through hydrogen bonds, accompanied with catalyzing AA oxidation, and concurrently O2 transferring to H2O2 via O2⋅-, further to H2O via ⋅OH. Based on the produced reactive oxygen species, with AA as a pro-oxidant, Adenine-Cu-PO4 nanozyme efficiently triggers severe intratumor oxidative stress to induce tumor cell death. This work opens a new avenue to design intrinsic nanozymes with high specificity, and also presents a promising application in the field of AA oxidation induced cancer therapy.
Collapse
Affiliation(s)
- Mincong Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuanbo Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yichen Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhuo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key, Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Sun Y, Wang C, Li H, Wang K, Bai Q, Zhang G, Feng S, Wang L, Zhu Z, Sui N. sp Carbon Disrupting Axial Symmetry of Local Electric Field for Biomimetic Construction of Three-Dimensional Geometric and Electronic Structure in Nanozyme for Sensing and Microplastic Degradation. Angew Chem Int Ed Engl 2025; 64:e202418707. [PMID: 39714432 DOI: 10.1002/anie.202418707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The catalytic efficiency of natural enzymes depends on the precise electronic interactions between active centers and cofactors within a three-dimensional (3D) structure. Single-atom nanozymes (SAzymes) attempt to mimic this structure by modifying metal active sites with molecular ligands. However, SAzymes struggle to match the catalytic efficiency of natural enzymes due to constraints in active site proximity, quantity, and the inability to simulate electron transfer processes driven by internal electronic structures of natural enzymes. This study introduces a universal spatial engineering strategy in which molecular ligands are replaced with graphdiyne (GDY) to induce d-π orbital hybridization with copper nanoparticles (Cu NPs), leading to an asymmetric electron-rich distribution along the longitudinal axis that mimics the local electric field of natural laccase. Moreover, multiple sp bonds within GDY scaffold effectively anchor Cu NPs, facilitating the construction of 3D geometric structure similar to that of natural laccase. An enzymatic activity of 82.53 U mg-1 is achieved, 4.72 times higher than that of natural laccase. By reconstructing both 3D structures and local electric fields of natural enzymes through d-π orbital hybridization, this approach enhances electron interactions between cofactors, active centers, and substrates, and offers a versatile framework for biomimetic design of nanozymes.
Collapse
Affiliation(s)
- Yujian Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Chenguang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Haoxin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Kai Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Guoli Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Shuishui Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
8
|
Zhou J, Xiong D, Zhang H, Xiao J, Huang R, Qiao Z, Yang Z, Zhang Z. Targeted Enrichment of Nucleic Acid Bionic Arms Enhances the Hydrolysis Activity of Nanozymes for Degradation and Real-Time Monitoring of Organophosphorus Pesticides in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1844-1853. [PMID: 39813103 DOI: 10.1021/acs.est.4c13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g., poor degradation efficiency, rate, and selectivity) limit their further application. Herein, a nucleic acid bionic arm-modified biomimetic nanozyme (MOF-808-Apt) was designed through a Zr-MOF and a specific aptamer against OPs, which was employed for the efficient and selective degradation of OPs. At the system, the functionalized biomimetic nanozyme can continuously capture trace OPs onto its catalytic sites for degradation with the fabricated nucleic acid bionic arms, significantly improving their catalytic activities compared to bare MOF-808 using paraoxon as a model of OPs, providing better performances including (i) an excellent degradation efficiency, boosting from 4 to over 60% within 6 min; (ii) a satisfactory catalytic rate (the pseudo-first-order rate constants of paraoxon hydrolysis improved from 0.09 to 0.14 min-1); and (iii) good selective degradation because of aptamers used. Besides, this dynamic degradation process could be visually recorded in real time with high sensitivity (limit of detection, 0.18 μM) because of the obvious color change of the reaction solution and signal amplification ascribed to increasing local concentrations of targets by the nucleic acid bionic arms. Summarily, this work provides a new strategy for the effective and selective degradation of typical OPs and concurrent monitoring of their dynamic degradation process.
Collapse
Affiliation(s)
- Jialong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dinghui Xiong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hu Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Faculty of Engineering and Applied Sciences, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Ze Qiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Faculty of Engineering and Applied Sciences, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Zhugen Yang
- Faculty of Engineering and Applied Sciences, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Liu M, Zhu C, Dong Z, Wang Z, Yang H, Li J, Li K, Shen B, Li X, Leng P, Ding S, Guo J, Zhang J. Aptamer proximal enzyme cascade reactions for ultrafast detection of glucose in human blood serum. Mikrochim Acta 2025; 192:71. [PMID: 39804472 DOI: 10.1007/s00604-024-06935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into H2O2 efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2-), utilizing the generated H2O2, resulting in a distinct color change. In comparison to the free enzymes and the HRP-GOx system, APECR exhibited higher colorimetric signal. This approach achieved glucose detection within three minutes, which was significantly faster than previous methods. This method showed good sensitivity and selectivity with a limit of detection of 0.013 mM. Moreover, the practical utility of this strategy was verified by achieving rapid detection of glucose in clinical serum samples. Hence, the developed strategy has the advantages of simple operation and rapid analysis time for the detection of glucose in human serum.
Collapse
Affiliation(s)
- Min Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuanlin Zhu
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Zihe Dong
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Zhangmin Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Li
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Ke Li
- Department of Clinical Medical Laboratory, Third People's Hospital of Chengdu, Southwest Jiaotong University Clinical Medical College/Soutwest Jiaotong University Affiliated Hospital, Chengdu, 610031, Sichuan, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China
| | - Juan Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China.
| |
Collapse
|
10
|
Dong J, Liu G, Petrov YV, Feng Y, Jia D, Baulin VE, Yu Tsivadze A, Zhou Y, Li B. Discovery of FeP/Carbon Dots Nanozymes for Enhanced Peroxidase-Like Catalytic and Antibacterial Activity. Adv Healthc Mater 2024; 13:e2402568. [PMID: 39126360 DOI: 10.1002/adhm.202402568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Iron phosphide/carbon (FeP/C) serving as electrocatalysts exhibit excellent activity in oxygen reduction reaction (ORR) process. H2O2 catalyzed by peroxidase (POD) is similar to the formation of new electron transfer channels and the optimization of adsorption of oxygen-containing intermediates or desorption of products in ORR process. However, it is still a challenge to discover FeP/C with enhanced POD-like catalytic activity in the electrocatalytic database for biocatalysis. The discovery of FeP/carbon dots (FeP/CDs) nanozymes driven by electrocatalytic activity for enhanced POD-like ability is demonstrated. FeP/CDs derived from CDs-Fe3+ chelates show enhanced POD-like catalytic and antibacterial activity. FeP/CDs exhibit enhanced POD-like activities with a specific activity of 31.1 U mg-1 that is double higher than that of FeP. The antibacterial ability of FeP/CDs nanozymes with enhanced POD-like activity is 98.1%. The antibacterial rate of FeP/CDs nanozymes (250 µg mL-1) increased by 5%, 15%, and 36% compared with FeP, Fe2O3/CDs, and Cu3P/CDs nanozymes, respectively. FeP/CDs nanozymes will attract more efforts to discover or screen transition metal phosphide/C nanozymes with enhanced POD-like catalytic activity for biocatalysis in the electrocatalytic database.
Collapse
Affiliation(s)
- Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
11
|
Xie S, Zeng Y, Li J, Lu X, Xiong H. Fe-codoped carbon dots serving as a peroxidase mimic to generate in situ hydrogen peroxide for the visual detection of glucose. Anal Bioanal Chem 2024; 416:6079-6089. [PMID: 38363305 DOI: 10.1007/s00216-024-05196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Nanozyme technology has gained significant regard and been successfully implemented in various applications including chemical sensing, bio-medicine, and environmental monitoring. Fe-CDs were synthesized and characterized well in this study. As compared to HRP (3.7 mM), the Fe-CDs exhibited a higher affinity towards H2O2 (0.2 mM) using the steady-state kinetic assay and stronger catalytic capability by changing the color of TMB to the blue color of the oxidized state, oxTMB. Additionally, an efficient peroxidase mimic, Fe-CDs/GOx, based on the hybrid cascade system to produce in situ H2O2 for the visual detection of glucose (color change: colorless to blue, and then to green), has been developed in detail, with limits of detection (LODs) for H2O2 and glucose of 0.33 μM and 1.17 μM, respectively. The changes further demonstrate a linear relationship between absorbance and H2O2 concentration, ranging from 10 to 60 μM, and for glucose (1 to 60 μM). To assess the accuracy and detection capability of the Fe-CDs/GOx system, we evaluated a real human serum sample obtained from adult males in a local hospital. In conclusion, Fe-CDs serving as a peroxidase mimic have the potential for various applications in the fields of biomedicine and nanozymes.
Collapse
Affiliation(s)
- Sijia Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jinfu Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Hai Xiong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
12
|
Li L, Ding Y, Lei M, Xue Y, He X, Xue J, Bu H, Su Y, Ouyang X, Wan Y. DNA Framework-Templated Synthesis of Copper Cluster Nanozyme with Enhanced Activity and Specificity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54389-54400. [PMID: 39322981 DOI: 10.1021/acsami.4c09208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nanozymes have been developed to overcome the inherent limitations of natural enzymes, such as their low stability and high cost. However, their efficacy has been hindered by their relatively low specificity and activity. Here, we demonstrate the self-assembly of individual copper nanoclusters (CuNCs) via a simple yet fast (10 min) DNA nanosheet (DNS)-templated method, enhancing the peroxidase-like activity and specificity of CuNCs. Furthermore, we demonstrate the successful assembly of CuNCs on different DNA nanostructures by atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The resulting micron-scale ultrathin DNA nanosheet-templated CuNCs (DNS@CuNCs) exhibit exceptional catalytic activity, with a specific activity reaching 1.79 × 103 U mg-1. Investigation into the catalytic process reveals that the enhanced activity and specificity arise from disparities in active intermediate content before and after CuNCs assembly. Significantly, the DNS@CuNCs-based biosensor demonstrates remarkable anti-interference capabilities, enabling the detection of H2O2 in undiluted human serum for the first time with a detection limit of 0.99 μM.
Collapse
Affiliation(s)
- Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Yawen Ding
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Mengyan Lei
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Yumiao Xue
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Xiaoqing He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jiangshan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Huaiyu Bu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
13
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
14
|
Kasprzyk W, Romańczyk PP, Kurek SS, Świergosz T. A switchable green emitting dye and its phenomenal properties: implications for the photoluminescence features of carbon dots. NANOSCALE 2024; 16:17079-17089. [PMID: 39189364 DOI: 10.1039/d4nr02517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
New molecular fluorophores are constantly being discovered in post-synthetic mixtures of carbon dots (CDs), prompting researchers to elucidate their role in the optical properties of these nanomaterials. It has been reported that the green-emitting fluorophore that forms during the synthesis of popular citric acid/urea CDs is HPPT (4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione). However, due to the low concentration of HPPT-like molecules within the structure of CDs, their actual binding and contribution to the optical properties of CDs has not so far been convincingly confirmed. In this joint experimental and quantum chemical study, we show that HPPT is a strong acid and only its anionic form, HPPT-, present in solutions of pH 0-10, is emissive. Next, its fluorescence can be switched off rapidly in strongly alkaline environments as a result of HPPT- hydrolysis, leading to the opening of its pyrrole ring and formation of CDPC (3-carbamoyl-2,6-dihydroxypyridine-4-carboxylic acid), existing as the CDPC2- dianion under these conditions. Eventually, we found that the ring opening hydrolysis is reversible and the green emission may be restored in acidic environments. The kinetics and mechanism of this hydrolysis were also revealed. The optical features of citric acid (CA)-urea CDs under various conditions were compared with a simpler CD system prepared by treating the CDs obtained from CA solely with HPPT- (HPPT@CDs). Our results indicate the feasibility of the post-synthetic modification of HPPT- present in the structures of CA-urea CDs and HPPT@CDs. Without HPPT- they emit blue fluorescence only. Thus, this makes the nanosystem switch the PL emission colour reversibly from green to blue owing to the opening and closing of the pyrrole ring in HPPT-like molecules. More importantly, the latter process may be considered a first step toward genuine fine tuning of the PL emission colour from CDs. These findings are of general importance to the further development of citric acid-based CDs with tailored properties.
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Piotr P Romańczyk
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Stefan S Kurek
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Tomasz Świergosz
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| |
Collapse
|
15
|
Tang S, Xie X, Li L, Zhou L, Xing Y, Chen Y, Cai K, Li F, Zhang J. High fidelity detection of miRNAs from complex physiological samples through electrochemical nanosensors empowered by proximity catalysis and magnetic separation. Biosens Bioelectron 2024; 260:116435. [PMID: 38820724 DOI: 10.1016/j.bios.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.
Collapse
Affiliation(s)
- Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Luoli Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
| |
Collapse
|
16
|
Sun Q, Bao B, Dong W, Lyu Y, Wang M, Xi Z, Han J, Guo R. Expression of chiral molecular and supramolecular structure on enantioselective catalytic activity. J Colloid Interface Sci 2024; 669:944-951. [PMID: 38759593 DOI: 10.1016/j.jcis.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Understanding the structure-function relationships encoded on chiral catalysts is important for investigating the fundamental principles of catalytic enantioselectivity. Herein, the synthesis and self-assembly of naphthalene substituted bis-l/d-histidine amphiphiles (bis-l/d-NapHis) in DMF/water solution mixture is reported. The resulting supramolecular assemblies featuring well-defined P/M nanoribbons (NRs). With combination of the (P/M)-NR and metal ion catalytic centers (Mn+ = Co2+, Cu2+, Fe3+), the (P)-NR-Mn+ as chiral supramolecular catalysts show catalytic preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the (M)-NR-Mn+ show enantioselective bias to R-DOPA oxidation. In contrast, their monomeric counterparts bis-l/d-NapHis-Mn+ display an inverse and dramatically lower catalytic selectivity in the R/S-DOPA oxidation. Among them, the Co2+-coordinated supramolecular nanostructures show the highest catalytic efficiency and enantioselectivity (select factor up to 2.70), while the Fe3+-coordinated monomeric ones show nearly racemic products. Analysis of the kinetic results suggests that the synergistic effect between metal ions and the chiral supramolecular NRs can significantly regulate the enantioselective catalytic activity, while the metal ion-mediated monomeric bis-l/d-NapHis were less active. The studies on association constants and activation energies reveal the difference in catalytic efficiency and enantioselectivity resulting from the different energy barriers and binding affinities existed between the chiral molecular/supramolecular structures and R/S-DOPA enantiomers. This work clarifies the correlation between chiral molecular/supramolecular structures and enantioselective catalytic activity, shedding new light on the rational design of chiral catalysts with outstanding enantioselectivity.
Collapse
Affiliation(s)
- Qingqing Sun
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.
| | - Baocheng Bao
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Wenqian Dong
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Yanchao Lyu
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.
| | - Mengyuan Wang
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Zheng Xi
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Jie Han
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.
| | - Rong Guo
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| |
Collapse
|
17
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
18
|
Dai JJ, Chen GY, Xu L, Zhu H, Yang FQ. Applications of Nanozymes in Chiral-Molecule Recognition through Electrochemical and Ultraviolet-Visible Analysis. Molecules 2024; 29:3376. [PMID: 39064954 PMCID: PMC11280305 DOI: 10.3390/molecules29143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chiral molecules have similar physicochemical properties, which are different in terms of physiological activities and toxicities, rendering their differentiation and recognition highly significant. Nanozymes, which are nanomaterials with inherent enzyme-like activities, have garnered significant interest owing to their high cost-effectiveness, enhanced stability, and straightforward synthesis. However, constructing nanozymes with high activity and enantioselectivity remains a significant challenge. This review briefly introduces the synthesis methods of chiral nanozymes and systematically summarizes the latest research progress in enantioselective recognition of chiral molecules based on electrochemical methods and ultraviolet-visible absorption spectroscopy. Moreover, the challenges and development trends in developing enantioselective nanozymes are discussed. It is expected that this review will provide new ideas for the design of multifunctional chiral nanozymes and broaden the application field of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (J.-J.D.); (G.-Y.C.); (L.X.); (H.Z.)
| |
Collapse
|
19
|
Li H, Cai Q, Li Z, Jie G, Zhou H. A spatial-potential resolved bipolar electrode electrochemiluminescence biosensor based on polarity conversion for dual-mode detection of miRNA-122 and CEA. Biosens Bioelectron 2024; 255:116258. [PMID: 38555769 DOI: 10.1016/j.bios.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In this work, a spatial-potential resolved bipolar electrode electrochemiluminescence (BPE-ECL) biosensor based on polarity conversion strategy and CuHCF electrocatalyst was constructed for dual-mode detection of miRNA-122 and carcinoembryonic antigen (CEA). ECL technology was firstly used to systematically study the polarity conversion of BPE. It was found that changing the polarity of the driving voltage would cause the polarity change of BPE, and led to the change of the luminescent position of Ru(bpy)32+. As a "proof-of-concept application", we developed a shielded dual-channel BPE-ECL biosensor for dual-mode detection of miRNA-122 and CEA. In order to further improve the detection sensitivity, a non-precious metal electrocatalyst CuHCF with outstanding electrocatalytic reduction activity of H2O2 was firstly introduced to the BPE-ECL biosensor for signal amplification, which could generate high faradaic current under the excitation of negative potential. Based on the charge neutrality principle of BPE, the enhancement of the faradaic current resulted in the ECL signal amplification of Ru(bpy)32+. The targets in the sensing grooves caused the introduction or fall off of CuHCF, which led to the ECL signal change of Ru(bpy)32+ in the signal grooves, and realized the dual-mode detection of miRNA-122 and CEA. This work provided a deeper understanding of the polarity change of BPE. Furthermore, the introduction of non-precious metal electrocatalyst had broadened the application range of BPE-ECL sensors.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| |
Collapse
|
20
|
Wang J, Ying Y, Zhang Y, Ding H, Li Y, Zhang J, Jiang D. Observation of anodic electrochemiluminescence from silicon quantum dots for the detection of hydrogen peroxide. Analyst 2024; 149:3518-3521. [PMID: 38869425 DOI: 10.1039/d4an00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Silicon quantum dots (QDs) with stable positively charged intermediates are prepared using chemical etching to generate strong anodic electrochemiluminescence (ECL) under a positive potential. Their surfaces could be passivated in the presence of strong oxidants, leading to enhanced ECL and offering the ability to carry out analysis for hydrogen peroxide.
Collapse
Affiliation(s)
- Jing Wang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yunfan Ying
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yuyao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Yu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Jingjing Zhang
- School of Chemistry and Life Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| |
Collapse
|
21
|
Si Q, Wang F, Ding Q, Yang W, Lin H, Xu C, Li S. Chiral Cu xCo yS-Cu zS Nanoflowers with Bioinspired Enantioselective Catalytic Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311275. [PMID: 38196019 DOI: 10.1002/smll.202311275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Nanomaterials with biomimetic catalytic abilities have attracted significant attention. However, the stereoselectivity of natural enzymes determined by their unique configurations is difficult to imitate. In this work, a kind of chiral CuxCoyS-CuzS nanoflowers (L/D-Pen-NFs) is developed, using porous CuxCoyS nanoparticles (NPs) as stamens, CuzS sheets as petals, and chiral penicillamine as surface stabilizers. Compared to the natural laccase enzyme, L/D-Pen-NFs exhibit significant advantages in catalytic efficiency, stability against harsh environments, recyclability, and convenience in construction. Most importantly, they display high enantioselectivity toward chiral neurotransmitters, which is proved by L- and D-Pen-NFs' different catalytic efficiencies toward chiral enantiomers. L-Pen-NFs are more efficient in catalyzing the oxidation of L-epinephrine and L-dopamine compared with D-Pen-NFs. However, their catalytic efficiency in oxidizing L-norepinephrine and L-DOPA is lower than that of D-Pen-NFs. The reason for the difference in catalytic efficiency is the distinct binding affinities between CuxCoyS-CuzS nano-enantiomers and chiral molecules. This work can spur the development of chiral nanostructures with biomimetic functions.
Collapse
Affiliation(s)
- Qingrui Si
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
22
|
Fu Q, Wei C, Wang M. Transition-Metal-Based Nanozymes: Synthesis, Mechanisms of Therapeutic Action, and Applications in Cancer Treatment. ACS NANO 2024; 18:12049-12095. [PMID: 38693611 DOI: 10.1021/acsnano.4c02265] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cancer, as one of the leading causes of death worldwide, drives the advancement of cutting-edge technologies for cancer treatment. Transition-metal-based nanozymes emerge as promising therapeutic nanodrugs that provide a reference for cancer therapy. In this review, we present recent breakthrough nanozymes for cancer treatment. First, we comprehensively outline the preparation strategies involved in creating transition-metal-based nanozymes, including hydrothermal method, solvothermal method, chemical reduction method, biomimetic mineralization method, and sol-gel method. Subsequently, we elucidate the catalytic mechanisms (catalase (CAT)-like activities), peroxidase (POD)-like activities), oxidase (OXD)-like activities) and superoxide dismutase (SOD)-like activities) of transition-metal-based nanozymes along with their activity regulation strategies such as morphology control, size manipulation, modulation, composition adjustment and surface modification under environmental stimulation. Furthermore, we elaborate on the diverse applications of transition-metal-based nanozymes in anticancer therapies encompassing radiotherapy (RT), chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), immunotherapy, and synergistic therapy. Finally, the challenges faced by transition-metal-based nanozymes are discussed alongside future research directions. The purpose of this review is to offer scientific guidance that will enhance the clinical applications of nanozymes based on transition metals.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Chuang Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| |
Collapse
|
23
|
Liu S, Qu H, Mao Y, Yao L, Yan L, Dong B, Zheng L. Nanozyme-integrated alcogel colorimetric sensor for rapid and on-site detection of tert-butyl hydroquinone. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133962. [PMID: 38452679 DOI: 10.1016/j.jhazmat.2024.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Tert-butyl hydroquinone (TBHQ) stand as one of the most widely used antioxidants in food and daily chemical products. Rapid and sensitive monitoring of TBHQ holds considerable importance in safeguarding human health due to its potential risks. In this study, we devised an alcogel-based colorimetric sensor enabling the portable and visual detection of TBHQ. The Ce-UiO-66 nanozyme exhibiting remarkable oxidase-like activity, was synthesized and characterized, facilitating the catalysis of TBHQ oxidation to 2-tert-butyl-1,4-benzoquinone (TBBQ). The ensuing chromogenic reaction between TBBQ and ethylenediamine produced a stable and colored product, serving as a reliable indicator for the rapid and specific detection of TBHQ. Building upon this discovery, a portable and low-cost colorimetric sensor was fashioned by integrating the nanozyme into κ-carrageenan alcogel, thereby enabling on-site TBHQ detection via a smartphone-based sensing platform. The colorimetric sensor exhibited a detection limit of 0.8 μg mL-1, demonstrating robust performance across various matrices such as edible oils, cosmetics, and surface water. Recoveries ranged from 84.9 to 95.5%, with the sensor's accuracy further validated through gas chromatography-mass spectrometry. Our study presents an effective approach to rapid and convenient monitoring of TBHQ, exhibiting good extensibility and practicability.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
24
|
Guo G, Xia Y. General Separation of Carbon Dots by Polyamide Chromatography. Anal Chem 2024; 96:5095-5105. [PMID: 38414104 DOI: 10.1021/acs.analchem.3c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Carbon dot (C-dot) separation/purification is not only a fundamental chemical issue but also an essential precondition for revealing C-dots' true nature. To date, adequate separation of C-dots has remained an open question due to the lack of an appropriate fine separation system. Herein, we discover and reveal that polyamide chromatography can provide versatile and powerful performances for C-dot separation. By a joint study of experiments and all-atom molecular dynamics simulations, we demonstrate that multiple interaction forces, including electrostatic repulsion/attraction, hydrogen bond, and van der Waals effects, exist simultaneously among the stationary phase, mobile phase, and the separated C-dots. Furthermore, the magnitude of these forces is dependent on the surface chemistry of the separated C-dots and the nature of the used mobile phases, providing a theoretical basis and experimental operability for C-dot separation. So, the proposed system possesses the capacity for adequately separating hydrophilic, amphiphilic, and lipophilic C-dots. The polyamide chromatography, due to its versatile and powerful separation performances, not only provides more thorough separation effects but also helps to correct our false perceptions from inadequate purified C-dots.
Collapse
Affiliation(s)
- Ge Guo
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yunsheng Xia
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
25
|
Osman EA, Rynes TP, Wang YL, Mruk K, McKeague M. Non-invasive single cell aptasensing in live cells and animals. Chem Sci 2024; 15:4770-4778. [PMID: 38550682 PMCID: PMC10967030 DOI: 10.1039/d3sc05735f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024] Open
Abstract
We report a genetically encoded aptamer biosensor platform for non-invasive measurement of drug distribution in cells and animals. We combined the high specificity of aptamer molecular recognition with the easy-to-detect properties of fluorescent proteins. We generated six encoded aptasensors, showcasing the platform versatility. The biosensors display high sensitivity and specificity for detecting their specific drug target over related analogs. We show dose dependent response of biosensor performance reaching saturating drug uptake levels in individual live cells. We designed our platform for integration into animal genomes; thus, we incorporated aptamer biosensors into zebrafish, an important model vertebrate. The biosensors enabled non-invasive drug biodistribution imaging in whole animals across different timepoints. To our knowledge, this is the first example of an aptamer biosensor-expressing transgenic vertebrate that is carried through generations. As such, our encoded platform addresses the need for non-invasive whole animal biosensing ideal for pharmacokinetic-pharmacodynamic analyses that can be expanded to other organisms and to detect diverse molecules of interest.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, Faculty of Science, McGill University Montreal QC H3A 0B8 Canada
| | - Thomas P Rynes
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville NC 27834 USA
| | - Y Lucia Wang
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University Montreal QC H3G 1Y6 Canada
| | - Karen Mruk
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville NC 27834 USA
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University Montreal QC H3A 0B8 Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University Montreal QC H3G 1Y6 Canada
| |
Collapse
|
26
|
Ouyang Y, O'Hagan MP, Willner B, Willner I. Aptamer-Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymes", "Aptananozymes", and "Photoaptazymes". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210885. [PMID: 37083210 DOI: 10.1002/adma.202210885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Conjugation of aptamers to homogeneous catalysts ("nucleoapzymes"), heterogeneous nanoparticle catalysts ("aptananozymes"), and photocatalysts ("photoaptazymes") yields superior catalytic/photocatalytic hybrid nanostructures emulating functions of native enzymes and photosystems. The concentration of the substrate in proximity to the catalytic sites ("molarity effect") or spatial concentration of electron-acceptor units in spatial proximity to the photosensitizers, by aptamer-ligand complexes, leads to enhanced catalytic/photocatalytic efficacies of the hybrid nanostructures. This is exemplified by sets of "nucleoapzymes" composed of aptamers conjugated to the hemin/G-quadruplex DNAzymes or metal-ligand complexes as catalysts, catalyzing the oxidation of dopamine to aminochrome, oxygen-insertion into the Ar─H moiety of tyrosinamide and the subsequent oxidation of the catechol product into aminochrome, or the hydrolysis of esters or ATP. Also, aptananozymes consisting of aptamers conjugated to Cu2+ - or Ce4+ -ion-modified C-dots or polyadenine-stabilized Au nanoparticles acting as catalysts oxidizing dopamine or operating bioreactor biocatalytic cascades, are demonstrated. In addition, aptamers conjugated to the Ru(II)-tris-bipyridine photosensitizer or the Zn(II) protoporphyrin IX photosensitizer provide supramolecular photoaptazyme assemblies emulating native photosynthetic reaction centers. Effective photoinduced electron transfer followed by the catalyzed synthesis of NADPH or the evolution of H2 is demonstrated by the photosystems. Structure-function relationships dictate the catalytic and photocatalytic efficacies of the systems.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Bilha Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
27
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
28
|
Liu W, Yao Y, Liu Q, Chen XQ. Au/Pt@ZIF-90 Nanoenzyme Capsule-Based "Explosive" Signal Amplifier for "All-in-Tube" POCT. Anal Chem 2024; 96:1362-1370. [PMID: 38198653 DOI: 10.1021/acs.analchem.3c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The sensitive, convenient, and visual detection of low-concentration disease markers in biological samples has always been a priority in disease diagnosis. However, existing research has been problematic due to complex operation and unsatisfactory sensitivity. Consequently, an "explosive" signal amplification platform based on Au/Pt@ZIF-90 was developed for sensitive visual detection of disease markers. In this study, a controllable and explosively released Au/Pt nanoparticles (NPs) "nanoenzyme capsule" was prepared by encapsulating Au/Pt NPs with excellent peroxidase activity in ZIF-90. This was achieved by adjusting the particle size of ZIF-90 and the encapsulation amount of Au/Pt NPs. Using the prepared capsules as the signal output module and aptamer as the target recognition module, an "All-in-Tube" portable point-of-care (POC) platform was constructed by integrating the Au/Pt@ZIF-90/filter paper and TMB/strips into an Eppendorf (EP) tube. By utilizing specific competitive binding of targets to aptamers, the platform enabled the sensitive and convenient measurement of small molecular disease markers. Taking adenosine as the proof of concept, the portable detection achieved excellent sensitivity. Moreover, the platform can achieve universal detection of various targets by varying the aptamer sequence. This signal amplification strategy provides a design pattern for the detection of low-concentration targets in biological samples and holds significant potential in the fields of disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
29
|
Tao C, Jiang Y, Chu S, Miao Y, Zhang J, Lu Y, Niu L. Natural Enzyme-Inspired Design of the Single-Atom Cu Nanozyme as Dual-Enzyme Mimics for Distinguishing Total Antioxidant Capacity and the Ascorbic Acid Level. Anal Chem 2024. [PMID: 38221749 DOI: 10.1021/acs.analchem.3c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Although various oxidase mimetic or peroxidase (POD) mimetic nanozymes have been extensively studied, their poor substrate selectivity significantly inhibits their practical applications. Nanozymes with specific biomolecules as substrates, especially ascorbic acid oxidase (AAO) mimetic nanozymes with ascorbic acid (AA) as a substrate, have scarcely been studied. Herein, inspired by the multi-Cu atom sites and the redox electron transfer pathway of Cu2+/Cu+ in the natural AAO, atomically dispersed Cu sites immobilized on N-doped porous carbon (Cu-N/C) are artificially designed to simulate the function of natural AAO. Compared with their natural counterparts, the Cu-N/C catalysts exhibited higher catalytic efficiency and superior stability. Combined theoretical calculation and experimental characterizations reveal that the Cu-N/C nanozymes could catalyze the AA oxidation through a 2e- oxygen reduction pathway with H2O2 as the product. Moreover, the Cu-N/C nanozymes also possess high POD activity. As a proof-of-concept application, Cu-N/C can simultaneously realize AA detection in fluorescent mode based on its AAO activity and total antioxidant capacity detection in colorimetric mode utilizing its POD activity.
Collapse
Affiliation(s)
- Chenyu Tao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Shushu Chu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yanrong Miao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jiqing Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Li Niu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
30
|
Yuan G, Wang C, Xi Z, Li S, Sun X, Hang P, Liu X, Han J, Guo R. Supramolecular Polyaniline-Metal Ion as Chiral Nanozymes for Enantioselective Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303739. [PMID: 37507827 DOI: 10.1002/smll.202303739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Understanding origin of asymmetric information encoded on chiral nanozymes is important in mediating enantioselective catalysis. Herein, the supramolecular chiral nanozymes constructed from P/M-polyaniline (P/M-PANI) nanotwists and metal ions (M2+ , M = Cu, Ni, Co, and Zn) are designed through thioglycolic acid (TA) without chiral molecules to show the regulated catalytic efficiency and enantioselectivity. With combination of chiral environment from supramolecular scaffolds and catalytic center from metal ions, the P-PANI-TA-M2+ as nanozymes show preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the M-PANI-TA-M2+ show better selectivity to R-DOPA oxidation. Among them, though the Cu2+ doped supramolecular nanotwists show the highest catalytic efficiency, the Co2+ doped ones with moderate catalytic efficiency can exhibit the best enantioselectivity with select factor as high as 2.07. The molecular dynamic (MD) simulation clarifies the mechanism of enantioselective catalysis caused by the differential kinetics with S/R-DOPA enantiomers adsorbed on chiral PANI surface and free in solution. This work systematically studies the synergistic effect between the chiral supramolecular nanostructures assembled by achiral species and metal ions as peroxidase-like catalytic centers to regulate the enantioselectivity, providing deep understanding of the origin of asymmetric catalysis and serving as strong foundation to guide the design of nanozymes with high enantioselectivity.
Collapse
Affiliation(s)
- Ganyin Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shixin Li
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Pengyuan Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
31
|
Du B, Lu G, Zhang Z, Feng Y, Liu M. Glucose oxidase-like Co-MOF nanozyme-catalyzed self-powered sensor for sensitive detection of trace atrazine in complex environments. Anal Chim Acta 2023; 1280:341817. [PMID: 37858571 DOI: 10.1016/j.aca.2023.341817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 10/21/2023]
Abstract
The self-powered sensor (SPS) is a sensor method that does not require the external power source and has the potential for portable detection of environmental contaminants. In this work, for the first time, a biomolecule-free SPS for detection of ultra-trace triazine endocrine disruptor atrazine (ATZ) with high sensitivity and selectivity is constructed using a glucose oxidase (GOD)-like cobalt metal-organic framework (Co-MOF) nanozyme-modified high-performance anode and a molecularly imprinted cathode. By modulating the size and morphology of the prepared materials, Co-MOF nanozyme with superior GOD-like property (Michaelis constant Km = 15.8 mM) has been obtained and modified at the anode to catalyze glucose oxidation with high efficiency and provide energy continuously and stably for the SPS. The separation mode of anodic energy supply-cathodic recognition ensures the recognition effect without affecting the catalytic characteristic of Co-MOF and the output signal of the SPS. The designed SPS has a wide linear range of 1 pM-100 nM and a detection limit as low as 0.65 pM, as well as superior selectivity and good stability. The present work provides a promising approach for the design of self-powered sensors which can be extended to detection of a wider range of environmental pollutants.
Collapse
Affiliation(s)
- Bingyu Du
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guangqiu Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ye Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
32
|
Ou H, Qian Y, Yuan L, Li H, Zhang L, Chen S, Zhou M, Yang G, Wang D, Wang Y. Spatial Position Regulation of Cu Single Atom Site Realizes Efficient Nanozyme Photocatalytic Bactericidal Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305077. [PMID: 37497609 DOI: 10.1002/adma.202305077] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Indexed: 07/28/2023]
Abstract
Recently, single-atom nanozymes have made significant progress in the fields of sterilization and treatment, but their catalytic performance as substitutes for natural enzymes and drugs is far from satisfactory. Here, a method is reported to improve enzyme activity by adjusting the spatial position of a single-atom site on the nanoplatforms. Two types of Cu single-atom site nanozymes are synthesized in the interlayer (CuL /PHI) and in-plane (CuP /PHI) of poly (heptazine imide) (PHI) through different synthesis pathways. Experimental and theoretical analysis indicates that the interlayer position of PHI can effectively adjust the coordination number, coordination bond length, and electronic structure of Cu single atoms compared to the in-plane position, thereby promoting photoinduced electron migration and O2 activation, enabling effective generate reactive oxygen species (ROS). Under visible light irradiation, the photocatalytic bactericidal activity of CuL /PHI against aureus is ≈100%, achieving the same antibacterial effect as antibiotics, after 10 min of low-dose light exposure and 2 h of incubation.
Collapse
Affiliation(s)
- Honghui Ou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuping Qian
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - He Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ludan Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guidong Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
33
|
Qin Y, Ouyang Y, Wang J, Chen X, Sohn YS, Willner I. Transient Dynamic Operation of G-Quadruplex-Gated Glucose Oxidase-Loaded ZIF-90 Metal-Organic Framework Nanoparticle Bioreactors. NANO LETTERS 2023; 23:8664-8673. [PMID: 37669541 PMCID: PMC10540265 DOI: 10.1021/acs.nanolett.3c02542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Indexed: 09/07/2023]
Abstract
Glucose oxidase-loaded ZIF-90 metal-organic framework nanoparticles conjugated to hemin-G-quadruplexes act as functional bioreactor hybrids operating transient dissipative biocatalytic cascaded transformations consisting of the glucose-driven H2O2-mediated oxidation of Amplex-Red to resorufin or the glucose-driven generation of chemiluminescence by the H2O2-mediated oxidation of luminol. One system involves the fueled activation of a reaction module leading to the temporal formation and depletion of the bioreactor conjugate operating the nickase-guided transient biocatalytic cascades. The second system demonstrates the fueled activation of a reaction module yielding a bioreactor conjugate operating the exonuclease III-dictated transient operation of the two biocatalytic cascades. The temporal operations of the bioreactor circuits are accompanied by kinetic models and computational simulations enabling us to predict the dynamic behavior of the systems subjected to different auxiliary conditions.
Collapse
Affiliation(s)
- Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- The
Institute of Life Science, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
35
|
Yang YS, Yu SS, Chen MY, Zuo D, Luo Y, Qiang T, Ma H, Yang XF, Ma YB, Wang XH, Zhao ZY, Dong LY. Functionalized pyrite nanozyme probe and imprinted polymer modified with hydrophilic layer for rapid colorimetric analysis of glycoprotein in serum. Talanta 2023; 261:124665. [PMID: 37209585 DOI: 10.1016/j.talanta.2023.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The biological molecules used in the sandwich detection method have problems such as complex extraction processes, high costs, and uneven quality. Therefore we integrated glycoprotein molecularly controllable-oriented surface imprinted magnetic nanoparticles (GMC-OSIMN) and boric acid functionalized pyrite nanozyme probe (BPNP) to replace the traditional antibody and horseradish peroxidase for sensitive detection of glycoproteins through sandwich detection. In this work, a novel nanozyme functionalized with boric acid was used to label glycoproteins that were captured by GMC-OSIMN. The substrate in the working solution catalyzed by the nanozyme labeled on the protein underwent visible color changes to the naked eye, and the generated signal can be quantitatively detected by a spectrophotometer, and the best color development conditions of the novel nanozyme under the influence of many factors were determined through multi-dimensional investigation. The optimum conditions of sandwich are optimized with ovalbumin (OVA), and it was extended to the detection of transferrin (TRF) and alkaline phosphatase (ALP) in the application. The detection range for TRF was 2.0 × 10-1-1.0 × 104 ng mL-1 with a detection limit of 1.32 × 10-1 ng mL-1, The detection range for ALP was 2.0 × 10-3-1.0 × 102 U L-1 with the detection limit of 1.76 × 10-3 U L-1. This method was subsequently used to detect TRF and ALP levels in 16 liver cancer patients, and the standard deviation of the test results of each patient was less than 5.7%.
Collapse
Affiliation(s)
- Yuan-Shuo Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Meng-Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Duo Zuo
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Titi Qiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Feng Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Bo Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
36
|
Fang X, Yuan M, Zhao F, Yu A, Lin Q, Li S, Li H, Wang X, Yu Y, Wang X, Lin Q, Lu C, Yang H. In situ continuous Dopa supply by responsive artificial enzyme for the treatment of Parkinson's disease. Nat Commun 2023; 14:2661. [PMID: 37160866 PMCID: PMC10169781 DOI: 10.1038/s41467-023-38323-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Oral dihydroxyphenylalanine (Dopa) administration to replenish neuronal dopamine remains the most effective treatment for Parkinson's disease (PD). However, unlike the continuous and steady dopamine signaling in normal neurons, oral Dopa induces dramatic fluctuations in plasma Dopa levels, leading to Dopa-induced dyskinesia. Herein, we report a functional nucleic acid-based responsive artificial enzyme (FNA-Fe3O4) for in situ continuous Dopa production. FNA-Fe3O4 can cross the blood-brain barrier and target diseased neurons relying on transferrin receptor aptamer. Then, FNA-Fe3O4 responds to overexpressed α-synuclein mRNA in diseased neurons for antisense oligonucleotide treatment and fluorescence imaging, while converting to tyrosine aptamer-based artificial enzyme (Apt-Fe3O4) that mimics tyrosine hydroxylase for in situ continuous Dopa production. In vivo FNA-Fe3O4 treatment results in recovery of Dopa and dopamine levels and decrease of pathological overexpressed α-synuclein in PD mice model, thus ameliorating motor symptoms and memory deficits. The presented functional nucleic acid-based responsive artificial enzyme strategy provides a more neuron friendly approach for the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao Fang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Meng Yuan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Fang Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Aoling Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qianying Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Shiqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huichen Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xinyang Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yanbin Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xin Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qitian Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| |
Collapse
|
37
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
38
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
39
|
Xu Y, Zhou Z, Deng N, Fu K, Zhu C, Hong Q, Shen Y, Liu S, Zhang Y. Molecular insights of nanozymes from design to catalytic mechanism. Sci China Chem 2023; 66:1318-1335. [PMID: 36817323 PMCID: PMC9923663 DOI: 10.1007/s11426-022-1529-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Emerging as cost-effective potential alternatives to natural enzymes, nanozymes have attracted increasing interest in broad fields. To exploit the in-depth potential of nanozymes, rational structural engineering and explicit catalytic mechanisms at the molecular scale are required. Recently, impressive progress has been made in mimicking the characteristics of natural enzymes by constructing metal active sites, binding pockets, scaffolds, and delicate allosteric regulation. Ingenious in-depth studies have been conducted with advances in structural characterization and theoretical calculations, unveiling the "black box" of nanozyme-catalytic mechanisms. This review introduces the state-of-art synthesis strategies by learning from the natural enzyme counterparts and summarizes the general overview of the nanozyme mechanism with a particular emphasis on the adsorbed intermediates and descriptors that predict the nanozyme activity The emerging activity assessment methodology that illustrates the relationship between electrochemical oxygen reduction and enzymatic oxygen reduction is discussed with up-to-date advances Future opportunities and challenges are presented in the end to spark more profound work and attract more researchers from various backgrounds to the flourishing field of nanozymes.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Nankai Deng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Kangchun Fu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| |
Collapse
|
40
|
Chen J, Chen X, Zhang Y, Wang X, Zhou N. Screening of a Sialyllactose-Specific Aptamer and Engineering a Pair of Recognition Elements with Unique Fluorescent Characteristics for Sensitive Detection of Sialyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2628-2636. [PMID: 36700646 DOI: 10.1021/acs.jafc.2c07784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A single-stranded DNA (ssDNA) aptamer specific for 6'-sialyllactose (6'-SL) was screened through magnetic separation-based SELEX and post-SELEX truncation and used to construct unique aptamer bio-dots for sensitive detection of 6'-SL. Eighteen rounds of screening were conducted during the SELEX process. The ssDNA aptamer Apt9 (Kd = 152.3 nM) with a length of 79 nucleotides (nt) was demonstrated as the optimal aptamer candidate after affinity and specificity evaluation. Then, Apt9 was truncated and optimized according to secondary structure and molecular docking. A 35 nt truncated aptamer Apt9-1 (Kd = 91.75 nM) with higher affinity than Apt9 was finally obtained. Furthermore, Apt9-1 was used to synthesize bio-dots as a new recognition element of 6'-SL, and the aminobenzene boric acid functionalized carbon dots were employed as the other recognition element. With the respective fluorescent characteristics, the two quantum dots (QDs) were made a pair to construct a 6'-SL fluorescent biosensor. The linear detection range of the biosensor is 10 μM to 5 mM, and the detection limit is 0.9 μM. With the advantages of time-saving, high efficiency, and simplicity in the actual sample detection, the screened aptamer and dual-QD-based biosensor have broad application prospects in 6'-SL detection.
Collapse
Affiliation(s)
- Jinri Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Sha M, Rao L, Xu W, Qin Y, Su R, Wu Y, Fang Q, Wang H, Cui X, Zheng L, Gu W, Zhu C. Amino-Ligand-Coordinated Dicopper Active Sites Enable Catechol Oxidase-Like Activity for Chiral Recognition and Catalysis. NANO LETTERS 2023; 23:701-709. [PMID: 36598260 DOI: 10.1021/acs.nanolett.2c04697] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing highly active and selective advanced nanozymes for enzyme-mimicking catalysis remains a long-standing challenge for basic research and practical applications. Herein, we grafted a chiral histidine- (His-) coordinated copper core onto Zr-based metal-organic framework (MOF) basic backbones to structurally mirror the bimetal active site of natural catechol oxidase. Such a biomimetic fabricated process affords MOF-His-Cu with catechol oxidase-like activity, which can catalyze dehydrogenation and oxidation of o-diphenols and then transfer electrons to O2 to generate H2O2 by the cyclic conversion of Cu(II) and Cu(I). Specifically, the elaborate incorporation of chiral His arms results in higher catalytic selectivity over the chiral catechol substrates than natural enzyme. Density functional theory calculations reveal that the binding energy and potential steric effect in active site-substrate interactions account for the high stereoselectivity. This work demonstrates efficient and selective enzyme-mimicking catalytic processes and deepens the understanding of the catalytic mechanism of nanozymes.
Collapse
Affiliation(s)
- Meng Sha
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li Rao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rina Su
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qie Fang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
42
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Sohn YS, Karmi O, Qin Y, Chen X, Nechushtai R, Willner I. Aptamer-Functionalized Ce 4+-Ion-Modified C-Dots: Peroxidase Mimicking Aptananozymes for the Oxidation of Dopamine and Cytotoxic Effects toward Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55365-55375. [PMID: 36475576 PMCID: PMC9782376 DOI: 10.1021/acsami.2c16199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Aptamer-functionalized Ce4+-ion-modified C-dots act as catalytic hybrid systems, aptananozymes, catalyzing the H2O2 oxidation of dopamine. A series of aptananozymes functionalized with different configurations of the dopamine binding aptamer, DBA, are introduced. All aptananozymes reveal substantially enhanced catalytic activities as compared to the separated Ce4+-ion-modified C-dots and aptamer constituents, and structure-catalytic functions between the structure and binding modes of the aptamers linked to the C-dots are demonstrated. The enhanced catalytic functions of the aptananozymes are attributed to the aptamer-induced concentration of the reaction substrates in spatial proximity to the Ce4+-ion-modified C-dots catalytic sites. The oxidation processes driven by the Ce4+-ion-modified C-dots involve the formation of reactive oxygen species (•OH radicals). Accordingly, Ce4+-ion-modified C-dots with the AS1411 aptamer or MUC1 aptamer, recognizing specific biomarkers associated with cancer cells, are employed as targeted catalytic agents for chemodynamic treatment of cancer cells. Treatment of MDA-MB-231 breast cancer cells and MCF-10A epithelial breast cells, as control, with the AS1411 aptamer- or MUC1 aptamer-modified Ce4+-ion-modified C-dots reveals selective cytotoxicity toward the cancer cells. In vivo experiments reveal that the aptamer-functionalized nanoparticles inhibit MDA-MB-231 tumor growth.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
43
|
Fan H, Sun Q, Dukenbayev K, Benassi E, Manarbek L, Nurkesh AA, Khamijan M, Mu C, Li G, Razbekova M, Chen Z, Amin A, Xie Y. Carbon nanoparticles induce DNA repair and PARP inhibitor resistance associated with nanozyme activity in cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Quantum nanodots especially carbon nanoparticles (CNPs) have been widely studied in biomedicine in imaging, and drug delivery, but anti-cancer mechanisms remain elusive.
Methods
Here, we investigated a type of cell death induced by food (beet, soybean) derived CNPs in cancer cells and tested whether CNPs induced DNA damage and resistant to anti-cancer agent PARP inhibitor (PARPi) could be overcome by quantum calculations, TEM, AFM, FT-IR, soft agar assay, and cytotoxicity assay.
Results
At high doses, CNPs derived from beet lead to a pop-like apoptosis (Carbopoptosis) in cancer cells. Quantum mechanical calculations confirmed CNPs binding with phosphate groups as well as DNA bases. At low doses, CNPs develop PARPi drug resistance through interactions between CNPs and PARPi. A synergistic drug effect was achieved with the combination of phosphatase inhibitor (PPi), PARPi, and CNPs. This is corroborated by the fact that sulfur modulated CNPs which exhibit super high phosphatase nanozyme activity abrogated the CNPs induced colony formation in anchorage-independent cancer cell growth.
Conclusion
Thus, our data suggest the CNPs intrinsic nanozyme activity of phosphatase may crosstalk with drug resistance, which can be reversed upon modulations.
Collapse
|
44
|
Ouyang Y, O'Hagan MP, Willner I. Functional catalytic nanoparticles (nanozymes) for sensing. Biosens Bioelectron 2022; 218:114768. [DOI: 10.1016/j.bios.2022.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
45
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Li J, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS NANO 2022; 16:18232-18243. [PMID: 36286233 PMCID: PMC9706657 DOI: 10.1021/acsnano.2c05710] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyadenine-stabilized Au nanoparticles (pA-AuNPs) reveal dual nanozyme catalytic activities toward the H2O2-mediated oxidation of dopamine to aminochrome and toward the aerobic oxidation of glucose to gluconic acid and H2O2. The conjugation of a dopamine-binding aptamer (DBA) to the pA-AuNPs yields aptananozyme structures catalyzing simultaneously the H2O2-mediated oxidation of dopamine to aminochrome through the aerobic oxidation of glucose. A set of aptananozymes consisting of DBA conjugated through the 5'- or 3'-end directly or spacer bridges to pA-AuNPs were synthesized. The set of aptananozymes revealed enhanced catalytic activities toward the H2O2-catalyzed oxidation of dopamine to dopachrome, as compared to the separated pA-AuNPs and DBA constituents, and structure-function relationships within the series of aptananozymes were demonstrated. The enhanced catalytic function of the aptananozymes was attributed to the concentration of the dopamine at the catalytic interfaces by means of aptamer-dopamine complexes. The dual catalytic activities of aptananozymes were further applied to design bioreactors catalyzing the effective aerobic oxidation of dopamine in the presence of glucose. Mechanistic studies demonstrated that the aptananozymes generate reactive oxygen species. Accordingly, the AS1411 aptamer, recognizing the nucleolin receptor associated with cancer cells, was conjugated to the pA-AuNPs, yielding a nanozyme for the chemodynamic treatment of cancer cells. The AS1411 aptamer targets the aptananozyme to the cancer cells and facilitates the selective permeation of the nanozyme into the cells. Selective cytotoxicity toward MDA-MB-231 breast cancer cells (ca. 70% cell death) as compared to MCF-10A epithelial cells (ca. 2% cell death) is demonstrated.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jiang Li
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Zhangjiang Laboratory, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- The Lautenberg
Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
46
|
Fadeev M, O’Hagan MP, Biniuri Y, Willner I. Aptamer-Protein Structures Guide In Silico and Experimental Discovery of Aptamer-Short Peptide Recognition Complexes or Aptamer-Amino Acid Cluster Complexes. J Phys Chem B 2022; 126:8931-8939. [PMID: 36315022 PMCID: PMC9661473 DOI: 10.1021/acs.jpcb.2c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method to computationally and experimentally identify aptamers against short peptides or amino acid clusters is introduced. The method involves the selection of a well-defined protein aptamer complex and the extraction of the peptide sequence participating in the binding of the protein to the aptamer. The subsequent fragmentation of the peptide sequence into short peptides and the in silico docking-guided identification of affinity complexes between the miniaturized peptides and the antiprotein aptamer, followed by experimental validation of the binding features of the short peptides with the antiprotein aptamers, leads to the identification of new short peptide-aptamer complexes. This is exemplified with the identification of the pentapeptide RYERN as the scaffold that binds thrombin to the DNA thrombin aptamer (DNA TA). In silico docking studies followed by microscale thermophoresis (MST) experiments demonstrate that the miniaturized tripeptides RYE, YER, and ERN reveal selective binding affinities toward the DNA TA. In addition, docking and MST experiments show that the ribonucleotide-translated RNA TA shows related binding affinities of YER to the DNA TA. Most importantly, we demonstrate that the separated amino acids Y/E/R assemble as a three amino acid cluster on the DNA TA and RNA TA aptamers in spatial configurations similar to the tripeptide YER on the respective aptamers. The clustering phenomenon is selective for the YER tripeptide system. The method to identify binding affinities of miniaturized peptides to known antiprotein aptamers and the specific clustering of single amino acids on the aptamers is further demonstrated by in silico and experimental identification of the binding of the tripeptide RET and the selective clustering of the separated amino acids R/E/T onto a derivative of the AS1411 aptamer against the nucleolin receptor protein.
Collapse
|
47
|
Zhe Y, Wang J, Zhao Z, Ren G, Du J, Li K, Lin Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens Bioelectron 2022; 220:114893. [DOI: 10.1016/j.bios.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
48
|
Solra M, Das S, Srivastava A, Sen B, Rana S. Temporally Controlled Multienzyme Catalysis Using a Dissipative Supramolecular Nanozyme. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45096-45109. [PMID: 36171536 DOI: 10.1021/acsami.2c08888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of superior functional enzyme mimics (nanozymes) is essential for practical applications, including point-of-care diagnostics, biotechnological applications, biofuels, and environmental remediation. Nanozymes with the ability to control their catalytic activity in response to external fuels offer functionally valuable platforms mimicking nonequilibrium systems in nature. Herein, we fabricated a supramolecular coordination bonding-based dynamic vesicle that exhibits multienzymatic activity. The supramolecular nanozyme shows effective laccase-like catalytic activity with a KM value better than the native enzyme and higher stability in harsh conditions. Besides, the nanostructure demonstrates an efficient peroxidase-like activity with NADH peroxidase-like properties. Generation of luminescence from luminol and oxidation of dopamine are efficiently catalyzed by the nanozyme with high sensitivity, which is useful for point-of-care detections. Notably, the active nanozyme exhibits dynamic laccase-mimetic activity in response to pH variation, which has never been explored before. While a neutral/high pH leads to the self-assembly, a low pH disintegrates the assembled nanostructures and consequently turns off the nanozyme activity. Altogether, the self-assembled Cu2+-based vesicular nanostructure presents a pH-fueled dissipative system demonstrating effective temporally controlled multienzymatic activity.
Collapse
Affiliation(s)
- Manju Solra
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Abhay Srivastava
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Bhaskar Sen
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka 560012, India
| |
Collapse
|
49
|
Zhang M, Zhang W, Fan X, Ma Y, Huang H, Wang X, Liu Y, Lin H, Li Y, Tian H, Shao M, Kang Z. Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity. NANO LETTERS 2022; 22:7203-7211. [PMID: 36000894 DOI: 10.1021/acs.nanolett.2c02674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (C-Dots), with unique properties from tunable photoluminescence to biocompatibility, show wide applications in biotechnology, optoelectronic device and catalysis. Chiral C-Dots are expected to have strongly chirality-dependent biological and catalytic properties. For chiral C-Dots, a clear structure and quantitative structure-property relationship need to be clarified. Here, chiral C-Dots were fabricated by electrooxidation polymerization from serine enantiomers. The oxidized serine has a reversed chiral configuration to serine, which leads to the chiral C-Dots possessing inverse handedness compared with their raw materials. Electron circular dichroism spectrum, together with other diverse characterization techniques and theoretical calculations, confirmed that these chiral C-Dots (2-7 nm) have a well-defined primary structure of polycyclic dipeptide and possess a spatial structure with a c-axis of hexagonal symmetry and two cyclic dipeptides as the spatial structural unit. These chiral C-Dots also show enantioselective catalytic activity on DOPA enantiomers oxidation.
Collapse
Affiliation(s)
- Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Wanru Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiting Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
50
|
Dong K, Xu C, Ren J, Qu. X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208757. [DOI: 10.1002/anie.202208757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Chen Xu
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu.
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|