1
|
Ma F, Gao Z, Jia Q, Yang Y, Wang B, Zhang J, Deng Z, Mo R, Ding Z, Xing G, Liu Y, Wang Z, Wang K, Lam JWY, Ding D, Zhao Z, Tang BZ. Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging. ACS NANO 2025. [PMID: 39749539 DOI: 10.1021/acsnano.4c15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation. Meanwhile, the configuration and hybridization form of the donor units are transformed along with the repulsive interactions, bringing about improved oscillator strength. A 3.8-fold higher luminescence efficiency is realized via the synergistic effect. Furthermore, the repulsive interactions endow the NIR-II fluorophores with a highly twisted conformation, superior AIE activity, and cascaded improvement of fluorescence emission from isolated molecules to aggregates. By utilizing a brain-targeting peptide to functionalize the NIR-II nanoparticles, accurate detection and high-contrast imaging of orthotopic glioblastoma are realized. This work not only explores a fundamental principle to handle the intractable energy gap law but also provides potential applications of NIR-II luminogens in high-contrast bioimaging and glioblastoma detection.
Collapse
Affiliation(s)
- Fulong Ma
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Jia
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Rufan Mo
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zeyang Ding
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong Liu
- AIE Institute, Guangzhou 510530, China
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Yao C, Wei R, Luo X, Zhou J, Zhang X, Lu X, Dong Y, Chu R, Sun Y, Wang Y, Xia W, Qu D, Liu C, Ren J, Ge G, Chen J, Qian X, Yang Y. A stable and biocompatible shortwave infrared nanoribbon for dual-channel in vivo imaging. Nat Commun 2025; 16:4. [PMID: 39747028 PMCID: PMC11696549 DOI: 10.1038/s41467-024-55445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging. We propose a crystal-aided aggregate synthesis (CAASH) approach to introduce a layer of rationality for the development of J-aggregate and the successful development of a water-soluble SWIR JV-aggregate with a bisbenzannulated silicon rhodamine scaffold (ESi5). The resulting SWIR-aggregates exhibit excellent stabilities toward organic solvents, pH, sonication, photobleaching, thiols, and endogenous oxidative species. Notably, the aggregates have a high structure-dependent melting temperature of ca. 330-335 K. In fact, the heating/annealing process can be exploited to reduce aggregation disorder. The aggregates are biocompatible and have broad potential in in vivo fluorescence and photoacoustic imaging and more.
Collapse
Affiliation(s)
- Cheng Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiaodong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xicun Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yan Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruofan Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuxin Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yu Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Dahui Qu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Zhang LN, Ran XY, Zhang H, Zhao Y, Zhou Q, Chen SY, Yang C, Yu XQ, Li K. Molecular Engineering of Xanthene Dyes with 3D Multimodal-Imaging Ability to Guide Photothermal Therapy. Adv Healthc Mater 2025; 14:e2402295. [PMID: 39473279 DOI: 10.1002/adhm.202402295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/28/2024] [Indexed: 01/03/2025]
Abstract
Phototheranostics integrates light-based diagnostic techniques with therapeutic interventions, offering a non-invasive, precise, and swift approach for both disease detection and treatment. The efficacy of this approach hinges on the multimodal imaging potential and photothermal conversion efficiency (PCE) of phototheranostic agents (PTAs). Despite the promise, crafting multifunctional phototheranostic organic small molecules brims with challenges. In this research, four innovative xanthene-derived PTAs are synthesized by fine-tuning the donor-π-acceptor (D-π-A) system to strike a balance between radiative and nonradiative decay. The inherent robust photostability and intense fluorescence of the traditional xanthene core are preserved, meanwhile the addition of highly electron-withdrawing groups boosts the non-radiative decay rate to enhance PCE and photoacoustic imaging capabilities. Remarkably, one of the PTAs, DMBA, demonstrates an exceptional absolute fluorescence quantum yield of 2.46% in PBS, and when encapsulated into nanoparticles, it achieves a high PCE of 79.5%. Consequently, DMBA nanoparticles (DMBA-NPs) are effectively employed in fluorescence, 3D photoacoustic, and photothermal imaging-guiding tumor photothermal therapy. This represents the first instance of a multimodal phototheranostic xanthene agent achieving synergistic fluorescence and photoacoustic imaging for diagnostic purposes. Furthermore, this work paves the way for leveraging xanthene fluorophores as versatile tools in the development of multifunctional reagents.
Collapse
Affiliation(s)
- Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qian Zhou
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, Sichuan, China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiao-Qi Yu
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
4
|
Ramírez Lázaro L, Sigurvinsson LC, Curtin N, Ho J, Luis ET, McAdams DA, Gudmundsson TA, Hawes CS, Jacquemin D, O'Shea DF, Scanlan EM, Gunnlaugsson T, Henwood AF. Emissive triphenylamine functionalised 1,8-naphthalimide and naphthalene diimide fluorophores: aggregation, computation and biological studies. J Mater Chem B 2024. [PMID: 39635833 DOI: 10.1039/d4tb01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Four new aromatic imides bearing triphenylamino (TPA) moieties are reported each of which differ by the number and/or positional arrangements of the TPA units. Compounds 1-3 are 1,8-naphthalimides (naps) that contain N,N'-diphenyl-[1,1'-biphenyl]-4-amino (TPA-Ph) groups appended to the N-termini of the respective imides. Each differs by their functionalisation of the 4-position of the nap: nitro (1), amino (2), or an additional TPA group (3). By contrast, compound 4 is a naphthalene diimide (NDI) functionalised with TPA-Ph moieties on each N-terminus. These simple modifications produce molecules with vastly different optoelectronic and aggregation properties. This article studies these characteristics with particular focus directed toward the contrast in aggregation-caused quenching (ACQ) properties of 2 compared with the aggregation-induced emission (AIE) properties of 3. The distinct aggregation and photophysical properties of 2 and 3 are delicately exploited using self-assembly with an amphiphilic poloxamer to generate nanoparticles capable of delivering 2 and 3 into cells for biological imaging.
Collapse
Affiliation(s)
- Laura Ramírez Lázaro
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, Ireland
| | - L Constance Sigurvinsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Dublin, Ireland
| | - Niamh Curtin
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, Dublin 2, Ireland
| | - Joanna Ho
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Ena T Luis
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Deirdre A McAdams
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Tómas A Gudmundsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Dublin, Ireland
| | - Chris S Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM - UMR 6230, 44000 Nantes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Donal F O'Shea
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Dublin, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Dublin, Ireland
| | - Adam F Henwood
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, Ireland
| |
Collapse
|
5
|
Yu J, Rong J, Yuan S, He X, Chu X, Chen L, Liu Q, Hu S, Wang Z. Extending the emission peak tail of indole cyanine for deep-near-infrared bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124798. [PMID: 39008931 DOI: 10.1016/j.saa.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
We propose a novel strategy for tailoring the structure of fluorescent molecules to achieve emission at the tail end of the NIR-II window. The favorable spectroscopic properties and low cytotoxicity of YNs make them powerful tools for bioimaging. Notably, YN-4 exhibits a brightness 2.5 times greater than YN-3, 6 times that of IR-783, and 5 times that of ICG. This enhanced brightness enabled high-resolution imaging of mouse thoracic and abdominal cavities, tumor vasculature, and real-time monitoring of gastrointestinal motility using YN-4. Furthermore, covalent grafting of glucose onto the YN-Glu scaffold significantly improved tumor-targeting capability and facilitated tracking of glucose metabolism. This work aims to extend the application of fluorescent molecule imaging beyond the NIR-IIa window.
Collapse
Affiliation(s)
- Jiaying Yu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jie Rong
- State Key Laboratory of Organic Electronics and Information, Displays & Institute of Advanced Materials (IAM), Jiangsu Key, Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Shen Yuan
- School of Medicine, Nantong University, Nantong 226019, PR China
| | - Xiaofan He
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xianfeng Chu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lucheng Chen
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaojun Hu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
6
|
Zhang X, Liu M, Hu Y, Wang X, Wei R, Yao C, Shi C, Qiu Y, Yang T, Luo X, Chen J, Sun W, Chen H, Qian X, Yang Y. Albumin-Chaperoned Deep-NIR Triarylmethane Dyes for High-Contrast In Vivo Imaging and Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411515. [PMID: 39520340 DOI: 10.1002/adma.202411515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fluorophores absorbing/emitting in the deep near-infrared (deep NIR) spectral region, that is, 800 nm and beyond, hold great promise for in vivo bioimaging, diagnosis, and phototherapy due to deeper tissue penetration. The bottleneck is the lack of bright, stable, and readily synthesized deep NIR fluorophores. Here, it is reported that the albumin-chaperon strategy is a viable one-for-all strategy to address these difficulties. A focused library of deep-NIR absorbing dyes (EA5) is easily synthesized via a two-step cascade. They are neither very stable nor bright in phosphate buffer due to a propeller-type flexible scaffold. Through screening, EA5_c3 is found to exhibit a high affinity toward bovine serum albumin (BSA). Binding-associated structural rigidification resulted in a gigantic 26-fold fluorescence enhancement. The albumin chaperone also greatly improved the stability of EA5_c3 by shielding the bisbenzannulated triarylmethane core from nucleophilic or oxidative species. The resulting EA5_c3@BSA exhibits high biocompatibility. It offered high-resolution vasculature, lymph systems, tumors, and other tissue imaging with its bright deep NIR emission. At the same time, it exhibits prominent potential in photoacoustic imaging and photothermal treatment of subcutaneous and orthotopic breast tumors. These findings provide insights into robust and high-performance fluorophores with deep NIR regions for theranostic against aggressive cancers.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yingqi Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Yao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cunjian Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yangting Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Katz S, Phan HT, Rieder F, Seifert F, Pietzsch M, Laufer J, Schmitt FJ, Hildebrandt P. High Fluorescence of Phytochromes Does Not Require Chromophore Protonation. Molecules 2024; 29:4948. [PMID: 39459316 PMCID: PMC11510734 DOI: 10.3390/molecules29204948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Fluorescing proteins emitting in the near-infrared region are of high importance in various fields of biomedicine and applied life sciences. Promising candidates are phytochromes that can be engineered to a small size and genetically attached to a target system for in vivo monitoring. Here, we have investigated two of these minimal single-domain phytochromes, miRFP670nano3 and miRFP718nano, aiming at a better understanding of the structural parameters that control the fluorescence properties of the covalently bound biliverdin (BV) chromophore. On the basis of resonance Raman and time-resolved fluorescence spectroscopy, it is shown that in both proteins, BV is deprotonated at one of the inner pyrrole rings (B or C). This protonation pattern, which is unusual for tetrapyrroles in proteins, implies an equilibrium between a B- and C-protonated tautomer. The dynamics of the equilibrium are slow compared to the fluorescence lifetime in miRFP670nano3 but much faster in miRFP718nano, both in the ground and excited states. The different rates of proton exchange are most likely due to the different structural dynamics of the more rigid and more flexible chromophore in miRFP670nano3 and miRFP718nano, respectively. We suggest that these structural properties account for the quite different fluorescent quantum yields of both proteins.
Collapse
Affiliation(s)
- Sagie Katz
- Institute of Chemistry, Technical University Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany;
| | - Hoang Trong Phan
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
- Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Fabian Rieder
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
| | - Franziska Seifert
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany; (F.S.); (M.P.)
| | - Markus Pietzsch
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany; (F.S.); (M.P.)
| | - Jan Laufer
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
| | - Franz-Josef Schmitt
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
| | - Peter Hildebrandt
- Institute of Chemistry, Technical University Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany;
| |
Collapse
|
8
|
Zhang XX, Yang F, Zhao X, Wu Q, He L, Li Z, Zhou Z, Ren TB, Zhang XB, Yuan L. Dihydropyridopyrazine Functionalized Xanthene: Generating Stable NIR Dyes with Small-Molecular Weight by Enhanced Charge Separation. Angew Chem Int Ed Engl 2024; 63:e202410666. [PMID: 39007416 DOI: 10.1002/anie.202410666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Feiyu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xinyu Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
9
|
Kommidi SSR, Atkinson KM, Smith BD. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging. J Mater Chem B 2024; 12:8310-8320. [PMID: 39101969 DOI: 10.1039/d4tb01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Near-fluorescent (NIR) dyes that absorb and emit light in the wavelength range of 650-1700 nm are well-suited for bioimaging due to the improved image contrast and increased penetration of the long-wavelength light through biological tissue. However, the imaging performance of NIR fluorescent dyes is limited by several inherent photophysical and physicochemical properties including, low fluorescence quantum yield, high chemical and photochemical reactivity, propensity to self-aggregate in water, non-specific association with off-target biological sites, and non-optimal pharmacokinetic profiles in living subjects. In principle, all these drawbacks can be alleviated by steric protection which is a structural process that surrounds the fluorophore with bulky groups that block undesired intermolecular interactions. The literature methods to sterically protect a long-wavelength dye can be separated into two general strategies, non-covalent dye encapsulation and covalent steric appendage. Illustrative examples of each method show how steric protection improves bioimaging performance by providing: (a) increased fluorescence brightness, (b) higher fluorophore ground state stability, (c) decreased photobleaching, and (d) superior pharmacokinetic profile. Some sterically protected dyes are commercially available and further success with future systems will require experts in chemistry, microscopy, cell biology, medical imaging, and clinical medicine to work closely as interdisciplinary teams.
Collapse
Affiliation(s)
| | - Kirk M Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
10
|
Chowdhury P, Lu ZY, Su SP, Liu MH, Lin CY, Wang MW, Luo YC, Lee YJ, Chiang HK, Chan YH. Ultrabright Dibenzofluoran-Based Polymer Dots with NIR-IIa Emission Maxima and Unusual Large Stokes Shifts for 3D Rotational Stereo Imaging. Adv Healthc Mater 2024; 13:e2400606. [PMID: 38683681 DOI: 10.1002/adhm.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.
Collapse
Affiliation(s)
- Partha Chowdhury
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Zhao-Yu Lu
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Shih-Po Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Meng-Huan Liu
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Chun-Yi Lin
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Man-Wen Wang
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yi-Chi Luo
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Huihua Kenny Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
11
|
Chen M, Zhang Z, Lin R, Liu J, Xie M, He X, Zheng C, Kang M, Li X, Feng HT, Lam JWY, Wang D, Tang BZ. A planar electronic acceptor motif contributing to NIR-II AIEgen with combined imaging and therapeutic applications. Chem Sci 2024; 15:6777-6788. [PMID: 38725487 PMCID: PMC11077540 DOI: 10.1039/d3sc06886b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Designing molecules with donor-acceptor-donor (D-A-D) architecture plays an important role in obtaining second near-infrared region (NIR-II, 1000-1700 nm) fluorescent dyes for biomedical applications; however, this always comes with a challenge due to very limited electronic acceptors. On the other hand, to endow NIR-II fluorescent dyes with combined therapeutic applications, trivial molecular design is indispensable. Herein, we propose a pyrazine-based planar electronic acceptor with a strong electron affinity, which can be used to develop NIR-II fluorescent dyes. By structurally attaching two classical triphenylamine electronic donors to it, a basic D-A-D module, namely Py-NIR, can be generated. The planarity of the electronic acceptor is crucial to induce a distinct NIR-II emission peaking at ∼1100 nm. The unique construction of the electronic acceptor can cause a twisted and flexible molecular conformation by the repulsive effect between the donors, which is essential to the aggregation-induced emission (AIE) property. The tuned intramolecular motions and twisted D-A pair brought by the electronic acceptor can lead to a remarkable photothermal conversion with an efficiency of 56.1% and induce a type I photosensitization with a favorable hydroxyl radical (OH˙) formation. Note that no additional measures are adopted in the molecular design, providing an ideal platform to realize NIR-II fluorescent probes with synergetic functions based on such an acceptor. Besides, the nanoparticles of Py-NIR can exhibit excellent NIR-II fluorescence imaging towards orthotopic 4T1 breast tumors in living mice with a high sensitivity and contrast. Combined with photothermal imaging and photoacoustic imaging caused by the thermal effect, the imaging-guided photoablation of tumors can be well performed. Our work has created a new opportunity to develop NIR-II fluorescent probes for accelerating biomedical applications.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Zhijun Zhang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Runfeng Lin
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Meizhu Xie
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Xiang He
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Canze Zheng
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Miaomiao Kang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Xue Li
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Photochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Dong Wang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-SZ) Guangdong China
| |
Collapse
|
12
|
Zhao H, Wang Y, Chen Q, Liu Y, Gao Y, Müllen K, Li S, Narita A. A Nanographene-Porphyrin Hybrid for Near-Infrared-Ii Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309131. [PMID: 38430537 PMCID: PMC11095198 DOI: 10.1002/advs.202309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Indexed: 03/04/2024]
Abstract
Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
| | - Yu Wang
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
- Present address:
Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P.R. China
| | - Ying Liu
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
13
|
Sarkar S, Chakraborty G, Pal H. Surfactant-based supramolecular dye assembly: A highly selective and economically viable platform for quantification of heparin antidote. Colloids Surf B Biointerfaces 2024; 237:113839. [PMID: 38492411 DOI: 10.1016/j.colsurfb.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Herein, we have employed a supramolecular assembly of a cationic dye, LDS-698 and a common surfactant sodium dodecyl sulfate (SDS) as a turn-on fluorescent sensor for protamine (Pr) detection. Addition of cationic Pr to the solution of dye-surfactant complex brings negatively charged SDS molecules together through strong electrostatic interaction, assisting aggregation of SDS way before its critical micellar concentration (CMC). These aggregates encapsulate the dye molecules within their hydrophobic region, arresting non-radiative decay channels of the excited dye. Thus, the LDS-698•SDS assembly displays substantial enhancement in fluorescence intensity that follows a nice linear trend with Pr concentration, providing limit of detection (LOD) for Pr as low as 3.84(±0.11) nM in buffer, 124.4(±6.7) nM in 1% human serum and 28.3(±0.5) nM in 100% human urine. Furthermore, high selectivity, low background signal, large stokes shift, and emission in the biologically favorable deep-red region make the studied assembly a promising platform for Pr sensing. As of our knowledge it is the first ever Pr sensory platform, using a very common surfactant (SDS), which is economically affordable and very easily available in the market. This innovative approach can replace the expensive, exotic and specialized chemicals considered for the purpose and thus showcase its potential in practical applications.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Indian Institute of Science Education and Research, Campus Road, Mohanpur, Nadia, Kolkata, West Bengal 741246, India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Haridas Pal
- Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
14
|
Wu W, Yan K, He Z, Zhang L, Dong Y, Wu B, Liu H, Wang S, Zhang F. 2X-Rhodamine: A Bright and Fluorogenic Scaffold for Developing Near-Infrared Chemigenetic Indicators. J Am Chem Soc 2024. [PMID: 38605649 DOI: 10.1021/jacs.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemigenetic fusion of synthetic dyes with genetically encoded protein tags presents a promising avenue for in vivo imaging. However, its full potential has been hindered by the lack of bright and fluorogenic dyes operating in the "tissue transparency" near-infrared window (NIR, 700-1700 nm). Here, we report 2X-rhodamine (2XR), a novel bright scaffold that allows for the development of live-cell-compatible, NIR-excited variants with strong fluorogenicity beyond 1000 nm. 2XR utilizes a rigidified π-skeleton featuring dual atomic bridges and functions via a spiro-based fluorogenic mechanism. This design affords longer wavelengths, higher quantum yield (ΦF = 0.11), and enhanced fluorogenicity in water when compared to the phosphine oxide-cored, or sulfone-cored rhodamine, the NIR fluorogenic benchmarks currently used. We showcase their bright performance in video-rate dynamic imaging and targeted deep-tissue molecular imaging in vivo. Notably, we develop a 2XR variant, 2XR715-HTL, an NIR fluorogenic ligand for the HaloTag protein, enabling NIR genetically encoded calcium sensing and the first demonstration of in vivo chemigenetic labeling beyond 1000 nm. Our work expands the library of NIR fluorogenic tools, paving the way for in vivo imaging and sensing with the chemigenetic approach.
Collapse
Affiliation(s)
- Wenxiao Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Yuyao Dong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Hongyue Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Ma F, Jia Q, Deng Z, Wang B, Zhang S, Jiang J, Xing G, Wang Z, Qiu Z, Zhao Z, Tang BZ. Boosting Luminescence Efficiency of Near-Infrared-II Aggregation-Induced Emission Luminogens via a Mash-Up Strategy of π-Extension and Deuteration for Dual-Model Image-Guided Surgery. ACS NANO 2024; 18:9431-9442. [PMID: 38507745 DOI: 10.1021/acsnano.3c11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.
Collapse
Affiliation(s)
- Fulong Ma
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Qian Jia
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | - Siwei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jinhui Jiang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province 518057, People's Republic of China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
16
|
Yan K, Hu Z, Yu P, He Z, Chen Y, Chen J, Sun H, Wang S, Zhang F. Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics. Nat Commun 2024; 15:2593. [PMID: 38519530 PMCID: PMC10960032 DOI: 10.1038/s41467-024-46853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Long-wavelength, near-infrared small-molecule dyes are attractive in biophotonics. Conventionally, they rely on expanded aromatic structures for redshift, which comes at the cost of application performance such as photostability, cell permeability, and functionality. Here, we report a ground-state antiaromatic strategy and showcase the concise synthesis of 14 cationic aminofluorene dyes with mini structures (molecular weights: 299-504 Da) and distinct spectra covering 700-1600 nm. Aminofluorene dyes are cell-permeable and achieve rapid renal clearance via a simple 44 Da carboxylation. This accelerates optical diagnostics of renal injury by 50 min compared to existing macromolecular approaches. We develop a compact molecular sensing platform for in vivo intracellular sensing, and demonstrate the versatile applications of these dyes in multispectral fluorescence and optoacoustic imaging. We find that aromaticity reversal upon electronic excitation, as indicated by magnetic descriptors, not only reduces the energy bandgap but also induces strong vibronic coupling, resulting in ultrafast excited-state dynamics and unparalleled photostability. These results support the argument for ground-state antiaromaticity as a useful design rule of dye development, enabling performances essential for modern biophotonics.
Collapse
Affiliation(s)
- Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, PR China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China
| | - Jiajian Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, PR China.
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China.
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, PR China.
| |
Collapse
|
17
|
Ou J, Tao H, Bao Q, Dai Y, Wang Q, Chen Q, Feng Y, Meng X. Investigating Oxidative Stress Associated with Myocardial Fibrosis by High-Fidelity Visualization and Accurate Evaluation of Mitochondrial GSH Levels. Anal Chem 2024; 96:4232-4241. [PMID: 38421725 DOI: 10.1021/acs.analchem.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Myocardial fibrosis is frequently accompanied by elevated levels of oxidative stress. Mitochondrial glutathione (mGSH), an essential biomolecule for maintaining redox homeostasis in mitochondria, could serve as an effective indicator for investigating the oxidative stress associated with myocardial fibrosis. In this study, a ratiometric fluorescent probe named Mito-NS6, capable of being anchored in mitochondria and reversibly responding to GSH with an appropriate dissociation equilibrium constant, was rationally designed and utilized to visualize and evaluate the changes of mGSH levels caused by oxidative stress in myocardial fibrosis. Benefiting from the good performance of Mito-NS6, we successfully achieved the quantification of mGSH in cardiac fibroblasts using a confocal laser-scanning microscope, revealing that salvianolic acid B (SalB) can act as an effective drug to alleviate myocardial fibrosis through depressing oxidative stress. Moreover, we employed ratio fluorescence imaging to track the fluctuation in GSH levels within a mice model of myocardial fibrosis induced by isoproterenol and found that myocardial fibrosis caused a higher oxidative stress level in myocardial tissue as well as heart organs. These results provide a novel point of view for the diagnosis and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Jiale Ou
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine & Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Quan Bao
- Department of Anesthesiology and Perioperative Medicine & Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Yuejia Dai
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qi Chen
- Department of Anesthesiology and Perioperative Medicine & Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
18
|
Guo X, Sheng W, Pan H, Guo L, Zuo H, Wu Z, Ling S, Jiang X, Chen Z, Jiao L, Hao E. Tuning Shortwave-Infrared J-aggregates of Aromatic Ring-Fused Aza-BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power. Angew Chem Int Ed Engl 2024; 63:e202319875. [PMID: 38225205 DOI: 10.1002/anie.202319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105 M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.
Collapse
Affiliation(s)
- Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanle Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Luying Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Huiquan Zuo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
19
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
20
|
Kang Z, Bu W, Guo X, Wang L, Wu Q, Cao J, Wang H, Yu C, Gao J, Hao E, Jiao L. Synthesis and Properties of Bright Red-to-NIR BODIPY Dyes for Targeting Fluorescence Imaging and Near-Infrared Photothermal Conversion. Inorg Chem 2024; 63:3402-3410. [PMID: 38330908 DOI: 10.1021/acs.inorgchem.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An efficient synthesis of 3-pyrrolylBODIPY dyes has been developed from a rational mixture of various aromatic aldehydes and pyrrole in a straightforward condensation reaction, followed by in situ successively oxidative nucleophilic substitution using a one-pot strategy. These resultant 3-pyrrolylBODIPYs without blocking substituents not only exhibit the finely tunable photophysical properties induced by the flexible meso-aryl substituents but also serve as a valuable synthetic framework for further selective functionalization. As a proof of such potential, one 3-pyrrolylBODIPY dye (581/603 nm) through the installation of the morpholine group is applicable for lysosome-targeting imaging. Furthermore, an ethene-bridged 3,3'-dipyrrolylBODIPY dimer was constructed, which displayed a near-infrared (NIR) emission extended to 1200 nm with a large fluorescence brightness (2840 M-1 cm-1). The corresponding dimer nanoparticles (NPs) afforded a high photothermal conversion efficiency (PCE) value of 72.5%, eventually resulting in favorable photocytotoxicity (IC50 = 9.4 μM) and efficient in vitro eradication of HeLa cells under 808 nm laser irradiation, highlighting their potential application for photothermal therapy in the NIR window.
Collapse
Affiliation(s)
- Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weibin Bu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jingjing Cao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
21
|
Harel M, Arbiv U, Ankri R. Multiplexed near infrared fluorescence lifetime imaging in turbid media. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:026004. [PMID: 38425720 PMCID: PMC10902792 DOI: 10.1117/1.jbo.29.2.026004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Significance Fluorescence lifetime imaging (FLI) plays a pivotal role in enhancing our understanding of biological systems, providing a valuable tool for non-invasive exploration of biomolecular and cellular dynamics, both in vitro and in vivo. Its ability to selectively target and multiplex various entities, alongside heightened sensitivity and specificity, offers rapid and cost-effective insights. Aim Our aim is to investigate the multiplexing capabilities of near-infrared (NIR) FLI within a scattering medium that mimics biological tissues. We strive to develop a comprehensive understanding of FLI's potential for multiplexing diverse targets within a complex, tissue-like environment. Approach We introduce an innovative Monte Carlo (MC) simulation approach that accurately describes the scattering behavior of fluorescent photons within turbid media. Applying phasor analyses, we enable the multiplexing of distinct targets within a single FLI image. Leveraging the state-of-the-art single-photon avalanche diode (SPAD) time-gated camera, SPAD512S, we conduct experimental wide-field FLI in the NIR regime. Results Our study demonstrates the successful multiplexing of dual targets within a single FLI image, reaching a depth of 1 cm within tissue-like phantoms. Through our novel MC simulation approach and phasor analyses, we showcase the effectiveness of our methodology in overcoming the challenges posed by scattering media. Conclusions This research underscores the potential of NIR FLI for multiplexing applications in complex biological environments. By combining advanced simulation techniques with cutting-edge experimental tools, we introduce significant results in the non-invasive exploration of biomolecular dynamics, to advance the field of FLI research.
Collapse
Affiliation(s)
- Meital Harel
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Uri Arbiv
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Rinat Ankri
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| |
Collapse
|
22
|
Chacko N, Motiei M, Suryakant JS, Firer M, Ankri R. Au nanodyes as enhanced contrast agents in wide field near infrared fluorescence lifetime imaging. DISCOVER NANO 2024; 19:18. [PMID: 38270794 PMCID: PMC10810770 DOI: 10.1186/s11671-024-03958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
The near-infrared (NIR) range of the electromagnetic (EM) spectrum offers a nearly transparent window for imaging tissue. Despite the significant potential of NIR fluorescence-based imaging, its establishment in basic research and clinical applications remains limited due to the scarcity of fluorescent molecules with absorption and emission properties in the NIR region, especially those suitable for biological applications. In this study, we present a novel approach by combining the widely used IRdye 800NHS fluorophore with gold nanospheres (GNSs) and gold nanorods (GNRs) to create Au nanodyes, with improved quantum yield (QY) and distinct lifetimes. These nanodyes exhibit varying photophysical properties due to the differences in the separation distance between the dye and the gold nanoparticles (GNP). Leveraging a rapid and highly sensitive wide-field fluorescence lifetime imaging (FLI) macroscopic set up, along with phasor based analysis, we introduce multiplexing capabilities for the Au nanodyes. Our approach showcases the ability to differentiate between NIR dyes with very similar, short lifetimes within a single image, using the combination of Au nanodyes and wide-field FLI. Furthermore, we demonstrate the uptake of Au nanodyes by mineral-oil induced plasmacytomas (MOPC315.bm) cells, indicating their potential for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Neelima Chacko
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel
| | - Menachem Motiei
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Jadhav Suchita Suryakant
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, 40700, Ariel, Israel
| | - Michael Firer
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, 40700, Ariel, Israel
| | - Rinat Ankri
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
23
|
Zhang H, Xiang FF, Liu YZ, Chen YJ, Zhou DH, Liu YH, Chen SY, Yu XQ, Li K. Molecular Engineering of Sulfone-Xanthone Chromophore for Enhanced Fluorescence Navigation. JACS AU 2023; 3:3462-3472. [PMID: 38155649 PMCID: PMC10751763 DOI: 10.1021/jacsau.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Enriching the palette of high-performance fluorescent dyes is vital to support the frontier of biomedical imaging. Although various rhodamine skeletons remain the premier type of small-molecule fluorophores due to the apparent high brightness and flexible modifiability, they still suffer from the inherent defect of small Stokes shift due to the nonideal fluorescence imaging signal-to-background ratio. Especially, the rising class of fluorescent dyes, sulfone-substituted xanthone, exhibits great potential, but low chemical stability is also pointed out as the problem. Molecular engineering of sulfone-xanthone to obtain a large Stokes shift and high stability is highly desired, but it is still scarce. Herein, we present the combination modification method for optimizing the performance of sulfone-xanthone. These redesigned fluorescent skeletons owned greatly improved stability and Stokes shift compared with the parent sulfone-rhodamine. To the proof of bioimaging capacity, annexin protein-targeted peptide LS301 was introduced to the most promising dyes, J-S-ARh, to form the tumor-targeted fluorescent probe, J-S-LS301. The resulting probe, J-S-LS301, can be an outstanding fluorescence tool for the orthotopic transplantation tumor model of hepatocellular carcinoma imaging and on-site pathological analysis. In summary, the combination method could serve as a basis for rational optimization of sulfone-xanthone. Overall, the chemistry reported here broadens the scope of accessible sulfone-xanthone functionality and, in turn, enables to facilitate the translation of biomedical research toward the clinical domain.
Collapse
Affiliation(s)
- Hong Zhang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Department
of Radiology, West China Hospital, Sichuan
University, No. 37, Guoxue
Street, Chengdu 610041, P. R. China
| | - Fei-Fan Xiang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Zhao Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yu-Jin Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Ding-Heng Zhou
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Shan-Yong Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province,
Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kun Li
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
24
|
Wu ZH, Skabeev A, Zagranyarski Y, Duan R, Jin JO, Kwak M, Basché T, Müllen K, Li C. High-Performance Near-Infrared Chlorinated Rylenecarboximide Fluorophores via Consecutive C-N and C-C Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202315156. [PMID: 37947588 DOI: 10.1002/anie.202315156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
A new class of near-infrared (NIR) fluorophores, PAI, is obtained by consecutive C-N/C-C bond formation between diphenylamines and 9,10-dibromoperylenecarboximide. Owing to the rigid structure, extended π-conjugation and pronounced push-pull substitution, these fluorophores show emission maxima up to 804 nm and large Stokes shifts. The extraordinarily high fluorescence quantum yields from 47 % to 70 % are attributed to chloro substitution in the bay positions of the perylene core. These characteristics, together with high photostability, qualify them as useful NIR emitters for applications as biomarkers and security inks.
Collapse
Affiliation(s)
- Ze-Hua Wu
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-University, 55099, Mainz, Germany
| | - Artem Skabeev
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yulian Zagranyarski
- Fac Chem & Pharm, Sofia Univ. St Kliment Ohridski, 1 James Bourchier Blvd, Sofia, 1164, Bulgaria
| | - Ruomeng Duan
- School of Materials Science and Engineering, Dongguan University of Technology, No. 1 Daxue Rd., Songshan Lake, Dongguan City, 523820 Guangdong Province, P. R. China
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine ASAN Medical Center, Seoul 05505, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University, 55099, Mainz, Germany
| | - Klaus Müllen
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, Johannes Gutenberg-University, 55099, Mainz, Germany
| | - Chen Li
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Materials Science and Engineering, Dongguan University of Technology, No. 1 Daxue Rd., Songshan Lake, Dongguan City, 523820 Guangdong Province, P. R. China
| |
Collapse
|
25
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
26
|
Zhu Y, Wu P, Liu S, Yang J, Wu F, Cao W, Yang Y, Zheng B, Xiong H. Electron-Withdrawing Substituents Allow Boosted NIR-II Fluorescence in J-Type Aggregates for Bioimaging and Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202313166. [PMID: 37817512 DOI: 10.1002/anie.202313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (-NO2 ) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with -NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.
Collapse
Affiliation(s)
- Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
27
|
Arunlimsawat S, Funchien P, Chasing P, Saenubol A, Sudyoadsuk T, Promarak V. A deep-red fluorophore based on naphthothiadiazole as emitter with hybridized local and charge transfer and ambipolar transporting properties for electroluminescent devices. Beilstein J Org Chem 2023; 19:1664-1676. [PMID: 37942020 PMCID: PMC10630680 DOI: 10.3762/bjoc.19.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Herein, we report the synthesis and characterization of an efficient ambipolar charge-carrier-transporting deep-red fluorophore (TPECNz) based on a donor-acceptor-donor (D-A-D)-type molecule and its application as a non-doped emitter in an organic light-emitting diode (OLED). The fluorophore TPECNz contains naphtho[2,3-c][1,2,5]thiadiazole (Nz) as a strong acceptor unit symmetrically functionalized with N-(4-(1,2,2-triphenylvinyl)phenyl)carbazole as a donor and aggregation-induced emission (AIE) luminogen. The experimental (solvatochromic and emission in THF/water mixtures studies) and theoretical investigations prove that TPECNz retains cooperative hybridized local and charge transfer (HLCT) and weak AIE features. Thanks to its D-A-D-type structure with a proper twist angle between the D and A units, a strong electron deficiency of the Nz unit, and electron-donating and hole-transporting natures of carbazole, TPECNz exhibits a strong deep red emission (λem = 648 nm) with a high fluorescence quantum yield of 96%, outstanding thermal property (Tg = 236 °C), and ambipolar charge-carrier-transporting property with a decent balance of mobility of electrons (1.50 × 10-5 cm2 V-1 s-1) and holes (4.42 × 10-6 cm2 V-1 s-1). TPECNz is successfully employed as a non-doped emitter in an OLED which displays deep red electroluminescent emission peaked at 659 nm with CIE coordinates of (0.664, 0.335)), an EQEmax of 3.32% and exciton utilization efficiency (EUE) of 47%.
Collapse
Affiliation(s)
- Suangsiri Arunlimsawat
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Patteera Funchien
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Atthapon Saenubol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Taweesak Sudyoadsuk
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
28
|
Harada M, Kutsuna M, Kitamura T, Usui Y, Ujiki M, Nakamura Y, Obata T, Tanioka M, Uchiyama M, Sawada D, Kamino S. Nucleophile-Triggered π-Topological Transformation: A New Synthetic Approach to Near-Infrared-Emissive Rhodamines. Chemistry 2023; 29:e202301969. [PMID: 37500585 DOI: 10.1002/chem.202301969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
We describe a π-topological transformation-based synthetic method for the preparation of a new type of near-infrared (NIR)-emissive rhodamine dye called Polymethine-embedded Rhodamine Fluorophore (PeR Fluor). In contrast to conventional NIR-emissive dyes that require tedious synthetic steps and/or a high cost, linear fully π-conjugated PeR Fluor can be regioselectively prepared in one step by mixing different nucleophiles with ABPXs, a family of rhodamines with a cross-conjugated structure. PeR Fluor exhibits bright NIR fluorescence emission and high photostability owing to the cooperative π-electron system of rhodamines and polymethine scaffolds. Large bathochromic shifts of the absorption and fluorescence emission maxima can be achieved by modifying the N-substituted group to obtain NIR-absorbing/emitting PeR Fluor. We also demonstrate the stimulus-responsive functionality of PeR Fluor through the addition of chemicals (acid/base), which shows switchable NIR and visible fluorescence response. Our π-topological transformation-based synthetic method is a promising approach to produce new functionalized rhodamine dyes.
Collapse
Affiliation(s)
- Mei Harada
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misa Kutsuna
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Taichi Kitamura
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yusuke Usui
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masayoshi Ujiki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yuka Nakamura
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tohru Obata
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masaru Tanioka
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Shinichiro Kamino
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| |
Collapse
|
29
|
Zhang F, Chen F, Zhong M, Shen R, Zhao Z, Wei H, Zhang B, Fang J. Imaging of Carbonic Anhydrase Level in Epilepsy with an Environment-Sensitive Fluorescent Probe. Anal Chem 2023; 95:14833-14841. [PMID: 37747928 DOI: 10.1021/acs.analchem.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Carbonic anhydrases (CAs) participate in various physiological and pathological activities by catalyzing the interconversion between carbon dioxide and bicarbonate ions. Under normal circumstances, they guarantee that the relevant biological reactions in our body occur within an appropriate time scale. Abnormal expression or activity alteration of CAs is closely related to the pathogenesis of diverse diseases. This work reports an inhibitor-directed fluorescent probe FMRs-CA for the detection of CAs. Excellent selectivity, favorable biocompatibility, and desirable blood-brain barrier (BBB) penetration endow the probe with the ability to image the fluctuation of CAs in cells and mice. We achieved in situ visualization of the increased CAs in hypoxic cells with this probe. Additionally, probe FMRs-CA was mainly enriched within the liver and gradually metabolized by the liver. With the help of FMRs-CA, the increase of CAs in epileptic mouse brains was revealed first from the perspective of imaging, providing the mechanism connection between abnormal CA expressions and epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
30
|
Adair LD, New EJ. Molecular fluorescent sensors for in vivo imaging. Curr Opin Biotechnol 2023; 83:102973. [PMID: 37531801 DOI: 10.1016/j.copbio.2023.102973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Small-molecule fluorophores are powerful tools for biological research. They have enabled researchers to study cellular architecture and decipher biological processes. Responsive fluorescent sensors have enabled the study of a wide range of analytes and their effects on biological phenomena in situ. The application of fluorescent sensors to studies in living organisms is complicated by challenges such as biocompatibility, chemostability, photostability and sufficient penetration of light through living tissues. Translation to in vivo imaging is therefore not straightforward and requires innovative approaches. Recent advances in the design of fluorophores with improved photophysical properties and the development of long-wavelength-emitting fluorophore scaffolds that can be modularly functionalised with targeting and sensing groups have allowed the application of fluorogenic, ratiometric and reversible sensors in vivo.
Collapse
Affiliation(s)
- Liam D Adair
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
31
|
Chi W, Tan D, Qiao Q, Xu Z, Liu X. Spontaneously Blinking Rhodamine Dyes for Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202306061. [PMID: 37246144 DOI: 10.1002/anie.202306061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Single-molecule localization microscopy (SMLM) has found extensive applications in various fields of biology and chemistry. As a vital component of SMLM, fluorophores play an essential role in obtaining super-resolution fluorescence images. Recent research on spontaneously blinking fluorophores has greatly simplified the experimental setups and extended the imaging duration of SMLM. To support this crucial development, this review provides a comprehensive overview of the development of spontaneously blinking rhodamines from 2014 to 2023, as well as the key mechanistic aspects of intramolecular spirocyclization reactions. We hope that by offering insightful design guidelines, this review will contribute to accelerating the advancement of super-resolution imaging technologies.
Collapse
Affiliation(s)
- Weijie Chi
- Collaborative Innovation Center of One Health, School of Science, Hainan University, Renmin Road 58, Haikou, 570228, P. R. China
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| |
Collapse
|
32
|
Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev 2023; 52:6344-6358. [PMID: 37608780 DOI: 10.1039/d3cs00475a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
33
|
Cheng X, Feng B, Chen F, Huang S, Zhang S, Gao F, Zeng W. Development of a Water-Soluble Fluorescent Probe Based on Natural Flavylium for Mercury(II) Ion Detection and Clinical Antidote Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13263-13269. [PMID: 37639577 DOI: 10.1021/acs.jafc.3c04537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The health hazard posed by Hg2+ makes it imperative to develop a fast and convenient means for detecting Hg2+ in water samples and living objects. While fluorescence sensing technology is considered a promising candidate, the poor water solubility and fluorescence quenching in aqueous solutions of most existing probes limit their practical application. To overcome this, we developed a natural flavylium-inspired fluorescent probe with excellent water solubility. Our probe demonstrated outstanding performance of high sensitivity (LOD = 0.47 nM), fast response (<10 min), and great selectivity for Hg2+. Notably, we validated its applicability in real water, urine samples, and living cells. Furthermore, the probe was successfully applied to evaluate the effectiveness of antidotes for clinical Hg2+ poisoning.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shengwang Zhang
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Feng Gao
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| |
Collapse
|
34
|
Zhou S, Jiang L, Li C, Mao H, Jiang C, Wang Z, Zheng X, Jiang X. Acid and Hypoxia Tandem-Activatable Deep Near-Infrared Nanoprobe for Two-Step Signal Amplification and Early Detection of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212231. [PMID: 37339461 DOI: 10.1002/adma.202212231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The early detection of cancers can significantly change outcomes even with existing treatments. However, ~50% of cancers still cannot be detected until they reach an advanced stage, highlighting the great challenges in the early detection. Here, an ultrasensitive deep near-infrared (dNIR) nanoprobe that is successively responsive to tumor acidity and hypoxia is reported. It is demonstrated that the new nanoprobe specifically detects tumor hypoxia microenvironment based on deep NIR imaging in ten different types of tumor models using cancer cell lines and patient-tissue derived xenograft tumors. By combining the acidity and hypoxia specific two-step signal amplification with a deep NIR detection, the reported nanoprobe enables the ultrasensitive visualization of hundreds of tumor cells or small tumors with a size of 260 µm in whole-body imaging or 115 µm metastatic lesions in lung imaging. As a result, it reveals that tumor hypoxia can occur as early as the lesions contain only several hundred cancer cells.
Collapse
Affiliation(s)
- Sensen Zhou
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lei Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Li
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Li J, Ji A, Lei M, Xuan L, Song R, Feng X, Lin H, Chen H. Hypsochromic Shift Donor-Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J Med Chem 2023. [PMID: 37294925 DOI: 10.1021/acs.jmedchem.3c00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, second near-infrared window (NIR-II) dyes' development focuses on pursuing a longer absorption/emission wavelength and higher quantum yield, which usually means an extended π conjugation system, resulting in an enormous molecular weight and poor druggability. Most researchers thought that the reduced π conjugation system would bring on a blueshift spectrum that causes dim imaging qualities. Little efforts have been made to study smaller NIR-II dyes with a reduced π conjugation system. Herein, we synthesized a reduced π conjugation system donor-acceptor (D-A) probe TQ-1006 (Em = 1006 nm). Compared with its counterpart donor-acceptor-donor (D-A-D) structure TQT-1048 (Em = 1048 nm), TQ-1006 exhibited comparable excellent blood vessels, lymphatic drainage imaging performance, and a higher tumor-to-normal tissue (T/N) ratio. An RGD conjugated probe TQ-RGD showed an extra high contrast tumor imaging (T/N ≥ 10), further proving D-A dyes' excellent NIR-II biomedical imaging applications. Overall, the D-A framework provides a promising approach to designing next-generation NIR-II fluorophores.
Collapse
Affiliation(s)
- Jiafeng Li
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Aiyan Ji
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Meiling Lei
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Liwen Xuan
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ruihu Song
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Haixia Lin
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Chen
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
36
|
Wei R, Dong Y, Wang X, Li J, Lei Z, Hu Z, Chen J, Sun H, Chen H, Luo X, Qian X, Yang Y. Rigid and Photostable Shortwave Infrared Dye Absorbing/Emitting beyond 1200 nm for High-Contrast Multiplexed Imaging. J Am Chem Soc 2023. [PMID: 37216464 DOI: 10.1021/jacs.3c00594] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The shortwave infrared (SWIR) spectral region beyond 1200 nm offers optimal tissue penetration depth and has broad potential in diagnosis, therapy, and surgery. Here, we devised a novel class of fluorochromic scaffold, i.e., a tetra-benzannulated xanthenoid (EC7). EC7 absorbs/emits maximally at 1204/1290 nm in CH2Cl2 and exhibits an unparalleled molar absorptivity of 3.91 × 105 cm-1 M-1 and high transparency to light at 400-900 nm. It also exhibited high resistance toward both photobleaching and symmetry breaking due to its unique structural rigidity. It is feasible for in vivo bioimaging and particularly suitable to couple with the shorter-wavelength analogues for high-contrast multiplexing. High-contrast dual-channel intraoperative imaging of the hepatobiliary system and three-channel in vivo imaging of the intestine, the stomach, and the vasculature were showcased. EC7 is a benchmark fluorochrome for facile biomedical exploitation of the SWIR region beyond 1200 nm.
Collapse
Affiliation(s)
- Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Dong
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
37
|
Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
38
|
Rathnamalala CSL, Hernandez S, Lucero MY, Swartchick CB, Kalam Shaik A, Hammer NI, East AK, Gwaltney SR, Chan J, Scott CN. Xanthene-Based Nitric Oxide-Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window. Angew Chem Int Ed Engl 2023; 62:e202214855. [PMID: 36722146 PMCID: PMC10088865 DOI: 10.1002/anie.202214855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Collapse
Affiliation(s)
| | - Selena Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | | | | | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| |
Collapse
|
39
|
Miao W, Guo X, Yan X, Shang Y, Yu C, Dai E, Jiang T, Hao E, Jiao L. Red-to-Near-Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry 2023; 29:e202203832. [PMID: 36650103 DOI: 10.1002/chem.202203832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Near-infrared (NIR) fluorophores with characteristics such as deep tissue penetration, minimal damage to the biological samples, and low background interference, are highly sought-after materials for in vivo and deep-tissue fluorescence imaging. Herein, series of 3-pyrrolylBODIPY derivatives and 3,5-dipyrrolylBODIPY derivatives have been prepared by a facile regioselective nucleophilic aromatic substitution reaction (SN Ar) on 3,5-halogenated BODIPY derivatives (3,5-dibromo or 2,3,5,6-tetrachloroBODIPYs) with pyrroles. The installation of a pyrrolic unit onto the 3-position of the BODIPY chromophore leads to a dramatic red shift of both the absorption (up to 160 nm) and the emission (up to 260 nm) in these resultant 3-pyrrolylBODIPYs with respect to that of the BODIPY chromophore. Their further 5-positional functionalization provides a facile way to fine tune their photophysical properties, and these resulting dipyrrolylBODIPYs and functionalized pyrrolylBODIPYs show strong absorption in the deep red-to-NIR regions (595-684 nm) and intense NIR fluorescence emission (650-715 nm) in dichloromethane. To demonstrate the applicability of these functionalized pyrrolylBODIPYs as NIR fluorescent probes for cell imaging, pyrrolylBODIPY 6 a containing mitochondrion-targeting butyltriphenylphosphonium cationic species was also prepared. It selectively localized in mitochondria of HeLa cells, with low cytotoxicity and intense deep red fluorescence emission.
Collapse
Affiliation(s)
- Wei Miao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.,Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Xi Yan
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Yingjian Shang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - En Dai
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Ting Jiang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| |
Collapse
|
40
|
Wen Y, Jing N, Zhang M, Huo F, Li Z, Yin C. A Space-Dependent 'Enzyme-Substrate' Type Probe based on 'Carboxylesterase-Amide Group' for Ultrafast Fluorescent Imaging Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206681. [PMID: 36651112 PMCID: PMC10015879 DOI: 10.1002/advs.202206681] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Indexed: 05/14/2023]
Abstract
Fast and selective fluorescence imaging for a biomarker to related-disease diagnosis remains a significant challenge due to complex physical environment. Human carboxylesterase (CE) is expected to be a potential biomarker of hepatocellular carcinoma (HCC) to improve the accuracy of diagnosis. However, existing probes for CE has slow response rate and low selectivity. Herein, the amide group is selected as CE-responsive sites based on the "substrate-hydrolysis enzymatic reaction" approach. From a series of off-on probes with leave groups in the amide unit, probe JFast is screened with the optimal combination of rapid response rate and high selectivity toward CE. JFast requires only 150 s to reach the maximum fluorescence at 676 nm in the presence of CE and free from the interference of other esterase. Computational docking simulations indicate the shortest distance between the CE and active site of JFast . Cell and in vivo imaging present that the probe can turn on the liver cancer cells and tumor region precisely. Importantly, JFast is allowed to specifically image orthotopic liver tumor rather than metastatic tumor and distinguish human primary liver cancer tissue from adjacent ones. This study provides a new tool for CE detection and promotes advancements in accurate HCC diagnosis.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| | - Min Zhang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Fangjun Huo
- Research Institute of Applied ChemistryShanxi UniversityTaiyuan030006China
| | - Zhuoyu Li
- Institute of BiotechnologyKey Laboratory of Chemical Biology and Molecular Engineering of National Ministry of EducationShanxi UniversityTaiyuan030006China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| |
Collapse
|
41
|
Ran XY, Chen P, Liu YZ, Shi L, Chen X, Liu YH, Zhang H, Zhang LN, Li K, Yu XQ. Rational Design of Polymethine Dyes with NIR-II Emission and High Photothermal Conversion Efficiency for Multimodal-Imaging-Guided Photo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210179. [PMID: 36630669 DOI: 10.1002/adma.202210179] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Indexed: 05/16/2023]
Abstract
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ping Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, P. R. China
| |
Collapse
|
42
|
Kniazev K, Guo T, Zhai C, Gamage RS, Ghonge S, Frantsuzov PA, Kuno M, Smith B. Single-molecule characterization of a bright and photostable deep-red fluorescent squaraine-figure-eight (SF8) dye. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2023; 210:111031. [PMID: 36643871 PMCID: PMC9835836 DOI: 10.1016/j.dyepig.2022.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Squaraine Figure Eight (SF8) dyes are a unique class of deep-red fluorescent dyes with self-threaded molecular architecture that provides structural rigidity while simultaneously encapsulating and protecting the emissive fluorochrome. Previous cell microscopy and bulk phase studies of SF8 dyes indicated order of magnitude enhancements in photostability over conventional pentamethine cyanine dyes such as Cy5. Studies conducted at the single molecule level now reveal that these ensemble level enhancements carry over to the single molecule level in terms of enhanced emission quantum yields, longer times to photobleaching, and enhanced total photon yields. When compared to Cy5, the SF8-based dye SF8(D4)2 possesses a three-fold larger single molecule emission quantum yield, exhibits order of magnitude longer average times before photobleaching, and exhibits twenty times larger photon yields. Additional features such as water solubility, fluorochrome encapsulation to protect it against nucleophilic attack, and selective biomarker targeting capability make SF8-based dyes promising candidates for biological labeling and microscopy applications and single molecule tracking.
Collapse
Affiliation(s)
- Kirill Kniazev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Tianle Guo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Rananjaya S. Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Sushrut Ghonge
- Department of Physics, University of Notre Dame, Notre Dame, IN 46556
| | - Pavel A. Frantsuzov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Institutskaya 3, Novosibirsk, 630090, Russia
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Department of Physics, University of Notre Dame, Notre Dame, IN 46556
| | - Bradley Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
43
|
Dong Y, Lu X, Li Y, Chen W, Yin L, Zhao J, Hu X, Li X, Lei Z, Wu Y, Chen H, Luo X, Qian X, Yang Y. Spectral and biodistributional engineering of deep near-infrared chromophore. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Wang T, Chen Y, Wang B, Wu M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front Physiol 2023; 14:1126805. [PMID: 36895633 PMCID: PMC9990761 DOI: 10.3389/fphys.2023.1126805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Visualizing biological tissues in vivo at a cellular or subcellular resolution to explore molecular signaling and cell behaviors is a crucial direction for research into biological processes. In vivo imaging can provide quantitative and dynamic visualization/mapping in biology and immunology. New microscopy techniques combined with near-infrared region fluorophores provide additional avenues for further progress in vivo bioimaging. Based on the development of chemical materials and physical optoelectronics, new NIR-II microscopy techniques are emerging, such as confocal and multiphoton microscopy, light-sheet fluorescence microscopy (LSFM), and wide-field microscopy. In this review, we introduce the characteristics of in vivo imaging using NIR-II fluorescence microscopy. We also cover the recent advances in NIR-II fluorescence microscopy techniques in bioimaging and the potential for overcoming current challenges.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Li J, Feng Z, Yu X, Wu D, Wu T, Qian J. Aggregation-induced emission fluorophores towards the second near-infrared optical windows with suppressed imaging background. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications. Anal Bioanal Chem 2022:10.1007/s00216-022-04463-z. [PMID: 36445453 DOI: 10.1007/s00216-022-04463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
As fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) has gained increasing attention, it is inevitable that NIR-II fluorophores, the cornerstone of NIR-II imaging, have come to the middle of the stage. NIR-II xanthenoid fluorophores with good stability, high brightness, and fluorescence adjustability are becoming popular. We here reviewed the recent progress of xanthenoid fluorophores with NIR-II emission for in vivo applications. Especially, we focus on the strategies used for longer wavelength and fluorescence regulation to construct OFF-ON or ratiometric NIR-II fluorescent probes.
Collapse
|