1
|
Hu JQ, Wang CC, Ma RX, Qi SQ, Fu W, Zhong J, Cao C, Zhang XL, Liu GH, Gao YD. Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model. Int Immunopharmacol 2025; 146:113921. [PMID: 39732106 DOI: 10.1016/j.intimp.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects. Due to their hydrophobicity, MPs can act as a carrier for other pollutants, pathogens, and allergens. This carrier effect of MPs may adsorb allergens and thus make the body exposed to MPs and a large number of allergens simultaneously. We hypothesized that co-exposure to inhaled MPs and aeroallergens may promote the development of airway inflammation of asthma by disrupting the airway epithelial barrier. METHODS The effects of co-exposure to Polyethylene microplastics (PE-MPs) and allergens on allergic airway inflammation and airway epithelial barrier were examined in a mouse model of asthma. The mice were divided into four groups: (i) Control group, treated only with PBS; (ii) MP group, exposed to PE-MPs and PBS; (iii) HDM group, mice were sensitized and challenged with HDM, and intranasally treated with PBS; (iv) HDM + MP group, mice were sensitized and challenged with HDM, and intranasally treated with PE-MPs. Histology and ELISA assays were used to evaluate the severity of airway inflammation. FITC-dextran permeability assay, immunofluorescence assay, and RT-PCR were used to evaluate the airway epithelial barrier function and the expression of relevant molecules. Transcriptomics analysis with lung tissue sequencing was conducted to identify possible pathways responsible for the effects of PE-MPs. RESULTS Co-exposure of mice to PE-MPs and HDM induced a higher degree of inflammatory cell infiltration, bronchial goblet cell hyperplasia, collagen deposition, allergen sensitization, and Th2 immune bias than exposure to HDM alone. Co-exposure to PE-MPs and HDM aggravated oxidative stress injury in the lung and the production of cytokine IL-33 in the BALF. In addition, co-exposure of mice to PE-MPs and HDM resulted in a more pronounced decrease in the expression of relevant molecules of the airway epithelial barrier and more significant increase in the permeability of airway epithelia. Lung tissue transcriptomics analysis revealed that PE-MPs exposure was associated with CXCL1 signaling and neutrophil activation. CONCLUSION Co-exposure to MPs and HDM may promote airway inflammation and airway epithelial barrier disruption and induce immune responses characterized by CXCL1 signaling and neutrophilic inflammation.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-Chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ru-Xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shi-Quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Tikhonova TN, Efremov YM, Kolmogorov VS, Iakovlev AP, Sysoev NN, Timashev PS, Fadeev VV, Tivtikyan AS, Salikhov SV, Gorelkin PV, Korchev YE, Erofeev AS, Shirshin EA. Mechanical properties of soft hydrogels: assessment by scanning ion-conductance microscopy and atomic force microscopy. SOFT MATTER 2024. [PMID: 39569628 DOI: 10.1039/d4sm00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The growing interest in biomimetic hydrogels is due to their successful applications in tissue engineering, 3D cell culturing and drug delivery. The major characteristics of hydrogels include swelling, porosity, degradation rate, biocompatibility, and mechanical properties. Poor mechanical properties can be regarded as the main limitation for the use of hydrogels in tissue engineering, and advanced techniques for its precise evaluation are of interest. The current research aims to demonstrate the suitability of scanning ion conductance microscopy (SICM) for assessing the stiffness of various hydrogels - Fmoc-FF peptide hydrogel, polyacrylamide and gelatin, - which differ by two orders of magnitude in Young's modulus (E). We provide a direct comparison between SICM measurements and atomic force microscopy (AFM) data, the latter being a widely used method for assessing the mechanical properties of scaffolds. The results of these methods showed good agreement, however, for materials with various stiffness two SICM-based approaches - application of hydrostatic pressure and application of intrinsic force - should be used. For hydrogels with Young's modulus of more than 2.5 kPa the application of SICM using hydrostatic pressure is recommended, whereas for soft materials with E ∼ 200-400 Pa the technique using intrinsic force can also be applied. We have shown that SICM and AFM methods can be used for the evaluation of the mechanical properties of soft hydrogels with nanometer resolution, while SICM is a completely non-invasive method, which requires a minimum influence on the sample structure.
Collapse
Affiliation(s)
- Tatiana N Tikhonova
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia.
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991, Moscow, Russia
| | - Vasilii S Kolmogorov
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, 119049, Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Aleksei P Iakovlev
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, 119049, Moscow, Russia
| | - Nikolay N Sysoev
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., 119991, Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University 8-2, Trubetskaya st., 119991, Moscow, Russia
| | - Victor V Fadeev
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia.
| | - Alexander S Tivtikyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey V Salikhov
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, 119049, Moscow, Russia
| | - Petr V Gorelkin
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, 119049, Moscow, Russia
| | - Yuri E Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S Erofeev
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, 119049, Moscow, Russia
| | - Evgeny A Shirshin
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia.
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University 8-2, Trubetskaya st., 119991, Moscow, Russia
| |
Collapse
|
3
|
Li H, Hu Y, Su M, Zhang C, Gao F, Lu Q. Self-Sustained-Release Strategy Realizes Colloid Oriented Assembly to Fabricate Prussian Blue with Hierarchical Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402920. [PMID: 38864391 DOI: 10.1002/smll.202402920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Indexed: 06/13/2024]
Abstract
The controlled self-assembly of nanomaterials has been a great challenge in nanosynthesis, especially for hierarchical architectures with high complexity. Particularly, the structural design of Prussian blue (PB) series materials with robustness and fast nucleation is even more difficult. Herein, a self-sustained-release strategy based on the slow release of metal ions from coordination ions is proposed to guide the assembly of PB crystals. The key to this strategy is the slow release by ligand, which can create ultra-low concentrations of metal ions so as to provide the possibility to realize the surface charge manipulation of PB primary colloids. By adding electrolyte or changing the polarity of the solution, the surface charge regulation of PB colloid is realized, and the PB hierarchical structures with branch fractal structure (PB-BS), octahedral fractal structure, and spherical fractal structure are effectively constructed. This work not only achieves the designability of the PB structure, but also synchronizes the functionalization during the PB assembly growth process by in situ encapsulation of the effective catalytic active component L-Ascorbic acid. As a result, the assembled PB-BS exhibits greatly enhanced catalytic activity and selectivity in styrene oxidation with the selectivity of oxidized styrene increasing from 35.6% (PB) to 80.5% (PB-BS).
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ye Hu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chunyan Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Song Y, Zhang S, Cao C, Yan J, Li M, Li X, Chen F, Gu N. Imaging Structural and Electrical Changes of Aging Cells Using Scanning Ion Conductance Microscopy. SMALL METHODS 2024; 8:e2301315. [PMID: 38072619 DOI: 10.1002/smtd.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 08/18/2024]
Abstract
The local charge density and distribution of extracellular membranes play a crucial role in the various cellular processes, such as regulation and localization of membrane proteins, electrophysiological signal transduction, transcriptional control, cell growth, and cell death. In this study, a novel scanning ion conductance microscopy-based method is employed to extracellular membrane mapping. This method allows to not only visualize the dynamic topography and surface charge distribution around individual cells, but also distinguish the charge difference. To validate the accuracy and effectiveness of this method, the charge density on model sample surfaces are initially manipulated and the charge sensing mechanism using finite element modeling (FEM) is explored subsequently. By applying this method, both the extracellular charge distributions and topography structures of normal and senescent human dental pulp stem cells (hDPSCs) are able to monitor. Interestingly, it is observed that the surface charge became significantly more negative after cellular senescence. This innovative approach enables us to gain valuable insights into surface charge changes during cellular senescence, which can contribute to a better understanding of the underlying mechanisms and potential therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Shuting Zhang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Mei Li
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Xinyu Li
- The first school of clinical medicine, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Feng Chen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
- School of Medicine, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
5
|
Ouyang L, Chen H, Xu R, Shaik R, Zhang G, Zhe J. Rapid Surface Charge Mapping Based on a Liquid Crystal Microchip. BIOSENSORS 2024; 14:199. [PMID: 38667192 PMCID: PMC11047892 DOI: 10.3390/bios14040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.
Collapse
Affiliation(s)
- Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| | - Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| | - Rubia Shaik
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| |
Collapse
|
6
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
7
|
Sharifian Gh. M, Norouzi F. Guidelines for an optimized differential centrifugation of cells. Biochem Biophys Rep 2023; 36:101585. [PMID: 38076661 PMCID: PMC10709023 DOI: 10.1016/j.bbrep.2023.101585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024] Open
Abstract
Literature reviews reveal a significant deficiency in conceptual comprehension concerning centrifugation, a crucial step in both medical and research protocols. The arbitrary fluctuations in centrifugal forces present a potential threat to the reproducibility of results. To address this, we propose concise guidelines that integrate key factors such as temperature, osmolarity, fluid volume, and viscosity. These guidelines aim to enhance comprehension of optimal sedimentation conditions for cell suspensions. Additionally, we introduce a standardized protocol for determining the optimal RCF and centrifugation time. The goal is to maximize sedimentation efficiency while minimizing cell damage, contributing to a universally applicable and reproducible method in centrifugation practices.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Fahimi P, Matta CF, Okie JG. Are size and mitochondrial power of cells inter-determined? J Theor Biol 2023; 572:111565. [PMID: 37369290 DOI: 10.1016/j.jtbi.2023.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are the central hub of ATP production in most eukaryotic cells. Cellular power (energy per unit time), which is primarily generated in these organelles, is crucial to our understanding of cell function in health and disease. We investigated the relation between a mitochondrion's power (metabolic rate) and host cell size by combining metabolic theory with the analysis of two recent databases, one covering 109 protists and the other 63 species including protists, metazoans, microalgae, and vascular plants. We uncovered an interesting statistical regularity: in well-fed protists, relatively elevated values of mitochondrion power cluster around the smallest cell sizes and the medium-large cell sizes. In contrast, in starved protists and metazoans, the relation between mitochondrion power and cell size is inconclusive, and in microalgae and plants, mitochondrion power seems to increase from smaller cells to larger ones (where this investigation includes plant cells of volume up to ca. 2.18 × 105 μm3). Using these results, estimates are provided of the number of active ATP synthase molecules and basal uncouplers.
Collapse
Affiliation(s)
- Peyman Fahimi
- Département de Chimie, Université Laval, Québec, QC G1V0A6, Canada
| | - Chérif F Matta
- Département de Chimie, Université Laval, Québec, QC G1V0A6, Canada; Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS B3M2J6, Canada.
| | - Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
9
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
11
|
Rabinowitz J, Hartel AJW, Dayton H, Fabbri JD, Jo J, Dietrich LEP, Shepard KL. Charge Mapping of Pseudomonas aeruginosa Using a Hopping Mode Scanning Ion Conductance Microscopy Technique. Anal Chem 2023; 95:5285-5292. [PMID: 36920847 PMCID: PMC10359948 DOI: 10.1021/acs.analchem.2c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping. We validate our method usingPseudomonas aeruginosaPA14 (PA) cells and observe a surface charge density of σPA = -2.0 ± 0.45 mC/m2 that is homogeneous within the ∼80 nm lateral scan resolution. This biological surface charge is detected from at least 1.7 μm above the membrane (395× the Debye length), and the long-range charge detection is attributed to electroosmotic amplification. We show that imaging with a nanobubble-plugged probe reduces perturbation of the underlying sample. We extend the technique to PA biofilms and observe a charge density exceeding -20 mC/m2. We use a solid-state calibration to quantify surface charge density and show that HP-SICM cannot be quantitatively described by a steady-state finite element model. This work contributes to the body of scanning probe methods that can uniquely contribute to microbiology and cellular biology.
Collapse
Affiliation(s)
- Jake Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.,Department of Biology, Columbia University, New York, New York 10027, United States
| | - Hannah Dayton
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Jason D Fabbri
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeanyoung Jo
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Lars E P Dietrich
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
13
|
Surface morphology live-cell imaging reveals how macropinocytosis inhibitors affect membrane dynamics. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:247-267. [PMID: 35259914 DOI: 10.1146/annurev-anchem-121521-122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| |
Collapse
|
15
|
Promising Colloidal Rhenium Disulfide Nanosheets: Preparation and Applications for In Vivo Breast Cancer Therapy. NANOMATERIALS 2022; 12:nano12111937. [PMID: 35683791 PMCID: PMC9182237 DOI: 10.3390/nano12111937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Photothermal therapy (PTT) has become an important therapeutic strategy in the treatment of cancer. However, exploring novel photothermal nanomaterials with satisfactory biocompatibility, high photothermal conversion efficiency, and efficient theranostic outcomes, remains a major challenge for satisfying clinical application. In this study, poly-ethylene glycol modified rhenium disulfide (PEG-ReS2) nanosheets are constructed by a simple-liquid phase exfoliation method. The PEG-ReS2 nanosheets were demonstrated to have good solubility, good biocompatibility, low toxicity, and strong capability of accumulating near-infrared (NIR) photons. Under 808 nm laser irradiation, the PEG-ReS2 nanosheets were found to have an excellent photothermal conversion efficiency (PTCE) of 42%. Moreover, the PEG-ReS2 nanosheets were demonstrated to be ideal photothermal transduction agents (PTAs), which promoted rapid cancer cell death in vitro and efficiently ablated tumors in vivo. Interestingly, the potential utility of up-regulation or down-regulation of miRNAs was proposed to evaluate the therapeutic outcomes of PEG-ReS2 nanosheets. The expression levels of a set of miRNAs in tumor-bearing mice were restored to normal levels after PTT therapy with PEG-ReS2 nanosheets. Both down-regulation miRNAs (miR-125a-5p, miR-34a-5p, miR-132-3p, and miR-148b-3p) and up-regulation miRNAs (miR-133a-3p, miR-200c-5p, miR-9-3p, and miR-150-3p) were suggested to be important clinical biomarkers for evaluating therapeutic outcomes of breast cancer-related PTT. This work highlights the great significance of PEG-ReS2 nanosheets as therapeutic nanoagents for cancer therapy.
Collapse
|
16
|
Gao T, Xu C, Chen ML, Wang JH, Mao L, Yu P. Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Anal Chem 2022; 94:8187-8193. [DOI: 10.1021/acs.analchem.1c05579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tienan Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Ahmadinasab N, Stockmann TJ. Single entity electrochemical detection of as‐prepared metallic and dielectric nanoparticle stochastic impacts in a phosphonium ionic liquid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazanin Ahmadinasab
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| | - Talia Jane Stockmann
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| |
Collapse
|
18
|
Li Y, Jin R, Xu L, Jiang D, Chen HY, Jiang D. Electrochemically Imaging the Response of Ion-Selective Membranes with an Ultralow Detection Limit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14097-14102. [PMID: 35298148 DOI: 10.1021/acsami.2c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of ion-selective membranes for the selective response of a particular ion has been studied for many years; however, imaging the response of the membrane with a low detection limit is challenging. Here, high spatial-resolution electrochemical imaging of this response down to picomolar is achieved using scanning ion conductive microscopy. The detection strategy relies on the exclusion of a small amount of counter ions from the membrane in the presence of a low concentration of target ions in the solution. These excluded counter ions are adsorbed at the membrane-solution interface, leading to more positive charges at the surface. The resultant elevation of the ionic current in the approach curve behaves as the response for the target ions down to 10-11 M, which is much more sensitive than that using potentiometric measurement. The constant-current scanning of the membrane exhibits the fluctuation of the apparent surface height that is correlated with the ionic concentration, permitting the imaging of the response at the nanoscale. The achievement of highly sensitive and spatial-resolution imaging for the ionic response enable the collection of spatial response at the ion-selective membrane, which will greatly advance the study of ion-selective electrodes.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Rong Jin
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Lingfang Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital Chongqing Medical University, Chongqing 400010, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital Chongqing Medical University, Chongqing 400010, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
19
|
Xu L, Li Y, Jin R, Jiang D, Jiang D. High spatial resolution observation of Temporin A at cell membranes using scanning ion conductive microscopy. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2021.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
20
|
Chen F, He J, Manandhar P, Yang Y, Liu P, Gu N. Gauging surface charge distribution of live cell membrane by ionic current change using scanning ion conductance microscopy. NANOSCALE 2021; 13:19973-19984. [PMID: 34825684 DOI: 10.1039/d1nr05230f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The distribution of surface charge and potential of cell membrane plays an indispensable role in cellular activities. However, probing surface charge of live cells under physiological conditions, until recently, remains an arduous challenge owing to the lack of effective methods. Scanning ion conductance microscopy (SICM) is an emerging imaging technique for imaging a live cell membrane in its native state. Here, we introduce a simple SICM based imaging technique to effectively map the surface charge contrast distribution of soft substrates including cell membranes by utilizing the higher surface charge sensitivity of the ionic current when the nanopipette tip is close to the substrate with a relatively high current change. This technique was assessed on charged model substrates made of polydimethylsiloxane, and the surface charge sensitivity of ionic current change was supported by finite element method simulations. With this method, we can distinguish the surface charge difference between the cell membrane and the supporting collagen matrix. We also observed the surface charge change induced by the small membrane damage after 1% dimethyl sulfoxide (DMSO) treatment. This new SICM technique provides opportunities to study interfacial and cell membrane processes with high spatial resolution.
Collapse
Affiliation(s)
- Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
- Physics Department, Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA.
| | - Jin He
- Physics Department, Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA.
| | - Prakash Manandhar
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yizi Yang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Peidang Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
21
|
Ma Y, Wang D. Revealing Electrical Double-Layer Potential of Substrates by Hysteresis Ion Transport in Scanning Ion Conductance Microscopy. Anal Chem 2021; 93:15821-15825. [PMID: 34816713 DOI: 10.1021/acs.analchem.1c04486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrical double layer (EDL) at solid-liquid interfaces is key to interfacial transport and reaction processes and numerous emerging applications exploiting such processes. Herein, by studying hysteresis ion-transport processes in nanopipettes near charged substrates, we found the resulting cross-point potential (Vcp) to represent the surface potential of both nanopipettes and substrates. After the subtraction of Vcp in bulk solution, the remaining ΔVcp shows excellent exponential decay with respect to the separation distance from the substrates and agrees very well with the classical double-layer theory. The revealed new hysteresis ion transport in nanopipettes would provide a new way for the simple and direct EDL imaging of various interfaces of interest with nanoscale resolution in scanning ion conductance microscopy.
Collapse
Affiliation(s)
- Yingfei Ma
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Dengchao Wang
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| |
Collapse
|
22
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
23
|
Ma Y, Liu R, Shen X, Wang D. Quantification of Asymmetric Ion Transport in Glass Nanopipettes near Charged Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingfei Ma
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Rujia Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Xiaoyue Shen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Dengchao Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| |
Collapse
|
24
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Iwata F, Shirasawa T, Mizutani Y, Ushiki T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy (Oxf) 2021; 70:423-435. [PMID: 33644794 DOI: 10.1093/jmicro/dfab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is useful for imaging soft and fragile biological samples in liquids because it probes the samples' surface topography by detecting ion currents under non-contact and force-free conditions. SICM acquires the surface topographical height by detecting the ion current reduction that occurs when an electrolyte-filled glass nanopipette approaches the sample surface. However, most biological materials have electrically charged surfaces in liquid environments, which sometimes affect the behavior of the ion currents detected by SICM and, especially, make topography measurements difficult. For measuring such charged samples, we propose a novel imaging method that uses a double-barrel nanopipette as an SICM probe. The ion current between the two apertures of the nanopipette desensitizes the surface charge effect on imaging. In this study, metaphase chromosomes of Indian muntjac were imaged by this technique because, owing to their strongly negatively charged surfaces in phosphate-buffered saline, it is difficult to obtain the topography of the chromosomes by the conventional SICM with a single-aperture nanopipette. Using the proposed method with a double-barrel nanopipette, the surfaces of the chromosomes were successfully measured, without any surface charge confounder. Since the detailed imaging of sample topography can be performed in physiological liquid conditions regardless of the sample charge, it is expected to be used for analyzing the high-order structure of chromosomes in relation to their dynamic changes in the cell division.
Collapse
Affiliation(s)
- Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | - Tatsuru Shirasawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Mizutani
- Office of Institutional Research, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
26
|
Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R, Zhou L, Bish D, Raff JD, Baker LA. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provide Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12233-12242. [PMID: 34449200 PMCID: PMC9277718 DOI: 10.1021/acs.est.1c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rebecca Abney
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Lushan Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David Bish
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
27
|
Teahan J, Perry D, Chen B, McPherson IJ, Meloni GN, Unwin PR. Scanning Ion Conductance Microscopy: Surface Charge Effects on Electroosmotic Flow Delivery from a Nanopipette. Anal Chem 2021; 93:12281-12288. [PMID: 34460243 DOI: 10.1021/acs.analchem.1c01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
Collapse
Affiliation(s)
- James Teahan
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Baoping Chen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Chen B, Perry D, Teahan J, McPherson IJ, Edmondson J, Kang M, Valavanis D, Frenguelli BG, Unwin PR. Artificial Synapse: Spatiotemporal Heterogeneities in Dopamine Electrochemistry at a Carbon Fiber Ultramicroelectrode. ACS MEASUREMENT SCIENCE AU 2021; 1:6-10. [PMID: 36785735 PMCID: PMC9836071 DOI: 10.1021/acsmeasuresciau.1c00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An artificial synapse is developed that mimics ultramicroelectrode (UME) amperometric detection of single cell exocytosis. It comprises the nanopipette of a scanning ion conductance microscope (SICM), which delivers rapid pulses of neurotransmitter (dopamine) locally and on demand at >1000 defined locations of a carbon fiber (CF) UME in each experiment. Analysis of the resulting UME current-space-time data reveals spatiotemporal heterogeneous electrode activity on the nanoscale and submillisecond time scale for dopamine electrooxidation at typical UME detection potentials. Through complementary surface charge mapping and finite element method (FEM) simulations, these previously unseen variations in electrochemical activity are related to heterogeneities in the surface chemistry of the CF UME.
Collapse
Affiliation(s)
- Baoping Chen
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - James Teahan
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ian J. McPherson
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - James Edmondson
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Dimitrios Valavanis
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bruno G. Frenguelli
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry, Molecular Analytical
Science Centre for Doctoral
Training, and School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
29
|
Ouyang L, Shaik R, Xu R, Zhang G, Zhe J. Mapping Surface Charge Distribution of Single-Cell via Charged Nanoparticle. Cells 2021; 10:cells10061519. [PMID: 34208707 PMCID: PMC8235745 DOI: 10.3390/cells10061519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell's surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell-nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells' surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell's surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells' surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.
Collapse
Affiliation(s)
- Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (R.X.)
| | - Rubia Shaik
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (R.X.)
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (R.X.)
- Correspondence: ; Tel.: +1-330-972-7737
| |
Collapse
|
30
|
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021; 9:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The negative surface charge of brain microvessel endothelial cells is derived from the special composition of their membrane lipids and the thick endothelial surface glycocalyx. They are important elements of the unique defense systems of the blood-brain barrier. The tissue-specific properties, components, function and charge of the brain endothelial glycocalyx have only been studied in detail in the past 15 years. This review highlights the importance of the negative surface charge in the permeability of macromolecules and nanoparticles as well as in drug interactions. We discuss surface charge and glycoxalyx changes in pathologies related to the brain microvasculature and protective measures against glycocalyx shedding and damage. We present biophysical techniques, including a microfluidic chip device, to measure surface charge of living brain endothelial cells and imaging methods for visualization of surface charge and glycocalyx.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
31
|
Zhou B, Das A, Zhong M, Guo Q, Zhang DW, Hing KA, Sobrido AJ, Titirici MM, Krause S. Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosens Bioelectron 2021; 180:113121. [PMID: 33706156 DOI: 10.1016/j.bios.2021.113121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Photoelectrochemical imaging has great potential in the label-free investigation of cellular processes. Herein, we report a new fast photoelectrochemical imaging system (PEIS) for DC photocurrent imaging of live cells, which combines high speed with excellent lateral resolution and high photocurrent stability, which are all crucial for studying dynamic cellular processes. An analog micromirror was adopted to raster the sensor substrate, enabling high-speed imaging. α-Fe2O3 (hematite) thin films synthesized via electrodeposition were used as a robust substrate with high photocurrent and good spatial resolution. The capabilities of this system were demonstrated by monitoring cell responses to permeabilization with Triton X-100. The ability to carry out dynamic functional imaging of multiple cells simultaneously provides improved confidence in the data than could be achieved with the slower electrochemical single-cell imaging techniques described previously. When monitoring pH changes, the PEIS can achieve frame rates of 8 frames per second.
Collapse
Affiliation(s)
- Bo Zhou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Anirban Das
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Muchun Zhong
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Qian Guo
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - De-Wen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Karin A Hing
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ana Jorge Sobrido
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
32
|
Wang Y, Gou K, Guo X, Ke J, Li S, Li H. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers. Acta Biomater 2021; 123:72-92. [PMID: 33454385 DOI: 10.1016/j.actbio.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) with remarkable structural features have been proven to be an excellent platform for the delivery of therapeutic molecules. Biological barriers in various forms (e.g., mucosal barrier, cellular barrier, gastrointestinal barrier, blood-brain barrier, and blood-tumor barrier) present substantial obstacles for MSNs. The physicochemical parameters of MSNs are known to be effective and tunable not only for load and release of therapeutic molecules but also for their biological responsiveness that is beneficial for cells and tissues. This review innovatively provides a description of how and why physicochemical properties (e.g., particle size, morphology, surface charge, hydrophilic-hydrophobic property, and surface modification) of MSNs influence their ability to cross the biological barriers prior to reaching targeted sites. First, the structural and physiological features of biological barriers are outlined. Next, the recent progresses in the critical physicochemical parameters of MSNs are highlighted from physicochemical and biological aspects. Surface modification, as an important strategy for achieving rapid transport, is also reviewed with special attention to the latest findings of bioactive groups and molecular mechanisms. Furthermore, advanced designs of multifunction intelligent MSNs to surmount the blood-tumor barrier and to actively target tumor sites are demonstrated in detail. Lastly, the biodegradability and toxicity of MSNs are evaluated. With perspectives for their potential application and biosafety, the clues in summary might lead to drug delivery with high efficiency and provide useful knowledge for rational design of nanomaterials.
Collapse
|
33
|
Abstract
Many viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV), have a structure consisting of spikes protruding from an underlying spherical surface. Research in biological and colloidal sciences has revealed secrets of why spikes exist on virus surfaces. Specifically, the spikes favor virus attachment on surfaces via receptor-specific interactions (RSIs), mediate the membrane fusion, and determine or change viral tropism. The spikes also facilitate viruses to approach surfaces before attachment and subsequently escape back to the environment if RSIs do not occur (i.e., easy come and easy go). Therefore, virus spikes create the paradox of having a large capacity for binding with cells (high infectivity) and meanwhile great mobility in the environment. Such structure-function relationships have important implications for the fabrication of virus-like particles and analogous colloids (e.g., hedgehog- and raspberry-like particles) for applications such as the development of antiviral vaccines and drug delivery.
Collapse
|
34
|
Li P, Li G. Advances in Scanning Ion Conductance Microscopy: Principles and Applications. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2020.3037431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Anal Chem 2020; 92:15388-15393. [PMID: 33205942 DOI: 10.1021/acs.analchem.0c02884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
Collapse
Affiliation(s)
- Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Riku Yajima
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shohei Takigaura
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masashi Tajima
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
36
|
Cremin K, Jones BA, Teahan J, Meloni GN, Perry D, Zerfass C, Asally M, Soyer OS, Unwin PR. Scanning Ion Conductance Microscopy Reveals Differences in the Ionic Environments of Gram-Positive and Negative Bacteria. Anal Chem 2020; 92:16024-16032. [PMID: 33241929 DOI: 10.1021/acs.analchem.0c03653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the B. subtilis was found to be considerably more negatively charged compared to E. coli. SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of -80 to -140 mC m-2 for the Gram-negative E. coli. The Gram-positive B. subtilis show a much higher conductivity around the cell wall, and surface charge values between -350 and -450 mC m-2 were found using the same simplified model. SICM was also able to detect regions of high negative charge near B. subtilis, not detected in the topographical SICM response and attributed to the extracellular polymeric substance. To further explore how the B. subtilis cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the Gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allows investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the Gram-positive cellular microenvironment.
Collapse
Affiliation(s)
- Kelsey Cremin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Molecular Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Bryn A Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - James Teahan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Molecular Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K
| | - Gabriel N Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Orkun S Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
37
|
Limani N, Boudet A, Blanchard N, Jousselme B, Cornut R. Local probe investigation of electrocatalytic activity. Chem Sci 2020; 12:71-98. [PMID: 34163583 PMCID: PMC8178752 DOI: 10.1039/d0sc04319b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
As the world energy crisis remains a long-term challenge, development and access to renewable energy sources are crucial for a sustainable modern society. Electrochemical energy conversion devices are a promising option for green energy supply, although the challenge associated with electrocatalysis have caused increasing complexity in the materials and systems, demanding further research and insights. In this field, scanning probe microscopy (SPM) represents a specific source of knowledge and understanding. Thus, our aim is to present recent findings on electrocatalysts for electrolysers and fuel cells, acquired mainly through scanning electrochemical microscopy (SECM) and other related scanning probe techniques. This review begins with an introduction to the principles of several SPM techniques and then proceeds to the research done on various energy-related reactions, by emphasizing the progress on non-noble electrocatalytic materials.
Collapse
Affiliation(s)
- N Limani
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| | - A Boudet
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| | - N Blanchard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| | - B Jousselme
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| | - R Cornut
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| |
Collapse
|
38
|
Chen F, Panday N, Li X, Ma T, Guo J, Wang X, Kos L, Hu K, Gu N, He J. Simultaneous mapping of nanoscale topography and surface potential of charged surfaces by scanning ion conductance microscopy. NANOSCALE 2020; 12:20737-20748. [PMID: 33030171 DOI: 10.1039/d0nr04555a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scanning ion conductance microscopy (SICM) offers the ability to obtain nanoscale resolution images of the membranes of living cells. Here, we show that a dual-barrel nanopipette probe based potentiometric SICM (P-SICM) can simultaneously map the topography and surface potential of soft, rough and heterogeneously charged surfaces under physiological conditions. This technique was validated and tested by systematic studies on model samples, and the finite element method (FEM) based simulations confirmed its surface potential sensing capability. Using the P-SICM method, we compared both the topography and extracellular potential distributions of the membranes of normal (Mela-A) and cancerous (B16) skin cells. We further monitored the structural and electrical changes of the membranes of both types of cells after exposing them to the elevated potassium ion concentration in extracellular solution, known to depolarize and damage the cell. From surface potential imaging, we revealed the dynamic appearance of heterogeneity of the surface potential of the individual cell membrane. This P-SICM method provides new opportunities to study the structural and electrical properties of cell membrane at the nanoscale.
Collapse
Affiliation(s)
- Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China and Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Namuna Panday
- Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Xiaoshuang Li
- Department of Biological Science, Florida International University, Miami, FL 33199, USA
| | - Tao Ma
- Physics Department, Florida International University, Miami, FL 33199, USA. and School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Jing Guo
- Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Xuewen Wang
- Physics Department, Florida International University, Miami, FL 33199, USA.
| | - Lidia Kos
- Department of Biological Science, Florida International University, Miami, FL 33199, USA and Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| | - Jin He
- Physics Department, Florida International University, Miami, FL 33199, USA. and Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
39
|
Shkirskiy V, Kang M, McPherson IJ, Bentley CL, Wahab OJ, Daviddi E, Colburn AW, Unwin PR. Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy. Anal Chem 2020; 92:12509-12517. [PMID: 32786472 DOI: 10.1021/acs.analchem.0c02358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.
Collapse
Affiliation(s)
- Viacheslav Shkirskiy
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oluwasegun J Wahab
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex W Colburn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
40
|
Nishino M, Matsuzaki I, Musangile FY, Takahashi Y, Iwahashi Y, Warigaya K, Kinoshita Y, Kojima F, Murata SI. Measurement and visualization of cell membrane surface charge in fixed cultured cells related with cell morphology. PLoS One 2020; 15:e0236373. [PMID: 32702063 PMCID: PMC7377470 DOI: 10.1371/journal.pone.0236373] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
The diagnosis of patients with malignancies relies on the results of a clinical cytological examination. To enhance the diagnostic qualities of cytological examinations, it is important to have a detailed analysis of the cell’s characteristics. There is, therefore, a need for developing a new auxiliary method for cytological diagnosis. In this study, we focused on studying the charge of the cell membrane surface of fixed cells, which is one of important cell’s characteristics. Although fixed cells lose membrane potential which is observed in living cells owing to ion dynamics, we hypothesized that fixed cells still have a cell membrane surface charge due to cell membrane components and structure. We used 5 cell lines in this study (ARO, C32TG, RT4, TK, UM-UC-14). After fixation with CytoRich Red, we measured the cell membrane surface charge of fixed cells in solution using zeta potential measurements and fixed cells on glass slides, visualizing it using antibody-labeled beads and positively-charged beads. Furthermore, we measured the cell membrane surface charge of fixed cells under different conditions, such as different solution of fixative, ion concentration, pH, and pepsin treatments. The zeta potential measurements and visualization using the beads indicated that the cell membrane surface of fixed cells was negatively charged, and also that the charge varied among fixed cells. The charge state was affected by the different treatments. Moreover, the number of cell-bound beads was small in interphase, anaphase, and apoptotic cells. We concluded that the negative cell membrane surface charge was influenced by the three-dimensional structure of proteins as well as the different types of amino acids and lipids on the cell membrane. Thus, cell surface charge visualization can be applied as a new auxiliary method for clinical cytological diagnosis. This is the first systematic report of the cell membrane surface charge of fixed cells.
Collapse
Affiliation(s)
- Masaru Nishino
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | | | - Yuichi Takahashi
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yoshifumi Iwahashi
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Kenji Warigaya
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Kinoshita
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fumiyoshi Kojima
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Shin-ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| |
Collapse
|
41
|
Holub M, Adobes-Vidal M, Frutiger A, Gschwend PM, Pratsinis SE, Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS NANO 2020; 14:7358-7369. [PMID: 32426962 DOI: 10.1021/acsnano.0c02798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 μs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.
Collapse
Affiliation(s)
- Martin Holub
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maria Adobes-Vidal
- Wood Materials Science Group, Institute for Building Materials, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
42
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
43
|
Jin R, Huang Y, Cheng L, Lu H, Jiang D, Chen HY. In situ observation of heterogeneous charge distribution at the electrode unraveling the mechanism of electric field-enhanced electrochemical activity. Chem Sci 2020. [DOI: 10.1039/d0sc00223b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ observation of heterogeneous charge distribution at the Pt–graphite surface in the hydrogen evolution reaction is realized using scanning ion conductive microscopy.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Yuchen Huang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Lei Cheng
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Hongyan Lu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| |
Collapse
|
44
|
Li L, Zhong C, Feng B, Chen N, Dai J, Bin Lu H, Hu W. Optical imaging of the potential distribution at transparent electrode/solution interfaces. Chem Commun (Camb) 2020; 56:4531-4534. [DOI: 10.1039/d0cc01500h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optical monitoring of the electrode potential and imaging of its distribution on transparent electrodes are achieved by using OIRD technology.
Collapse
Affiliation(s)
- Ling Li
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Changyin Zhong
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Bomin Feng
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Nan Chen
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Jun Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Hui Bin Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Weihua Hu
- Institute for Clean Energy & Advanced Materials
- School of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
45
|
Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T. Development of high-speed ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123704. [PMID: 31893861 DOI: 10.1063/1.5118360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning ion conductance microscopy (SICM) can image the surface topography of specimens in ionic solutions without mechanical probe-sample contact. This unique capability is advantageous for imaging fragile biological samples but its highest possible imaging rate is far lower than the level desired in biological studies. Here, we present the development of high-speed SICM. The fast imaging capability is attained by a fast Z-scanner with active vibration control and pipette probes with enhanced ion conductance. By the former, the delay of probe Z-positioning is minimized to sub-10 µs, while its maximum stroke is secured at 6 μm. The enhanced ion conductance lowers a noise floor in ion current detection, increasing the detection bandwidth up to 100 kHz. Thus, temporal resolution 100-fold higher than that of conventional systems is achieved, together with spatial resolution around 20 nm.
Collapse
Affiliation(s)
- Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoko Kitazawa
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
46
|
Sun L, Shigyou K, Ando T, Watanabe S. Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production. Anal Chem 2019; 91:14080-14084. [PMID: 31589026 DOI: 10.1021/acs.analchem.9b03848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.
Collapse
Affiliation(s)
- Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| |
Collapse
|
47
|
Wu F, Zhou B, Wang J, Zhong M, Das A, Watkinson M, Hing K, Zhang DW, Krause S. Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges. Anal Chem 2019; 91:5896-5903. [DOI: 10.1021/acs.analchem.9b00304] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Wu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Bo Zhou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Muchun Zhong
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Anirban Das
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Michael Watkinson
- The Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, U.K
| | - Karin Hing
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - De-Wen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
48
|
|
49
|
Jin R, Ye X, Fan J, Jiang D, Chen HY. In Situ Imaging of Photocatalytic Activity at Titanium Dioxide Nanotubes Using Scanning Ion Conductance Microscopy. Anal Chem 2019; 91:2605-2609. [PMID: 30672278 DOI: 10.1021/acs.analchem.8b05311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this letter, in situ imaging of the photocatalytic activity of titanium dioxide (TiO2) nanotubes for the degradation of an organic pollutant (i.e., Rhodamine B (RhB)) is realized with nanometer resolution using scanning ion conductance microscopy (SICM). Upon illumination, the separated electrons and holes at the nanotubes induce oxidation of RhB to produce the more positively charged Rhodamine 123 (Rh 123), which leads to increased ionic current through the capillary orifice and an elevated apparent altitude in the SICM image. Active sites with higher activity on the nanotubes exhibit a significant high spatial-resolution character. The successful imaging of the photocatalytic activity of TiO2 nanotubes should provide an in situ approach for local investigation of the photocatalytic process at the catalyst.
Collapse
Affiliation(s)
- Rong Jin
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Xiangdong Ye
- School of Mechanical and Electrical Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jia Fan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| |
Collapse
|
50
|
Tao L, Qiao M, Jin R, Li Y, Xiao Z, Wang Y, Zhang N, Xie C, He Q, Jiang D, Yu G, Li Y, Wang S. Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angew Chem Int Ed Engl 2019; 58:1019-1024. [DOI: 10.1002/anie.201810207] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Man Qiao
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Rong Jin
- School of Chemistry and Chemical EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Yan Li
- College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Zhaohui Xiao
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Yuqing Wang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Nana Zhang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Qinggang He
- College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Dechen Jiang
- School of Chemistry and Chemical EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Gang Yu
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| | - Yafei Li
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 P. R. China
| |
Collapse
|