1
|
Cheng C, Li Z, Zhao D, Han C. Facile synthesis and anion binding properties of a preorganized macrocyclic receptor. Org Biomol Chem 2025; 23:593-597. [PMID: 39618241 DOI: 10.1039/d4ob01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Herein, we report a novel Schiff base macrocyclic receptor (MR). The structure of MR was characterized by NMR, UV-vis and fluorescence spectroscopy, revealing that it was a rigid and preorganized planar π-conjugated fluorescent macrocycle. Furthermore, MR showed effective binding properties with tetrabutylammonium halides TBAX (X = Cl, Br, and I) which were investigated by the NMR titration method and molecular modelling.
Collapse
Affiliation(s)
- Channi Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Zhengxiang Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Dezhi Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Chengyou Han
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| |
Collapse
|
2
|
Mondal A, Barik GK, Sarkar S, Shivpuje U, Mondal J, Santra MK, Talukdar P. Apoptosis-Inducing Activity of a 2-Hydroxyphenyl Benzamide-Based Self-Assembled Anion Channel. Chemistry 2025; 31:e202403252. [PMID: 39614826 DOI: 10.1002/chem.202403252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Despite the significant interest in designing artificial ion channels, there is limited availability of channel-forming molecules to tackle complex issues, especially in biological systems. Moreover, a major challenge is the scarcity of chloride transporters that can selectively induce toxicity in cancer cells while minimizing harm to normal healthy cells. This work reports a series of 2-hydroxyphenyl benzamide-based small molecules 1 a-1 c, which self-assemble to form barrel rosette-type artificial ion channels that adequately transport chloride ions across membranes. The formation of these ion channels primarily relies on intermolecular hydrogen bonding and π-π stacking interactions, as supported by the analysis of single-crystal X-ray diffraction and molecular dynamics (MD) simulations. Importantly, chloride ion transport by these compounds specifically triggers apoptosis in cancer cells while demonstrating relatively low toxicity toward non-cancerous cell lines.
Collapse
Affiliation(s)
- Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | | | - Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046, Telangana, India
| | - Umesh Shivpuje
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046, Telangana, India
| | | | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
3
|
Yan T, Liu J. Transmembrane Ion Channels: From Natural to Artificial Systems. Angew Chem Int Ed Engl 2025; 64:e202416200. [PMID: 39545394 DOI: 10.1002/anie.202416200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/17/2024]
Abstract
Natural channel proteins allow the selective permeation of ions, water or other nutritious entities across bilayer membranes, facilitating various essential physiological functions in living systems. Inspired by nature, chemists endeavor to simulate the structural features and transport behaviors of channel proteins through biomimetic strategies. In this review, we start from introducing the inherent traits of channel proteins such as their crystal structures, functions and mechanisms. Subsequently, different kind of synthetic ion channels including their design principles, dynamic regulations and therapeutic applications were carefully reviewed. Finally, the potential challenges and opportunities in this research field were also carefully discussed. It is anticipated that this review could provide some inspiring ideas and future directions towards the construction of novel bionic ion channels with higher-level structures, properties, functions and practical applications.
Collapse
Affiliation(s)
- Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
4
|
Mao L, Hou S, Shi L, Guo J, Zhu B, Sun Y, Chang J, Xin P. Synthetic anion channels: achieving precise mimicry of the ion permeation pathway of CFTR in an artificial system. Chem Sci 2024; 16:371-377. [PMID: 39620072 PMCID: PMC11605520 DOI: 10.1039/d4sc06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a naturally occurring anion channel essential for numerous biological processes, possesses a positively charged ion conduction pathway within its transmembrane domain, which serves as the core module for promoting the movement of anions across cell membranes. In this study, we developed novel artificial anion channels by rebuilding the positively charged ion permeation pathway of the CFTR in artificial systems. These synthetic molecules can be efficiently inserted into lipid bilayers to form artificial ion channels, which exhibit a preference for anions during the transmembrane transport process. More importantly, the positively charged amino acid residues located in the ion permeation pathway of these artificial channels can promote the transmembrane transport of anions through electrostatic interactions, which is consistent with the mechanism of anion transmembrane transport achieved by CFTR.
Collapse
Affiliation(s)
- Linlin Mao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Shuaimin Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University Macao 999078 China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| |
Collapse
|
5
|
Ahmad M, Sarkar S, Bhogade R, Mondal A, Mondal D, Mondal J, Talukdar P. Dynamic regulation of ion transport through a bis(1,3-propanediol)-based channel via allosteric azobenzene photoswitching. NANOSCALE 2024. [PMID: 39688448 DOI: 10.1039/d4nr01711k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The transportation of ions across cell membranes is vital in biological functions and is frequently controlled by external triggers like light, ligands, and voltage. Synthetic ion transport systems, particularly those featuring gating mechanisms, have attracted considerable interest. In this research, we engineered self-assembled barrel rosette ion channels using a photoresponsive azobenzene integrated at an allosteric site. Morphological studies verified more effective self-assembly of the trans form in contrast to the cis form. The restricted self-assembly of the cis form can be ascribed to the nonplanar structure of cis azobenzene moieties, which inhibits favorable π-π stacking interactions. The ion transport studies demonstrated the formation of ion channels by the trans form with anion antiport as the primary transport mechanism. In contrast, the cis form exhibited lower efficiency. Based on these observations, dynamically gated ion transport was achieved by employing two sets of electromagnetic radiation at 365 nm and 450 nm, respectively. Molecular dynamics simulation studies demonstrated that the channel formed by assembling trans monomers exhibited greater stability when compared to the channel formed by cis monomers. Additionally, the trans channel was found to recognize and transport chloride effectively.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Ravindra Bhogade
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
6
|
Liu S, Xu W, Zheng J, Ngocho K, Chen H, Wang K, Xiong S, He X, Liu J. G-quadruplex-Based Artificial Transmembrane Channels Induce Cancer Cell Apoptosis by Perturbing Potassium Ion Homeostasis. Adv Healthc Mater 2024; 13:e2402023. [PMID: 39092635 DOI: 10.1002/adhm.202402023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Transmembrane ion transport modality has received a widespread attention due to its apoptotic activation toward anticancer cell activities. In this study, G-quadruplex-based potassium-specific transmembrane channels have been developed to facilitate the intracellular K+ efflux, which perturbs the cellular ion homeostasis thereby inducing cancer cell apoptosis. Cholesterol-tag, a lipophilic anchor moiety, serves as a rudiment for the G-quadruplex immobilization onto the membrane, while G-quadruplex channel structure as a transport module permits ion binding and migration along the channels. A c-Myc sequence tagged with two-cholesterol is designed as a representative lipophilic G-quadruplex, which forms intramolecular parallel G-quadruplex with three stacks of G-quartets (Ch2-Para3). Fluorescence transport assay demonstrates Ch2-Para3 a high transport activity (EC50 = 10.9 × 10-6 m) and an ion selectivity (K+/Na+ selectivity ratio of 84). Ch2-Para3 mediated K+ efflux in cancer cells is revealed to purge cancer cells through K+ efflux-mediated cell apoptosis, which is confirmed by monitoring the changes in membrane potential of mitochondria, leakage of cytochrome c, reactive oxygen species yield, as well as activation of a family of caspases. The lipophilic G-quadruplex exhibits obvious antitumor activity in vivo without systemic toxicity. This study provides a functional scheme aimed at generating DNA-based selective artificial membrane channels for the purpose of regulating cellular processes and inducing cell apoptosis, which shows a great promising for anticancer therapy in the future.
Collapse
Affiliation(s)
- Shuangna Liu
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Wanyu Xu
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zheng
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Kleins Ngocho
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Hui Chen
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, P. R. China
| | - Xiaoxiao He
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
7
|
Ren B, Sun Y, Xin P. Recent Advances in Artificial Anion Channels and Their Selectivity. Chempluschem 2024; 89:e202400466. [PMID: 39212532 DOI: 10.1002/cplu.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nature performs critical physiological functions using a series of structurally and functionally diverse membrane proteins embedded in cell membranes, in which native ion protein channels modify the electrical potential inside and outside the cell membrane through charged ion movements. Consequently, the cell responds to external stimuli, playing an essential role in various life activities, such as nerve excitation conduction, neurotransmitter release, muscle movement, and control of cell differentiation. Supramolecular artificial channels, which mimic native protein channels in structure and function, adopt unimolecular or self-assembled structures, such as crown ethers, cyclodextrins, cucurbiturils, column arenes, cyclic peptide nanotubes, and metal-organic artificial channels, in channel construction strategies. Owing to the various driving forces involved, artificial synthetic ion channels can be divided into artificial cation and anion channels in terms of ion selectivity. Cation selectivity usually originates from ion coordination, whereas anion selectivity is related to hydrogen bonding, ion pairing, and anion-dipole interactions. Several studies have been conducted on artificial cation channels, and several reviews have summarized them in detail; however, the research on anions is still in the initial stages, and related reviews have rarely been reported. Hence, this article primarily focuses on the recent research on anion channels.
Collapse
Affiliation(s)
- Bowen Ren
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
8
|
Ahmad M, Flerin M, Tay HM, Thompson AL, Duarte F, Langton MJ. Stimuli-responsive anion transport utilising caged hydrazone-based anionophores. NANOSCALE 2024; 16:21545-21553. [PMID: 39480659 DOI: 10.1039/d4nr03220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Ion transport across biological membranes, facilitated by naturally occurring ion channels and pumps, plays a crucial role in biological processes. Gating is an important aspect of these systems, whereby transport is regulated by a range of external stimuli such as light, ligands and membrane potential. While synthetic ion transport systems, especially those with gating mechanisms, are rare, they have garnered significant attention due to their potential applications in targeted therapeutics as anticancer agents or to treat channelopathies. In this work, we report stimuli-responsive anion transporters based on dynamic hydrogen bonding interactions of hydroxyl-functionalised hydrazone anionophores. Caging of the hydroxyl groups with moities that are responsive to light and H2S locks the hydrazone protons through intramolecular hydrogen bonding, rendering them unavailable for anion binding and transport. Upon decaging with light or H2S, the hydrogen bonding pattern is reversed, rendering the hydrazone protons available for anion binding, and leading to efficient switch-on of ion transport across the lipid bilayer membrane.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Martin Flerin
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Hui Min Tay
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Amber L Thompson
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fernanda Duarte
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
9
|
Zhu W, Xu Z, Zhang W, Jia Q, Hao H, Gu Y, Zhao Y. Bioinspired Ion Host with Buried and Consecutive Binding Sites for Controlled Ion Dislocation. JACS AU 2024; 4:4415-4422. [PMID: 39610723 PMCID: PMC11600180 DOI: 10.1021/jacsau.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/30/2024]
Abstract
This study presents a bioinspired ion host featuring continuous binding sites arranged in a tunnel-like structure, closely resembling the selectivity filter of natural ion channels. Our investigation reveals that ions traverse these sites in a controlled, sequential manner due to the structural constraints, effectively mimicking the ion translocation process observed in natural channels. Unlike systems with open binding sites, our model facilitates sequential ion recognition state transitions, enabled by the deliberate design of the tunnel. Notably, we observe dual ion release kinetics, highlighting the system's capacity to maintain ion balance in complex environments and adapt to changing conditions. Additionally, we demonstrate selective binding of two different ions-a challenging task for systems lacking structured tunnels.
Collapse
Affiliation(s)
- Wenjie Zhu
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wei Zhang
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Qi Jia
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Haoliang Hao
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yucheng Gu
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Yanchuan Zhao
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Akhtar N, Conthagamage UNK, Bucher SP, Abdulsalam ZA, Davis ML, Beavers WN, García-López V. Thiourea-based rotaxanes: anion transport across synthetic lipid bilayers and antibacterial activity against Staphylococcus aureus. MATERIALS ADVANCES 2024; 5:8534-8545. [PMID: 39386009 PMCID: PMC11457908 DOI: 10.1039/d4ma00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
We report the synthesis of two rotaxanes (1 and 2) whose rings have appended thiourea units for the selective recognition of Cl- anions. Rotaxane 1 transports Cl- across synthetic lipid bilayers more efficiently than 2, exhibiting EC50 values of 0.243 mol% versus 0.736 mol%, respectively. A control rotaxane (3) without the thiourea units and the individual axle (4) also showed Cl- transport, although with much lower efficiency (EC50 values of 4.044 mol% and 4.986 mol%). The unthreaded ring (5) showed the lowest transport activity. This trend highlights the advantage of the interlocked system with a ring containing thiourea units. We also investigated how the membrane composition of liposomes influences the transport activity of 1 and 2, observing higher Cl- transport in membranes with higher fluidity. Additionally, we demonstrated that rotaxane 1 can kill drug-resistant and osmotolerant Staphylococcus aureus when used in combination with NaCl or arachidonic acid. The latter is known to increase the fluidity of the membrane in S. aureus, highlighting cooperative behavior. This work provides new insights into how various structural features and the membrane environment influence the anion transport activity of rotaxanes, offering important design principles for optimizing future rotaxanes for biomedical and other applications.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | | | - Sara P Bucher
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge LA 70803 USA
| | - Zuliah A Abdulsalam
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | - Macallister L Davis
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge LA 70803 USA
| | - Víctor García-López
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
11
|
Chattopadhayay S, Wanjari P, Talukdar P. Acylhydrazone-based reversibly photoswitchable ion pair transporter with OFF-ON cotransport activity. Chem Sci 2024; 15:d4sc02474e. [PMID: 39355225 PMCID: PMC11440441 DOI: 10.1039/d4sc02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The cellular membrane transport of physiologically important cations and anions is omnipresent and regulates different physiological functions. Whereas a notable number of cation-anion transporters are being developed to transport salts across the membrane, developing an artificial cation-anion symporter with stimulus-responsive activities is an immense obstacle. Herein, for the first time, we report reversibly photoswitchable acylhydrazone-based transporter 2 that has distinctive OFF-ON cation-anion co-transport abilities. The substituent was modified in 1a-1c and 2, to change the to-and-fro movement of the transporter to enhance the ion transport efficiency. Ion transport experiments across the lipid bilayer membrane demonstrate that 1a has the highest transport activity among the series with irreversible photoisomerization properties, whereas 2 has a unique reversible photoisomerization property. A detailed transport study indicated that the E-conformer of compound 2 facilitates Na+/Cl- transport via the symport process by following the carrier mode of ion transport. 23Na NMR and chloride selective electrode assays confirmed the OFF and ON state of ion transport of compound 2 with photoirradiation. An assembly of [(2 E )2 + NaCl] was subjected to geometry optimization to understand the responsible ion binding motif. Geometry optimization followed by the natural bond orbital analysis of 1a Z and 2 Z demonstrated that 1a Z forms comparatively stronger intramolecular H-bonding than 2 Z , making it accessible for reversible photoisomerization.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Paras Wanjari
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| |
Collapse
|
12
|
Wang P, Fares M, Eladwy RA, Bhuyan DJ, Wu X, Lewis W, Loeb SJ, Macreadie LK, Gale PA. Platinum-based metal complexes as chloride transporters that trigger apoptosis. Chem Sci 2024; 15:11584-11593. [PMID: 39055016 PMCID: PMC11268493 DOI: 10.1039/d4sc02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
In this paper we demonstrate that Pt(ii) complexes can function as efficient transmembrane chloride transporters. A series of Pt(ii) metal complexes with urea-appended isoquinoline ligands were synthesised and operate via classical hydrogen bonding interactions rather than ligand exchange. A number of the complexes exhibited potent transmembrane chloride activity in vesicle studies, while also showing strong antiproliferative activity in cisplatin-resistant cell lines via induction of apoptosis and inhibition of intracellular ROS.
Collapse
Affiliation(s)
- Patrick Wang
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Radwa A Eladwy
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Deep J Bhuyan
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Xin Wu
- School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 Fujian China
| | - William Lewis
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor Ontario N9B 3P4 Canada
| | | | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Ultimo NSW 2007 Australia
| |
Collapse
|
13
|
García-Valdespino F, Elizalde-Velázquez GA, Herrera-Vázquez SE, Gómez-Oliván LM. Captopril's influence on Danio rerio embryonic development: Unveiling significant toxic outcomes at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173179. [PMID: 38750761 DOI: 10.1016/j.scitotenv.2024.173179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Anticipating a global increase in cardiovascular diseases, there is an expected surge in the use of angiotensin-converting enzyme inhibitors, notably captopril (CAP). This heightened usage raises significant environmental apprehensions, mainly due to limited knowledge regarding CAP's toxic effects on aquatic species. In response to these concerns, the current study aimed to tackle this knowledge gap by evaluating the potential influence of nominal concentrations of CAP (0.2-2000 μg/L) on the embryonic development of Danio rerio. The findings revealed that CAP at all concentrations, even at concentrations considered environmentally significant (0.2 and 2 μg/L), induced various malformations in the embryos, ultimately leading to their mortality. Main malformations included pericardial edema, craniofacial malformation, scoliosis, tail deformation, and yolk sac deformation. In addition, CAP significantly altered the antioxidant activity of superoxide dismutase and catalase across all concentrations. Simultaneously, it elevated lipid peroxidation levels, hydroperoxides, and carbonylic proteins in the embryos, eliciting a substantial oxidative stress response. Likewise, CAP, at all concentrations, exerted significant modulatory effects on the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3), organogenesis (tbx2a, tbx2b, and irx3b), and ion exchange (slc12a1 and kcnj1) in Danio rerio embryos. Both augmentation and reduction in the expression levels of these genes characterized this modulation. The Pearson correlation analysis indicated a close association between oxidative damage biomarkers and the expression patterns of all examined genes with the elevated incidence of malformations and mortality in the embryos. In summary, it can be deduced that CAP poses a threat to aquatic species. Nevertheless, further research is imperative to enhance our understanding of the environmental implications of this pharmaceutical compound.
Collapse
Affiliation(s)
- Fernando García-Valdespino
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
14
|
Ling QH, Fu Y, Lou ZC, Yue B, Guo C, Hu X, Lu W, Hu L, Wang W, Zhang M, Yang HB, Xu L. Naphthalene Diimide-Based Metallacage as an Artificial Ion Channel for Chloride Ion Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308181. [PMID: 38459671 DOI: 10.1002/advs.202308181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Indexed: 03/10/2024]
Abstract
Developing synthetic molecular devices for controlling ion transmembrane transport is a promising research field in supramolecular chemistry. These artificial ion channels provide models to study ion channel diseases and have huge potential for therapeutic applications. Compared with self-assembled ion channels constructed by intermolecular weak interactions between smaller molecules or cyclic compounds, metallacage-based ion channels have well-defined structures and can exist as single components in the phospholipid bilayer. A naphthalene diimide-based artificial chloride ion channel is constructed through efficient subcomponent self-assembly and its selective ion transport activity in large unilamellar vesicles and the planar lipid bilayer membrane by fluorescence and ion-current measurements is investigated. Molecular dynamics simulations and density functional theory calculations show that the metallacage spans the entire phospholipid bilayer as an unimolecular ion transport channel. This channel transports chloride ions across the cell membrane, which disturbs the ion balance of cancer cells and inhibits the growth of cancer cells at low concentrations.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Zhen-Chen Lou
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bangkun Yue
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518055, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
15
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
16
|
Chattopadhayay S, Ghosh A, Kumar Mukhopadhyay T, Sharma R, Datta A, Talukdar P. Supramolecular Barrel-Rosette Ion Channel Based on 3,5-Diaminobenzoic Acid for Cation-Anion Symport. Angew Chem Int Ed Engl 2023; 62:e202313712. [PMID: 37732556 DOI: 10.1002/anie.202313712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
The structural tropology and functions of natural cation-anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small-molecule-based biomimicking systems that can provide mechanistic insights into the ion-binding sites and the ion-translocation pathways. Herein, we report a series of bis((R)-(-)-mandelic acid)-linked 3,5-diaminobenzoic acid based self-assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co-transporting functions, i.e., facilitates K+ /ClO4 - symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Å and single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio ofP C l - / P K + = 0 . 053 ± 0 . 02 ${{P}_{{Cl}^{-}}/{P}_{{K}^{+}}=0.053\pm 0.02}$ ,P C l O 4 - / P C l - = 2 . 1 ± 0 . 5 ${{P}_{{ClO}_{4}^{-}}/{P}_{{Cl}^{-}}=2.1\pm 0.5}$ , andP K + / P N a + = 1 . 5 ± 1 , ${{P}_{{K}^{+}}/{P}_{{Na}^{+}}=1.5\pm 1,}$ indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Rashmi Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
17
|
Shen J, R D, Li Z, Oh H, Behera H, Joshi H, Kumar M, Aksimentiev A, Zeng H. Sulfur-Containing Foldamer-Based Artificial Lithium Channels. Angew Chem Int Ed Engl 2023; 62:e202305623. [PMID: 37539755 DOI: 10.1002/anie.202305623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Unlike many other biologically relevant ions (Na+ , K+ , Ca2+ , Cl- , etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.
Collapse
Affiliation(s)
- Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Deepa R
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Harekrushna Behera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Himanshu Joshi
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
18
|
Ahmad M, Roy NJ, Singh A, Mondal D, Mondal A, Vijayakanth T, Lahiri M, Talukdar P. Photocontrolled activation of doubly o-nitrobenzyl-protected small molecule benzimidazoles leads to cancer cell death. Chem Sci 2023; 14:8897-8904. [PMID: 37621434 PMCID: PMC10445434 DOI: 10.1039/d3sc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability. Here, in this work, we report o-nitrobenzyl-linked, benzimidazole-based singly and doubly protected photocaged protransporters 2a, 2b, 3a, and 3b, respectively, and benzimidazole-2-amine-based active transporters 1a-1d. Among the active compounds, trifluoromethyl-based anionophore 1a showed efficient ion transport activity (EC50 = 1.2 ± 0.2 μM). Detailed mechanistic studies revealed Cl-/NO3- antiport as the main ion transport process. Interestingly, double protection with photocages was found to be necessary to achieve the complete "OFF-state" that could be activated by external light. The procarriers were eventually activated inside the MCF-7 cancer cells to induce phototoxic cell death.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Anurag Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 6997801 Israel
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
19
|
Chen Y, Barba-Bon A, Grüner B, Winterhalter M, Aksoyoglu MA, Pangeni S, Ashjari M, Brix K, Salluce G, Folgar-Cameán Y, Montenegro J, Nau WM. Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides. J Am Chem Soc 2023; 145:13089-13098. [PMID: 37265356 PMCID: PMC10288510 DOI: 10.1021/jacs.3c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
Collapse
Affiliation(s)
- Yao Chen
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Andrea Barba-Bon
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Bohumir Grüner
- Institute
of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | | | - M. Alphan Aksoyoglu
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Sushil Pangeni
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Maryam Ashjari
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Klaudia Brix
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Giulia Salluce
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Werner M. Nau
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
20
|
Biswas R, Samanta K, Ghorai S, Maji S, Natarajan R. Conformationally Flexible Cleft Receptor for Chloride Anion Transport. ACS OMEGA 2023; 8:19625-19631. [PMID: 37305253 PMCID: PMC10249377 DOI: 10.1021/acsomega.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
The design and synthesis of a cleft-shaped bis-diarylurea receptor for chloride anion transport is reported in this work. The receptor is based on the foldameric nature of N,N'-diphenylurea upon its dimethylation. The bis-diarylurea receptor exhibits a strong and selective affinity for chloride over bromide and iodide anions. A nanomolar quantity of the receptor efficiently transports the chloride across a lipid bilayer membrane as a 1:1 complex (EC50 = 5.23 nm). The work demonstrates the utility of the N,N'-dimethyl-N,N'-diphenylurea scaffold in anion recognition and transport.
Collapse
Affiliation(s)
- Raju Biswas
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishanu Samanta
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandipan Ghorai
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Maji
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramalingam Natarajan
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Jin L, Sun C, Li Z, Shen J, Zeng H. A K +-selective channel with a record-high K +/Na + selectivity of 20.1. Chem Commun (Camb) 2023; 59:3610-3613. [PMID: 36891811 DOI: 10.1039/d2cc04396c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
For compounds each containing a phenylalanine moiety with its two ends amidated to have a 15-crown-5 unit and an alkyl chain, a simple tuning of the alkyl chain length delivered a K+-selective channel with a record-high K+/Na+ selectivity of 20.1.
Collapse
Affiliation(s)
- Lei Jin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
| | - Chang Sun
- College of Textile Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
22
|
Wang Y, Yang Y, Dang C, Lu B, Luo Y, Fu J. Is it really safe to replace decabromodiphenyl ether (BDE209) with decabromodiphenyl ethane (DBDPE)?: A perspective from hepatotoxicity. ENVIRONMENTAL TOXICOLOGY 2023; 38:844-856. [PMID: 36660779 DOI: 10.1002/tox.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this paper, the hepatocytotoxicity and aryl hydrocarbon receptor (AHR) activity of decabromodiphenyl ethane (DBDPE), decabromodiphenyl ether (BDE209) and other 18 analogues were evaluated in vitro using human normal liver cell L02. These dioxin-like compounds showed differential hepatocytotoxicity (EC50 = 0.38-17.87 mg/L) and AHR activity (EROD activity = 4.53-46.35 U/μg). In silico study indicated the distance of π-π bonds between the benzene ring of compounds and residue Phe234 of AHR played a key role in the binding of AHR, and the substituents on the benzene ring also influenced the activity. Combining molecular biology and bioomics, the comprehensive investigations on the hepatotoxic mechanisms have demonstrated the AHR signaling pathway was the key mediation mechanism for the hepatotoxicity of DBDPE/BDE209. The cytochrome P450s (CYP2 family) mediated formation of reactive oxygenated intermediates might be the dominant toxic mechanism, which could produce oxidative stress or cause genotoxicity. Although the experimental toxicity of DBDPE was smaller relative to BDE209, the health risk of DBDPE may be much greater than we expected, due to the high potential to form a variety of dioxin-like intermediates by microbial oxidation of ethyl group. Therefore, whether it is really safe to replace BDE209 with DBDPE is a debatable question, and more ecotoxicological and health data are needed to clarify this issue.
Collapse
Affiliation(s)
- Yanting Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yushun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yin Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Mondal A, Barik GK, Sarkar S, Mondal D, Ahmad M, Vijayakanth T, Mondal J, Santra MK, Talukdar P. Nontoxic Artificial Chloride Channel Formation in Epithelial Cells by Isophthalic Acid-Based Small Molecules. Chemistry 2023; 29:e202202887. [PMID: 36399427 DOI: 10.1002/chem.202202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Artificial channels capable of facilitating the transport of Cl- ions across cell membranes while being nontoxic to the cells are rare. Such synthetic ion channels can mimic the functions of membrane transport proteins and, therefore, have the potential to treat channelopathies by replacing defective ion channels. Here we report isophthalic acid-based structurally simple molecules 1 a and 2 a, which self-assemble to render supramolecular nanochannels that allow selective transport of Cl- ions. As evident from the single-crystal X-ray diffraction analysis, the self-assembly is governed by intermolecular hydrogen bonding and π-π stacking interactions. The MD simulation studies for both 1 a and 2 a confirmed the formation of stable Cl- channel assembly in the lipid membrane and Cl- transport through them. The MQAE assay showed the efficacy of the compounds in delivering Cl- ions into cells, and the MTT assays proved that the compounds are nontoxic to cells even at a concentration of 100 μM.
Collapse
Affiliation(s)
- Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | | | - Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046, Telangana, India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046, Telangana, India
| | | | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
24
|
Mondal A, Ahmad M, Mondal D, Talukdar P. Progress and prospects toward supramolecular bioactive ion transporters. Chem Commun (Camb) 2023; 59:1917-1938. [PMID: 36691926 DOI: 10.1039/d2cc06761g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The majority of cellular physiological processes depend on natural ion channels, which are pore-forming membrane-embedded proteins that let ions flow across the cell membranes selectively. This selective movement of ions across the membranes balances the osmolality within and outside the cell. However, mutations in the genes that encode essential membrane transport proteins or structural reorganisation of these proteins can cause life-threatening diseases like cystic fibrosis. Artificial ion transport systems have opened up a way to replace dysfunctional natural ion channels to cure such diseases through channel replacement therapy. Moreover, recent research has also demonstrated the ability of these systems to kill cancer cells, reigniting interest in the field among scientists. Our contributions to the recent progress in the design and development of artificial chloride ion transporters and their effect on biological systems have been discussed in this review. This review would provide current vistas and future directions toward the development of novel ion transporters with improved biocompatibility and desired anti-cancer properties. Additionally, it strongly emphasises stimuli-responsive ion transport systems, which are crucial for obtaining target-specificity and may speed up the application of these systems in clinical therapeutics.
Collapse
Affiliation(s)
- Abhishek Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Manzoor Ahmad
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Debashis Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirkii Wigury 101, Warsaw 02-089, Poland
| | - Pinaki Talukdar
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
25
|
Xin P, Xu L, Dong W, Mao L, Guo J, Bi J, Zhang S, Pei Y, Chen CP. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angew Chem Int Ed Engl 2023; 62:e202217859. [PMID: 36583482 DOI: 10.1002/anie.202217859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Collapse
Affiliation(s)
- Pengyang Xin
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linqi Xu
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linlin Mao
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, 999078, China
| | - Jingjing Bi
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Shouwei Zhang
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yan Pei
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
26
|
Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination. Nat Commun 2022; 13:6507. [PMID: 36316309 PMCID: PMC9622825 DOI: 10.1038/s41467-022-34159-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Stimulus-responsive reversible transformation between two structural conformers is an essential process in many biological systems. An example of such a process is the conversion of amyloid-β peptide into β-sheet-rich oligomers, which leads to the accumulation of insoluble amyloid in the brain, in Alzheimer's disease. To reverse this unique structural shift and prevent amyloid accumulation, β-sheet breakers are used. Herein, we report a series of bis(indole)-based biofunctional molecules, which form a stable double helix structure in the solid and solution state. In presence of chloride anion, the double helical structure unwinds to form an anion-coordinated supramolecular polymeric channel, which in turn rewinds upon the addition of Ag+ salts. Moreover, the formation of the anion-induced supramolecular ion channel results in efficient ion transport across lipid bilayer membranes with excellent chloride selectivity. This work demonstrates anion-cation-assisted stimulus-responsive unwinding and rewinding of artificial double-helix systems, paving way for smart materials with better biomedical applications.
Collapse
|
28
|
Cholesterol-stabilized membrane-active nanopores with anticancer activities. Nat Commun 2022; 13:5985. [PMID: 36216956 PMCID: PMC9551035 DOI: 10.1038/s41467-022-33639-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively. Bacterial cells utilize cholesterol-enhanced pore formation to specifically target eukaryotic cells. Here, the authors present a class of bio-inspired, cholesterol-enhanced nanopores which display anticancer activities in vitro.
Collapse
|
29
|
Zhang T, Hong XQ, Zhi HT, Hu J, Chen WH. Synthesis and mechanism of biological action of morpholinyl-bearing arylsquaramides as small-molecule lysosomal pH modulators. RSC Adv 2022; 12:22748-22759. [PMID: 36105976 PMCID: PMC9376937 DOI: 10.1039/d2ra02146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Lysosomal pH is an important modulator for many cellular processes. An agent that is capable of regulating lysosomal pH may find a wide range of potential applications in the field of biomedicine. In this study, we describe the synthesis of a family of morpholinyl-bearing arylsquaramides as small-molecule lysosomal pH modulators. These compounds are able to efficiently facilitate the transmembrane transport of chloride anions as mobile carriers across vesicular and cellular phospholipid membranes. They are capable of specifically alkalizing liposomes, disrupting the homeostasis of lysosomal pH and inactivivating lysosomal Cathepsin B enzyme. Anion transport is considered as the probable mechanism of action for the high efficiency of these compounds to modulate lysosomal pH. The present findings present a novel means to efficiently regulate lysosomal pH, which is in contrast to the methods shown by conventional lysosomal pH modulators that generally function by either acting as a weak base/acid, or releasing a basic/acidic component in lysosomal environments to change lysosomal pH.
Collapse
Affiliation(s)
- Tao Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Xiao-Qiao Hong
- School of Pharmaceutical Sciences, Tsinghua University Haidian Dist Beijing 100084 P. R. China
| | - Hai-Tao Zhi
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| |
Collapse
|
30
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
31
|
Ion transporters: emerging agents for anticancer therapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Malla JA, Upadhyay A, Ghosh P, Mondal D, Mondal A, Sharma S, Talukdar P. Chloride Transport across Liposomes and Cells by Nontoxic 3-(1 H-1,2,3-Triazol-1-yl)benzamides. Org Lett 2022; 24:4124-4128. [PMID: 35657329 DOI: 10.1021/acs.orglett.2c01219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic anion transmembrane transporters are adding new aspirations for treating channelopathies by replacing defective ion channels. The availability of such suitable candidates is still infrequent due to the associated toxicity. Here, we report 3-(1H-1,2,3-triazol-1-yl)benzamides as transmembrane anion carriers, nontoxic to cells. The selective and electrogenic chloride transport activity was established by fluorescence and ion selective electrode-based assays. MQAE assay confirmed the chloride uptake into the cells by the nontoxic compounds.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Avisikta Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, 411007 Pune, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
33
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
34
|
Abstract
Both biological and artificial membrane transporters mediate passive transmembrane ion flux predominantly via either channel or carrier mechanisms, tightly regulating the transport of materials entering and exiting the cell. One early elegant example unclassifiable as carriers or channels was reported by Smith who derivatized a phospholipid molecule into an anion transporter, facilitating membrane transport via a two-station relay mechanism (Smith et al. J. Am. Chem. Soc. 2008, 130, 17274-17275). Our journey toward blurring or even breaking the boundaries defined by the carrier and channel mechanisms starts in January of 2018 when seeing a child swinging on the swing at the playground park. Since then, I have been wondering whether we could build a nanoscale-sized molecular swing able to perform the swing function at the molecular level to induce transmembrane ion flux. Such research journey culminates in several membrane-active artificial molecular machines, including molecular swings, ion fishers, ion swimmers, rotors, tetrapuses and dodecapuses that permeabilize the membrane via swinging, ion-fishing, swimming, rotating, or swing-relaying actions, respectively. Except for molecular ion swimmers, these unconventional membrane transporters in their most stable states readily span across the entire membrane in a way akin to channels. With built-in flexible arms that can swing or bend in the dynamic membrane environment, they transport ions via constantly changing ion permeation pathways that are more defined than carriers but less defined than channels. Applying the same benzo-crown ether groups as the sole ion-binding and -transporting units, these transporters however differ immensely in ion transport property. While the maximal K+ transport activity is achieved by the molecular swing also termed "motional channel" that displays an EC50 value of 0.021 mol % relative to lipid and transports K+ ions at rate 27% faster than gramicidin A, the highest K+/Na+ selectivity of 18.3 is attained by the molecular ion fisher, with the highest Na+/K+ selectivity of 13.7 by the molecular dodecapus. Having EC50 values of 0.49-1.60 mol % and K+/Na+ values of 1.1-6.3, molecular rotors and tetrapuses are found to be generally active but weakly to moderately K+-selective. For molecular ion swimmers that contain 10 to 14 carbon atom alkyl linkers, they all turn out to be highly active (EC50 = 0.18-0.41 mol %) and highly selective (RK+/RNa+ = 7.0-9.5) transporters. Of special note are crown ether-appended molecular dodecapuses that establish the C60-fullerene core as an excellent platform to allow for a direct translation of solution binding affinity to transmembrane ion transport selectivity, providing a de novo basis for rationally designing artificial ion transporters with high transport selectivity. Considering remarkable cytotoxic activities displayed by molecular swings and ion swimmers, the varied types of existing and emerging unconventional membrane transporters with enhanced activities and selectivities eventually might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Changliang Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
35
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
36
|
Yuan L, Jiang P, Hu J, Zeng H, Huo Y, Li Z, Zeng H. A highly active and selective chalcogen bond-mediated perchlorate channel. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
38
|
Ahmad M, Mondal D, Roy NJ, Vijayakanth T, Talukdar P. Reversible Stimuli‐Responsive Transmembrane Ion Transport using Phenylhydrazone‐Based Photoswitches. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manzoor Ahmad
- Indian Institute of Science Education and Research Pune Chemistry Department INDIA
| | - Debashis Mondal
- Indian Institute of Science Education and Research Pune Chemistry Department INDIA
| | - Naveen J. Roy
- Indian Institute of Science Education and Research Pune Chemistry Department INDIA
| | | | - Pinaki Talukdar
- Indian Institute of Science Education and Research Pune Department of Chemistry Main BuildingDr. Homi Bhabha Road, Pashan 411008 Pune INDIA
| |
Collapse
|
39
|
Lee D, Ha J, Kang M, Yang Z, Jiang W, Kim BYS. Strategies of Perturbing Ion Homeostasis for Cancer Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - JongHoon Ha
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Minjeong Kang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Zhaogang Yang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Betty Y. S. Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
40
|
Li S, Wu L, Zhu M, Cheng X, Jiang X. Effect of dipole potential on the orientation of Voltage-gated Alamethicin peptides regulated by chaotropic anions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Sharma R, Vijay A, Mukherjee A, Talukdar P. Bis(cholyl)-based chloride channels with oxalamide and hydrazide selectivity filters. Org Biomol Chem 2022; 20:2054-2058. [DOI: 10.1039/d1ob02028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the development of supramolecular bis(cholyl) ion channels by using oxalamide and hydrazide as selectivity filters. The hydrazide system displayed superior chloride transport activity than oxalamide via the formation...
Collapse
|
42
|
Yang J, Yu G, Sessler JL, Shin I, Gale PA, Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Gilchrist AM, Wang P, Carreira-Barral I, Alonso-Carrillo D, Wu X, Quesada R, Gale PA. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1999956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Patrick Wang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roberto Quesada
- Departmento De Química, Universidad De Burgos, Burgos, Spain
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
44
|
Malla JA, Ahmad M, Talukdar P. Molecular Self-Assembly as a Tool to Construct Transmembrane Supramolecular Ion Channels. CHEM REC 2021; 22:e202100225. [PMID: 34766703 DOI: 10.1002/tcr.202100225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Self-assembly has become a powerful tool for building various supramolecular architectures with applications in material science, environmental science, and chemical biology. One such area is the development of artificial transmembrane ion channels that mimic naturally occurring channel-forming proteins to unveil various structural and functional aspects of these complex biological systems, hoping to replace the defective protein channels with these synthetically accessible moieties. This account describes our recent approaches to construct supramolecular ion channels using synthetic molecules and their applications in medicinal chemistry.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
45
|
Abstract
Several life-threatening diseases, also known as 'Channelopathies' are linked to irregularities in ion transport proteins. Significant research efforts have fostered the development of artificial transport systems that facilitates to restore the functions of impaired natural transport proteins. Indeed, a few of these artificial ionophores demonstrate the rare combination of transmembrane ion transport and important biological activity, offering early promises of suitability in 'channel replacement therapy'. In this review, structural facets and functions of both cationophores and anionophores are discussed. Ionophores that are toxic to various bacteria and yeast, could be exploited as antimicrobial agent. Nevertheless, few non-toxic ionophores offer the likelihood of treating a wide range of genetic diseases caused by the gene mutations. In addition, their ability to disrupt cellular homeostasis and to alter lysosomal pH endow ionophores as promising candidates for cancer treatment. Overall, critically outlining the advances in artificial ionophores in terms of in vitro ion transport, possible modes of action and biological activities enables us to propose possible future roadmaps in this research area.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
46
|
Ahmad M, Chattopadhayay S, Mondal D, Vijayakanth T, Talukdar P. Stimuli-Responsive Anion Transport through Acylhydrazone-Based Synthetic Anionophores. Org Lett 2021; 23:7319-7324. [PMID: 34519509 DOI: 10.1021/acs.orglett.1c02249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoswitchable acylhydrazone-based synthetic anionophores are reported. Single-crystal X-ray structure and 1H NMR titration studies confirmed the chloride binding in solid and solution states. The ion transport activity of 1a was greatly attenuated through a phototriggered E to Z photoisomerization process, and the photoisomerized deactivated state showed high kinetic stability due to an intramolecular hydrogen bond. Switchable "OFF-ON" transport activity was achieved by the application of light and acid-catalyzed reactivation process.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
47
|
Horvat G, Tarana S, Vidović N, Cindro N, Speranza G, Tomišić V. Thermodynamic and MD studies of anion complexation by cyclopentaleucine in acetonitrile and dimethyl sulfoxide. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Akhtar N, Biswas O, Manna D. Stimuli-responsive transmembrane anion transport by AIE-active fluorescent probes. Org Biomol Chem 2021; 19:7446-7459. [PMID: 34612363 DOI: 10.1039/d1ob00584g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer drug resistance implicates multifunctional mechanisms, and hypoxia is one of the key factors in therapeutic resistance. Hypoxia-specific therapy is considered an extremely effective strategy to fight against cancer. The development of small molecule-based synthetic anion transporters has also recently drawn attention for their potential therapeutic applications against several ion-transport-associated diseases, such as cancer and others. Herein, we describe the development of a hypoxia-responsive proanionophore to trigger controlled transport of anions across membranes under pathogenic conditions. Herein, we report the development of tetraphenylethene (TPE)-based anion transporters. The sulfonium-linked p-nitrobenzyl containing TPE-based proanionophore could be converted into a lipophilic fluorescent Cl- ion carrier in a hypoxic or reductive environment. Stimuli such as nitroreductase (NTR) and glutathione (GSH) mediated regeneration of the TPE-based active Cl- ion transporter also showed aggregation-induced emission (AIE) properties. We hypothesize that such hypoxia and reductive stimuli activatable proanionophores have tremendous potential to fight against channelopathies, including cancer.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | | |
Collapse
|
49
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
50
|
Mondal A, Malla JA, Paithankar H, Sharma S, Chugh J, Talukdar P. A Pyridyl-Linked Benzimidazolyl Tautomer Facilitates Prodigious H +/Cl - Symport through a Cooperative Protonation and Chloride Ion Recognition. Org Lett 2021; 23:6131-6136. [PMID: 34319120 DOI: 10.1021/acs.orglett.1c02235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report two pyridyl-linked benzimidazolyl hydrazones as HCl cotransporters that are 5 and 2 times superior to prodigiosin, a natural product whose transport efficiency has never been routed by synthetic molecules. These hydrazones provide a suitable HCl binding site through a cooperative protonation and chloride ion recognition. HCl transport by the most active compound induces lysosome deacidification. Viability assays confirmed that the compounds induce cytotoxicity toward human breast cancer MCF-7 cells but are relatively nontoxic toward noncancerous HEK293T cells.
Collapse
Affiliation(s)
- Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra, India
| | - Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra, India
| | - Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007 Maharashtra, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra, India.,Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra, India
| |
Collapse
|