1
|
Liu F, Robinson WL, Kirscht T, Fichthorn KA, Jiang S. Biobased Polymers Enabling the Synthesis of Ultralong Silver Nanowires and Other Nanostructures. NANO LETTERS 2024; 24:14381-14388. [PMID: 39475371 DOI: 10.1021/acs.nanolett.4c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Conventional polyol synthesis of silver nanowires has exclusively relied on polyvinylpyrrolidone (PVP), a nonbiodegradable polymer with no viable alternatives. The underlying reaction mechanism remains unclear. Herein, we discovered a new sustainable solution by employing biobased cellulose derivatives, including hydroxyethyl cellulose (HEC), as effective substitutes for PVP. Under mild reaction conditions (125 °C, ambient pressure), HEC facilitates the growth of ultralong silver nanowires (>100 μm) from penta-twinned silver seeds through a four-stage kinetic process. Theoretical calculations further reveal that HEC is physiosorbed onto the silver surfaces, while the presence of bromide ions (Br-) facilitates the evolution of seeds into nanowires. By varying halide ion concentrations and substitution in different cellulose derivatives, we successfully synthesized silver nanostructures with additional intriguing morphologies, including quasi-spherical nanoparticles, bipyramids, and nanocubes. Furthermore, transparent conductive films fabricated from ultralong silver nanowires synthesized with HEC demonstrated superior performance compared to those made with PVP-synthesized nanowires.
Collapse
Affiliation(s)
- Fei Liu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - William L Robinson
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyler Kirscht
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shan Jiang
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Yu H, Janssen A, Pawlik V, Xia Y. Bipyramidal Nanocrystals of Noble Metals: From Synthesis to Applications. Chemistry 2024; 30:e202402478. [PMID: 39085050 DOI: 10.1002/chem.202402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble-metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.
Collapse
Affiliation(s)
- Hansong Yu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Veronica Pawlik
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, United States
| |
Collapse
|
3
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
4
|
Zhang S, Gao J, Tang F, Wang J, Yao C, Li L. Seedless wet synthesis of copper-twinned nanocrystals. NANOSCALE 2023; 15:18447-18456. [PMID: 37937978 DOI: 10.1039/d3nr04879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The wet synthesis of copper (Cu)-twinned nanostructures often requires the addition of noble metal seeds, as twinned Cu seeds are prone to oxidative etching, which inevitably introduces other metal species. In this study, a universal and seedless wet method is proposed for the synthesis of various Cu-twinned nanostructures, such as large Cu decahedrons (with sizes up to 300 nm), singly twinned Cu right bipyramids, and Cu nanorods. The amount of chloride ions (Cl-) and oleylamine and an optimal heating rate at the initial stage were proven to be crucial in this synthesis. Theoretical results revealed that the amount of Cl- could adjust the Gibbs free energy of Cu seeds by promoting the dissociation of oleylamine, which, in turn, determined the structure of thermodynamically favorable seeds based on the thermodynamic model. To the best of our knowledge, this is the first report on large Cu decahedrons and singly twinned Cu right bipyramids. Moreover, they both showed strong localized surface plasmon resonance in the near-infrared region. The photothermal conversion efficiency of large Cu decahedrons increased up to 52.9% upon 808 nm laser irradiation, which is the highest value ever reported for Cu nanocrystals.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Junheng Gao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Fu Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jie Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
5
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
6
|
Xu H, Chen Z, Hao S, Fichthorn KA, Wiley BJ. Chloride enables the growth of Ag nanocubes and nanowires by making PVP binding facet-selective. NANOSCALE 2023; 15:5219-5229. [PMID: 36807442 DOI: 10.1039/d2nr06762e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Solution-phase synthesis of metal nanocrystals with multiple additives is a common strategy for control over nanocrystal shape, and thus control over their properties. However, few rules are available to predict the effect of multiple capping agents on metal nanocrystal shapes, making it hard to rationally design synthetic conditions. This work uses a combination of seed-mediated growth, single-crystal electrochemistry, and DFT calculations to determine the roles of PVP and Cl- in the anisotropic growth of single-crystal and penta-twinned silver nanocrystals. Single-crystal seeds grow into truncated octahedra bounded by a mixture of {111} and {100} facets in the presence of 0.03-30 mM PVP, but when 3-6 μM Cl- is added with PVP, the single-crystal seeds grow into cubes bounded by {100} facets. Electrochemical measurements on Ag(100) and Ag(111) single-crystal electrodes show PVP is a capping agent but it exhibits no selectivity for a particular facet. Addition of Cl- to PVP further passivates Ag(100) but not Ag(111), leading to conditions that favor formation of nanocubes. DFT calculations indicate the preferential binding of Cl- to Ag(100) causes preferential binding of PVP to Ag(100). The combined results indicate the presence or absence of Cl- modulates binding of PVP to (100) facets, leading to the formation of nanocubes with Cl-, or truncated octahedra without it.
Collapse
Affiliation(s)
- Heng Xu
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | - Zihao Chen
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Spencer Hao
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | - Kristen A Fichthorn
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin J Wiley
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Chen Z, Wang Z, Wang J, Chen S, Zhang B, Li Y, Yuan L, Duan Y. Analysis of the Effect of Graphene, Metal, and Metal Oxide Transparent Electrodes on the Performance of Organic Optoelectronic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:25. [PMID: 36615935 PMCID: PMC9824898 DOI: 10.3390/nano13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Transparent electrodes (TEs) are important components in organic optoelectronic devices. ITO is the mostly applied TE material, which is costly and inferior in mechanical performance, and could not satisfy the versatile need for the next generation of transparent optoelectronic devices. Recently, many new TE materials emerged to try to overcome the deficiency of ITO, including graphene, ultrathin metal, and oxide-metal-oxide structure. By finely control of the fabrication techniques, the main properties of conductivity, transmittance, and mechanical stability, have been studied in the literatures, and their applicability in the potential optoelectronic devices has been reported. Herein, in this work, we summarized the recent progress of the TE materials applied in optoelectronic devices by focusing on the fabrication, properties, such as Graphene, ultra-thin metal film, and metal oxide and performance. The advantages and insufficiencies of these materials as TEs have been summarized and the future development aspects have been pointed out to guide the design and fabrication TE materials in the next generation of transparent optoelectronic devices.
Collapse
Affiliation(s)
- Ziqiang Chen
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jintao Wang
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Shuming Chen
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Buyue Zhang
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Ye Li
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Long Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yu Duan
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Mastronardi V, Kim J, Veronesi M, Pomili T, Berti F, Udayan G, Brescia R, Diercks JS, Herranz J, Bandiera T, Fichthorn KA, Pompa PP, Moglianetti M. Green chemistry and first-principles theory enhance catalysis: synthesis and 6-fold catalytic activity increase of sub-5 nm Pd and Pt@Pd nanocubes. NANOSCALE 2022; 14:10155-10168. [PMID: 35796244 DOI: 10.1039/d2nr02278h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthesizing metal nanoparticles with fine control of size, shape and surface properties is of high interest for applications such as catalysis, nanoplasmonics, and fuel cells. In this contribution, we demonstrate that the citrate-coated surfaces of palladium (Pd) and platinum (Pt)@Pd nanocubes with a lateral length <5 nm and low polydispersity in shape achieve superior catalytic properties. The synthesis achieves great control of the nanoparticle's physico-chemical properties by using only biogenic reagents and bromide ions in water while being fast, easy to perform and scalable. The role of the seed morphology is pivotal as Pt single crystal seeds are necessary to achieve low polydispersity in shape and prevent nanorods formation. In addition, electrochemical measurements demonstrate the abundancy of Pd{100} surface facets at a macroscopic level, in line with information inferred from TEM analysis. Quantum density functional theory calculations indicate that the kinetic origin of cubic Pd nanoshapes is facet-selective Pd reduction/deposition on Pd(111). Moreover, we underline both from an experimental and theoretical point of view that bromide alone does not induce nanocube formation without the synergy with formic acid. The superior performance of these highly controlled nanoparticles to perform the catalytic reduction of 4-nitrophenol was proved: polymer-free and surfactant-free Pd nanocubes outperform state-of-the-art materials by a factor >6 and a commercial Pd/C catalyst by more than one order of magnitude.
Collapse
Affiliation(s)
- Valentina Mastronardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Junseok Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Marina Veronesi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Tania Pomili
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Francesco Berti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Gayatri Udayan
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Center for Bio-Molecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Justus S Diercks
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Center for Bio-Molecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| |
Collapse
|
9
|
Huang M, Skibinska K, Zabinski P, Wojnicki M, Włoch G, Eckert K, Mutschke G. On the prospects of magnetic-field-assisted electrodeposition of nano-structured ferromagnetic layers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Pankhurst JR, Castilla-Amorós L, Stoian DC, Vavra J, Mantella V, Albertini PP, Buonsanti R. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. J Am Chem Soc 2022; 144:12261-12271. [PMID: 35770916 PMCID: PMC9284559 DOI: 10.1021/jacs.2c03489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Understanding the
structure and behavior of intermediates in chemical
reactions is the key to developing greater control over the reaction
outcome. This principle is particularly important in the synthesis
of metal nanocrystals (NCs), where the reduction, nucleation, and
growth of the reaction intermediates will determine the final size
and shape of the product. The shape of metal NCs plays a major role
in determining their catalytic, photochemical, and electronic properties
and, thus, the potential applications of the material. In this work,
we demonstrate that layered coordination polymers, called lamellae,
are reaction intermediates in Cu NC synthesis. Importantly, we discover
that the lamella structure can be fine-tuned using organic ligands
of different lengths and that these structural changes control the
shape of the final NC. Specifically, we show that short-chain phosphonate
ligands generate lamellae that are stable enough at the reaction temperature
to facilitate the growth of Cu nuclei into anisotropic Cu NCs, being
primarily triangular plates. In contrast, lamellae formed from long-chain
ligands lose their structure and form spherical Cu NCs. The synthetic
approach presented here provides a versatile tool for the future development
of metal NCs, including other anisotropic structures.
Collapse
Affiliation(s)
- James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Dragos C Stoian
- The Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Petru P Albertini
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| |
Collapse
|
11
|
Qi X, Jin B, Cai B, Yan F, De Yoreo J, Chen CL, Pfaendtner J. Molecular Driving Force for Facet Selectivity of Sequence-Defined Amphiphilic Peptoids at Au-Water Interfaces. J Phys Chem B 2022; 126:5117-5126. [PMID: 35763341 DOI: 10.1021/acs.jpcb.2c02638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shape-controlled colloidal nanocrystal syntheses often require facet-selective solution-phase chemical additives to regulate surface free energy, atom addition/migration fluxes, or particle attachment rates. Because of their highly tunable properties and robustness to a wide range of experimental conditions, peptoids represent a very promising class of next-generation functional additives for control over nanocrystal growth. However, understanding the origin of facet selectivity at the molecular level is critical to generalizing their design. Herein we employ molecular dynamics simulations and biased sampling methods and report stronger selectivity to Au(111) than to Au(100) for Nce3Ncp6, a peptoid that has been shown to assist the formation of 5-fold twinned Au nanostars. We find that facet selectivity is achieved through synergistic effects of both peptoid-surface and solvent-surface interactions. Moreover, the amphiphilic nature of Nce3Ncp6 together with the order of peptoid-peptoid and peptoid-surface binding energies, that is, peptoid-Au(100) < peptoid-peptoid < peptoid-Au(111), further amplifies its distinct collective behavior on different Au surfaces. Our studies provide a fundamental understanding of the molecular origin of facet-selective adsorption and highlight the possibility of future designs and uses of sequence-defined peptoids for predictive syntheses of nanocrystals with designed shapes and properties.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Biao Jin
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bin Cai
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Feng Yan
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Grossmann L, Ringel E, Rastgoo-Lahrood A, King BT, Rosen J, Heckl WM, Opris D, Björk J, Lackinger M. Steering Self-Assembly of Three-Dimensional Iptycenes on Au(111) by Tuning Molecule-Surface Interactions. Angew Chem Int Ed Engl 2022; 61:e202201044. [PMID: 35287247 PMCID: PMC9325367 DOI: 10.1002/anie.202201044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Self-assembly of three-dimensional molecules is scarcely studied on surfaces. Their modes of adsorption can exhibit far greater variability compared to (nearly) planar molecules that adsorb mostly flat on surfaces. This additional degree of freedom can have decisive consequences for the expression of intermolecular binding motifs, hence the formation of supramolecular structures. The determining molecule-surface interactions can be widely tuned, thereby providing a new powerful lever for crystal engineering in two dimensions. Here, we study the self-assembly of triptycene derivatives with anthracene blades on Au(111) by Scanning Tunneling Microscopy, Near Edge X-ray Absorption Fine Structure and Density Functional Theory. The impact of molecule-surface interactions was experimentally tested by comparing pristine with iodine-passivated Au(111) surfaces. Thereby, we observed a fundamental change of the adsorption mode that triggered self-assembly of an entirely different structure.
Collapse
Affiliation(s)
- Lukas Grossmann
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Eva Ringel
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Atena Rastgoo-Lahrood
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Benjamin T King
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, Linköping University, IFM, 581 83, Linköping, Sweden
| | - Wolfgang M Heckl
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Dorina Opris
- Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, Linköping University, IFM, 581 83, Linköping, Sweden
| | - Markus Lackinger
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
13
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
14
|
Impact of iodide ions in the transformation of Cu nanostructures from one-dimensional nanowires to two-dimensional microplates. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Grossmann L, Ringel E, Rastgoo‐Lahrood A, King BT, Rosen J, Heckl WM, Opris D, Björk J, Lackinger M. Steuerung der Selbstassemblierung von dreidimensionalen Iptycenen auf Au(111) durch Abstimmung der Molekül‐Oberflächen‐Wechselwirkungen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lukas Grossmann
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Eva Ringel
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Atena Rastgoo‐Lahrood
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Benjamin T. King
- Department of Chemistry University of Nevada Reno NV 89557-0216 USA
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology Linköping University IFM, 581 83 Linköping Schweden
| | - Wolfgang M. Heckl
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Dorina Opris
- Abteilung Funktionspolymere Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Schweiz
| | - Jonas Björk
- Department of Physics, Chemistry and Biology Linköping University IFM, 581 83 Linköping Schweden
| | - Markus Lackinger
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| |
Collapse
|
16
|
Kim J, Fichthorn KA. The influence of iodide on the solution-phase growth of Cu microplates: a multi-scale theoretical analysis from first principles. Faraday Discuss 2022; 235:273-288. [PMID: 35389400 DOI: 10.1039/d1fd00091h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use first-principles density functional theory (DFT) to quantify the role of iodide in the solution-phase growth of Cu microplates. Our calculations show that a Cu adatom binds more strongly to hcp hollow sites than fcc hollow sites on iodine-covered Cu(111) - the basal facet of two-dimensional (2D) Cu plates. This feature promotes the formation of stacking faults during seed and plate which, in turn, promotes 2D growth. We also found that iodine adsorption leads to strong Cu atom binding and prohibitively slow diffusion of Cu atoms on Cu(100) - a feature that promotes Cu atom accumulation on the {100} site facets of a growing 2D plate. Incorporating these insights into analog experiments, in which we initiated the growth of Cu plates from small seeds consisting of magnetic spheres, we confirmed that two or more stacking faults are required for lateral plate growth, consistent with prior studies. Moreover, plates can take on a variety of shapes during growth: from triangular and truncated triangular to round and hexagonal - consistent with experiment. Using absorbing Markov chain calculations, we assessed the propensity for 2D vs. 3D kinetic growth of the plates. At experimental temperatures, we predict plates can grow to achieve lateral dimensions in the 1-10 micron range, as observed in experiments.
Collapse
Affiliation(s)
- Junseok Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA. .,Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
On the electrodeposition of conically nano-structured nickel layers assisted by a capping agent. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Xie S, Li Y, Li X, Zhou Y, Dang Z, Rong J, Dong L. Stable Zinc Anodes Enabled by Zincophilic Cu Nanowire Networks. NANO-MICRO LETTERS 2021; 14:39. [PMID: 34950963 PMCID: PMC8702588 DOI: 10.1007/s40820-021-00783-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/01/2021] [Indexed: 05/21/2023]
Abstract
Zn-based electrochemical energy storage (EES) systems have received tremendous attention in recent years, but their zinc anodes are seriously plagued by the issues of zinc dendrite and side reactions (e.g., corrosion and hydrogen evolution). Herein, we report a novel strategy of employing zincophilic Cu nanowire networks to stabilize zinc anodes from multiple aspects. According to experimental results, COMSOL simulation and density functional theory calculations, the Cu nanowire networks covering on zinc anode surface not only homogenize the surface electric field and Zn2+ concentration field, but also inhibit side reactions through their hydrophobic feature. Meanwhile, facets and edge sites of the Cu nanowires, especially the latter ones, are revealed to be highly zincophilic to induce uniform zinc nucleation/deposition. Consequently, the Cu nanowire networks-protected zinc anodes exhibit an ultralong cycle life of over 2800 h and also can continuously operate for hundreds of hours even at very large charge/discharge currents and areal capacities (e.g., 10 mA cm-2 and 5 mAh cm-2), remarkably superior to bare zinc anodes and most of currently reported zinc anodes, thereby enabling Zn-based EES devices to possess high capacity, 16,000-cycle lifespan and rapid charge/discharge ability. This work provides new thoughts to realize long-life and high-rate zinc anodes.
Collapse
Affiliation(s)
- Shiyin Xie
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Yang Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Xu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Yujun Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Ziqi Dang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Jianhua Rong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Liubing Dong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, People's Republic of China.
| |
Collapse
|
19
|
Kim J, Cui J, Fichthorn KA. Solution-Phase Growth of Cu Nanowires with Aspect Ratios Greater Than 1000: Multiscale Theory. ACS NANO 2021; 15:18279-18288. [PMID: 34739221 DOI: 10.1021/acsnano.1c07425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Penta-twinned metal nanowires are finding widespread application in existing and emerging technologies. However, little is known about their growth mechanisms. We probe the origins of chloride- and alkylamine-mediated, solution-phase growth of penta-twinned Cu nanowires from first-principles using multiscale theory. Using quantum density functional theory (DFT) calculations, we characterize the binding and surface diffusion of Cu atoms on chlorine-covered Cu(100) and Cu(111) surfaces. We find stronger binding and slower diffusion of Cu atoms on chlorinated Cu(111) than on chlorinated Cu(100), which is a reversal of the trend for bare Cu surfaces. We also probe interfacet diffusion and find that this proceeds faster from Cu(100) to Cu(111) than the reverse. Using the DFT rates for hopping between individual sites at Ångstrom scales, we calculate coarse-grained, interfacet rates for nanowires of various lengths─up to hundreds of micrometers─and diameters in the 10 nm range. We predict nanowires with aspect ratios of ∼100, based on surface diffusion alone. We also account for the influence of a self-assembled alkylamine layer that covers most of the {100} facets, but is absent or thin and disordered on the {111} facets and in an "end zone" near the {100}/{111} boundary. With an end zone, we predict a wide range of nanowire aspect ratios in the experimental ranges. Our work reveals the mechanisms by which a halide─chloride─promotes the growth of high-aspect-ratio nanowires.
Collapse
|
20
|
Cheula R, Susman MD, West DH, Chinta S, Rimer JD, Maestri M. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High‐Index Faceting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa, 34 20156 Milano Italy
| | - Mariano D. Susman
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - David H. West
- SABIC Technology Center 1600 Industrial Blvd. Sugar Land Houston TX 77478 USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa, 34 20156 Milano Italy
| |
Collapse
|
21
|
Cheula R, Susman MD, West DH, Chinta S, Rimer JD, Maestri M. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High-Index Faceting. Angew Chem Int Ed Engl 2021; 60:25391-25396. [PMID: 34406684 PMCID: PMC9290742 DOI: 10.1002/anie.202105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Given the strong influence of surface structure on the reactivity of heterogeneous catalysts, understanding the mechanisms that control crystal morphology is an important component of designing catalytic materials with targeted shape and functionality. Herein, we employ density functional theory to examine the impact of growth media on NiO crystal faceting in line with experimental findings, showing that molten-salt synthesis in alkali chlorides (KCl, LiCl, and NaCl) imposes shape selectivity on NiO particles. We find that the production of NiO octahedra is attributed to the dissociative adsorption of H2 O, whereas the formation of trapezohedral particles is associated with the control of the growth kinetics exerted by ordered salt structures on high-index facets. To our knowledge, this is the first observation that growth inhibition of metal-oxide facets occurs by a localized ordering of molten salts at the crystal-solvent interface. These findings provide new molecular-level insight on kinetics and thermodynamics of molten-salt synthesis as a predictive route to shape-engineer metal-oxide crystals.
Collapse
Affiliation(s)
- Raffaele Cheula
- Laboratory of Catalysis and Catalytic ProcessesDipartimento di EnergiaPolitecnico di MilanoVia La Masa, 3420156MilanoItaly
| | - Mariano D. Susman
- Department of Chemical and Biomolecular EngineeringUniversity of Houston4726 Calhoun RoadHoustonTX77204-4004USA
| | - David H. West
- SABIC Technology Center1600 Industrial Blvd. Sugar LandHoustonTX77478USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular EngineeringUniversity of Houston4726 Calhoun RoadHoustonTX77204-4004USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic ProcessesDipartimento di EnergiaPolitecnico di MilanoVia La Masa, 3420156MilanoItaly
| |
Collapse
|
22
|
Chen Z, Fichthorn KA. Adsorption of alkylamines on Cu surfaces: identifying ideal capping molecules using first-principles calculations. NANOSCALE 2021; 13:18536-18545. [PMID: 34730161 DOI: 10.1039/d1nr05759f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We used dispersion-corrected density-functional theory to perform an in silico search over a series of primary alkylamines, including linear, branched, and cyclic molecules, to identify capping molecules for shape-selective Cu nanocrystal synthesis. We identify several attributes associated with successful capping agents. Generally, molecules with good geometric matching to the Cu surfaces possessed the strongest molecule-surface chemical bonds. However, non-bonding van der Waals interactions and molecular packing constraints can play a more significant role in determining the overall binding energy, the surface coverage, and the likely efficacy of the capping molecule. Though nearly all the molecules exhibited stronger binding to Cu(100) than to Cu(111), all predicted Wulff shapes are primarily {111}-faceted, based on ab initio thermodynamics calculations. From predicted capping-molecule densities on Cu(100) and Cu(111) for various solution environments, we identified several candidate molecules to produce {100}- or {111}-faceted nanocrystals with kinetic shapes, based on synthesis conditions used to grow Cu nanowires with ethylenediamine capping agent. Our study reveals the complexity of capping-molecule binding and important considerations that go into the selection of a successful capping agent.
Collapse
Affiliation(s)
- Zihao Chen
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Kristen A Fichthorn
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Chen Z, Fichthorn KA. Adsorption of ethylenediamine on Cu surfaces: attributes of a successful capping molecule using first-principles calculations. NANOSCALE 2021; 13:13529-13537. [PMID: 34477757 DOI: 10.1039/d1nr03173b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The shape-controlled synthesis of Cu nanocrystals can benefit a wide range of applications, though challenges exist in achieving high and selective yields to a particular shape. Capping agents play a pivotal role in controlling shape, but their exact role remains ambiguous. In this study, the adsorption of ethylenediamine (EDA) on Cu(100) and Cu(111) was investigated with quantum density functional theory (DFT) to reveal the complex roles of EDA in promoting penta-twinned Cu nanowire growth. We find EDA has stronger binding on Cu(100) than on Cu(111), which agrees the general expectation that penta-twinned Cu nanowires express facets with stronger capping-molecule binding. Despite this stronger binding, ab initio thermodynamics reveals the surface energy of EDA-covered Cu(111) is lower than that EDA-covered Cu(100) at all solution-phase EDA chemical potentials, so there is no thermodynamic driving force for penta-twinned nanowires. We also investigated the capability of EDA to protect Cu surfaces from oxidation in water by quantifying energy barriers for a water molecule to diffuse through EDA layers on Cu(100) and Cu(111). The energy barrier on Cu(100) is significantly lower, which supports observations of faster oxidation of Cu(100) in electrochemical experiments. Thus, we elucidate another possible function of a capping agent - to enable selective oxidation of crystal facets. This finding adds to the general understanding of successful attributes of capping agents for shape-selective nanocrystal growth.
Collapse
Affiliation(s)
- Zihao Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
24
|
Medvedeva XV, Li F, Maokhamphiou A, Medvedev JJ, Ahmed A, Klinkova A. Shape control in seed-mediated synthesis of non-elongated Cu nanoparticles and their optical properties. NANOSCALE 2021; 13:12505-12512. [PMID: 34231611 DOI: 10.1039/d1nr01358k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Shape and surface chemistry control in copper nanoparticle synthesis is an important research area due to a wide range of developing applications of this material in catalysis, energy conversion, sensing and many others. In addition to being an inexpensive and abundant metal, copper is an attractive photocatalyst due to its optical properties in the visible range. Here, we report a facile, tunable and sustainable methodology for synthesizing Pd-seeded Cu nanoparticles with various shapes, including cubes, spheres, raspberry-like particles and cages stabilized with a bilayer of a cationic surfactant in aqueous media. The experimental and theoretical examination of the optical response in the series of synthesized nanoparticles revealed that the low-energy extinction peak is associated with electronic interband transitions in the metal, in contrast to a widely spread attribution of this peak to a plasmonic response in Cu nanoparticles.
Collapse
Affiliation(s)
- Xenia V Medvedeva
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Wei W, Feng X, Wang R, Zheng R, Yang D, Chen H. Electrochemical Driven Phase Segregation Enabled Dual-Ion Removal Battery Deionization Electrode. NANO LETTERS 2021; 21:4830-4837. [PMID: 34010006 DOI: 10.1021/acs.nanolett.1c01487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Battery deionization (BDI) offers a powerful platform for integrating water treatment and energy conversion. Exploring novel BDI electrode materials with high energy storage capacity and high efficiency for both cations and anions removal is the key to advancing the BDI technique. Herein, we report the first BDI electrode material capable of simultaneously removing Cl- (58.4 mg g-1) and Na+ (8.7 mg g-1) in water with a reversible capacity of 160 mAh g-1. In situ powder X-ray diffraction (PXRD) unravels that the dual-ion removal capability is attributed to a novel reversible electrochemical driven phase segregation reaction mechanism between NaBi3O4Cl2 and the in situ formed metallic Bi. The unique dual-ion storage capability demonstrated with the NaBi3O4Cl2 electrode indicates that exploring electrochemical reversible phase segregation electrode material holds great promise for advancing the BDI electrode for future desalination techniques and aqueous rechargeable battery systems.
Collapse
Affiliation(s)
- Wenfei Wei
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Gao F, Zhang Y, Wu Z, You H, Du Y. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213825] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Yan T, Fichthorn KA. Self-Assembly of a Linear Alkylamine Bilayer around a Cu Nanocrystal: Molecular Dynamics. J Phys Chem B 2021; 125:4178-4186. [PMID: 33872508 DOI: 10.1021/acs.jpcb.1c02043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper nanocrystals are often grown with the help of alkylamine capping agents, which direct the nanocrystal shape. However, the role of these molecules is still unclear. We characterized the assembly of aqueous tetradecylamine (TDA) around a Cu nanocrystal and found that TDA exhibits a temperature-dependent bilayer structure. The bilayer involves an inner layer, in which TDA binds to Cu via the amine group and tends to orient the alkyl tail perpendicular to the surface, and an outer layer whose structure depends on temperature. At low temperatures, alkylamines in the inner layer form bundles with no apparent relation to the crystal facets. Alkylamines in the outer layer tend to orient their long axes perpendicular to the Cu surfaces, with interdigitation into the inner layer. At high temperatures, alkylamines in the inner layer lose their bundle structure, and outer-layer alkylamines tend to orient themselves tangential to the Cu surfaces, forming a "web" above inner-layer TDA. TDA exhibits a rapid interlayer exchange at typical synthesis temperatures, consistent with experiment. The variety in the assemblies seen here and in other studies of alkanethiols around gold nanocrystals indicates a richness in the assemblies that can be achieved by modulating the interaction between the strongly binding end group and the surface.
Collapse
Affiliation(s)
- Tianyu Yan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
28
|
Pan XT, Liu YY, Qian SQ, Yang JM, Li Y, Gao J, Liu CG, Wang K, Xia XH. Free-Standing Single Ag Nanowires for Multifunctional Optical Probes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19023-19030. [PMID: 33856193 DOI: 10.1021/acsami.1c02332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Miniaturized and manipulable optical probes are the foundation for developing in situ characterization devices in confined space. We developed two methods for fabricating free-standing single Ag nanowires (AgNWs) directly at the tip of a glass capillary either by chemical or electrochemical reduction. The electrochemical nature of both methods resulted in a rapid growth rate of AgNWs up to 1.38 μm/s and a controllable length from 5 to 450 μm. The AgNWs with a unique anisotropic structure allow localized surface plasmon resonance and surface plasmon waveguides in the radial direction and axial direction, respectively. We verified the possibility of using single AgNWs as an optical dispersion device and waveguide probe. By controlling the experimental conditions, rough-surface AgNWs with high surface-enhanced Raman scattering (SERS) activity were also fabricated. These SERS-active probes also exhibited advantages in acquiring molecular information from a single living cell.
Collapse
Affiliation(s)
- Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Yang Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Si-Qi Qian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin-Mei Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chun-Gen Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Fichthorn KA, Chen Z, Chen Z, Rioux RM, Kim MJ, Wiley BJ. Understanding the Solution-Phase Growth of Cu and Ag Nanowires and Nanocubes from First Principles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4419-4431. [PMID: 33834786 DOI: 10.1021/acs.langmuir.1c00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this feature article, we provide an account of the Langmuir Lecture delivered by Kristen Fichthorn at the Fall 2020 Virtual Meeting of the American Chemical Society. We discuss how multiscale theory and simulations based on first-principles DFT were useful in uncovering the intertwined influences of kinetics and thermodynamics on the shapes of Ag and Cu cubes and nanowires grown in solution. We discuss how Ag nanocubes can form through PVP-modified deposition kinetics and how the addition of chloride to the synthesis can promote thermodynamic cubic shapes for both Ag and Cu. We discuss kinetic factors contributing to nanowire growth: in the case of Ag, we show that high-aspect-ratio nanowires can form as a consequence of Ag atom surface diffusion on the strained surfaces of Marks-like decahedral seeds. On the other hand, solution-phase chloride enhances Cu nanowire growth due to a synergistic interaction between adsorbed chloride and hexadecylamine (HDA), which leaves the {111} nanowire ends virtually bare while the {100} sides are fully covered with HDA. For each of these topics, a synergy between theory and experiment led to significant progress.
Collapse
Affiliation(s)
| | | | | | | | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Benjamin J Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
30
|
Vu CC, Kim SJ, Kim J. Flexible wearable sensors - an update in view of touch-sensing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:26-36. [PMID: 33854405 PMCID: PMC8018418 DOI: 10.1080/14686996.2020.1862629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 05/27/2023]
Abstract
Nowadays, much of user interface is based on touch and the touch sensors have been common for displays, Internet of things (IoT) projects, or robotics. They can be found in lamps, touch screens of smartphones, or other wide arrays of applications as well. However, the conventional touch sensors, fabricated from rigid materials, are bulky, inflexible, hard, and hard-to-wear devices. The current IoT trend has made these touch sensors increasingly important when it added in the skin or clothing to affect different aspects of human life flexibly and comfortably. The paper provides an overview of the recent developments in this field. We discuss exciting advances in materials, fabrications, enhancements, and applications of flexible wearable sensors under view of touch-sensing. Therein, the review describes the theoretical principles of touch sensors, including resistive, capacitive, and piezoelectric types. Following that, the conventional and novel materials, as well as manufacturing technologies of flexible sensors are considered to. Especially, this review highlights the multidisciplinary approaches such as e-skins, e-textiles, e-healthcare, and e-control of flexible touch sensors. Finally, we summarize the challenges and opportunities that use is key to widespread development and adoption for future research.
Collapse
Affiliation(s)
- Chi Cuong Vu
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Sang Jin Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jooyong Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Zhou W, Fu L, Zhao L, Xu X, Li W, Wen M, Wu Q. Novel Core-Sheath Cu/Cu 2O-ZnO-Fe 3O 4 Nanocomposites with High-Efficiency Chlorine-Resistant Bacteria Sterilization and Trichloroacetic Acid Degradation Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10878-10890. [PMID: 33635062 DOI: 10.1021/acsami.0c21336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to solve two issues of chlorine-resistant bacteria (CRB) and disinfection byproducts (DBPs) in tap water after the chlorine-containing treatment process, an innovative core-sheath nanostructured Cu/Cu2O-ZnO-Fe3O4 was designed and synthesized. The fabrication mechanism of the materials was then systematically analyzed to determine the component and valence state. The properties of CRB inactivation together with trichloroacetic acid (TCAA) photodegradation by Cu/Cu2O-ZnO-Fe3O4 were investigated in detail. It was found that Cu/Cu2O-ZnO-Fe3O4 displayed excellent antibacterial activity with a relatively low cytotoxicity concentration due to its synergism of nanowire structure, ion release, and reactive oxygen species generation. Furthermore, the Cu/Cu2O-ZnO-Fe3O4 nanocomposite also exhibited outstanding photocatalytic degradation activity on TCAA under simulated sunlight irradiation, which was verified to be dominated by the surface reaction through kinetic analysis. More interestingly, the cell growth rate of Cu/Cu2O-ZnO-Fe3O4 was determined to be 50% and 10% higher than those of Cu/Cu2O and Cu/Cu2O-ZnO after 10 h incubation, respectively, manifesting a weaker cytotoxicity. Therefore, the designed Cu/Cu2O-ZnO-Fe3O4 could be a promising agent for tap water treatment.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Lin Fu
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Long Zhao
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Weiying Li
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Ming Wen
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Qingsheng Wu
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
32
|
Lyu Z, Zhu S, Xu L, Chen Z, Zhang Y, Xie M, Li T, Zhou S, Liu J, Chi M, Shao M, Mavrikakis M, Xia Y. Kinetically Controlled Synthesis of Pd–Cu Janus Nanocrystals with Enriched Surface Structures and Enhanced Catalytic Activities toward CO2 Reduction. J Am Chem Soc 2020; 143:149-162. [DOI: 10.1021/jacs.0c05408] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yu Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shan Zhou
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Miaofang Chi
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Abstract
The unprecedented ability of computations to probe atomic-level details of catalytic systems holds immense promise for the fundamentals-based bottom-up design of novel heterogeneous catalysts, which are at the heart of the chemical and energy sectors of industry. Here, we critically analyze recent advances in computational heterogeneous catalysis. First, we will survey the progress in electronic structure methods and atomistic catalyst models employed, which have enabled the catalysis community to build increasingly intricate, realistic, and accurate models of the active sites of supported transition-metal catalysts. We then review developments in microkinetic modeling, specifically mean-field microkinetic models and kinetic Monte Carlo simulations, which bridge the gap between nanoscale computational insights and macroscale experimental kinetics data with increasing fidelity. We finally review the advancements in theoretical methods for accelerating catalyst design and discovery. Throughout the review, we provide ample examples of applications, discuss remaining challenges, and provide our outlook for the near future.
Collapse
Affiliation(s)
- Benjamin W J Chen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Mastronardi V, Udayan G, Cibecchini G, Brescia R, Fichthorn KA, Pompa PP, Moglianetti M. Synthesis of Citrate-Coated Penta-twinned Palladium Nanorods and Ultrathin Nanowires with a Tunable Aspect Ratio. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49935-49944. [PMID: 33090789 PMCID: PMC7735672 DOI: 10.1021/acsami.0c11597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Green and scalable methodologies for the preparation of metal nanoparticles with fine control of shape and size are of high interest in many areas including catalysis, nanomedicine, and nanodiagnostics. In this contribution, we describe a new synthetic method for the production of palladium (Pd) penta-twinned nanowires and nanorods utilizing sodium citrate, formic acid, ascorbic acid, and potassium bromide (KBr) in water, without the use of surfactants or polymers. The synthesis is green, fast, and without the need of complex setups. Interestingly, a microwave-assisted scale-up process has been developed. The combination of a synthetic protocol for seeds and the seed-mediated growth process allows us to synthesize nanorods and nanowires by modulating the concentration of KBr. The synthesized nanomaterials have been physicochemically characterized. High-resolution transmission electron microscopy shows that the nanorods and nanowires have a penta-twinned structure enclosed by {100} lateral facets. Moreover, the absence of sticky molecules or toxic byproducts guarantees the biocompatibility of the nanomaterials, while leaving the surface clean to perform enzymatic activities.
Collapse
Affiliation(s)
- Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, Genova 16146, Italy
| | - Gayatri Udayan
- Department
of Engineering for Innovation, University
of Salento, Via per Monteroni, Lecce 73100, Italy
- Nanobiointeractions
& Nanodiagnostics, Center for Bio-Molecular
Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Lecce 73010, Italy
| | - Giulia Cibecchini
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, Genova 16146, Italy
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, Genova 16163, Italy
| | - Kristen A. Fichthorn
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Mauro Moglianetti
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
- Nanobiointeractions
& Nanodiagnostics, Center for Bio-Molecular
Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Lecce 73010, Italy
| |
Collapse
|
35
|
Abstract
Magnetic nanostructures and nanomaterials play essential roles in modern bio medicine and technology. Proper surface functionalization of nanoparticles (NPs) allows the selective bonding thus application of magnetic forces to a vast range of cellular structures and biomolecules. However, the spherical geometry of NPs poises a series of limitations in various potential applications. Mostly, typical spherical core shell structure consists of magnetic and non-magnetic layers have little tunability in terms of magnetic responses, and their single surface functionality also limits chemical activity and selectivity. In comparison to spherical NPs, nanowires (NWs) possess more degrees of freedom in achieving magnetic and surface chemical tenability. In addition to adjustment of magnetic anisotropy and inter-layer interactions, another important feature of NWs is their ability to combine different components along their length, which can result in diverse bio-magnetic applications. Magnetic NWs have become the candidate material for biomedical applications owing to their high magnetization, cheapness and cost effective synthesis. With large magnetic moment, anisotropy, biocompatibility and low toxicity, magnetic NWs have been recently used in living cell manipulation, magnetic cell separation and magnetic hyperthermia. In this review, the basic concepts of magnetic characteristics of nanoscale objects and the influences of aspect ratio, composition and diameter on magnetic properties of NWs are addressed. Some underpinning physical principles of magnetic hyperthermia (MH), magnetic resonance imaging (MRI) and magnetic separation (MS) have been discussed. Finally, recent studies on magnetic NWs for the applications in MH, MRI and MS were discussed in detail.
Collapse
Affiliation(s)
- Aiman Mukhtar
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Jeong S, Liu Y, Zhong Y, Zhan X, Li Y, Wang Y, Cha PM, Chen J, Ye X. Heterometallic Seed-Mediated Growth of Monodisperse Colloidal Copper Nanorods with Widely Tunable Plasmonic Resonances. NANO LETTERS 2020; 20:7263-7271. [PMID: 32866022 DOI: 10.1021/acs.nanolett.0c02648] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report a heterometallic seed-mediated synthesis method for monodisperse penta-twinned Cu nanorods using Au nanocrystals as seeds. Elemental analyses indicate that resultant nanorods consist predominantly of copper with a gold content typically below 3 atom %. The nanorod aspect ratio can be readily adjusted from 2.8 to 13.1 by varying the molar ratio between Au seeds and Cu precursor, resulting in narrow longitudinal plasmon resonances tunable from 762 to 2201 nm. Studies of reaction intermediates reveal that symmetry-breaking is promoted by rapid nanoscale diffusion in Au-Cu alloys and the formation of a gold-rich surface. The growth pathway features coevolving shape and composition whereby nanocrystals become progressively enriched with Cu concomitant with nanorod growth. The availability of uniform colloidal Cu nanorods with widely tunable aspect ratios opens new avenues toward the synthesis of derivative one-dimensional metal nanostructures, and applications in surface-enhanced spectroscopy, bioimaging, and electrocatalysis, among others.
Collapse
Affiliation(s)
- Soojin Jeong
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Liu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xun Zhan
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yuda Li
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Phoebe M Cha
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
37
|
Zhang T, Hsieh WY, Daneshvar F, Liu C, Rwei SP, Sue HJ. Copper(I)-alkylamine mediated synthesis of copper nanowires. NANOSCALE 2020; 12:17437-17449. [PMID: 32797131 DOI: 10.1039/d0nr04778c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Formation of a Cu(i)-alkylamine complex is found to be the key step for Cu(ii) ions to reduce to Cu(0) in the presence of glucose. Also, alkylamines in Cu nanowire synthesis serve triple roles as a reducing, complexation and capping agent. Alkylamines reduce Cu(ii) to Cu(i) at above 100 °C and protect the Cu(i) by forming a Cu ion-alkylamine coordination complex with a 1 : 2 ratio in an aqueous solution. With respect to the 1 : 2 complex ratio, the additional free alkylamines ensure a stable Cu(i)-alkylamine complex. After completion of Cu(i)-Cu(0) reduction by glucose, alkylamines remain on Cu(0) seeds to regulate the anisotropic growth of Cu nanocrystals. Long-chain (≥C16) alkylamines are found to help produce high-quality Cu nanowires, while short-chain (≤C12) alkylamines only produce CuO products. Furthermore, Cu nanowire synthesis is found to be sensitive to additional chemicals as they may destabilize Cu ion-alkylamine complexes. By comparing the Cu(i)-alkylamine and Maillard reaction mediated mechanism, the complete Cu nanowire synthesis process using glucose is revealed.
Collapse
Affiliation(s)
- Tan Zhang
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Wen-Yi Hsieh
- Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Farhad Daneshvar
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Cong Liu
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Syang-Peng Rwei
- Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hung-Jue Sue
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
38
|
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem Rev 2020; 121:649-735. [DOI: 10.1021/acs.chemrev.0c00454] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Quynh N. Nguyen
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Hu H, Liu M, Kong Y, Mysuru N, Sun C, Gálvez-Vázquez MDJ, Müller U, Erni R, Grozovski V, Hou Y, Broekmann P. Activation Matters: Hysteresis Effects during Electrochemical Looping of Colloidal Ag Nanowire Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huifang Hu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Menglong Liu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ying Kong
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Nisarga Mysuru
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Changzhe Sun
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | | | - Ulrich Müller
- Surface Science and Coating Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Vitali Grozovski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Yuhui Hou
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
40
|
Kim TI, Park IJ, Choi SY. Synthesis of Ultrathin Metal Nanowires with Chemically Exfoliated Tungsten Disulfide Nanosheets. NANO LETTERS 2020; 20:3740-3746. [PMID: 32191476 DOI: 10.1021/acs.nanolett.0c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition metal dichalcogenides (TMDs) have attracted great interest owing to their fascinating properties with atomically thin nature. Although TMDs have been exploited for diverse applications, the effective role of TMDs in the synthesis of metal nanowires has not been explored. Here, we propose a new approach to synthesize ultrathin metal nanowires using TMDs for the first time. High-quality ultrathin nanowires with an average diameter of 11.3 nm are successfully synthesized for realizing high-performance transparent conductors that exhibit excellent conductivity and transparency with low haze. The growth mechanism is carefully investigated using high-resolution transmission electron microscopy, and growth of nanowires with tunable diameters is achieved by controlling the nanosheet dimension. Finally, we unravel the important role of TMDs acting as both reducing and nucleating agents. Therefore, our work provides a new strategy of the TMD as an innovative material for the growth of metal nanowires as a promising building block in next-generation optoelectronics.
Collapse
Affiliation(s)
- Tae In Kim
- School of Electrical Engineering, Graphene/2D Materials Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ick-Joon Park
- School of Electrical Engineering, Graphene/2D Materials Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Yool Choi
- School of Electrical Engineering, Graphene/2D Materials Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
41
|
De S, Sides W, Brusuelas T, Huang Q. Electrodeposition of superconducting rhenium-cobalt alloys from water-in-salt electrolytes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
He Z, Yang Y, Liang HW, Liu JW, Yu SH. Nanowire Genome: A Magic Toolbox for 1D Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902807. [PMID: 31566828 DOI: 10.1002/adma.201902807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
1D nanomaterials with high aspect ratio, i.e., nanowires and nanotubes, have inspired considerable research interest thanks to the fact that exotic physical and chemical properties emerge as their diameters approach or fall into certain length scales, such as the wavelength of light, the mean free path of phonons, the exciton Bohr radius, the critical size of magnetic domains, and the exciton diffusion length. On the basis of their components, aspect ratio, and properties, there may be imperceptible connections among hundreds of nanowires prepared by different strategies. Inspired by the heredity system in life, a new concept termed the "nanowire genome" is introduced here to clarify the relationships between hundreds of nanowires reported previously. As such, this approach will not only improve the tools incorporating the prior nanowires but also help to precisely synthesize new nanowires and even assist in the prediction on the properties of nanowires. Although the road from start-ups to maturity is long and fraught with challenges, the genetical syntheses of more than 200 kinds of nanostructures stemming from three mother nanowires (Te, Ag, and Cu) are summarized here to demonstrate the nanowire genome as a versatile toolbox. A summary and outlook on future challenges in this field are also presented.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
43
|
Kim MJ, Brown M, Wiley BJ. Electrochemical investigations of metal nanostructure growth with single crystals. NANOSCALE 2019; 11:21709-21723. [PMID: 31714552 DOI: 10.1039/c9nr05782j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control over the nanoscopic structure of a material allows one to tune its properties for a wide variety of applications. Colloidal synthesis has become a convenient way to produce anisotropic metal nanostructures with a desired set of properties, but in most syntheses, the facet-selective surface chemistry causing anisotropic growth is not well-understood. This review highlights the recent use of electrochemical methods and single-crystal electrodes to investigate the roles of organic and inorganic additives in modulating the rate of atomic addition to different crystal facets. Differential capacitance and chronocoulometric techniques can be used to extract thermodynamic data on how additives selectively adsorb, while mixed potential theory can be used to observe the effect of additives on the rate of atomic addition to a specific facet. Results to date indicate that these experimental methods can provide new insights into the role capping agents and halides play in controlling anisotropic growth.
Collapse
Affiliation(s)
- Myung Jun Kim
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
44
|
Li J, Chen R, Zhang Q, Chen J, Gu L, Zhao J, Wang Z, Dai Z. Spectrum-Quantified Morphological Evolution of Enzyme-Protected Silver Nanotriangles by DNA-Guided Postshaping. J Am Chem Soc 2019; 141:19533-19537. [DOI: 10.1021/jacs.9b09546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junyao Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Runkun Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jian Zhao
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
45
|
Hou Y, Bolat S, Bornet A, Romanyuk YE, Guo H, Moreno-García P, Zelocualtecatl Montiel I, Lai Z, Müller U, Grozovski V, Broekmann P. Photonic Curing: Activation and Stabilization of Metal Membrane Catalysts (MMCs) for the Electrochemical Reduction of CO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhui Hou
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Sami Bolat
- Laboratory of Thin Films and Photovoltaics, Empa—Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
| | - Aline Bornet
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Yaroslav E. Romanyuk
- Laboratory of Thin Films and Photovoltaics, Empa—Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
| | - Huizhang Guo
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Stefano-Franscini-Platz 3, Zürich 8093, Switzerland
| | - Pavel Moreno-García
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | | | - Zhiqiang Lai
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ulrich Müller
- Nanoscale Materials Science, Empa—Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Vitali Grozovski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
46
|
Zhang Y, Gao F, Song T, Wang C, Chen C, Du Y. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis. NANOSCALE 2019; 11:15561-15566. [PMID: 31393499 DOI: 10.1039/c9nr05325e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of Pt-based networked nanowire nanocatalysts with high performance is significant in the application of direct alcohol fuel cells. However, it is still a challenge to precisely regulate the surface structure and further improve their catalytic behavior. For this purpose, we have synthesized a series of novel networked wicker-like PtFe nanowire catalysts, different from previous networked nanowire catalysts with smooth surfaces, and the PtFe catalysts possess branch-rich exteriors on the rough surface of each nanowire similar to wickers and they interconnect with each other, which lead to rich steps and defects. Importantly, after electrochemical tests, the composition-optimized Pt3Fe nanowires were found to exhibit superior catalytic performance towards the ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR) compared to that of commercial Pt/C catalysts in acid media. In particular, the specific activities of Pt3Fe nanowires are 7.3 and 7.1 times higher than those of the Pt/C catalysts for EOR and MOR, respectively. In addition, the Pt3Fe nanowires also show the best durability among these catalysts after 1000 successive cycles, and their residual activities are far better than those of the Pt/C catalysts. The synthesis of wicker-like networked PtFe nanowires offers a new guideline to tune the structure and composition of nanocatalysts for their use in direct alcohol fuel cells and beyond.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
47
|
Affiliation(s)
- Kristen Fichthorn
- Department of Chemical Engineering, Penn State University, University Park, PA, USA.
| |
Collapse
|
48
|
Qi X, Chen Z, Yan T, Fichthorn KA. Growth Mechanism of Five-Fold Twinned Ag Nanowires from Multiscale Theory and Simulations. ACS NANO 2019; 13:4647-4656. [PMID: 30869861 DOI: 10.1021/acsnano.9b00820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five-fold twinned metal nanowires can be synthesized with high aspect ratios via solution-phase methods. The origins of their anisotropic growth, however, are poorly understood. We combine atomic-scale, mesoscale, and continuum theoretical methods to predict growth morphologies of Ag nanowires from seeds and to demonstrate that high aspect ratio nanowires can originate from anisotropic surface diffusion induced by the strained nanowire structure. Nanowire seeds are similar to Marks decahedra, with {111} "notches" that accelerate diffusion along the nanowire axis to facilitate one-dimensional growth. The strain distribution on the {111} facets induces heterogeneous atom aggregation and leads to atom trapping at the nanowire ends. We predict that decahedral Ag seeds can grow to become nanowires with aspect ratios in the experimental range. Our studies show that there is a complex interplay between atom deposition, diffusion, seed architecture, and nanowire aspect ratio that could be manipulated experimentally to achieve controlled nanowire syntheses.
Collapse
|
49
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Chen Z, Balankura T, Fichthorn KA, Rioux RM. Revisiting the Polyol Synthesis of Silver Nanostructures: Role of Chloride in Nanocube Formation. ACS NANO 2019; 13:1849-1860. [PMID: 30673260 DOI: 10.1021/acsnano.8b08019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chloride (Cl-) is often used together with polyvinylpyrrolidone (PVP) in the polyol synthesis of Ag nanocubes. In the literature, shape control is attributed predominantly to the preferential binding of PVP to Ag(100) facets compared to Ag(111) facets, whereas the role of Cl- has not been well studied. Several hypotheses have been proposed regarding the role of Cl-; however, there is still no consensus regarding the exact influence of Cl- in the shape-controlled synthesis of Ag nanocubes. To examine the influence of Cl-, we undertook a joint theoretical-experimental study. Experimentally, we examined the influence of Cl- concentration on the shape of Ag nanoparticles (NPs) at constant H+ concentration. In the presence of H+, in situ formed HNO3 etches the initially formed Ag seeds and slows down the overall reduction of Ag+, which promotes the formation of monodisperse Ag NPs. Ex situ experiments probed the evolution of Cl- during the growth of Ag nanocubes, which involves the initial formation of AgCl nanocubes, and their subsequent dissolution to release Cl-, which adsorbs onto the surfaces of single crystal seeds to impact shape evolution through apparent thermodynamic control. The formation of cubes is independent of the source of AgCl, indicating temporal control of the Cl- chemical potential in solution leads to high-yield synthesis of Ag nanocubes. Increasing the concentration of Cl- alone leads to a progression in shape from truncated octahedra, to cuboctahedra, truncated cubes, and ultimately cubes, directly demonstrating the importance of Cl- in Ag NP shape control. We used ab initio thermodynamics calculations based on density functional theory to probe the role of Cl- in directing shape control. With increasing Cl chemical potential (surface coverage), calculated surface energies γ of Ag facets transition from γ111 < γ100 to γ100 < γ111 and predict Wulff shapes terminated with an increasing (100) contribution, consistent with experimental observations. The combination of theory and experiment is beneficial for advancing the understanding of nanocrystal formation.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Chemical Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Tonnam Balankura
- Department of Chemical Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
- Department of Physics , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Robert M Rioux
- Department of Chemical Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|