1
|
Borstelmann J, Zank S, Krug M, Berger G, Fröhlich N, Glotz G, Gnannt F, Schneider L, Rominger F, Deschler F, Clark T, Gescheidt G, Guldi DM, Kivala M. Helically Chiral Mixed-Valence Systems Comprising N-Heterotriangulenes: Stabilization of the Cationic Species by π-Expansion. Angew Chem Int Ed Engl 2025:e202423516. [PMID: 39928900 DOI: 10.1002/anie.202423516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/12/2025]
Abstract
We report the efficient stabilization of nitrogen-centered radical cations in a dimeric N-heterotriangulene bridged by a rigid π-conjugated [5]helicene backbone (NTH). The rigid scaffold exhibits helical chirality, allowing the enantiomers to be separated and their chiroptical properties studied, including circular dichroism (CD) and circularly polarized luminescence (CPL). Successive oxidation towards the radical cation NTH⋅+ and dication NTH2+ reveals strong electronic communication between the two nitrogen-centers, as demonstrated by X-ray crystallography, electrochemistry, UV/Vis/nIR spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. CD measurements of the enantiomerically pure cations reveal strong Cotton effects in the nIR region extending up to 2000 nm. Density functional theory confirms the observed enhanced electronic communication, classifying NTH⋅+ as a Robin-Day Class III mixed-valence charge-transfer (MV-CT) system. NTH2+ exhibits a quinoidal structure with partial diradical character and open-shell singlet ground state, as shown by variable temperature EPR measurements. Time-resolved transient absorption spectroscopy shows the photo-induced generation of NTH⋅+ in the presence of a suitable electron acceptor.
Collapse
Affiliation(s)
- Jan Borstelmann
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Simon Zank
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Marcel Krug
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Georg Berger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nina Fröhlich
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Gabriel Glotz
- Institute of Physical and Theoretical Chemistry, Technical University Graz, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Frederik Gnannt
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052, Erlangen, Germany
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Technical University Graz, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Wang T, Tang S, Dong X, Zhao Y, Sun Q, Kong S, Zhao Y, Wang X. Rational Design of Crystalline and Enantiomerically Pure Helicenes with Open-Shell Singlet Ground States. Angew Chem Int Ed Engl 2025; 64:e202415331. [PMID: 39301773 DOI: 10.1002/anie.202415331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Helicene diradical derivatives have attracted widespread attentions because of their unique magnetic and chiroptoelectronic properties, however, crystalline and enantiomerically pure forms of helicene diradicals are extremely rare. Herein, we describe the rational design and synthesis of o-quinone functionalized helicene diradicals with crystalline enantiomerical purity. Diradical dianion salt Rac-3K and its enantiomers P/M-3K were obtained by reduction of corresponding precursors Rac-3 and P/M-3 with two equivalent potassium graphite in THF in the presence of (di)benzo-18-crown-6. Neutral dioxoborocyclic helicene diradicals (Rac-3B and P/M-3B) were produced by reactions of Rac-3 or P/M-3 with chlorobis(perfluorophenyl)borane (B(C6F5)2Cl. Crystal structures of compounds Rac-3K, Rac-3B and P/M-3K were obtained by single crystal X-ray diffraction. Their open-shell singlet state ground states were confirmed by electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and theoretical calculations. Their chiroptical properties were investigated by the electronic circular dichroism (ECD) spectroscopy. This work provides the first examples of enantiopure helicene diradical dianions and boron-containing helicene diradicals.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuxuan Tang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xue Dong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Yang T, Zhang L, Bao Y, Wei H. Dialkylated dibenzo[ a, h]anthracenes for solution-processable organic thin-film transistors. RSC Adv 2024; 14:36390-36397. [PMID: 39545167 PMCID: PMC11561707 DOI: 10.1039/d4ra07439d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Here, two alkylated dibenzo[a,h]anthracene (DBA) derivatives with linear n-dodecyl (C12-DBA-C12) and ring-containing pentyl-cyclohexyl (Cy5-DBA-Cy5) moieties were successfully synthesized. Their chemical and thermal stability were both notably high, with the molecular arrangement of C12-DBA-C12 and Cy5-DBA-Cy5 being greatly influenced by the alkyl groups. C12-DBA-C12 formed a 2D lamellar herringbone packing structure and its blade-coated film exhibited high layered crystallinity and high carrier mobility up to 2.97 cm2 V-1 s-1. By contrast, the arrangement of Cy5-DBA-Cy5 in the crystal exhibited a packing motif where π-cores and alkyl chains were intertwined due to the C-H⋯π proximity of cyclohexyl moieties and DBA cores. Meanwhile, Cy5-DBA-Cy5 demonstrated relatively poor film-forming capacity and moderate mobility of about 0.45 cm2 V-1 s-1. These findings could expand the possibilities of using DBA instead of pentacene in developing high-performance OSCs for organic electronics, and offer insights into manipulating molecular arrangement through alkyl engineering.
Collapse
Affiliation(s)
- Tengzhou Yang
- School of Physics and Physical Engineering, Qufu Normal University Qufu Shandong 273100 China
| | - Liang Zhang
- School of Physics and Physical Engineering, Qufu Normal University Qufu Shandong 273100 China
| | - Yucong Bao
- School of Physics and Physical Engineering, Qufu Normal University Qufu Shandong 273100 China
| | - Haoming Wei
- School of Physics and Physical Engineering, Qufu Normal University Qufu Shandong 273100 China
| |
Collapse
|
4
|
Weng T, Xu Z, Li K, Guo Y, Chen X, Li Z, Sun Z. 1,1'-Biolympicenyl: A Stable Non-Kekulé Diradical with a Small Singlet and Triplet Energy Gap. J Am Chem Soc 2024; 146:26454-26465. [PMID: 39254188 DOI: 10.1021/jacs.4c09627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Dimerization of delocalized polycyclic hydrocarbon radicals is a simple and versatile method to create diradicals with tailored electronic structures and accessible high-spin states. However, the synthesis is challenging, and the stability issue of the diradicals remains a concern. In this study, we present the synthesis of a stable non-Kekulé 1,1'-biolympicenyl diradical 1 using a protection-oxidation-protection strategy. Diradical 1 demonstrated exceptional stability, with a solution half-life time exceeding 3.5 years and a solid state thermal decomposition temperature above 300 °C. X-ray crystallographic analysis revealed its intersected molecular structure and tightly bound dimer configuration. A singlet ground state with a small singlet-triplet energy gap is consistently identified using electron paramagnetic resonance (EPR) and a superconducting quantum interference device (SQUID) in a rigid matrix, and the triplet state is thermally accessible at room temperature. The solution phase properties were systematically examined through EPR, absorption spectroscopy, and cyclic voltammetry, revealing a rotational motion in the slow-motion regime and multistage redox characteristics. This study presents an efficient synthetic and stabilization strategy for organic diradicals, enabling the development of various high-spin functional materials.
Collapse
Affiliation(s)
- Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
5
|
Dai D, Zhan Q, Shi T, Wang D, Zheng Y. Spin characteristics in conjugated stable diradicals. Chem Commun (Camb) 2024; 60:8997-9006. [PMID: 39081131 DOI: 10.1039/d4cc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin-spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin-spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.
Collapse
Affiliation(s)
- Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Tianfang Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Martínez-Pinel Á, Lezama L, Cuerva JM, Casares R, Blanco V, Cruz CM, Millán A. A Configurationally Stable Helical Indenofluorene. Org Lett 2024; 26:6012-6017. [PMID: 38967257 PMCID: PMC11267600 DOI: 10.1021/acs.orglett.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
We report the synthesis and study of the optoelectronic, magnetic, and chiroptical properties of a helically chiral diradicaloid based on dibenzoindeno[2,1-c]fluorene. The molecule shows a small HOMO-LUMO gap and a moderate singlet-triplet gap, which agrees with the results of DFT calculations. The helical structure of the compound, confirmed by X-ray diffraction, is configurationally stable, which allows the isolation of both enantiomers and the evaluation of the chiroptical properties (ECD).
Collapse
Affiliation(s)
- Álvaro Martínez-Pinel
- Departamento
de Química Orgánica and Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Luis Lezama
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco, 48940 Leioa, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica and Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Raquel Casares
- Departamento
de Química Orgánica and Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Víctor Blanco
- Departamento
de Química Orgánica and Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Carlos M. Cruz
- Departamento
de Química Orgánica and Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alba Millán
- Departamento
de Química Orgánica and Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Jiang Q, Tang H, Peng Y, Hu Z, Zeng W. Helical polycyclic hydrocarbons with open-shell singlet ground states and ambipolar redox behaviors. Chem Sci 2024; 15:10519-10528. [PMID: 38994409 PMCID: PMC11234857 DOI: 10.1039/d4sc02116a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Organic π-conjugated polycyclic hydrocarbons (PHs) with an open-shell diradical character are attracting increasing interest due to their promising applications in organic electronics and spintronics. However, most of the open-shell PHs synthesized thus far are based on planar π-conjugated molecules. Herein, we report the synthesis and characterization of two new quinodimethane-embedded expanded helicenes H1 and H2. The helical structures of both molecules were revealed using X-ray crystallographic analysis. It was elucidated in detailed experimental and theoretical studies that they possess an open-shell singlet biradical structure in the ground state and show a small energy gap and amphoteric redox behavior. Both compounds can also be easily oxidized or reduced into relatively stable charged species. The dianions of H1 and H2 exhibit similar electronic structures to the respective isoelectronic structures of their all-benzenoid helical analogues according to NMR measurements and theoretical calculations. Moreover, the structures of the dication and dianion of H2 were identified by X-ray crystallographic analysis, revealing the effect of electron transfer on their backbones and aromaticity. This study thus opens up new avenues for both helical polycyclic π-systems and diradicaloids.
Collapse
Affiliation(s)
- Qing Jiang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Hui Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Yuchen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Zhenni Hu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Wangdong Zeng
- School of Materials Science and Engineering, Hunan University of Science and Technology Xiangtan 411201 China
| |
Collapse
|
8
|
Prajapati B, Kwenda T, Lis T, Chmielewski PJ, Gómez-García CJ, Majewski MA, Stępień M. Difluorenoheteroles: topological control of π conjugation in diradicaloids and mixed-valence radical ions. Chem Sci 2024; 15:10101-10109. [PMID: 38966384 PMCID: PMC11220597 DOI: 10.1039/d4sc02459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Two families of difluorenoheterole diradicaloids were synthesized, featuring isomeric ring systems with distinct conjugation topologies. The two types of difluorenoheteroles contain, respectively, a Chichibabin-like motif (CH) and a newly introduced heteroatom-linked triphenylmethyl dyad (TD-X). Combined experimental and theoretical investigations show that the TD-X systems have reduced quinoidal character but the interaction between formal spin centers is sufficiently strong to ensure a singlet ground state. The singlet-triplet energy gaps in the TD-X difluorenoheteroles are strongly affected by the heterocyclic ring, with values of -4.3 and -0.7 kcal mol-1 determined for the pyrrole- and thiophene-containing analogues, respectively. In cyclic voltammetry experiments, the TD-X systems show diminished energy gaps and superior reversibility in comparison with their CH counterparts. The radical anions and cations obtained from these diradicaloids show extremely red-shifted bands, occasionally with λ max > 3500 nm. Computational studies show that some of these ions adopt distonic structures and may be characterized as class-II mixed-valence species.
Collapse
Affiliation(s)
- Bibek Prajapati
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tendai Kwenda
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia Dr Moliner 50 46100 Burjasot Spain
| | - Marcin A Majewski
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
9
|
Wu H, Hanayama H, Coehlo M, Gu Y, Wu ZH, Takebayashi S, Jakob G, Vasylevskyi S, Schollmeyer D, Kläui M, Pieters G, Baumgarten M, Müllen K, Narita A, Qiu Z. Stable π-Extended Thio[7]helicene-Based Diradical with Predominant Through-Space Spin-Spin Coupling. J Am Chem Soc 2024; 146:7480-7486. [PMID: 38446414 DOI: 10.1021/jacs.3c12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
In this work, a novel π-extended thio[7]helicene scaffold was synthesized, where the α-position of the thiophene unit could be functionalized with bulky phenoxy radicals after considerable synthetic attempts. This open-shell helical diradical, ET7H-R, possesses high stability in the air, nontrivial π conjugation, persistent chirality, and a high diradical character (y0 of 0.998). The key feature is a predominant through-space spin-spin coupling (TSC) between two radicals at the helical terminals. Variable-temperature continuous-wave electron spin resonance (cw-ESR) and superconducting quantum interference device (SQUID) magnetometry in the solid state reveal a singlet ground state with a nearly degenerate triplet state of ET7H-R. These results highlight the significance of a stable helical diradicaloid as a promising platform for investigating intramolecular TSCs.
Collapse
Affiliation(s)
- Hao Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Max Coehlo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Yanwei Gu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Ze-Hua Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Satoshi Takebayashi
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Gerhard Jakob
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - Serhii Vasylevskyi
- Engineering Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Martin Baumgarten
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| |
Collapse
|
10
|
Tuo DH, Ao YF, Wang QQ, Wang DX. Chiral Benzene Triimide (BTI) Radical Anions for Probing the Interplay of Unpaired Electron Spin and Chirality. Chemistry 2024; 30:e202302954. [PMID: 37903731 DOI: 10.1002/chem.202302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Herein a series of chiral BTI radical anions bearing different chiral substituents were efficiently prepared by chemical reduction. X-ray crystallography revealed finely-tuned packing and helix assemblies of the radicals by the size of chiral substituents in crystalline state. In accordance with the crystalline-state packing, the powder ESR spectra indicate that 4 a- ⋅CoCp2 + and 4 c- ⋅CoCp2 + π-dimers exhibit thermally excited triplet states arising from strong spin-spin interactions, while discrete 4 b- ⋅CoCp2 + shows a broad doublet-state signal reflecting weak spin-spin interactions. The interplay between the unpaired electron spin and chiral substituents was studied by UV-Vis-NIR spectra, electronic circular dichroism (ECD) and TD DFT calculations. Different NIR absorptions of the radicals attributing to isolated SOMO→LUMO+1 (~889 nm) transitions were recorded. The emergence of Cotton effects (CEs) at the NIR region for 4 c- ⋅CoCp2 + radical enantiomers suggest the interplay between chirality and unpaired electron spin. The origin of the different circularly polarized light absorptions regarding SOMO derived transitions (around 880 nm) was attributed to chiral substitutes regulated electric and magnetic transition dipole moments of the unpaired electron participated transition.
Collapse
Affiliation(s)
- De-Hui Tuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Ji B, Qi Z, Ye T, Li S, Shi Y, Cui S, Xiao J. Straightforward Synthesis of Pentagon-Embedded Expanded [11]Helicenes for Radiative Cooling Property. Chemistry 2024; 30:e202302893. [PMID: 37867144 DOI: 10.1002/chem.202302893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Two new pentagon-embedded carbo[11]helicenes have been designed and synthesized in a three-step process, which are the first example of carbo[11]helicenes through the post-functionalization of twistacene. TD-DFT analyses indicate that both of them possess high enantiomerization barriers of 42.29 kcal/mol and 40.76 kcal/mol, respectively. They emit strong red fluorescence and can be chemically oxidized into stable cationic radicals upon addition of AgSbF6 evidenced by the bathochromic-shifted absorption spectra and the appearance of electronic paramagnetic resonance (EPR) signals. In addition, such helical derivatives can be chosen as radiative cooling materials in a glass model house, and the maxima of 5.4 °C for the former and 6.5 °C for the latter are found in the comparative tests, which might be caused by the NIR reflective response.
Collapse
Affiliation(s)
- Bingliang Ji
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Zewei Qi
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Tongtong Ye
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Shuangxuan Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Yanwei Shi
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Shuang Cui
- Division of Analysis, SINOPEC (Beijing) Research Institute of Chemical Industry, Co. Ltd., Beijing, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
12
|
Koli M, Gupta S, Chakraborty S, Ghosh A, Ghosh R, Wadawale AP, Ghanty TK, Patro BS, Mula S. Design and Synthesis of BODIPY-Hetero[5]helicenes as Heavy-Atom-Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. Chemistry 2023; 29:e202301605. [PMID: 37314387 DOI: 10.1002/chem.202301605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Designing heavy-atom-free triplet photosensitizers (PSs) is a challenge for the efficient photodynamic therapy (PDT) of cancer. Helicenes are twisted polycyclic aromatic hydrocarbons (PAHs) with an efficient intersystem crossing (ISC) that is proportional to their twisting angle. But their difficult syntheses and weak absorption profile in the visible spectral region restrict their use as heavy-atom-free triplet PSs for PDT. On the other hand, boron-containing PAHs, BODIPYs are highly recognized for their outstanding optical properties. However, planar BODIPY dyes has low ISC and thus they are not very effective as PDT agents. We have designed and synthesized fused compounds containing both BODIPY and hetero[5]helicene structures to develop red-shifted chromophores with efficient ISC. One of the pyrrole units of the BODIPY core was also replaced by a thiazole unit to further enhance the triplet conversion. All the fused compounds have helical structure, and their twisting angles are also increased by substitutions at the boron centre. The helical structures of the BODIPY-hetero[5]helicenes were confirmed by X-ray crystallography and DFT structure optimization. The designed BODIPY-hetero[5]helicenes showed superior optical properties and high ISC with respect to [5]helicene. Interestingly their ISC efficiencies increase proportionally with their twisting angles. This is the first report on the relationship between the twisting angle and the ISC efficiency in twisted BODIPY-based compounds. Theoretical calculations showed that energy gap of the S1 and T1 states decreases in BODIPY-hetero[5]helicene as compared to planar BODIPY. This enhances the ISC rate in BODIPY-hetero[5]helicene, which is responsible for their high generation of singlet oxygen. Finally, their potential applications as PDT agents were investigated, and one BODIPY-hetero[5]helicene showed efficient cancer cell killing upon photo-exposure. This new design strategy will be very useful for the future development of heavy-atom-free PDT agents.
Collapse
Affiliation(s)
- Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sonali Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Saikat Chakraborty
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajib Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
13
|
Borissov A, Chmielewski PJ, Gómez García CJ, Lis T, Stępień M. Dinor[7]helicene and Beyond: Divergent Synthesis of Chiral Diradicaloids with Variable Open-Shell Character. Angew Chem Int Ed Engl 2023; 62:e202309238. [PMID: 37452009 DOI: 10.1002/anie.202309238] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Diradicaloid helicenes constructed formally by non-benzenoid double π-extension of phenanthrene were synthesized by a common strategy involving double electrophilic benzannulation. Steric effects in the second benzannulation step led to considerable structural diversity among the products, yielding a symmetrical dinor[7]helicene 1 and two isomeric unsymmetrical double helicenes 2 and 3, containing a nor[5]helicene and [4]helicene fragment, respectively, in addition to a common nor[6]helicene motif. Geometries, configurational dynamics, and electronic structure of these helicenes were analyzed using solid-state structures, spectroscopic methods, and computational analyses. The open-shell character of the singlet states of these helicenes increases in the order 3<1<2, with strongly varying diradicaloid indexes and singlet-triplet gaps. Compounds 1-3 displayed narrow optical gaps of 0.79-1.25 eV, resulting in significant absorption in the near infrared (NIR) region. They also exhibit reversible redox chemistry, each of them yielding stable radical cations, radical anions, and dianions, in some cases possessing intense NIR absorptions extending beyond 2500 nm.
Collapse
Affiliation(s)
- Arseni Borissov
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Carlos J Gómez García
- Institute of Molecular Science, University of Valencia, C/José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
14
|
Gu Y, Torchon HS, Zhu Y, Wei Z, Schollmeyer D, Wagner M, Ni Y, Wu Z, Wu H, Zhou Y, Qiu Z, Petrukhina MA, Müllen K. Twisted Diindeno-Fused Dibenzo[a,h]anthracene Derivatives and their Dianions. Angew Chem Int Ed Engl 2023; 62:e202307750. [PMID: 37365137 DOI: 10.1002/anie.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
We report a facile synthesis of diindeno-fused dibenzo[a,h]anthracene derivatives (DIDBA-2Cl, DIDBA-2Ph, and DIDBA-2H) with different degrees of non-planarity using three substituents (chloro, phenyl, and hydrogen) of various sizes. The planarization of their cores, as evidenced by the decreased end-to-end torsional angles, was confirmed by X-ray crystallography. Their enhanced energy gaps with twisting were investigated by a combination of spectroscopic and electrochemical methods with density functional theory, which showed a transition from singlet open-shell to closed-shell configuration. Moreover, their doubly reduced states, DIDBA-2Ph2- and DIDBA-2H2- , were achieved by chemical reduction. The structures of dianions were identified by X-ray crystallographic analysis, which elucidated that the electron charging further distorted the backbones. The electronic structure of the dianions was demonstrated by experimental and theoretical approaches, suggesting decreased energy gaps with larger non-planarity, different from the neutral species.
Collapse
Affiliation(s)
- Yanwei Gu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Herdya S Torchon
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Yikun Zhu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dieter Schollmeyer
- Department of chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manfred Wagner
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yong Ni
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zehua Wu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hao Wu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yazhou Zhou
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zijie Qiu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Klaus Müllen
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
15
|
Closed-shell and open-shell dual nature of singlet diradical compounds. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abstract
Unlike triplet diradicals, singlet diradicals can vary in diradical character from 0 % to 100 % depending on linker units that allow two formally unpaired electrons to couple covalently. In principle, the electronic structure of singlet diradicals can be described as a quantum superposition of closed-shell and open-shell structures. This means that, depending on the external environment, singlet diradicals can behave as either closed-shell or open-shell species. This paper summarizes our progress in understanding the electronic structure of π-conjugated singlet diradical molecules in terms of closed-shell and open-shell dual nature. We first discuss the coexistence of intra- and intermolecular covalent bonding interactions in the π-dimer of a singlet diradical molecule. The intra- and intermolecular coupling of two formally unpaired electrons are related to closed-shell and open-shell nature of singlet diradical, respectively. Then we demonstrate the coexistence of the covalent bonding interactions in the one-dimensional stack of singlet diradical molecules having different diradical character. The relative strength of the interactions is varied with the magnitude of singlet diradical index y
0. Finally, we show the dual reactivity of a singlet diradical molecule, which undergoes rapid [4 + 2] and [4 + 4] cycloaddition reactions in the dark at room temperature. Closed-shell and open-shell nature endow the singlet diradical molecule with the reaction manner as diene and diradical species, respectively.
Collapse
|
16
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Guo J, Li Z, Tian X, Zhang T, Wang Y, Dou C. Diradical B/N-Doped Polycyclic Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202217470. [PMID: 36599802 DOI: 10.1002/anie.202217470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Heterocyclic diradicaloids with atom-precise control over open-shell nature are promising materials for organic electronics and spintronics. Herein, we disclose quinoidal π-extension of a B/N-heterocycle for generating B/N-type organic diradicaloids. Two quinoidal π-extended B/N-doped polycyclic hydrocarbons that feature fusion of the B/N-heterocycle motif with the antiaromatic s-indacene or dicyclopenta[b,g]naphthalene core were synthesized. This quinoidal π-extension and B/N-heterocycle leads to their open-shell electronic nature, which stands in contrast to the multiple-resonance effect of conventional B/N-type emitters. These B/N-type diradicaloids have modulated (anti)aromaticity and enhanced diradical characters comparing with the all-carbon analogues, as well as intriguing properties, such as magnetic activities, narrow energy gaps and highly red-shifted absorptions. This study thus opens the new space for both of B/N-doped polycyclic π-systems and heterocyclic diradicaloids.
Collapse
Affiliation(s)
- Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zeyi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Li Z, Tang Y, Guo J, Zhang J, Deng M, Xiao W, Li F, Yao Y, Xie S, Yang K, Zeng Z. Stair-like narrow N-doped nanographene with unusual diradical character at the topological interface. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
20
|
Harada K, Hasegawa C, Matsumoto T, Sugishita H, Kitamura C, Higashibayashi S, Hasegawa M, Suzuki S, Kato SI. A double-helical S,C-bridged tetraphenyl- para-phenylenediamine and its persistent radical cation. Chem Commun (Camb) 2023; 59:1301-1304. [PMID: 36633220 DOI: 10.1039/d2cc06144a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A structurally constrained, double-helical S,C-bridged tetraphenyl-para-phenylenediamine (TPPD) has been synthesized. The stable radical cation of the S,C-bridged TPPD was generated by chemical oxidation, and the electron spin was found to be delocalized over the entire π-conjugated framework. The excellent conformational stability of the neutral molecule facilitated the separation of its enantiomers.
Collapse
Affiliation(s)
- Kaho Harada
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan.
| | - Chika Hasegawa
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Taisuke Matsumoto
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-koh-en, Kasuga 816-8580, Japan
| | - Hiroki Sugishita
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan.
| | - Chitoshi Kitamura
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan.
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masashi Hasegawa
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shin-Ichiro Kato
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan.
| |
Collapse
|
21
|
Kato M, Kim J, Oh J, Shimizu D, Fukui N, Shinokubo H. Near-Infrared-Responsive Hydrocarbons Designed by π-Extension of Indeno[1,2,3,4-pgra]perylene at the 1,2,12-Positions. Chemistry 2023; 29:e202300249. [PMID: 36705165 DOI: 10.1002/chem.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
The relationship between the overall electronic structure of π-conjugated molecules and the arrangement of their constituent elements is of fundamental importance. Establishing rational design guidelines for conjugated hydrocarbons with narrow HOMO-LUMO gaps is useful to develop near-infrared (NIR) responsive dyes and redox-active materials. This study describes the synthesis and properties of three conjugated hydrocarbons, i. e., an indenonaphthoperylene, an indenoterrylene, and a diindenoterrylene. These molecules exhibit NIR absorption despite the absence of significant antiaromaticity and diradical character. Notably, the indenonaphthoperylene exhibits red-to-NIR emission in the 620-850 nm region. The indenoterrylene and the diindenoterrylene exhibit NIR absorption tailing to 870 and 940 nm, respectively. Moreover, the effect of the π-extension of indenoperylene is disclosed in order to propose guidelines for achieving a narrow HOMO-LUMO gap with negligible antiaromaticity and diradical character.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and, Department of Chemistry, Yonsei University, 03722, Seoul, Korea
| | - Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and, Department of Chemistry, Yonsei University, 03722, Seoul, Korea.,Department of Chemistry and, Department of ICT Environmental Health System, Soonchunhyang University, 31538, Asan, Korea
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency (JST), 332-0012, Kawaguchi, Saitama, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| |
Collapse
|
22
|
Luo T, Wang Y, Hao J, Chen PA, Hu Y, Chen B, Zhang J, Yang K, Zeng Z. Furan-Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angew Chem Int Ed Engl 2023; 62:e202214653. [PMID: 36470852 DOI: 10.1002/anie.202214653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lateral furan-expansion of polycyclic aromatics, which enables multiple O-doping and peripheral edge evolution of rylenes, is developed for the first time. Tetrafuranylperylene TPF-4CN and octafuranylquaterrylene OFQ-8CN were prepared as model compounds bearing unique fjord edge topology and helical conformations. Compared to TPF-4CN, the higher congener OFQ-8CN displays a largely red-shifted (≈333 nm) and intensified absorption band (λmax =829 nm) as well as a narrowed electrochemical band gap (≈1.08 eV) due to its pronounced π-delocalization and emerging of open-shell diradicaloid upon the increase of fjord edge length. Moreover, strong circular dichroism signals in a broad range until 900 nm are observed for open-shell chiral OFQ-8CN, owing to the excellent conformational stability of its central bis(tetraoxa[5]helicene) fragments. Our studies provide insights into the relationships between edge topologies and (chir)optoelectronic properties for this novel type of O-doped PAHs.
Collapse
Affiliation(s)
- Teng Luo
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanpei Wang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiahang Hao
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230039, P. R. China
| | - Kun Yang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
23
|
Chanda R, Ghosh T, Jana U. Iron-Catalyzed Synthesis of 13-Aryl-13 H-indeno[1,2- l]phenanthrene via Double Annulations of 2-Alkynyl Biaryls. J Org Chem 2023; 88:658-664. [PMID: 36538770 DOI: 10.1021/acs.joc.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An Fe(III)-catalyzed expedient synthesis of 13-aryl-13H-indeno[1,2-l]phenanthrene is described by a double annulations of 2-alkynyl biaryls, initiated by the activation of acetal. This strategy provides a simple, efficient and regioselective synthesis of varieties of indenophenanthrene derivatives from easily available starting materials under mild conditions in high to excellent yields. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
| | | | - Umasish Jana
- Department of Organic Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| |
Collapse
|
24
|
Zong C, Yang S, Sun Y, Zhang L, Hu J, Hu W, Li R, Sun Z. Isomeric dibenzooctazethrene diradicals for high-performance air-stable organic field-effect transistors. Chem Sci 2022; 13:11442-11447. [PMID: 36320574 PMCID: PMC9533412 DOI: 10.1039/d2sc03667c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2024] Open
Abstract
Realizing both high-performance and air-stability is key to advancing singlet-diradical-based semiconductors to practical applications and realizing their material potential associated with their open-shell nature. Here a concise synthetic route toward two stable dibenzooctazethrene isomers, DBOZ1 and DBOZ2, was demonstrated. In the crystalline phase, DBOZ2 exhibits two-dimensional brick wall packing with a high degree of intermolecular electronic coupling, leading to a record-breaking hole mobility of 3.5 cm2 V-1 s-1 for singlet diradical transistors, while retaining good device stability in the ambient air.
Collapse
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Shuyuan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Lifeng Zhang
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
25
|
Kasemthaveechok S, Abella L, Crassous J, Autschbach J, Favereau L. Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics. Chem Sci 2022; 13:9833-9847. [PMID: 36128246 PMCID: PMC9430691 DOI: 10.1039/d2sc02480b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Organic radicals possessing an electronic configuration in which the energy of the singly occupied molecular orbital (SOMO) is below the highest doubly occupied molecular orbital (HOMO) level have recently attracted significant interest, both theoretically and experimentally. The peculiar orbital energetics of these SOMO-HOMO inversion (SHI) organic radicals set their electronic properties apart from the more common situation where the SOMO is the highest occupied orbital of the system. This review gives a general perspective on SHI, with key fundamental aspects regarding the electronic and structural factors that govern this particular electronic configuration in organic radicals. Selected examples of reported compounds with SHI are highlighted to establish molecular guidelines for designing this type of radical, and to showcase the potential of SHI radicals in organic spintronics as well as for the development of more stable luminescent radicals for OLED applications.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York Buffalo New York 14260 USA
| | | | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo New York 14260 USA
| | | |
Collapse
|
26
|
Gong X, Li C, Cai Z, Wan X, Qian H, Yang G. Synthesis of Nitrogen-Doped Aza-Helicenes with Chiral Optical Properties. J Org Chem 2022; 87:8406-8412. [PMID: 35730543 DOI: 10.1021/acs.joc.2c00371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aza-helicenes are one of the most important series of heterohelicenes; herein, a series of novel aza-helicenes (5H, 6H, 6S, and 8S) were prepared via Bischler-Napieralski cyclization, and the interconversion dynamic process of these aza-helicenes was revealed using density functional theory calculations. The novel nitrogen-doped [6]helicene (6H) possesses a very high interconversion energy barrier of 36.0 kcal/mol. Two enantiomers of 6H were successfully resolved by high-performance liquid chromatography and showed desired chiral optical properties. 6H with chiral optical activity and lone electrons can be a potential candidate for chiral switches, which was demonstrated using the UV and circular dichroism spectra obtained upon titration with an acid and a base.
Collapse
Affiliation(s)
- Xue Gong
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chunmei Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhixiong Cai
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xuejuan Wan
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Haixia Qian
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Guanghui Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
27
|
Günther K, Grabicki N, Battistella B, Grubert L, Dumele O. An All-Organic Photochemical Magnetic Switch with Bistable Spin States. J Am Chem Soc 2022; 144:8707-8716. [PMID: 35522997 DOI: 10.1021/jacs.2c02195] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling the electronic spin state in single molecules through an external stimulus is of interest in developing devices for information technology, such as data storage and quantum computing. We report the synthesis and operation mode of two all-organic molecular spin-state switches that can be photochemically switched from a diamagnetic [electron paramagnetic resonance (EPR)-silent] to a paramagnetic (EPR-active) form at cryogenic temperatures due to a reversible electrocyclic reaction of its carbon skeleton. Facile synthetic substitution of a configurationally stable 1,14-dimethyl-[5]helicene with radical stabilizing groups at the 4,11-positions afforded two spin-state switches as 4,11-dioxo or 4,11-bis(dicyanomethylidenyl) derivatives in a closed diamagnetic form. After irradiation with an LED light source at cryogenic temperatures, a stable paramagnetic state is readily obtained, making this system a bistable magnetic switch that can reversibly react back to its diamagnetic form through a thermal stimulus. The switching can be monitored with UV/vis spectroscopy and EPR spectroscopy or induced by electrochemical reduction and reoxidation. Variable-temperature EPR spectroscopy of the paramagnetic species revealed an open-shell triplet ground state with an experimentally determined triplet-singlet energy gap of ΔET-S < 0.1 kcal mol-1. The inherent chirality and the ability to separate the enantiomers turns this helical motif into a potential chiroptical spin-state switch. The herein developed 4,11-substitution pattern on the dimethyl[5]helicene introduces a platform for designing future generations of organic molecular photomagnetic switches that might find applications in spintronics and related fields.
Collapse
Affiliation(s)
- Konstantin Günther
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Brook-Taylor-Strasse 2, Berlin D-12489, Germany
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Brook-Taylor-Strasse 2, Berlin D-12489, Germany
| | - Beatrice Battistella
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Brook-Taylor-Strasse 2, Berlin D-12489, Germany
| | - Lutz Grubert
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Brook-Taylor-Strasse 2, Berlin D-12489, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Brook-Taylor-Strasse 2, Berlin D-12489, Germany
| |
Collapse
|
28
|
Abstract
Ambipolar transistor properties have been observed in various small-molecule materials. Since a small energy gap is necessary, many types of molecular designs including extended π-skeletons as well as the incorporation of donor and acceptor units have been attempted. In addition to the energy levels, an inert passivation layer is important to observe ambipolar transistor properties. Ambipolar transport has been observed in extraordinary π-electron systems such as antiaromatic compounds, biradicals, radicals, metal complexes, and hydrogen-bonded materials. Several donor/acceptor cocrystals show ambipolar transport as well.
Collapse
Affiliation(s)
- Toshiki Higashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Takehiko Mori
- Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, 152-8552, Japan.
| |
Collapse
|
29
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
30
|
Kasemthaveechok S, Abella L, Jean M, Cordier M, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. Carbazole Isomerism in Helical Radical Cations: Spin Delocalization and SOMO-HOMO Level Inversion in the Diradical State. J Am Chem Soc 2022; 144:7253-7263. [PMID: 35413200 DOI: 10.1021/jacs.2c00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new molecular design to afford persistent chiral organic open-shell systems with configurational stability and an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest doubly occupied molecular orbital (HOMO) for both mono- and diradical states. The unpaired electron delocalization within the designed extended helical π-conjugated systems is a crucial factor to reach chemical stabilities, which is not obtained using the classical steric protection approach. The unique features of the obtained helical monoradicals allow an exploration of the chiral intramolecular electron transfer (IET) process in solvents of different polarity by means of optical and chiroptical spectroscopies, resulting in an unprecedented electronic circular dichroism (ECD) sign inversion for the radical transitions. We also characterized the corresponding helical diradicals, which show near-infrared electronic circular dichroism at wavelengths up to 1100 nm and an antiferromagnetic coupling between the spins, with an estimated singlet-triplet gap (ΔEST) of about -1.2 kcal mol-1. The study also revealed an intriguing double SOMO-HOMO inversion (SHI) electronic configuration for these diradicals, providing new insight regarding the peculiar energetic ordering of radical orbitals and the impact on the corresponding (chiral) optoelectronic properties.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Marion Jean
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | | | - Olivier Cador
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | | | | |
Collapse
|
31
|
Bracciale MP, Kwon G, Ho D, Kim C, Santarelli ML, Marrocchi A. Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules 2022; 27:863. [PMID: 35164123 PMCID: PMC8840029 DOI: 10.3390/molecules27030863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Organic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal X-ray characterization is reported.
Collapse
Affiliation(s)
- Maria Paola Bracciale
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Guhyun Kwon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Maria Laura Santarelli
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
32
|
Kato M, Fukui N, Shinokubo H. Synthesis of Dibenzo[h,t]rubicene through Its Internally Dimethoxy-Substituted Precursor. CHEM LETT 2022. [DOI: 10.1246/cl.210754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Kato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
33
|
Chen PY, Liu YC, Hung HY, Pan ML, Wei YC, Kuo TC, Cheng MJ, Chou PT, Chiang MH, Wu YT. Diindeno[2,1- b:2',1'- h]biphenylenes: Syntheses, Structural Analyses, and Properties. Org Lett 2021; 23:8794-8798. [PMID: 34714080 DOI: 10.1021/acs.orglett.1c03295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of diindeno[2,1-b:2',1'-h]biphenylenes with open-shell singlet ground states and interesting properties were prepared. The studied compounds consist of p-quinodimethane moieties, which suffer from geometric perturbation with bond angles of around 90°. The substituent effects on structural parameters, local aromaticity, and properties were systematically explored.
Collapse
Affiliation(s)
- Pei-Yun Chen
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Hui-Yu Hung
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Yu-Chen Wei
- Institute of Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Tung-Chun Kuo
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, 10617 Taipei, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, 11529 Taipei, Taiwan.,Department of Medical and Applied Chemistry, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| |
Collapse
|
34
|
Kato M, Fukui N, Shinokubo H. Indeno[1,2,3,4-pqra]Perylene: A Medium-Sized Aromatic Hydrocarbon Exhibiting Full-Range Visible-Light Absorption. Chemistry 2021; 28:e202103647. [PMID: 34787346 DOI: 10.1002/chem.202103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/11/2022]
Abstract
We report the synthesis and properties of indeno[1,2,3,4-pqra]perylene, which was prepared by the fusion of one anthracene unit with one naphthalene unit via three carbon-carbon bonds. The synthetic route through two-fold C-H arylation enabled not only the synthesis of unsubstituted indenoperylene, but also rapid access to its arylated derivatives on the gram scale. Indenoperylene is a medium-sized aromatic hydrocarbon with the composition C24 H12 that is isomeric to coronene. Nevertheless, its absorption covers the entire visible region owing to its small HOMO-LUMO gap. Furthermore, indenoperylene exhibits high stability despite the absence of peripheral substituents. We propose that the unique electronic structure of indenoperylene originates from the coexistence of an electron-withdrawing subunit (benzoaceanthrylene) and an electron-donating subunit (perylene). The electronic properties of indenoperylene were modulated via post-functionalization through regioselective bromination. The current research demonstrates that indenoperylene is a promising candidate as a main skeleton for near-infrared-responsive and redox-active materials.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
35
|
Guo J, Yang Y, Dou C, Wang Y. Boron-Containing Organic Diradicaloids: Dynamically Modulating Singlet Diradical Character by Lewis Acid-Base Coordination. J Am Chem Soc 2021; 143:18272-18279. [PMID: 34664955 DOI: 10.1021/jacs.1c08486] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organic diradicaloids have unique open-shell structures and properties and promising applications in organic electronics and spintronics. Incorporation of heteroatoms is an effective strategy to alter the electronic structures of organic diradicaloids. However, B-containing organic diradicaloids are very challenging due to their high reactivities, which are caused by not only diradical nature but also the B atom. In this article, we report a new kind of organic diradicaloids containing boron atoms. Our strategy is to incorporate planarized triarylboranes to antiaromatic polycyclic hydrocarbons (PHs). We synthesized two isomeric B-containing PHs composed of indenofluorene π-skeletons and two dioxa-bridged triphenylborane moieties. As proved by theoretical and experimental results, both of them have excellent ambient stability and open-shell singlet diradical structures, as well as intriguing magnetic and optoelectronic properties, such as thermally accessible triplet species, reversible multiredox ability, and narrow energy gaps. Notably, they possess sufficient Lewis acidity, which has never been observed for organic diradicaloids. In addition, they can coordinate with Lewis bases to form Lewis adducts, achieving unprecedented dynamic modulations of (anti)aromaticity and thus diradical character of organic diradicaloids.
Collapse
Affiliation(s)
- Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yue Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
36
|
Han H, Zhang D, Zhu Z, Wei R, Xiao X, Wang X, Liu Y, Ma Y, Zhao D. Aromatic Stacking Mediated Spin-Spin Coupling in Cyclophane-Assembled Diradicals. J Am Chem Soc 2021; 143:17690-17700. [PMID: 34637282 DOI: 10.1021/jacs.1c08262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the capability of π-π stacking motifs to enable spin-spin coupling, we designed and synthesized three pairs of regio-isomers featuring two radical moieties joined by a [2.2]paracyclophane (CP) unit. By fusing indeno units to CP, two partially stacked fluorene radicals are covalently linked, exhibiting evident antiferromagnetic (AFM) coupling regardless of the orientation of two spins. Remarkably, while possessing high diradical indices of 0.8 and 0.9, the two molecules demonstrate good air stability by virtue of their singlet ground state. Single crystals help unravel the structural basis of their AFM coupling behaviors. When two radical centers are arranged at the pseudometa-positions around CP, the face-to-face stacked phenylene rings intrinsically confer orbital interactions that promote AFM coupling. On the other hand, if two radicals are directed in the pseudopara-orientation, significant orbital overlapping is observed between the radical centers (i.e., C9 of fluorene) and the aromatic carbons laid on the side, rendering AFM coupling between the two spins. In contrast, when two fluorene radicals are tethered to CP via C9 through a single C-C bond, ferromagnetic (FM) coupling is manifested by both diradical isomers featuring pseudometa- and pseudopara-connectivity. With minimal spin distributed on CP and thus limited contribution from π-π stacking, their spin-spin coupling properties are more similar to a pair of nitroxide diradical analogues, in which the two spins are dominantly coupled via through-space interactions. From these results, important conclusions are elucidated such as that although through-space interactions may confer FM coupling, with weakened strength shown by PAH radicals due to their lower polarity, face-to-face stacked π-frameworks tend to induce AFM coupling, because favorable orbital interactions are readily achieved by PAH systems hosting delocalized spins that are capable of adopting varied stacking motifs.
Collapse
Affiliation(s)
- Han Han
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ziqi Zhu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rong Wei
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiao Xiao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiaoge Wang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Minkin VI, Starikov AG, Starikova AA. Acene-Linked Zethrenes and Bisphenalenyls: A DFT Search for Organic Tetraradicals. J Phys Chem A 2021; 125:6562-6570. [PMID: 34310142 DOI: 10.1021/acs.jpca.1c02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons are of special interest due to their promising nonlinear optical and magnetic properties. A series of acene-linked zethrenes and bisphenalenyls comprising from five to nine benzene rings in the linker group have been computationally studied by the DFT UB3LYP/6-311++G(d,p) quantum-chemical modeling of their electronic structure, possible spin states, and exchange interactions. The zethrenes with octacene and nonacene linkers as well as bisphenalenyls comprising heptacene, octacene, and nonacene linker groups have been revealed to possess tetraradicaloid nature, which makes them promising building blocks for organic optoelectronic and spintronic devices. The results obtained open a way of constructing tetraradicaloid organic molecules characterized by the presence of two types of paramagnetic centers.
Collapse
Affiliation(s)
- Vladimir I Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Andrey G Starikov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
38
|
Zong C, Zhu X, Xu Z, Zhang L, Xu J, Guo J, Xiang Q, Zeng Z, Hu W, Wu J, Li R, Sun Z. Isomeric Dibenzoheptazethrenes for Air‐Stable Organic Field‐Effect Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Zhanqiang Xu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Lifeng Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Jun Xu
- Health Science Platform Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics Center for Aggregation-Induced Emission College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qin Xiang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics Center for Aggregation-Induced Emission College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
39
|
Zong C, Zhu X, Xu Z, Zhang L, Xu J, Guo J, Xiang Q, Zeng Z, Hu W, Wu J, Li R, Sun Z. Isomeric Dibenzoheptazethrenes for Air-Stable Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2021; 60:16230-16236. [PMID: 33999484 DOI: 10.1002/anie.202105872] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 01/15/2023]
Abstract
Singlet diradicaloids hold great potential as semiconductors for organic field-effect transistors (OFETs). However, their relative low material and device stabilities impede the practical applications. Here, to achieve balanced stability and performance, two isomeric dibenzoheptazethrene derivatives with singlet diradical character were synthesized in a concise manner. Benefitting from the aromatic stabilization, both compounds display a small diradical character and large singlet-triplet gap, as corroborated by variable-temperature electron paramagnetic resonance spectra, single-crystal analysis, and theoretical calculations. OFET devices based on single crystals showed a high hole mobility of 0.15 cm2 V-1 s-1 , which is the highest for zethrene-based semiconductors. Both isomers exhibited remarkable material stability in air-saturated solutions as well as excellent bias-stress and storage stability in device under ambient air.
Collapse
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
40
|
Chen Q, Baumgarten M, Wagner M, Hu Y, Hou IC, Narita A, Müllen K. Dicyclopentaannelated Hexa‐
peri
‐hexabenzocoronenes with a Singlet Biradical Ground State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiang Chen
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Current address: Department of Chemistry University of Oxford Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Martin Baumgarten
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Manfred Wagner
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Yunbin Hu
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Current address: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P. R. China
| | - Ian Cheng‐Yi Hou
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Akimitsu Narita
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Okinawa 904-0495 Japan
| | - Klaus Müllen
- Synthetic Chemistry Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Physical Chemistry Johannes Gutenberg-University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
41
|
Konishi A, Horii K, Iwasa H, Okada Y, Kishi R, Nakano M, Yasuda M. Characterization of Benzo[a]naphtho[2,3-f]pentalene: Interrelation between Open-shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry. Chem Asian J 2021; 16:1553-1561. [PMID: 33861497 DOI: 10.1002/asia.202100398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 12/18/2022]
Abstract
The singlet open-shell character and antiaromaticity are intriguing features in π-conjugated carbocycles. These two exhibit similar chemical and physical properties. However, they rarely coexist in the same molecule. Understanding the interrelation between the open-shell and antiaromatic characteristics in the same molecule is crucial to control the electronic properties. Herein we describe the synthesis and characterization of a new member of diareno[a,f]pentalene, benzo[a]naphtho[2,3-f]pentalene 6. Unlike its isomer 5 with a closed-shell ground state, 6 exhibits an appreciable open-shell character and a moderate antiaromatic feature. The behaviors of the open-shell index (y0 ) against the difference of the proton chemical signal (Δδ(H1 )) between pentalenide dianions/neutral pentalenes for our reported pentalenes 1, 4, 5, and 6 give a thought-provoking conclusion about the interrelation between open-shell and antiaromatic characteristics in this series. The mode of the incorporated quinoidal moiety and the formal molecular symmetry are critical to balance these two characteristics.
Collapse
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koki Horii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruna Iwasa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yui Okada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives (QIQB-OTRI), Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Masayoshi Nakano
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives (QIQB-OTRI), Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
42
|
Lombardi F, Ma J, Alexandropoulos DI, Komber H, Liu J, Myers WK, Feng X, Bogani L. Synthetic tuning of the quantum properties of open-shell radicaloids. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Li G, Matsuno T, Han Y, Wu S, Zou Y, Jiang Q, Isobe H, Wu J. Fused Quinoidal Dithiophene-Based Helicenes: Synthesis by Intramolecular Radical-Radical Coupling Reactions and Dynamics of Interconversion of Enantiomers. Angew Chem Int Ed Engl 2021; 60:10326-10333. [PMID: 33565194 DOI: 10.1002/anie.202100606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Indexed: 11/07/2022]
Abstract
A series of fused quinoidal dithiophene-based double and triple helicenes (1-M, 2-M, 2-M-Cl, 3-M, 3-M-Cl) were synthesized by intramolecular radical-radical coupling followed by oxidative dehydrogenation reaction. These helical molecules show dynamic interconversion of enantiomers in solution as revealed by variable-temperature NMR measurements, and the energy barriers are correlated to the substituents and topological structures. Notably, dynamic high performance liquid chromatography was used to quantitatively investigate the room-temperature racemization process between the (P,P,M)- and (P,M,M)- enantiomers of the triple helical 3-M-Cl, which gave an interconversion energy barrier in consistent with density functional theory calculations. Their optical and electrochemical properties are dependent on the fusion mode. Our studies provide both new synthetic strategy and new dynamic analytical method for helicenes with unique electronic structure.
Collapse
Affiliation(s)
- Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Ya Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Qing Jiang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
44
|
Chen Q, Baumgarten M, Wagner M, Hu Y, Hou ICY, Narita A, Müllen K. Dicyclopentaannelated Hexa-peri-hexabenzocoronenes with a Singlet Biradical Ground State. Angew Chem Int Ed Engl 2021; 60:11300-11304. [PMID: 33749985 PMCID: PMC8251543 DOI: 10.1002/anie.202102932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 01/02/2023]
Abstract
Synthesis of two dicyclopentaannelated hexa-peri-hexabenzocoronene (PHBC) regioisomers was carried out, using nonplanar oligoaryl precursors with fluorenyl groups: mPHBC 8 with two pentagons in the "meta"-configuration was obtained as a stable molecule, while its structural isomer with the "para"-configuration, pPHBC 16, could be generated and characterized only in situ due to its high chemical reactivity. Both PHBCs exhibit low energy gaps, as reflected by UV-vis-NIR absorption and electrochemical measurements. They also show open-shell singlet ground states according to electron paramagnetic resonance (EPR) measurements and density functional theory (DFT) calculations. The use of fully benzenoid HBC as a bridging moiety leads to significant singlet biradical characters (y0 ) of 0.72 and 0.96 for mPHBC 8 and pPHBC 16, respectively, due to the strong rearomatization tendency of the HBC π-system; these values are among the highest for planar carbon-centered biradical molecules. The incorporation of fully unsaturated pentagons strongly perturbs the aromaticity of the parent HBC and makes the constituted benzene rings less aromatic or antiaromatic. These results illustrate the high impact of cyclopentaannelation on the electronic structures of fully benzenoid polycyclic aromatic hydrocarbons (PAHs) and open up a new avenue towards open-shell PAHs with prominent singlet biradical characters.
Collapse
Affiliation(s)
- Qiang Chen
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Current address: Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Martin Baumgarten
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunbin Hu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Current address: College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Ian Cheng-Yi Hou
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
45
|
Rong MG, Wang J, Liu J. Toward Zigzag-edged Helical Nanographene Based on [7]Helicene. Chem Asian J 2021; 16:1216-1220. [PMID: 33769686 DOI: 10.1002/asia.202100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their unique chemical and physical properties, zigzag-edged nanographenes have attracted increasing interest in recent years. Herein, a novel zigzag-edged nanographene (6) containing a [7]helicene subunit was designed and synthesized. However, because of the high reactivities of zigzag edges, compound 1 with a diketone structure was obtained owing to the oxidation of 6. The helical carbon skeleton of 1 is unambiguously revealed by single-crystal X-ray crystallography analysis. The photophysical properties of the precursor and helical diketone 1 are studied by UV-vis absorption spectroscopy. The electrochemical property of 1 is investigated by cyclic voltammetry, which was further studied by density functional theory (DFT) calculations (ΔEg Cal =2.94 eV). The work reported here not only represents the synthesis of an unprecedented [7]helicene-embedded nanographene, but also provides the possibility for the synthesis of helical nanographenes with rich zigzag edges.
Collapse
Affiliation(s)
- Ming-Guang Rong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
46
|
Chen Y, Lin C, Luo Z, Yin Z, Shi H, Zhu Y, Wang J. Double π-Extended Undecabenzo[7]helicene. Angew Chem Int Ed Engl 2021; 60:7796-7801. [PMID: 33410247 DOI: 10.1002/anie.202014621] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Indexed: 12/21/2022]
Abstract
This work reports the first double π-extended undecabenzo[7]helicene 1, which is a large chiral nanographene, composed of 65 fused rings and 186 conjugated carbon atoms. The molecular identity of 1 has been confirmed by single crystal X-ray diffraction. A wine coloured solution of 1 in dichloromethane absorbs light from ultraviolet to the near infrared, featuring an extremely large molar absorption coefficient of 844 000 M-1 cm-1 at 573 nm. Optically pure 1 shows a record high electronic circular dichroism intensity in the visible spectral range (|Δϵ|=1375 M-1 cm-1 at 430 nm) known for any discrete polycyclic aromatic hydrocarbon. These unusual photophysical properties of 1 contrast sharply with those of a mono-undecabenzo[7]helicene derivative 2.
Collapse
Affiliation(s)
- Ying Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chaojun Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhixing Luo
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhibo Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haonan Shi
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanpeng Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaobing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
47
|
Chen Y, Lin C, Luo Z, Yin Z, Shi H, Zhu Y, Wang J. Double π‐Extended Undecabenzo[7]helicene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Chen
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Chaojun Lin
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Zhixing Luo
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Zhibo Yin
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Haonan Shi
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yanpeng Zhu
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Jiaobing Wang
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
48
|
Fused Quinoidal Dithiophene‐Based Helicenes: Synthesis by Intramolecular Radical–Radical Coupling Reactions and Dynamics of Interconversion of Enantiomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Phenanthrylene–alkynylene macrocycles, phenanthrene-fused dicyclopenta[b,g]naphthalene, as well as relevant diradicaloids and antiaromatic compounds. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2021. [DOI: 10.1016/bs.apoc.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Xiao X, Pedersen SK, Aranda D, Yang J, Wiscons RA, Pittelkow M, Steigerwald ML, Santoro F, Schuster NJ, Nuckolls C. Chirality Amplified: Long, Discrete Helicene Nanoribbons. J Am Chem Soc 2020; 143:983-991. [DOI: 10.1021/jacs.0c11260] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Xiao
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Stephan K. Pedersen
- Department of Chemistry, Columbia University, New York 10027, United States
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Daniel Aranda
- Departamente de Quimica Fisica, Universidad de Malaga, Bulevar Louis Pasteur 31, Malaga 29010, Spain
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Jingjing Yang
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Ren A. Wiscons
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | | | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York 10027, United States
| |
Collapse
|