1
|
Li Z, Wang Z, Chen X, Bao J, Zhang Y, Wang Z, Zhang L, Xiao J, Lan R, Yang H. Reconfigurable Visible Light-Driven Liquid Crystalline Network Showing Off-Equilibrium Motions Enabled by Mesogen-Grafted Donor-Acceptor Stenhouse Adducts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411530. [PMID: 39428948 DOI: 10.1002/adma.202411530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Liquid crystalline network (LCN)-based soft actuators have opened up great opportunities to fabricate emerging and intriguing smart materials, serving as potential building blocks for intelligent soft robotics. Endowing LCN actuators with complex responsive behaviors to enhance their intelligence is both challenging and highly demanded. Herein, Donor-Acceptor Stenhouse Adducts (DASAs) molecules with rod-like mesogen and the polymerizable group are judiciously designed and synthesized, which is strong-colored at linear form and de-coloration at cyclic form after visible light. In the colored state, the DASA presents a striking photothermal effect that is capable of driving the motions of LCN film. Upon visible light irradiation, the DASA becomes colorless, making the diminishing photothermal effect. The light-gated switching of the photothermal effect renders the LCN films to be reconfigurable and perform off-equilibrium motions. The varying glass transition temperature of LCN matrix endowing tunable isomerization rates of DASAs and the equilibrium balance of photo- and thermal-isomerization at different temperatures in LCN-P-DASA film mainly guiding the off-equilibrium or stable motions, providing high adjustability of the novel visible light-driven LCN actuators. The multiply modulated LCN-P-DASA film holds great potential in constructing complex visible light-driven soft actuators based on the synergetic effect and interactions of photochemical and photothermal effects.
Collapse
Affiliation(s)
- Zhaozhong Li
- Beijing Advanced Innovation Center for Materials Genome, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xinyu Chen
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuhan Zhang
- Beijing Advanced Innovation Center for Materials Genome, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zichen Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Jiumei Xiao
- Beijing Advanced Innovation Center for Materials Genome, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Ruochen Lan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
2
|
Bala I, Plank JT, Balamut B, Henry D, Lippert AR, Aprahamian I. Multi-stage and multi-colour liquid crystal reflections using a chiral triptycene photoswitchable dopant. Nat Chem 2024:10.1038/s41557-024-01648-0. [PMID: 39367064 DOI: 10.1038/s41557-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
The photomodulation of the helical pitch of cholesteric liquid crystals results in dynamic and coloured canvases that can potentially be used in applications ranging from energy-efficient displays to colour filters, anti-counterfeiting tags and liquid crystal (LC) lasers. Here we report on the analysis of a series of photoswitchable chiral dopants that combine the large geometrical change and bistability of hydrazone switches with the efficient helical pitch induction of the chiral motif, triptycene. We elucidate the effects that conformational flexibility, dispersion forces and π-π interactions have on the chirality transfer ability of the dopant. We then use the irradiation time with visible light (442 nm) combined with a simple digital light processing microscope projection set-up to draw numerous stable multi-coloured images on an LC canvas, showcasing the fine control this dopant yields over the LC assembly.
Collapse
Affiliation(s)
- Indu Bala
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Joshua T Plank
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Brandon Balamut
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Drake Henry
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | | | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
3
|
Kim S, Lee SN, Melvin AA, Choi JW. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers (Basel) 2024; 16:2660. [PMID: 39339124 PMCID: PMC11436224 DOI: 10.3390/polym16182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Polymer actuators are promising, as they are widely used in various fields, such as sensors and soft robotics, for their unique properties, such as their ability to form high-quality films, sensitivity, and flexibility. In recent years, advances in structural and fabrication processes have significantly improved the reliability of polymer sensing-based actuators. Polymer actuators have attracted considerable attention for use in artificial or biohybrid systems, as they have the potential to operate under diverse conditions with high durability. This review briefly describes different types of polymer actuators and provides an understanding of their working mechanisms. It focuses on actuation modes controlled by diverse or multiple stimuli. Furthermore, it discusses the fabrication processes of polymer actuators; the fabrication process is an important consideration in the development of high-quality actuators with sensing properties for a wide range of applications in soft robotics. Additionally, the high potential of polymer actuators for use in sensing technology is examined, and the latest developments in the field of polymer actuators, such as the development of biohybrid polymers and the use of polymer actuators in 4D printing, are briefly described.
Collapse
Affiliation(s)
- Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
4
|
Meng J, Cheung LH, Ren Y, Stuart MCA, Wang Q, Chen S, Chen J, Leung FKC. Aqueous Supramolecular Transformations of Motor Bola-Amphiphiles at Multiple Length-Scale. Macromol Rapid Commun 2024; 45:e2400261. [PMID: 38805189 DOI: 10.1002/marc.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.
Collapse
Affiliation(s)
- Jiahui Meng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Marc C A Stuart
- Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, AG Groningen, 9747, Netherlands
| | - Qian Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaoyu Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
5
|
Kim M, Hillel C, Edwards K, Pietro W, Mermut O, Barrett CJ. Chitosan-azo dye bioplastics that are reversibly resoluble and recoverable under visible light irradiation. RSC Adv 2024; 14:25771-25784. [PMID: 39156744 PMCID: PMC11327658 DOI: 10.1039/d4ra02211d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024] Open
Abstract
Biopolymer composite materials were prepared by combining bio-sourced cationic water-soluble chitosan with bi-functional water-soluble anionic azo food dyes amaranth (AMA) or allura red (ALR) as ionic cross-linkers, mixing well in water, and then slow-drying in air. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water, and competitive mechanical properties as plastic materials. However, upon exposure of the bioplastics to low power light at sunlight wavelengths and intensities stirring in water, the stable materials photo-disassembled back to their water-soluble and low-toxicity (edible) constituent components, via structural photo-isomerization of the azo ionic crosslinkers. XRD, UV-vis, and IR spectroscopy confirmed that these assemblies are reversibly recoverable and so can in principle represent fully recyclable, environmentally degradable materials triggered by exposure to sunlight and water after use, with full recovery of starting components ready for re-use. A density functional theory treatment of the amaranth azo dye identified a tautomeric equilibrium favouring the hydrazone form and rationalized geometrical isomerization as a mechanism for photo-disassembly. The proof-of-principle suitability of films of these biomaterial composites as food industry packaging was assessed via measurement of mechanical, water and vapour barrier properties, and stability to solvent tests. Tensile strength of the composite materials was found to be 25-30 MPa, with elongation at break 3-5%, in a range acceptable as competitive for some applications to replace oil-based permanently insoluble non-recyclable artificial plastics, as fully recyclable, recoverable, and reusable low-toxicity green biomaterials in natural environmental conditions.
Collapse
Affiliation(s)
- Mikhail Kim
- Department of Chemistry, McGill University Montreal QC Canada
| | - Coral Hillel
- Department of Physics and Astronomy, York University Toronto ON Canada
| | - Kayrel Edwards
- Department of Chemistry, McGill University Montreal QC Canada
| | - William Pietro
- Department of Chemistry, York University Toronto ON Canada
| | - Ozzy Mermut
- Department of Physics and Astronomy, York University Toronto ON Canada
- Department of Chemistry, York University Toronto ON Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University Montreal QC Canada
- Department of Physics and Astronomy, York University Toronto ON Canada
| |
Collapse
|
6
|
Zhang X, Mitchell TB, Benedict JB. Crystal Structure Landscape of Diarylethene-Based Crystalline Solids: A Comprehensive CSD Analysis. CRYSTAL GROWTH & DESIGN 2024; 24:6284-6291. [PMID: 39131448 PMCID: PMC11313429 DOI: 10.1021/acs.cgd.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 08/13/2024]
Abstract
Diarylethenes (DAEs) are an exciting class of stimulus-responsive organic molecules that exhibit electrocyclization reactions upon exposure to light, heat, or other stimuli. The rational design of DAE-based crystalline materials is, however, complicated by the presence of DAE atropisomers, only one of which is photoactive. Data mining of the CSD produced 1349 unique molecular DAE structures that were subsequently analyzed according to selected chemical and geometric attributes. Additional analyses were performed on 1078 dithienylethene (DTE) structures-the largest subgroup within the ensemble. The crystal structure landscape, based upon D-D parameterization and analysis, revealed a vast array of molecular geometries, many of which may not correspond to energetic minima. The analyses link various chemical and geometric parameters to isomers observed in the lattice and their reactivity; however, potential biases intrinsic to this ensemble of structures complicate the determination of causal relationships. We believe that this retrospective comprehensive analysis of DAE structures represents an important step for understanding more broadly the crystal landscape of this class of materials.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Chemistry, University at Buffalo, Natural Sciences Complex, Buffalo, New York 14260-3000, United
States
| | - Travis B. Mitchell
- Department of Chemistry, University at Buffalo, Natural Sciences Complex, Buffalo, New York 14260-3000, United
States
| | - Jason B. Benedict
- Department of Chemistry, University at Buffalo, Natural Sciences Complex, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
7
|
Guillen Campos J, Tobin C, Sandlass S, Park M, Wu Y, Gordon M, Read de Alaniz J. Photoactivation of Millimeters Thick Liquid Crystal Elastomers with Broadband Visible Light Using Donor-Acceptor Stenhouse Adducts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404932. [PMID: 38899577 DOI: 10.1002/adma.202404932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Light-responsive liquid crystal elastomers (LCEs) are stimuli-responsive materials that facilitate the conversion of light energy into a mechanical response. In this work, a novel polysiloxane-based LCE with donor-acceptor Stenhouse adduct (DASA) side-chains is synthesized using a late-stage functionalization strategy. It is demonstrated that this approach does not compromise the molecular alignment observed in the traditional Finkelmann method. This easy, single-batch process provides a robust platform to access well-aligned, light-responsive LCE films with thickness ranging from 400 µm to a 14-layer stack that is 5 mm thick. Upon irradiation with low-intensity broadband visible light (100-200 mW cm-2), these systems undergo 2D planar actuation and complete bleaching. Conversely, exposure to higher-intensity visible light induces bending followed by contraction (300 mW cm-2). These processes are repeatable over several cycles. Finally, it is demonstrated how light intensity and the resulting heat generation influences the photothermal stationary state equilibrium of DASA, thereby controlling its photoresponsive properties. This work establishes the groundwork for advancement of LCE-based actuators beyond thin film and UV-light reliant systems.
Collapse
Affiliation(s)
- Jesus Guillen Campos
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Cassidy Tobin
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yuhang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Michael Gordon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Gui Q, Liu Z, Sun X, Guo G, Yuan Y, Zhang H. Design, Synthesis, and Performance of Photo-Responsive Liquid Crystal Polymers with Stepwise Deformation Capability. Macromol Rapid Commun 2024; 45:e2400193. [PMID: 38837543 DOI: 10.1002/marc.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Photo-responsive liquid crystal polymers (LCPs) have potential application value in flexible robots, artificial muscles, and microfluidic control. In recent years, significant progress has been made in the development of LCPs. However, the preparation of LCPs with continuous and controllable stepwise deformation capabilities remains a challenge. In this study, visible photo-responsive cyanostilbene monomer, UV photo-responsive azobenzene monomer, and multiple hydrogen bond crosslinker are used to prepare photo-responsive LCPs capable of achieving continuously and controllable stepwise deformation. The comprehensive investigation of the multiple light response ability and photo-induced deformation properties of these copolymers is conducted. The results reveal that in the first stage of photo-induced deformation under 470 nm blue light irradiation, the deformation angle decreases with a reduction in cyanostilbene content in the copolymer component, ranging from 40° in AZ0-CS4 to 0° in AZ4-CS0. In the second stage of photo-induced deformation under 365 nm UV irradiation, the deformation angle increases with the increase of azobenzene content, ranging from 0° of AZ0-CS4 to 89.4° of AZ4-CS0. Importantly, the deformation between these two stages occurs as a continuous process, allowing for a direct transition from the first-stage to the second-stage deformation by switching the light source from 470 to 365 nm.
Collapse
Affiliation(s)
- Qin Gui
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Zui Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Xiangling Sun
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Guangqiang Guo
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| |
Collapse
|
9
|
Kuntze K, Isokuortti J, van der Wal JJ, Laaksonen T, Crespi S, Durandin NA, Priimagi A. Detour to success: photoswitching via indirect excitation. Chem Sci 2024; 15:11684-11698. [PMID: 39092110 PMCID: PMC11290455 DOI: 10.1039/d4sc02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
Collapse
Affiliation(s)
- Kim Kuntze
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Jussi Isokuortti
- Department of Chemistry, University of Texas at Austin Austin TX USA
| | - Jacob J van der Wal
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, University of Helsinki Helsinki Finland
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| |
Collapse
|
10
|
Kotásková L, Jewula P, Herchel R, Nemec I, Neugebauer P. Photoswitchable hydrazones with pyridine-based rotors and halogen substituents. RSC Adv 2024; 14:20856-20866. [PMID: 38952940 PMCID: PMC11216040 DOI: 10.1039/d4ra02909g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
The Z,E-photoisomerization of pyridine-based hydrazone switches is typically suppressed due to the presence of pyridine-based rotors. The crystal structures of studied compounds were investigated using theoretical methods combining DFT and QT-AIM calculations to unveil the nature and properties of the intramolecular hydrogen bonding. In this study, we introduced a new series of pyridine-based hydrazones anchored with o-halogen substituents (2-X) and investigated their photoswitching abilities using 1H NMR and UV-Vis spectroscopy. The efficiency of the photoisomerization from initial 2-X-Z to the 2-X-E isomer varied, with the highest yield observed for 2-Cl-E (55%). Our findings, supported by DFT calculations, revealed the formation of a new diastereomer, 2-X-E*, upon back-photoisomerization. We demonstrated that hydrazones from the 2-X series can be reversibly photoswitched using irradiation from the UV-Vis range, and additionally, we explored the effect of the halogen atom on their switching capabilities and also on their thermodynamics and kinetics of photoswitching, determining their molecular solar thermal energy storage potential.
Collapse
Affiliation(s)
- Lucie Kotásková
- Central European Institute of Technology, Brno University of Technology Purkyňova 656/123 61200 Brno Czech Republic
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology Purkyňova 656/123 61200 Brno Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Palacký University 17 listopadu 1192/12 77900 Olomouc Czech Republic
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology Purkyňova 656/123 61200 Brno Czech Republic
- Department of Inorganic Chemistry, Palacký University 17 listopadu 1192/12 77900 Olomouc Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, Brno University of Technology Purkyňova 656/123 61200 Brno Czech Republic
| |
Collapse
|
11
|
Thai LD, Kammerer JA, Théato P, Mutlu H, Barner-Kowollik C. Access to Main-Chain Photoswitching Polymers via Hydroxyl-yne Click Polymerization. ACS Macro Lett 2024; 13:681-687. [PMID: 38755739 DOI: 10.1021/acsmacrolett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Main-chain stimuli-responsive polymers synthesized via polymerization techniques that do not rely on metal-based catalysis are highly desirable for economic reasons and to avoid metal-polymer interactions. Herein, we introduce a metal-free head-to-tail organobase-catalyzed hydroxyl-yne click polymerization of an AB-type monomer to realize photoswitchable polymers featuring α-bismines as main-chain repeating units. The prepared main-chain α-bisimine-based polymers show excellent photoswitching in solution. We further post-functionalize the obtained polymers with various thiol compounds via thiol-Michael reactions to significantly lower the glass transition temperature (Tg), likely to be beneficial for the photoswitching process in the solid state. Thus, the herein introduced polymerization technique not only provides metal-free access to main-chain stimuli-responsive polymers, but also allows for the flexible post-modification of the obtained polymers to generate advanced macromolecular architectures with tunable properties.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Patrick Théato
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse Cedex, 68057 France
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Dai S, Zhong J, Yang X, Chen C, Zhou L, Liu X, Sun J, Ye K, Zhang H, Li L, Naumov P, Lu R. Strategies to Diversification of the Mechanical Properties of Organic Crystals. Angew Chem Int Ed Engl 2024; 63:e202320223. [PMID: 38588224 DOI: 10.1002/anie.202320223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.
Collapse
Affiliation(s)
- Shuting Dai
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jiangbin Zhong
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Xiqiao Yang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Chao Chen
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liping Zhou
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Xinyu Liu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingbo Sun
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Kaiqi Ye
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Hongyu Zhang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188, Abu Dhabi, UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Ran Lu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
13
|
Nagaoka Y, Schneider J, Jin N, Cai T, Liu Y, Wang Z, Li R, Kim KS, Chen O. Dynamic Transformation of High-Architectural Nanocrystal Superlattices upon Solvent Molecule Exposure. J Am Chem Soc 2024; 146:13093-13104. [PMID: 38690763 DOI: 10.1021/jacs.3c14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The cluster-based body-centered-cubic superlattice (cBCC SL) represents one of the most complicated structures among reported nanocrystal assemblies, comprised of 72 truncated tetrahedral quantum dots per unit cell. Our previous report revealed that truncated tetrahedral quantum dots within cBCC SLs possessed highly controlled translational and orientational order owing to an unusual energetic landscape based on the balancing of entropic and enthalpic contributions during the assembly process. However, the cBCC SL's structural transformability and mechanical properties, uniquely originating from such complicated nanostructures, have yet to be investigated. Herein, we report that cBCC SLs can undergo dynamic transformation to face-centered-cubic SLs in response to post-assembly molecular exposure. We monitored the dynamic transformation process using in situ synchrotron-based small-angle X-ray scattering, revealing a dynamic transformation involving multiple steps underpinned by interactions between incoming molecules and TTQDs' surface ligands. Furthermore, our mechanistic study demonstrated that the precise configuration of TTQDs' ligand molecules in cBCC SLs was key to their high structural transformability and unique jelly-like soft mechanical properties. While ligand molecular configurations in nanocrystal SLs are often considered minor features, our findings emphasize their significance in controlling weak van der Waals interactions between nanocrystals within assembled SLs, leading to previously unremarked superstructural transformability and unique mechanical properties. Our findings promote a facile route toward further creation of soft materials, nanorobotics, and out-of-equilibrium assemblies based on nanocrystal building blocks.
Collapse
Affiliation(s)
- Yasutaka Nagaoka
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jeremy Schneider
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tong Cai
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kyung-Suk Kim
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
14
|
Gaile A, Belyakov S, Dūrena R, Griščenko Ņ, Zukuls A, Batenko N. Studies of the Functionalized α-Hydroxy- p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond. Molecules 2024; 29:1613. [PMID: 38611892 PMCID: PMC11013408 DOI: 10.3390/molecules29071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, reactions between 6,7-dichloropyrido[1,2-a]benzimidazole-8,9-diones with different benzohydrazides were studied. Nucleophilic substitution at C(6) was followed by isomerization and led to α-hydroxy-p-quinone imine derivatives. Synthesized compounds represent a combination of several structural motifs: a benzimidazole core fused with α-hydroxy-p-quinone imine, which contains a benzamide fragment. X-ray crystallography analysis revealed the formation of dimers linked through OH···O interactions and stabilization of the imine form by strong intramolecular NH···N hydrogen bonds. The protonation/deprotonation processes were investigated in a solution using UV-Vis spectroscopy and a 1H NMR titration experiment. Additionally, the electrochemical properties of 6,7-dichloropyrido[1,2-a]benzimidazole-8,9-dione and its α-hydroxy-p-quinone imine derivative as cathode materials were investigated in acidic and neutral environments using cyclic voltammetry measurements. Cathode material based on 6,7-dichloropyrido[1,2-a]benzimidazole-8,9-dione could act as a potentially effective active electrode in aqueous electrolyte batteries; however, further optimization is required.
Collapse
Affiliation(s)
- Anastasija Gaile
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia;
| | - Sergey Belyakov
- Latvian Institute of Organic Chemistry, Aizkraukles Str. 21, LV-1006 Riga, Latvia;
| | - Ramona Dūrena
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (R.D.); (Ņ.G.); (A.Z.)
| | - Ņikita Griščenko
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (R.D.); (Ņ.G.); (A.Z.)
| | - Anzelms Zukuls
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (R.D.); (Ņ.G.); (A.Z.)
| | - Nelli Batenko
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia;
| |
Collapse
|
15
|
Nie ZZ, Wang M, Yang H. Self-sustainable autonomous soft actuators. Commun Chem 2024; 7:58. [PMID: 38503863 PMCID: PMC10951225 DOI: 10.1038/s42004-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Self-sustainable autonomous locomotion is a non-equilibrium phenomenon and an advanced intelligence of soft-bodied organisms that exhibit the abilities of perception, feedback, decision-making, and self-sustainment. However, artificial self-sustaining architectures are often derived from algorithms and onboard modules of soft robots, resulting in complex fabrication, limited mobility, and low sensitivity. Self-sustainable autonomous soft actuators have emerged as naturally evolving systems that do not require human intervention. With shape-morphing materials integrating in their structural design, soft actuators can direct autonomous responses to complex environmental changes and achieve robust self-sustaining motions under sustained stimulation. This perspective article discusses the recent advances in self-sustainable autonomous soft actuators. Specifically, shape-morphing materials, motion characteristics, built-in negative feedback loops, and constant stimulus response patterns used in autonomous systems are summarized. Artificial self-sustaining autonomous concepts, modes, and deformation-induced functional applications of soft actuators are described. The current challenges and future opportunities for self-sustainable actuation systems are also discussed.
Collapse
Affiliation(s)
- Zhen-Zhou Nie
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Qi Q, Huang S, Liu X, Aprahamian I. 1,2-BF 2 Shift and Photoisomerization Induced Multichromatic Response. J Am Chem Soc 2024; 146:6471-6475. [PMID: 38428039 DOI: 10.1021/jacs.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
17
|
Kubota R, Hamachi I. Cell-Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Non-/Out-of-Equilibrium Dynamic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306830. [PMID: 38018341 PMCID: PMC10885657 DOI: 10.1002/advs.202306830] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Living cells are complex, nonequilibrium supramolecular systems capable of independently and/or cooperatively integrating multiple bio-supramolecules to execute intricate physiological functions that cannot be accomplished by individual biomolecules. These biological design strategies offer valuable insights for the development of synthetic supramolecular systems with spatially controlled hierarchical structures, which, importantly, exhibit cell-like responses and functions. The next grand challenge in supramolecular chemistry is to control the organization of multiple types of supramolecules in a single system, thus integrating the functions of these supramolecules in an orthogonal and/or cooperative manner. In this perspective, the recent progress in constructing multicomponent supramolecular soft materials through the hybridization of supramolecules, such as self-assembled nanofibers/gels and coacervates, with other functional molecules, including polymer gels and enzymes is highlighted. Moreover, results show that these materials exhibit bioinspired responses to stimuli, such as bidirectional rheological responses of supramolecular double-network hydrogels, temporal stimulus pattern-dependent responses of synthetic coacervates, and 3D hydrogel patterning in response to reaction-diffusion processes are presented. Autonomous active soft materials with cell-like responses and spatially controlled structures hold promise for diverse applications, including soft robotics with directional motion, point-of-care disease diagnosis, and tissue regeneration.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Katsura, 615-8530, Japan
| |
Collapse
|
18
|
Zhu H, Ronson TK, Wu K, Nitschke JR. Steric and Geometrical Frustration Generate Two Higher-Order Cu I12L 8 Assemblies from a Triaminotriptycene Subcomponent. J Am Chem Soc 2024; 146:2370-2378. [PMID: 38251968 PMCID: PMC10835662 DOI: 10.1021/jacs.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
19
|
Thai LD, Fanelli J, Munaweera R, O'Mara ML, Barner-Kowollik C, Mutlu H. Main-chain Macromolecular Hydrazone Photoswitches. Angew Chem Int Ed Engl 2024; 63:e202315887. [PMID: 37988197 DOI: 10.1002/anie.202315887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Hydrazones-consisting of a dynamic imine bond and an acidic NH proton-have recently emerged as versatile photoswitches underpinned by their ability to form thermally bistable isomers, (Z) and (E), respectively. Herein, we introduce two photoresponsive homopolymers containing structurally different hydrazones as main-chain repeating units, synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. Their key difference lies in the hydrazone design, specifically the location of the aliphatic arm connecting the rotor of the hydrazone photoswitch to the aliphatic polymer backbone. Critically, we demonstrate that their main photoresponsive property, i.e., their hydrodynamic volume, changes in opposite directions upon photoisomerization (λ=410 nm) in dilute solution. Further, the polymers-independent of the design of the individual hydrazone monomer-feature a photoswitchable glass transition temperature (Tg ) by close to 10 °C. The herein established design strategy allows to photochemically manipulate macromolecular properties by simple structural changes.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Julian Fanelli
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), 4067, St Lucia, QLD, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), 4067, St Lucia, QLD, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| |
Collapse
|
20
|
Imato K, Ishii A, Kaneda N, Hidaka T, Sasaki A, Imae I, Ooyama Y. Thermally Stable Photomechanical Molecular Hinge: Sterically Hindered Stiff-Stilbene Photoswitch Mechanically Isomerizes. JACS AU 2023; 3:2458-2466. [PMID: 37772185 PMCID: PMC10523368 DOI: 10.1021/jacsau.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023]
Abstract
Molecular photoswitches are extensively used as molecular machines because of the small structures, simple motions, and advantages of light including high spatiotemporal resolution. Applications of photoswitches depend on the mechanical responses, in other words, whether they can generate motions against mechanical forces as actuators or can be activated and controlled by mechanical forces as mechanophores. Sterically hindered stiff stilbene (HSS) is a promising photoswitch offering large hinge-like motions in the E/Z isomerization, high thermal stability of the Z isomer, which is relatively unstable compared to the E isomer, with a half-life of ca. 1000 years at room temperature, and near-quantitative two-way photoisomerization. However, its mechanical response is entirely unexplored. Here, we elucidate the mechanochemical reactivity of HSS by incorporating one Z or E isomer into the center of polymer chains, ultrasonicating the polymer solutions, and stretching the polymer films to apply elongational forces to the embedded HSS. The present study demonstrated that HSS mechanically isomerizes only in the Z to E direction and reversibly isomerizes in combination with UV light, i.e., works as a photomechanical hinge. The photomechanically inducible but thermally irreversible hinge-like motions render HSS unique and promise unconventional applications differently from existing photoswitches, mechanophores, and hinges.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Akira Ishii
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Taichi Hidaka
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ayane Sasaki
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
21
|
Touchet-Valle E, Tasmim S, Ware TH, McDougall MP. Evaluation of Low-Loss Polymer Switches for Multinuclear MRI/S . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083302 DOI: 10.1109/embc40787.2023.10340712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Implementation of multinuclear MRI/S as a diagnostic tool in clinical settings faces many challenges. One of those challenges is the development of highly sensitive multinuclear RF coils. Current multi-tuning techniques incorporate lossy components that impact the highest achievable SNR for at least one of the coil frequencies. As a result, optimization of multinuclear coil designs continues to be a priority for RF hardware engineers. To address this challenge, a new frequency switching technology that incorporates stimuli-responsive polymer materials was explored. Q measurements were used as a comparison metric between single-tuned, a standard switching network, and the proposed switching technology. The Q losses measured in the new switching method remained below 38% when compared to single-tuned coils. These results are consistent with low loss values reported using traditional switching networks. Furthermore, preliminary testing indicates that there is potential for improvement. These results establish the new technology as a promising alternative to traditional switching techniques.Clinical Relevance- A low loss multi-tuning technique for MRI radiofrequency coils has the potential of improving the study and diagnosis of disease.
Collapse
|
22
|
Thai LD, Guimaraes TR, Chambers LC, Kammerer JA, Golberg D, Mutlu H, Barner-Kowollik C. Molecular Photoswitching of Main-Chain α-Bisimines in Solid-State Polymers. J Am Chem Soc 2023. [PMID: 37379099 DOI: 10.1021/jacs.3c03242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Photoisomerization of chromophores usually shows significantly less efficiency in solid polymers than in solution as strong intermolecular interactions lock their conformation. Herein, we establish the impact of macromolecular architecture on the isomerization efficiency of main-chain-incorporated chromophores (i.e., α-bisimine) in both solution and the solid state. We demonstrate that branched architectures deliver the highest isomerization efficiency for the main-chain chromophore in the solid state─remarkably as high as 70% compared to solution. The macromolecular design principles established herein for efficient solid-state photoisomerization can serve as a blueprint for enhancing the solid-state isomerization efficiency for other polymer systems, such as those based on azobenzenes.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thiago R Guimaraes
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Lewis C Chambers
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dmitri Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/Université de Haute Alsace, 15 Rue Jean Starcky, Mulhouse Cedex 68057, France
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Majee D, Ramanauskaite G, Presolski S. Electronic Influences on the Dynamic Range of Photoswitchable Dithienylethene-Thiourea Organocatalysts. J Org Chem 2023; 88:4372-4378. [PMID: 36939093 DOI: 10.1021/acs.joc.2c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Thiourea-based organocatalysts bearing a photoswitchable dithienylethene (DTE) core and a wide range of substituents were prepared and extensively tested for their ability to accelerate the Michael reaction between acetylacetone and trans-β-nitrostyrene. There is a strong correlation between the Hammett parameter of the modulating groups and catalytic activity following UV irradiation. Electron-withdrawing groups afford the largest reactivity difference between the catalysts in their ring-open form and their ring-closed isomer, with evidence for electronic coupling between the two halves in both oDTE and cDTE.
Collapse
Affiliation(s)
- Debashis Majee
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | | |
Collapse
|
24
|
Boychuk A, Shibaev V, Cigl M, Hamplová V, Novotná V, Bobrovsky A. Large Thermally Irreversible Photoinduced Shift of Selective Light Reflection in Hydrazone-Containing Cholesteric Polymer Systems. Chemphyschem 2023:e202300011. [PMID: 36861819 DOI: 10.1002/cphc.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
Stimuli responsive liquid crystalline polymers are a unique class of so-called "smart" materials demonstrating various types of mesomorphic structures easily controlled by external fields, including light. In the present work we synthesized and studied a comb-shaped hydrazone-containing copolyacrylate exhibited cholesteric liquid crystalline properties with the pitch length of the helix being tuned under irradiation with light. In the cholesteric phase selective light reflection in the near IR spectral range (1650 nm) was measured and a large blue shift of the reflection peak from 1650 nm to 500 nm was found under blue light (428 or 457 nm) irradiation. This shift is related to the Z-E isomerization of photochromic hydrazone-containing groups and it is photochemically reversible. The improved and faster photo-optical response was found after copolymer doping with 10 wt % of low-molar-mass liquid crystal. It is noteworthy that both, the E and Z isomers of hydrazone photochromic group are thermally stable that enable to achieve a pure photoinduced switch without any dark relaxation at any temperatures. The large photoinduced shift of the selective light reflection, together with thermal bistability, makes such systems promising for applications in photonics.
Collapse
Affiliation(s)
- Artem Boychuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991, Russia
| | - Valery Shibaev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991, Russia
| | - Martin Cigl
- Institute of Physics of the Czech Academy of Sciences, 1999/2 Na Slovance, 182 20, Prague 8, Czech Republic
| | - Vĕra Hamplová
- Institute of Physics of the Czech Academy of Sciences, 1999/2 Na Slovance, 182 20, Prague 8, Czech Republic
| | - Vladimíra Novotná
- Institute of Physics of the Czech Academy of Sciences, 1999/2 Na Slovance, 182 20, Prague 8, Czech Republic
| | - Alexey Bobrovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991, Russia
| |
Collapse
|
25
|
Gödtel P, Starrett J, Pianowski ZL. Heterocyclic Hemipiperazines: Water-Compatible Peptide-Derived Photoswitches. Chemistry 2023; 29:e202204009. [PMID: 36790823 DOI: 10.1002/chem.202204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Hemipiperazines are a recently discovered class of peptide-derived molecular photoswitches with high biocompatibility and therapeutic potential. Here, for the first time we describe photochromism of heterocyclic hemipiperazines. They demonstrate long thermal lifetimes, and enlarged band separation between photoisomers. Efficient photoisomerization occurs under aqueous conditions, although with a need for organic co-solvent. Bidirectional switching with visible light is observed for an extended aromatic system.
Collapse
Affiliation(s)
- Peter Gödtel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Jessica Starrett
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology KIT, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Yang F, Yue B, Zhu L. Light-triggered Modulation of Supramolecular Chirality. Chemistry 2023; 29:e202203794. [PMID: 36653305 DOI: 10.1002/chem.202203794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.
Collapse
Affiliation(s)
- Fan Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
27
|
Hugenbusch D, Lehr M, von Glasenapp JS, McConnell AJ, Herges R. Light-Controlled Destruction and Assembly: Switching between Two Differently Composed Cage-Type Complexes. Angew Chem Int Ed Engl 2023; 62:e202212571. [PMID: 36215411 PMCID: PMC10099457 DOI: 10.1002/anie.202212571] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 12/30/2022]
Abstract
We report on two regioisomeric, diazocine ligands 1 and 2 that can both be photoswitched between the E- and Z-configurations with violet and green light. The self-assembly of the four species (1-Z, 1-E, 2-Z, 2-E) with CoII ions was investigated upon changing the coordination vectors as a function of the ligand configuration (E vs Z) and regioisomer (1 vs 2). With 1-Z, Co2 (1-Z)3 was self-assembled, while a mixture of ill-defined species (oligomers) was observed with 2-Z. Upon photoswitching with 385 nm to the E configurations, the opposite was observed with 1-E forming oligomers and 2-E forming Co2 (2-E)3 . Light-controlled dis/assembly was demonstrated in a ligand competition experiment with sub-stoichiometric amounts of CoII ions; alternating irradiation with violet and green light resulted in the reversible transformation between Co2 (1-Z)3 and Co2 (2-E)3 over multiple cycles without significant fatigue by photoswitching.
Collapse
Affiliation(s)
- Daniel Hugenbusch
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Marc Lehr
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Anna J McConnell
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
28
|
Lan R, Bao J, Li Z, Wang Z, Song C, Shen C, Huang R, Sun J, Wang Q, Zhang L, Yang H. Orthogonally Integrating Programmable Structural Color and Photo‐Rewritable Fluorescence in Hydrazone Photoswitch‐bonded Cholesteric Liquid Crystalline Network. Angew Chem Int Ed Engl 2022; 61:e202213915. [DOI: 10.1002/anie.202213915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ruochen Lan
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Institute of Advanced Materials Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jinying Bao
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Zhaozhong Li
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zizheng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Chenjie Song
- Department of Ophthalmology Beijing Anzhen Hospital Capital Medical University Beijing 100029 P. R. China
| | - Chen Shen
- China National Machinery Industry Corporation (Sinomach) Beijing 100080 P. R. China
| | - Rui Huang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jian Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Qian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Lanying Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| |
Collapse
|
29
|
Lan R, Bao J, Huang R, Wang Z, Zhang L, Shen C, Wang Q, Yang H. Amplifying Molecular Scale Rotary Motion: The Marriage of Overcrowded Alkene Molecular Motor with Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109800. [PMID: 35732437 DOI: 10.1002/adma.202109800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Design and fabrication of macroscopic functional devices by molecular engineering is an emerging and effective strategy in exploration of advanced materials. Photoresponsive overcrowded alkene-based molecular motor (OAMM) is considered as one of the most promising molecular machines due to the unique rotary motion driven by light with high temporal and spatial precision. Amplifying the molecular rotary motions into macroscopic behaviors of photodirected systems links the molecular dynamics with macroscopic motions of materials, providing new opportunities to design novel materials and devices with a bottom-up strategy. In this review, recent developments of the light-responsive liquid crystal system triggered by OAMM will be summarized. The mechanism of amplification effect of liquid crystal matrix will be introduced first. Then progress of the OAMM-driven liquid crystal materials will be described including light-controlled photonic crystals, texture-tunable liquid crystal coating and microspheres, photoactuated soft robots, and dynamic optical devices. It is hoped that this review provides inspirations in design and exploration of light-driven soft matters and novel functional materials from molecular engineering to structural modification.
Collapse
Affiliation(s)
- Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
30
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022; 61:e202205801. [PMID: 35718745 PMCID: PMC9544085 DOI: 10.1002/anie.202205801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/13/2022]
Abstract
In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine‐tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.
Collapse
Affiliation(s)
- Michael Kathan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry—Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Axel Troncossi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Charlotte N. Stindt
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki-Aza-Aoba, Aobaku Sendai 980-8578 Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| |
Collapse
|
31
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐Coordinated Hydrazone‐Based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022; 61:e202202655. [DOI: 10.1002/anie.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiandong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jufu Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shanying Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
- College of Electronic and Optical Engineering and Microelectronics & College of Flexible Electronics (Future Technology) Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| |
Collapse
|
32
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Kathan
- Humboldt-Universitat zu Berlin Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin GERMANY
| | - Stefano Crespi
- Uppsala Universitet Department of Chemistry Ångström LaboratoryBox 523 751 20 Uppsala SWEDEN
| | - Axel Troncossi
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Charlotte N. Stindt
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- Tohoku University: Tohoku Daigaku Department of Chemistry JAPAN
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
33
|
Antidiabetic Wound Dressing Materials Based on Cellulosic Fabrics Loaded with Zinc Oxide Nanoparticles Synthesized by Solid-State Method. Polymers (Basel) 2022; 14:polym14112168. [PMID: 35683840 PMCID: PMC9183095 DOI: 10.3390/polym14112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
The current study aims for the use of the solid-state technique as an efficient way for the preparation of zinc oxide nanoparticles (ZnONPs) as an antimicrobial agent with high concentration using sodium alginate as stabilizing agent. ZnONPs were prepared with three different concentrations: ZnONPs-1, ZnONPs-2, and ZnONPs-3 (attributed to the utilized different concentrations of zinc acetate, 1.5, 3 and 4.5 g, respectively). The as-fabricated ZnONPs (ZnONPs-1, ZnONPs-2, and ZnONPs-3) were used for the treatment of cellulosic fabrics as dressing materials for the diabetic wounds. DLS findings illustrated that the as-prepared ZnONPs exhibited average particle size equal to 78, 117, and 144 nm, respectively. The data also showed that all the formulated ZnONPs were formed with good stability (above −30 mv). The topographical images of cellulosic fabrics loaded with ZnONPs that were obtained by SEM confirmed the deposition of nanoparticles onto the surface of cellulosic fabrics with no noticeable agglomeration. The findings also outlined that the treated cellulosic fabrics dressings were proven to have enhanced bactericidal characteristics against the pathogenic microorganisms. The finding of wound contraction for the diabetic rats was measured after 21 days and reached 93.5% after treating the diabetic wound with cotton fabrics containing ZnONPs-2. Ultimately, the generated wound dressing (cellulosic fabrics loaded with ZnONPs) offers considerable promise for treating the wound infections and might be examined as a viable alternative to antibiotics and topical wound treatments.
Collapse
|
34
|
Fast E/Z UV-light response T-type photoswitching of phenylene-thienyl imines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐coordinated Hydrazone‐based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun Ma
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiandong Shen
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jufu Zhao
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiangang Li
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shanying Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Chenyuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Juan Wei
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications 9 Wenyuan Road 210023 Nanjing CHINA
| |
Collapse
|
36
|
Betancourth JG, Castaño JA, Visbal R, Chaur MN. The versatility of the amino moiety of the hydrazone group in molecular and supramolecular systems. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Renso Visbal
- Universidad del Valle Departamento de Química COLOMBIA
| | - Manuel N. Chaur
- Universidad del Valle Chemistry Calle 13 # 100-00Departamento de QuímicaUniversidad del Valle 76000 Cali COLOMBIA
| |
Collapse
|
37
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
38
|
Liu Z, Guo G, Liao J, Yuan Y, Zhang H. Manipulated and Improved Photoinduced Deformation Property of Photoresponsive Liquid Crystal Elastomers by Copolymerization. Macromol Rapid Commun 2022; 43:e2100717. [PMID: 35083802 DOI: 10.1002/marc.202100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zui Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Guangqiang Guo
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Junqiu Liao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
39
|
Heard AW, Suárez JM, Goldup SM. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat Rev Chem 2022; 6:182-196. [PMID: 37117433 DOI: 10.1038/s41570-021-00348-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Mechanically interlocked molecules, such as rotaxanes and catenanes, are receiving increased attention as scaffolds for the development of new catalysts, driven by both their increasing accessibility and high-profile examples of the mechanical bond delivering desirable behaviours and properties. In this Review, we survey recent advances in the catalytic applications of mechanically interlocked molecules organized by the effect of the mechanical bond on key catalytic properties, namely, activity, chemoselectivity and stereoselectivity, and focus on how the mechanically bonded structure leads to the observed behaviour. Our aim is to inspire future investigations of mechanically interlocked catalysts, including those outside of the supramolecular community.
Collapse
|
40
|
Gupta P, Allu S, Hazarika PJ, Ray NR, Nangia AK, Nath NK. Fast and reversible bidirectional photomechanical response displayed by a flexible polycrystalline aggregate of a hydrazone. CrystEngComm 2022. [DOI: 10.1039/d2ce00829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a typical laboratory experiment was carried out to isolate the flat strips of a flexible polycrystalline aggregate of a hydrazone derivative.
Collapse
Affiliation(s)
- Poonam Gupta
- Department of Chemistry, National Institute of Technology, Meghalaya 793003, India
| | - Suryanarayana Allu
- School of Chemistry, University of Hyderabad, Central University P.O., Prof. C. R. Rao Road, Hyderabad 500046, India
| | - Pragyan J. Hazarika
- Department of Chemistry, National Institute of Technology, Meghalaya 793003, India
| | - Nisha R. Ray
- Department of Chemistry, National Institute of Technology, Meghalaya 793003, India
| | - Ashwini K. Nangia
- School of Chemistry, University of Hyderabad, Central University P.O., Prof. C. R. Rao Road, Hyderabad 500046, India
| | - Naba K. Nath
- Department of Chemistry, National Institute of Technology, Meghalaya 793003, India
| |
Collapse
|
41
|
Jeong M, Park J, Seo Y, Lee KJ, Pramanik S, Ahn S, Kwon S. Hydrazone Photoswitches for Structural Modulation of Short Peptides. Chemistry 2021; 28:e202103972. [PMID: 34962683 DOI: 10.1002/chem.202103972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Molecules that undergo light-driven structural transformations constitute the core components in photoswitchable molecular systems and materials. Among various families of photoswitches, photochromic hydrazones have recently emerged as a novel class of photoswitches with superb properties, such as high photochemical conversion, spectral tunability, thermal stability, and fatigue resistance. Hydrazone photoswitches have been adopted in various adaptive materials at different length scales, however, their utilization for modulating biomolecules still has not been explored. Herein we present new hydrazone switches that can photomodulate the structures of short peptides. Systematic investigation on a set of hydrazone derivatives revealed that installation of the amide group does not significantly alter the photoswitching behaviors. Importantly, a hydrazone switch comprising an upper phenyl ring and a lower quinolinyl ring was effective for structural control of peptides. We anticipate that this work, as a new milestone in the research of hydrazone switches, will open a new avenue for structural and functional control of biomolecules.
Collapse
Affiliation(s)
- Myeongsu Jeong
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Jiyoon Park
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Yejin Seo
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Kwon Jung Lee
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Susnata Pramanik
- SRM Institute of Science and Technology, Department of Chemistry, INDIA
| | - Sangdoo Ahn
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Sunbum Kwon
- Chung-Ang University, Chemistry, 84 Heukseok-ro, Bldg106 Rm401-2, 06974, Seoul, KOREA, REPUBLIC OF
| |
Collapse
|
42
|
Kuntze K, Viljakka J, Titov E, Ahmed Z, Kalenius E, Saalfrank P, Priimagi A. Towards low-energy-light-driven bistable photoswitches: ortho-fluoroaminoazobenzenes. Photochem Photobiol Sci 2021; 21:159-173. [PMID: 34888753 DOI: 10.1007/s43630-021-00145-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure-property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent. We rationalize the experimental results with quantum chemical calculations, revealing the nature of low-lying excited states and providing insight into thermal isomerization. The synthesized azobenzenes absorb at up to 600 nm and their thermal cis-lifetimes range from milliseconds to months. The most unique example can be driven from trans to cis with any wavelength from UV up to 595 nm, while still exhibiting a thermal cis-lifetime of 81 days.
Collapse
Affiliation(s)
- Kim Kuntze
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101, Tampere, Finland
| | - Jani Viljakka
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101, Tampere, Finland
| | - Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.
| | - Zafar Ahmed
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101, Tampere, Finland
| | - Elina Kalenius
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Peter Saalfrank
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101, Tampere, Finland.
| |
Collapse
|
43
|
Leveille M, Shen X, Fu W, Jin K, Acerce M, Wang C, Bustamante J, Casas AM, Feng Y, Ge N, Hirst LS, Ghosh S, Lu JQ. Directional, Low-Energy Driven Thermal Actuating Bilayer Enabled by Coordinated Submolecular Switching. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102077. [PMID: 34687166 PMCID: PMC8655216 DOI: 10.1002/advs.202102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Indexed: 05/29/2023]
Abstract
The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.
Collapse
Affiliation(s)
| | - Xinyuan Shen
- Materials Science and EngineeringUniversity of California, MercedMerced95343USA
- Macromolecular ScienceFudan UniversityShanghai200433P. R. China
| | - Wenxin Fu
- Materials Science and EngineeringUniversity of California, MercedMerced95343USA
| | - Ke Jin
- Macromolecular ScienceFudan UniversityShanghai200433P. R. China
| | - Muharrem Acerce
- Materials Science and EngineeringUniversity of California, MercedMerced95343USA
| | - Changchun Wang
- Macromolecular ScienceFudan UniversityShanghai200433P. R. China
| | | | | | - Yuan Feng
- ChemistryUniversity of California, IrvineIrvine92697USA
| | - Nien‐Hui Ge
- ChemistryUniversity of California, IrvineIrvine92697USA
| | | | | | - Jennifer Qing Lu
- PhysicsUniversity of California, MercedMerced95343USA
- Materials Science and EngineeringUniversity of California, MercedMerced95343USA
| |
Collapse
|
44
|
Nakamura K, Tanaka W, Sada K, Kubota R, Aoyama T, Urayama K, Hamachi I. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. J Am Chem Soc 2021; 143:19532-19541. [PMID: 34767720 DOI: 10.1021/jacs.1c09172] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Out-of-equilibrium patterns arising from diffusion processes are ubiquitous in nature, although they have not been fully exploited for the design of artificial materials. Here, we describe the formation of phototriggered out-of-equilibrium patterns using photoresponsive peptide-based nanofibers in a self-sorting double network hydrogel. Light irradiation using a photomask followed by thermal incubation induced the spatially controlled condensation of peptide nanofibers. According to confocal images and spectroscopic analyses, metastable nanofibers photodecomposed in the irradiated areas, where thermodynamically stable nanofibers reconstituted and condensed with a supply of monomers from the nonirradiated areas. These supramolecular events were regulated by light and diffusion to facilitate the creation of unique out-of-equilibrium patterns, including two lines from a one-line photomask and a line pattern of a protein immobilized in the hydrogel.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Sada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
45
|
Chang Z, Mao S, Zheng YY, Sheng J. Synthesis and Functionality Study of Photoswitchable Hydrazone Oligodeoxynucleotides. Curr Protoc 2021; 1:e295. [PMID: 34792862 DOI: 10.1002/cpz1.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article provides a detailed procedure for the chemical synthesis and characterization of photoswitchable hydrazone phosphoramidite and its incorporation into oligodeoxynucleotides. The synthesis starts with commercially available deoxyuridine, followed by conversion of the 4-oxo into a 4-chloro moiety via Appel reaction to install the key hydrazone group in the absence of base. The hydrazone phosphoramidite building block is compatible with the conventional amidite chemistry protocols for solid-phase synthesis of oligodeoxynucleotides. Our method expands the current nucleotide pool by adding a novel, functional DNA building block that is suitable for a broad spectrum of applications, including the regulation of DNA-enzyme interactions and DNA synthesis by irradiation with cell-friendly blue light. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of photoswitchable hydrazone phosphoramidite Basic Protocol 2: Synthesis and purification of oligodeoxynucleotides containing the hydrazone photoswitch Basic Protocol 3: Primer extension assay for functionality studies of hydrazone cytidine.
Collapse
Affiliation(s)
- Zhihua Chang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Song Mao
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| |
Collapse
|
46
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
47
|
Yang S, Harris JD, Lambai A, Jeliazkov LL, Mohanty G, Zeng H, Priimagi A, Aprahamian I. Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers. J Am Chem Soc 2021; 143:16348-16353. [PMID: 34590854 DOI: 10.1021/jacs.1c07504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glass transition temperature (Tg) of a series of polyacrylate- and polymethacrylate-based polymers having bistable hydrazone photoswitches as pendants increases upon photoisomerization. The ensuing photohardening of the polymeric network was corroborated using nanoindentation measurements. The bistability of the switch allowed us to lock-in and sustain multiple Tg values in the same polymeric material as a function of the hydrazone switch's Z/E isomer ratio, even at elevated temperatures.
Collapse
Affiliation(s)
- Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jared D Harris
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aloshious Lambai
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Laura L Jeliazkov
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Gaurav Mohanty
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Hao Zeng
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
48
|
Park JE, Won S, Cho W, Kim JG, Jhang S, Lee JG, Wie JJ. Fabrication and applications of stimuli‐responsive micro/nanopillar arrays. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jeong Eun Park
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Sukyoung Won
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Woongbi Cho
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Jae Gwang Kim
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Saebohm Jhang
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Jae Gyeong Lee
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
49
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
50
|
Kondo M, Kojima D, Ootsuki N, Kawatsuki N. Photoinduced Exfoliation of a Polymeric
N
‐Benzylideneaniline Liquid‐Crystalline Composite Based on a Photoisomerization‐Triggered Phase Transition. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mizuho Kondo
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha Himeji Hyogo 671‐2280 Japan
| | - Daijoro Kojima
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha Himeji Hyogo 671‐2280 Japan
| | - Naoya Ootsuki
- Technical Development Department ThreeBond Co., Ltd. Sagamihara 252‐0146 Japan
| | - Nobuhiro Kawatsuki
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha Himeji Hyogo 671‐2280 Japan
| |
Collapse
|