1
|
Buttersack T, Gladich I, Gholami S, Richter C, Dupuy R, Nicolas C, Trinter F, Trunschke A, Delgado D, Corral Arroyo P, Parmentier EA, Winter B, Iezzi L, Roose A, Boucly A, Artiglia L, Ammann M, Signorell R, Bluhm H. Direct observation of the complex S(IV) equilibria at the liquid-vapor interface. Nat Commun 2024; 15:8987. [PMID: 39420175 PMCID: PMC11487263 DOI: 10.1038/s41467-024-53186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
The multi-phase oxidation of S(IV) plays a crucial role in the atmosphere, leading to the formation of haze and severe pollution episodes. We here contribute to its understanding on a molecular level by reporting experimentally determined pKa values of the various S(IV) tautomers and reaction barriers for SO2 formation pathways. Complementary state-of-the-art molecular-dynamics simulations reveal a depletion of bisulfite at low pH at the liquid-vapor interface, resulting in a different tautomer ratio at the interface compared to the bulk. On a molecular-scale level, we explain this with the formation of a stable contact ion pair between sulfonate and hydronium ions, and with the higher energetic barrier for the dehydration of sulfonic acid at the liquid-vapor interface. Our findings highlight the contrasting physicochemical behavior of interfacial versus bulk environments, where the pH dependence of the tautomer ratio reported here has a significant impact on both SO2 uptake kinetics and reactions involving NOx and H2O2 at aqueous aerosol interfaces.
Collapse
Affiliation(s)
- Tillmann Buttersack
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
| | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| | - Shirin Gholami
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Clemens Richter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Rémi Dupuy
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, Paris Cedex 05, F-75005, France
| | - Christophe Nicolas
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192, Gif-sur-Yvette, France
| | - Florian Trinter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Annette Trunschke
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Daniel Delgado
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Pablo Corral Arroyo
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, CH-8093, Switzerland
| | - Evelyne A Parmentier
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, CH-8093, Switzerland
| | - Bernd Winter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Lucia Iezzi
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen PSI, CH-5232, Switzerland
| | - Antoine Roose
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen PSI, CH-5232, Switzerland
- IMT Nord Europe, Institut Mines-Télécom, University Lille, Lille, F-59000, France
| | - Anthony Boucly
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen PSI, CH-5232, Switzerland
| | - Luca Artiglia
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen PSI, CH-5232, Switzerland
| | - Markus Ammann
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen PSI, CH-5232, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, CH-8093, Switzerland
| | - Hendrik Bluhm
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Zhao R, Li L, Wu Q, Luo W, Zhang Q, Cui C. Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode. Nat Commun 2024; 15:8367. [PMID: 39333136 PMCID: PMC11436765 DOI: 10.1038/s41467-024-52790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The aqueous interface-rich system has been proposed to act as a trigger and a reservoir for reactive radicals, playing a crucial role in chemical reactions. Although much is known about the redox reactivity of water microdroplets at "droplets-in-gas" interfaces, it remains poorly understood for "bubbles-in-water" interfaces that are created by feeding gas through the porous membrane of the gas diffusion electrode. Here we reveal the spontaneous generation of highly reactive redox radical species detected by using electron paramagnetic resonance under such conditions without applying any bias and loading any catalysts. In combination with ultraviolet-visible spectroscopy, the redox feature has been further verified through several probe molecules. Unexpectedly, introducing crown ether allows to isolate and stabilize both water radical cations and hydrated electrons thus substantially increasing redox reactivity. Our finding suggests a reactive microenvironment at the interface of the gas diffusion electrode owing to the coexistence of oxidative and reductive species.
Collapse
Affiliation(s)
- Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Luo
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
3
|
Yu Y, Liu M, Wang S, Zhang C, Zhang X, Liu L, Xue S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules 2024; 29:4535. [PMID: 39407464 PMCID: PMC11477601 DOI: 10.3390/molecules29194535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polychlorinated naphthalenes (PCNs) are a new type of persistent organic pollutant (POP) characterized by persistence, bioaccumulation, dioxin-like toxicity, and long-range atmospheric transport. Focusing on one type of PCN, monochlorinated naphthalenes (CN-1, CN-2), this study aimed to examine their photodegradation in the environment. In this work, CN-1 and CN-2 were employed as the model pollutants to investigate their photodegradation process under UV-C irradiation. Factors like the pH, initial concentrations of CN-1, and inorganic anions were investigated. Next, the roles of hydroxyl radicals (•OH), superoxide anion radicals (O2•-), and singlet oxygen (1O2) in the photodegradation process were discussed and proposed via theory computation. The results show that the photodegradation of CN-1 and CN-2 follows pseudo-first-order kinetics. Acidic conditions promote the photodegradation of CN-1, while the effects of pH on the photodegradation of CN-2 are not remarkable. Cl-, NO3-, and SO32- accelerate the photodegradation of CN-1, whereas the effect of SO42- and CO32- is not significant. Additionally, the contributions of •OH and O2•- to the photodegradation of CN-1 are 20.47% and 38.80%, while, for CN-2, the contribution is 16.40% and 16.80%, respectively. Moreover, the contribution of 1O2 is 15.7%. Based on DFT calculations, C4 and C6 of the CN-1 benzene ring are prioritized attack sites for •OH, while C2 and C9 of CN-2 are prioritized attack sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Liu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| | - Shuang Xue
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| |
Collapse
|
4
|
Zhong L, Zhu B, Su W, Liang W, Wang H, Li T, Cao D, Ruan T, Chen J, Jiang G. Molecular characterization of diverse quinone analogs for discrimination of aerosol-bound persistent pyrolytic and photolytic radicals. Sci Bull (Beijing) 2024; 69:612-620. [PMID: 38101961 DOI: 10.1016/j.scib.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Aerosol-bound organic radicals, including environmentally persistent free radicals (EPFRs), are key components that affect climate, air quality, and human health. While putative structures have been proposed, the molecular characteristics of EPFRs remain unknown. Here, we report a surrogate method to characterize EPFRs in real ambient samples using mass spectrometry. The method identifies chemically relevant oxygenated polycyclic aromatic hydrocarbons (OxPAH) that interconvert with oxygen-centered EPFR (OC-EPFR). We found OxPAH compounds most relevant to OC-EPFRs are structurally rich and diverse quinones, whose diversity is strongly associated with OC-EPFR levels. Both atmospheric oxidation and combustion contributed to OC-EPFR formation. Redundancy analysis and photochemical aging model show pyrolytic sources generated more oxidized OC-EPFRs than photolytic sources. Our study reveals the detailed molecular characteristics of OC-EPFRs and shows that oxidation states can be used to identify the origins of OC-EPFRs, offering a way to track the development and evolution of aerosol particles in the environment.
Collapse
Affiliation(s)
- Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Wang W, Liu Y, Wang T, Ge Q, Li K, Liu J, You W, Wang L, Xie L, Fu H, Chen J, Zhang L. Significantly Accelerated Photosensitized Formation of Atmospheric Sulfate at the Air-Water Interface of Microdroplets. J Am Chem Soc 2024; 146:6580-6590. [PMID: 38427385 DOI: 10.1021/jacs.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
6
|
Rafferty A, Vennes B, Bain A, Preston TC. Optical trapping and light scattering in atmospheric aerosol science. Phys Chem Chem Phys 2023; 25:7066-7089. [PMID: 36852581 DOI: 10.1039/d2cp05301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.
Collapse
Affiliation(s)
| | - Benjamin Vennes
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
| | - Alison Bain
- School of Chemistry, University of Bristol, Bristol, UK
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada. .,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Ye C, Lu K, Song H, Mu Y, Chen J, Zhang Y. A critical review of sulfate aerosol formation mechanisms during winter polluted periods. J Environ Sci (China) 2023; 123:387-399. [PMID: 36522000 DOI: 10.1016/j.jes.2022.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/17/2023]
Abstract
Sulfate aerosol contributes to particulate matter pollution and plays a key role in aerosol radiative forcing, impacting human health and climate change. Atmospheric models tend to substantially underestimate sulfate concentrations during haze episodes, indicating that there are still missing mechanisms not considered by the models. Despite recent good progress in understanding the missing sulfate sources, knowledge on different sulfate formation pathways during polluted periods still involves large uncertainties and the dominant mechanism is under heated debate, calling for more field, laboratory, and modeling work. Here, we review the traditional sulfate formation mechanisms in cloud water and also discuss the potential factors affecting multiphase S(Ⅳ) oxidation. Then recent progress in multiphase S(Ⅳ) oxidation mechanisms is summarized. Sulfate formation rates by different prevailing oxidation pathways under typical winter-haze conditions are also calculated and compared. Based on the literature reviewed, we put forward control of the atmospheric oxidation capacity as a means to abate sulfate aerosol pollution. Finally, we conclude with a concise set of research priorities for improving our understanding of sulfate formation mechanisms during polluted periods.
Collapse
Affiliation(s)
- Can Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huan Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
9
|
Gong C, Yuan X, Xing D, Zhang D, Martins-Costa MTC, Anglada JM, Ruiz-López MF, Francisco JS, Zhang X. Fast Sulfate Formation Initiated by the Spin-Forbidden Excitation of SO 2 at the Air–Water Interface. J Am Chem Soc 2022; 144:22302-22308. [DOI: 10.1021/jacs.2c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Chu Gong
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dong Xing
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Marilia T. C. Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Josep M. Anglada
- Departament de Química Biològica (IQAC), CSIC, c/Jordi Girona 18, E-08034 Barcelona, Spain
| | - Manuel F. Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S. Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Tang B, Li Z. Mechanisms of Reactions between HOI and HY (Y = Cl, Br, I) on a Water Nanodroplet Surface. J Phys Chem A 2022; 126:8028-8036. [PMID: 36260343 DOI: 10.1021/acs.jpca.2c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iodine chemistry has a broad range of implications for atmospheric processes including new particle formation. Hypoiodous acid (HOI) is a major iodine reservoir species. Its heterogeneous recycling in marine aerosols influences the lifetime of ozone in the troposphere. One important step of such recycling is the reaction between HOI and HY (Y = Cl, Br, I). In this article, we employ ab initio molecular dynamics (AIMD) and quantum chemistry to investigate these reactions at the surface of atmospheric aerosols. Di-halogen (XY) can be formed in a picosecond time scale, with the formation of a loop structure connected by hydrogen and halogen bonds. The photolysis of XY at the surface of an aerosol is faster than in the gas phase. In addition to the formation of di-halogen, a new pathway to forming a [H2O···I···OH2]+ complex by the direct or indirect proton transition is identified. Results presented in this study deepen our understanding of the faster iodine-heterogeneous recycling at the surface of aerosols.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
11
|
Liu X, Wang P, Shen Y, Zheng L, Han L, Deng J, Zhang J, Wang A, Ren W, Gao F, Zhang D. Boosting SO 2-Resistant NO x Reduction by Modulating Electronic Interaction of Short-Range Fe-O Coordination over Fe 2O 3/TiO 2 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11646-11656. [PMID: 35876848 DOI: 10.1021/acs.est.2c01812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
SO2-resistant selective catalytic reduction (SCR) of NOx remains a grand challenge for eliminating NOx generated from stationary combustion processes. Herein, SO2-resistant NOx reduction has been boosted by modulating electronic interaction of short-range Fe-O coordination over Fe2O3/TiO2 catalysts. We report a remarkable SO2-tolerant Fe2O3/TiO2 catalyst using sulfur-doped TiO2 as the support. Via an array of spectroscopic and microscopic characterizations and DFT theoretical calculations, the active form of the dopant is demonstrated as SO42- residing at subsurface TiO6 locations. Sulfur doping exerts strong electronic perturbation to TiO2, causing a net charge transfer from Fe2O3 to TiO2 via increased short-range Fe-O coordination. This electronic effect simultaneously weakens charge transfer from Fe2O3 to SO2 and enhances that from NO/NH3 to Fe2O3, resulting in a remarkable "killing two birds with one stone" scenario, that is, improving NO/NH3 adsorption that benefits SCR reaction and inhibiting SO2 poisoning that benefits catalyst long-term stability.
Collapse
Affiliation(s)
- Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aiyong Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Qian Y, Brown JB, Huang-Fu ZC, Zhang T, Wang H, Wang S, Dadap JI, Rao Y. In situ analysis of the bulk and surface chemical compositions of organic aerosol particles. Commun Chem 2022; 5:58. [PMID: 36698010 PMCID: PMC9814772 DOI: 10.1038/s42004-022-00674-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding the chemical and physical properties of particles is an important scientific, engineering, and medical issue that is crucial to air quality, human health, and environmental chemistry. Of special interest are aerosol particles floating in the air for both indoor virus transmission and outdoor atmospheric chemistry. The growth of bio- and organic-aerosol particles in the air is intimately correlated with chemical structures and their reactions in the gas phase at aerosol particle surfaces and in-particle phases. However, direct measurements of chemical structures at aerosol particle surfaces in the air are lacking. Here we demonstrate in situ surface-specific vibrational sum frequency scattering (VSFS) to directly identify chemical structures of molecules at aerosol particle surfaces. Furthermore, our setup allows us to simultaneously probe hyper-Raman scattering (HRS) spectra in the particle phase. We examined polarized VSFS spectra of propionic acid at aerosol particle surfaces and in particle bulk. More importantly, the surface adsorption free energy of propionic acid onto aerosol particles was found to be less negative than that at the air/water interface. These results challenge the long-standing hypothesis that molecular behaviors at the air/water interface are the same as those at aerosol particle surfaces. Our approach opens a new avenue in revealing surface compositions and chemical aging in the formation of secondary organic aerosols in the atmosphere as well as chemical analysis of indoor and outdoor viral aerosol particles.
Collapse
Affiliation(s)
- Yuqin Qian
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Jesse B. Brown
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Zhi-Chao Huang-Fu
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Tong Zhang
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| | - Hui Wang
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA ,grid.8547.e0000 0001 0125 2443Department of Chemistry, Fudan University, Shanghai, 200433 China
| | - ShanYi Wang
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA ,grid.470930.90000 0001 2182 2351Department of Physics and Astronomy, Barnard College, New York, NY 10027 USA
| | - Jerry I. Dadap
- grid.17091.3e0000 0001 2288 9830Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Yi Rao
- grid.53857.3c0000 0001 2185 8768Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
13
|
Acharja P, Ali K, Ghude SD, Sinha V, Sinha B, Kulkarni R, Gultepe I, Rajeevan MN. Enhanced secondary aerosol formation driven by excess ammonia during fog episodes in Delhi, India. CHEMOSPHERE 2022; 289:133155. [PMID: 34875290 DOI: 10.1016/j.chemosphere.2021.133155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The Indo-Gangetic Plain (IGP) has high wintertime fine aerosol loadings that significantly modulate the widespread fog formation and sustenance. Here, we investigate the potential formation of secondary inorganic aerosol driven by excess ammonia during winter fog. Physicochemical properties of fine aerosols (PM1 and PM2.5) and trace gases (HCl, HONO, HNO3, SO2, and NH3) were simultaneously monitored at hourly resolution using Monitor for AeRosols and Gases in Ambient air (MARGA-2S) for the first time in India. Results showed that four major ions, i.e., Cl-, NO3-, SO42-, and NH4+ contributed approximately 97% of the total measured inorganic ionic mass. The atmosphere was ammonia-rich in winter and ammonium was the dominant neutralizer with aerosol neutralization ratio (ANR) close to unity. The correlation between ammonium and chloride was ≥0.8, implying the significant formation of ammonium chloride during fog in Delhi. Thermodynamical model ISORROPIA-II showed the predicted PM1 and PM2.5 pH to be 4.49 ± 0.53, and 4.58 ± 0.48 respectively which were in good agreement with measurements. The ALWC increased from non-foggy to foggy periods and a considerable fraction of fine aerosol mass existed in the supermicron size range of 1-2.5 μm. The sulfur oxidation ratio (SOR) of PM1, PM2.5 reached up to 0.60, 0.75 in dense fog and 0.74, 0.87 when ambient RH crossed a threshold of 95%, much higher than non-foggy periods (with confidence level of ≥95%) pointing to enhanced formation of secondary aerosol in fog.
Collapse
Affiliation(s)
- Prodip Acharja
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India; Savitribai Phule Pune University, Pune, 411007, India
| | - Kaushar Ali
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India.
| | - Sachin D Ghude
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India.
| | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Baerbel Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | | | - Ismail Gultepe
- ECCC, Meteorological Research Division, Toronto, Ontario, Canada; Ontario Technical University, Engineering and Applied Science, Oshawa, Ontario, Canada; Istinye University, Faculty of Engineering, Istanbul, Turkey
| | | |
Collapse
|
14
|
Lian Z, Liu S, Li G, Zhang S, Ma W, Zhong Q. Using polyethylene glycol to facilitate the absorption of NO 2 in sulfite solutions: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126825. [PMID: 34416686 DOI: 10.1016/j.jhazmat.2021.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
A new method was developed to scrub NOx compounds in flue gases during the integrated technology of WFGD associated with ozone oxidation, among which polyethylene glycol (PEG) was utilized initially as an additive to facilitate the absorption of NO2 by sulfite solution. Notably, absorption was significantly facilitated with adding PEG into absorbent. Compared to absorption by sulfite solution alone, NO2 removal efficiency with PEG addition increased from 58.75% to 89.17%. Furthermore, the favorable role of PEG was considered to be ascribed to the its improvement on the rate-determining step among absorption process ── mass transfer of NO2 into the liquid phase. A potential chemical transformation pathway between NO2, SO32- and PEG was proposed, and based on the hydrogen bonding between the various compounds. Additionally, a kinetic model was established based on various operating parameters that included adsorbent pH, ionic strength of S species, temperature, flow rate, and inlet SO2 concentration. This model provides theoretical support for practical engineering.
Collapse
Affiliation(s)
- Zheng Lian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Susu Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guojun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shule Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Weihua Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
15
|
Liu T, Abbatt JPD. Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles. Nat Chem 2021; 13:1173-1177. [PMID: 34594012 DOI: 10.1038/s41557-021-00777-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
Although the multiphase chemistry of SO2 in aerosol particles is of great importance to air quality under polluted haze conditions, a fundamental understanding of the pertinent mechanisms and kinetics is lacking. In particular, there is considerable debate on the importance of NO2 in the oxidation of SO2 in aerosol particles. Here experiments with atmospherically relevant deliquesced particles at buffered pH values of 4-5 show that the effective rate constant for the reaction of NO2 with SO32- ((1.4 ± 0.5) × 1010 M-1 s-1) is more than three orders of magnitude larger than the value in dilute solutions. An interfacial reaction at the surface of aerosol particles probably drives the very fast kinetics. Our results indicate that oxidation of SO2 by NO2 at aerosol surfaces may be an important source of sulfate aerosols under polluted haze conditions.
Collapse
Affiliation(s)
- Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China. .,Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing, China. .,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
16
|
|
17
|
Sun Y, Liang J, Brandt P, Spieß A, Öztürk S, Janiak C. Cucurbit[6]uril@MIL-101-Cl: loading polar porous cages in mesoporous stable host for enhanced SO 2 adsorption at low pressures. NANOSCALE 2021; 13:15952-15962. [PMID: 34523661 DOI: 10.1039/d1nr04432j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The robust cucurbituril-MOF composite CB6@MIL-101-Cl was synthesized by a wet impregnation method and a concomitant OH-to-Cl ligand exchange {CB6 = cucurbit[6]uril, 31 wt% content in the composite, MIL-101-Cl = [Cr3(O)Cl(H2O)2(BDC)3], BDC = benzene-1,4-dicarboxylate}. MIL-101-Cl was formed postsynthetically from standard fluorine-free MIL-101 where Cr-OH ligands were substituted by Cl during treatment with HCl. CB6@MIL-101-Cl combines the strong SO2 affinity of the rigid CB6 macrocycles and the high SO2 uptake capacity of MIL-101, and shows a high SO2 uptake of 438 cm3 g-1 (19.5 mmol g-1) at 1 bar and 293 K (380 cm3 g-1, 17.0 mmol g-1 at 1 bar and 298 K). The captured SO2 amount is 2.2 mmol g-1 for CB6@MIL-101-Cl at 0.01 bar and 293 K (2.0 mmol g-1 at 298 K), which is three times higher than that of the parent MIL-101 (0.7 mmol g-1) under the same conditions. The near zero-coverage SO2 adsorption enthalpies of MIL-101 and CB6@MIL-101-Cl are -35 kJ mol-1 and -50 kJ mol-1, respectively, reflecting the impact of the incorporated CB6 macrocycles, having higher affinity towards SO2. FT-IR spectroscopy confirms the interactions of the SO2 with the cucurbit[6]uril moieties of the CB6@MIL-101-Cl composite and SO2 retention for a few minutes under ambient air. Comparative experiments demonstrated loss of crystallinity and porosity after dry SO2 adsorption for MIL-101, while CB6@MIL-101-Cl exhibits nearly complete retention of crystallinity and porosity under the exposure to both dry and wet SO2. Thus, CB6@MIL-101-Cl can be an attractive adsorbent for SO2 capture because of its excellent recycling stability, high capacity and strong affinity toward SO2 at low pressure.
Collapse
Affiliation(s)
- Yangyang Sun
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Jun Liang
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Philipp Brandt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Secil Öztürk
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
18
|
Tang B, Li Z. Reaction between a NO 2 Dimer and Dissolved SO 2: A New Mechanism for ONSO 3- Formation and its Fate in Aerosol. J Phys Chem A 2021; 125:8468-8475. [PMID: 34543016 DOI: 10.1021/acs.jpca.1c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental observations indicate that sulfate formation in aerosol is sensitive to the concentrations of nitric oxide (NO2). While it also widely exists as a dimer in the gas phase, previous studies focus on the monomer of NO2. In this study, we employ quantum chemical calculations and ab initio molecular dynamics simulations to investigate the reaction between the NO2 dimer (ONONO2) and sulfite (HSO3-/SO32-) in the gas phase and in an aerosol. Gas-phase reactions turn out to be barrierless. In an aerosol, the reaction between adsorbed ONONO2 and HSO3- to form ONSO3- follows a stepwise mechanism with proton and electron transfer processes. The reaction between ONONO2 and SO32- is more straightforward. Nevertheless, both reactions occur at a picosecond time scale. Decomposition of ONSO3- can form an NO molecule and SO3-, which gives a complementary pathway for sulfate formation in an aerosol. Hydrolysis of ONSO3- to form HNO and HSO4- is highly impossible in an aerosol, which calls for a revisit of the atmospheric N2O formation mechanism. The results presented in this study deepen our understanding of the interaction between NO2 and SO2 pollutants in the atmosphere.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Li H, Wang X, Zhong J, Chu B, Ma Q, Zeng XC, Francisco JS, He H. Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO
3
−
on the Surface of a Water Droplet. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| | - Xiao Wang
- School of Materials Science and Engineering China University of Petroleum Qingdao Shandong 266580 China
| | - Jie Zhong
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6316 USA
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Joseph S. Francisco
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6316 USA
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Li H, Wang X, Zhong J, Chu B, Ma Q, Zeng XC, Francisco JS, He H. Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO 3 - on the Surface of a Water Droplet. Angew Chem Int Ed Engl 2021; 60:20200-20203. [PMID: 34309159 DOI: 10.1002/anie.202105416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 01/10/2023]
Abstract
Aqueous reactions between organic peroxides and SO2 are of intense interest in atmospheric science because of their ubiquitous implications for sulfate formation in secondary aerosols. However, the relative yields of the reaction products (inorganic vs. organic sulfates) remain controversial (i.e., 90 % vs. 40-70 % for inorganic sulfate) due in part to the lack of understanding of the underlying reaction mechanisms. Here, our computational results suggest that the reactions of HSO3 - (dissolved SO2 ) with organic peroxides are initiated on the surface of water nanodroplets and then proceed under two reaction pathways, in which the S atom of HSO3 - attacks either the O1 or O2 atom of the peroxide group -O(O2)O(O1)H, leading to the formation of inorganic and organic sulfates, respectively. Notably, we find that thse reaction initiated by O1 atom exhibits a relatively low energy barrier and high reaction rate, which favours the formation of inorganic sulfate.
Collapse
Affiliation(s)
- Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiao Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Jie Zhong
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Shang X, Kang H, Chen Y, Abdumutallip M, Li L, Li X, Fu H, Wang X, Wang L, Wang X, Ouyang H, Tang X, Xiao H, George C, Chen J. PM 1.0-Nitrite Heterogeneous Formation Demonstrated via a Modified Versatile Aerosol Concentration Enrichment System Coupled with Ion Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9794-9804. [PMID: 34235924 DOI: 10.1021/acs.est.1c02373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Particulate nitrite is a critical source of hydroxyl radicals; however, it lacks high-resolution methods due to its low abundance and stability to explore its formation mechanism. In this study, a modified versatile aerosol concentration enrichment system (VACES) coupled with ion chromatography (IC) was used to measure particulate NO2- hourly online and achieve a lowered detection limit of 10-3 μg m-3. VACES-IC was used to observe a high- and low-concentration events of PM1.0-NO2- in Shanghai, corresponding to the ambient-level concentrations of 0.34 and 0.05 μg m-3, respectively. The morning peak concentrations of NO2- even exceeded 3σ (standard deviation) in the high-concentration event due to the reduction of NO2 by aerosol SO32- based on kinetics and regression analysis. This implies that controlling SO2 emissions would be an effective strategy to decrease morning NO2- concentrations, correspondingly reducing the kinetic formation of SO42- by 20.8-34.8%. However, after sunrise, NO2- formation was primarily attributed to NO2 hydrolysis at pH 4.97-6.14. In the low-concentration event, NO2 hydrolysis also accounted for an overwhelming proportion (∼90%) of NO2- formation. This work estimates the contribution of different paths to particulate NO2- formation based on newly established high-resolution measurements.
Collapse
Affiliation(s)
- Xiaona Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huihui Kang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Yunqian Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Munira Abdumutallip
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xinke Wang
- University Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Huiling Ouyang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Christian George
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- University Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
22
|
Liu T, Chan AWH, Abbatt JPD. Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4227-4242. [PMID: 33760581 DOI: 10.1021/acs.est.0c06496] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric oxidation of sulfur dioxide (SO2) forms sulfate-containing aerosol particles that impact air quality, climate, and human and ecosystem health. It is well-known that in-cloud oxidation of SO2 frequently dominates over gas-phase oxidation on regional and global scales. Multiphase oxidation involving aerosol particles, fog, and cloud droplets has been generally thought to scale with liquid water content (LWC) so multiphase oxidation would be negligible for aerosol particles due to their low aerosol LWC. However, recent field evidence, particularly from East Asia, shows that fast sulfate formation prevails in cloud-free environments that are characterized by high aerosol loadings. By assuming that the kinetics of cloud water chemistry prevails for aerosol particles, most atmospheric models do not capture this phenomenon. Therefore, the field of aerosol SO2 multiphase chemistry has blossomed in the past decade, with many oxidation processes proposed to bridge the difference between modeled and observed sulfate mass loadings. This review summarizes recent advances in the fundamental understanding of the aerosol multiphase oxidation of SO2, with a focus on environmental conditions that affect the oxidation rate, experimental challenges, mechanisms and kinetics results for individual reaction pathways, and future research directions. Compared to dilute cloud water conditions, this paper highlights the differences that arise at the molecular level with the extremely high solute strengths present in aerosol particles.
Collapse
Affiliation(s)
- Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
23
|
Zhang Z, Yang B, Ma H. Aliphatic amine decorating metal–organic framework for durable SO2 capture from flue gas. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Jia X, Liu H, Zhang Y, Chen W, Tong Q, Piao G, Sun C, Dong L. Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. J Colloid Interface Sci 2021; 581:427-441. [PMID: 32777626 DOI: 10.1016/j.jcis.2020.07.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/05/2023]
Abstract
In recent years, Fe-based catalysts for the selective catalytic reduction of NO with NH3 (NH3-SCR) have been attracting more attention. In this work, a novel Fe-Sb binary metal oxide catalyst was synthesized using the ethylene glycol assisted co-precipitation method and was characterized using a series of techniques. It was found that the catalyst with a molar ratio of 7:3 (Fe:Sb) displayed the best NH3-SCR activity with 100% conversion of NOx (nitrogen oxides) over a wide temperature window and with good resistance to H2O + SO2 at 250 °C. The X-ray photoelectron spectroscopy (XPS) and in situ diffused reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) of NOx adsorption results suggested that strong electron interactions between Fe and Sb in Fe-O-Sb species existed and electrons of Sb could be transferred to Fe through the 2Fe3+ + Sb3+ ↔ 2Fe2+ + Sb5+ redox cycle. The introduction of Sb significantly improved the adsorption behaviour of NOx species on the Fe0.7Sb0.3Ox surface, which benefitted the adsorption/transformation of NOx, thereby facilitating the NH3-SCR reaction. In addition, the Fe0.7Sb0.3Ox catalyst demonstrated a good tolerance of H2O and SO2, since the decomposition of NH4HSO4 on the catalyst surface was promoted by the introduction of Sb.
Collapse
Affiliation(s)
- Xuanxuan Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China; School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Wei Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China
| | - Qing Tong
- Center of Modern Analysis, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, PR China
| | - Guangxia Piao
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, PR China.
| | - Lin Dong
- Center of Modern Analysis, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
25
|
Zhang W, Zhong J, Shi Q, Gao L, Ji Y, Li G, An T, Francisco JS. Mechanism for Rapid Conversion of Amines to Ammonium Salts at the Air–Particle Interface. J Am Chem Soc 2020; 143:1171-1178. [DOI: 10.1021/jacs.0c12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Zhong
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Qiuju Shi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Joseph S. Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
26
|
Cheng Y, Yu QQ, Liu JM, Du ZY, Liang LL, Geng GN, Ma WL, Qi H, Zhang Q, He KB. Secondary inorganic aerosol during heating season in a megacity in Northeast China: Evidence for heterogeneous chemistry in severe cold climate region. CHEMOSPHERE 2020; 261:127769. [PMID: 32738716 DOI: 10.1016/j.chemosphere.2020.127769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The characteristics of secondary inorganic aerosol including sulfate, nitrate and ammonium (SNA) were investigated during a six-month long heating season in the Harbin-Changchun metropolitan area, i.e., China's only national-level city cluster located in the severe cold climate region. The contribution of SNA to fine particulate matter (PM2.5) tended to decrease with increasing PM2.5 concentration, opposite to the trend repeatedly observed during winter in Beijing. Heterogeneous sulfate formation was still evident when the daily average temperature was as low as below -10 °C, with the preconditions of high relative humidity (RH; above ∼80%) and high nitrogen dioxide (above ∼60 μg/m3). Both the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were enhanced at high RH, reaching ∼0.3. However, the high RH conditions were not commonly seen during the heating season, which should be responsible for the overall lack of linkage between the SNA contribution and PM2.5 temporal variation.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Qin-Qin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jiu-Meng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Zhen-Yu Du
- National Research Center for Environmental Analysis and Measurement, Environmental Development Center of the Ministry of Ecology and Environment, Beijing, China.
| | - Lin-Lin Liang
- State Key Laboratory of Severe Weather & CMA Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Guan-Nan Geng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Zhang R, Si X, Zhao L, Yang L, Wu H. Investigation of the emission control of sulfur trioxide aerosols based on heterogeneous condensation and the deflectors tray of the desulfurization tower. RSC Adv 2020; 10:38515-38523. [PMID: 35517537 PMCID: PMC9057249 DOI: 10.1039/d0ra05699e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
In this paper, control over the emission of sulfur trioxide aerosols was investigated based on heterogeneous condensation in the wet flue gas desulfurization process. The influence of the deflectors tray of the desulfurization tower on the removal performance of the sulfur trioxide aerosols was also studied. The results show that the critical supersaturation degree of sulfur trioxide aerosols is in inverse proportion to the sizes. Heterogeneous condensation has a significant effect on the reduction of sulfur trioxide aerosols. The number concentration of the sulfur trioxide aerosols with sizes <0.1 μm decreases, while the number concentration of sizes >0.1 μm increases at the outlet with this method. The relative humidity of the flue gas is likely to be the most influential in the formation of a supersaturated environment and the removal of sulfur trioxide aerosols. Addition of the tray in the desulfurization tower also increases the reduction of sulfur trioxide aerosols. Heterogeneous condensation can improve the removal efficiency of sulfur trioxide aerosols by 14.3% as well as the installation of a tray by 21.4%.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu Province China
| | - Xiaodong Si
- School of Energy and Power, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province China
| | - Lingling Zhao
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu Province China
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu Province China
| | - Hao Wu
- School of Energy and Mechanical Engineering, Nanjing Normal University Nanjing 210042 Jiangsu Province China
| |
Collapse
|
28
|
Qian Y, Deng GH, Rao Y. In Situ Spectroscopic Probing of Polarity and Molecular Configuration at Aerosol Particle Surfaces. J Phys Chem Lett 2020; 11:6763-6771. [PMID: 32787224 DOI: 10.1021/acs.jpclett.0c02013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growth of aerosol particles in the atmosphere is related to chemical reactions in the gas and particle phases and at aerosol particle surfaces. While research regarding the gas and particle phases of aerosols is well-documented, physical properties and chemical reactivities at aerosol particle surfaces have not been studied extensively but have long been recognized. In particular, in situ measurements of aerosol particle surfaces are just emerging. The main reason is a lack of suitable surface-specific analytical techniques for direct measurements of aerosol particles under ambient conditions. Here we develop in situ surface-specific electronic sum frequency scattering (ESFS) to directly identify spectroscopic behaviors of molecules at aerosol particle surfaces. As an example, we applied an ESFS probe, malachite green (MG). We examined electronic spectra of MG at aerosol particle surfaces and found that the polarity of the surfaces is less polar than that in bulk. Our quantitative orientational analysis shows that MG is orientated with a polar angle of 25°-35° at the spherical particle surfaces of aerosols. The adsorption free energy of MG at the aerosol surfaces was found to be -20.75 ± 0.32 kJ/mol, which is much lower than that at the air/water interface. These results provide new insights into aerosol particle surfaces for further understanding the formation of secondary organic aerosols in the atmosphere.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
29
|
Li H, Ning A, Zhong J, Zhang H, Liu L, Zhang Y, Zhang X, Zeng XC, He H. Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. CHEMOSPHERE 2020; 245:125554. [PMID: 31874321 DOI: 10.1016/j.chemosphere.2019.125554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
A recent quantitative measurement of rates of new particle formation (NPF) in urban Shanghai showed that the high rates of NPF can be largely attributed to the sulfuric acid (SA)-dimethylamine (DMA) nucleation due to relatively high DMA concentration in urban atmosphere (Yao et al., Science. 2018, 361, 278). In certain atmospheric conditions, the release of DMA is accompanied with the emission of high concentration of ammonia. As a result, the ammonia (A) may participate in SA-DMA-based NPF. However, the main sources of DMA and A can be different, thereby leading to different mechanism for the SA-DMA-A-based nucleation under different atmospheric conditions. Near industrial sources with relatively high DMA concentration of 108 molecules cm-3, the contribution of binary SA-DMA nucleation to cluster formation is 61% at 278 K, representing a dominant pathway for NPF. However, in the region not too close to major source of DMA emission, e.g., near agriculture farmland, the routes involving ternary SA-DMA-A nucleation make a 64% contribution at 278 K with DMA concentration of 107 molecules cm-3, showing that A has marked impact on the cluster formation. Under such a condition, we predict that coexisting DMA and A could be detected in the process of NPF. Moreover, at winter temperatures or at higher altitudes, our calculations suggest that the clustering of initial clusters likely involve ternary SA-DMA-A clusters rather than binary SA-DMA clusters. These new insights may be helpful to analyze and predict atmospheric-condition-dependent NFP in either urban or rural regions and/or in different season of the year.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jie Zhong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania Philadelphia, PA, 19104-6316, USA
| | - Haijie Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yunling Zhang
- Beiyuan Campus, Beijing Vocational College of Agriculture, Beijing, 100012, PR China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
30
|
Wang S, Zeng XC, Li H, Francisco JS. A possible unaccounted source of atmospheric sulfate formation: amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide. Chem Sci 2020; 11:2093-2102. [PMID: 32190276 PMCID: PMC7059313 DOI: 10.1039/c9sc04756e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Numerous field and laboratory studies have shown that amines, especially dimethylamine (DMA), are crucial to atmospheric particulate nucleation. However, the molecular mechanism by which amines lead to atmospheric particulate formation is still not fully understood. Herein, we show that DMA molecules can also promote the conversion of atmospheric SO2 to sulfate. Based on ab initio simulations, we find that in the presence of DMA, the originally endothermic and kinetically unfavourable hydrolysis reaction between gaseous SO2 and water vapour can become both exothermic and kinetically favourable. The resulting product, bisulfite NH2(CH3)2 +·HSO3 -, can be readily oxidized by ozone under ambient conditions. Kinetic analysis suggests that the hydrolysis rate of SO2 and DMA with water vapour becomes highly competitive with and comparable to the rate of the reaction between SO2 and OH·, especially under the conditions of heavily polluted air and high humidity. We also find that the oxidants NO2 and N2O5 (whose role in sulfate formation is still under debate) appear to play a much less significant role than ozone in the aqueous oxidation reaction of SO2. The newly identified oxidation mechanism of SO2 promoted by both DMA and O3 provides another important new source of sulfate formation in the atmosphere.
Collapse
Affiliation(s)
- Shixian Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemistry Technology , Beijing 10029 , China .
| | - Xiao Cheng Zeng
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska , USA 68588 .
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemistry Technology , Beijing 10029 , China .
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemistry Technology , Beijing 10029 , China .
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences , University of Pennsylvania , Philadelphia , Pennsylvania , USA 19104 .
| |
Collapse
|
31
|
Martínez-Ahumada E, López-Olvera A, Jancik V, Sánchez-Bautista JE, González-Zamora E, Martis V, Williams DR, Ibarra IA. MOF Materials for the Capture of Highly Toxic H2S and SO2. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00735] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Vojtech Jancik
- Centro Conjunto de Investigaciones en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jonathan E. Sánchez-Bautista
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, Ciudad de México, México
| | - Vladimir Martis
- Surface Measurement Systems, Unit 5, Wharfside, Rosemont Road, London HA0 4PE, U.K
| | - Daryl R. Williams
- Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| |
Collapse
|