1
|
Kuo CC, Nguyen DB, Chien YH. A Study of Halide Ion Exchange-Induced Phase Transition in CsPbBr 3 Perovskite Quantum Dots for Detecting Chlorinated Volatile Compounds. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39835380 DOI: 10.1021/acsami.4c14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr3 PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase. This exchange process, which occurs alongside chloride (Cl) and bromine (Br) ion exchange and halide atom rearrangement, leads to sequential structural changes: the initial CsPbBr3 cubic Pm3̅m phase transitions to the CsPb2BrxCl5-x tetragonal I4/mcm phase, which subsequently transforms into the CsPbBrxCl3-x orthorhombic Pnma phase. The detailed exploration of this proposed mechanism during chlorinated vapor detection with CsPbBr3 PQDs thin films, supported by X-ray diffraction (XRD) analysis and PL spectrum over time, revealed high sensitivity to HCl vapor. The limit of detection (LOD) for HCl vapor was determined to be 0.02 ppm in visual recognition and 0.005 ppm via PL spectra. Additionally, the LOD for NaOCl was established at 0.50 ppm, facilitated by the photolysis reaction accelerating the conversion of NaOCl to HCl vapor under UV light irradiation. These insights have enriched our understanding of the mechanisms involved and broadened the potential use of CsPbBr3 PQDs as PL detection probes for chloride ions.
Collapse
Affiliation(s)
- Chia-Chien Kuo
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan
| | - Duc-Binh Nguyen
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan
| | - Yi-Hsin Chien
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan
| |
Collapse
|
2
|
Crans KD, Cohen H, Nehoray AA, Oron D, Kazes M, Brutchey RL. A Redox-Active Ionic Liquid Surface Treatment for Healing CsPbBr 3 Nanocrystals. NANO LETTERS 2024; 24:16015-16021. [PMID: 39632705 DOI: 10.1021/acs.nanolett.4c04348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Additive engineering of lead halide perovskites has been a successful strategy for reducing a variety of deleterious defect types. Ionic liquids (ILs) are a unique group of such additives that have been used to passivate halide vacancies in both bulk lead halide perovskites and their colloidal nanocrystal analogues. Herein, we expand the types of defects that can be addressed through IL treatments in CsPbBr3 nanocrystals with a novel phosphonium tribromide IL that heals metallic lead surface defects through redox chemistry. This new type of surface treatment leads to a significant increase in PLQY and outperforms equivalent treatments with non-redox-active bromide ILs. Such redox-active ligands widen the scope of defect types that can be addressed in semiconductor nanocrystals.
Collapse
Affiliation(s)
- Kyle D Crans
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ariel A Nehoray
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Mishra A, Hope MA, Emsley L. Light-Induced Metallic and Paramagnetic Defects in Halide Perovskites from Magnetic Resonance. ACS ENERGY LETTERS 2024; 9:5074-5080. [PMID: 39416673 PMCID: PMC11474947 DOI: 10.1021/acsenergylett.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Halide perovskites are promising next-generation solar cell materials, but their commercialization is hampered by their propensity to degrade under operating conditions, particularly under heat, humidity, and light. Identifying degradation products and linking them to the degradation mechanism at the atomic scale is necessary to design more stable perovskite materials. Here we use magnetic resonance methods to identify and characterize the formation of both metallic lead clusters and Pb3+ defects upon light-induced degradation of methylammonium lead halide perovskite using nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) measurements. Paramagnetic relaxation enhancement (PRE) of the 1H NMR resonances demonstrates the presence of localized paramagnetic Pb3+ defects, a large Knight shift of the 207Pb NMR proves the presence of lead metal, and their relative proportions are determined by the differing temperature dependence in variable-temperature EPR. This work reconciles previous conflicting literature results, enabling the use of EPR spectroscopy to monitor photodegradation of perovskite devices.
Collapse
Affiliation(s)
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale
de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
4
|
Zhao TY, Greenstein EP, Peczak IL, Poeppelmeier KR, Perras FA. Observing the Surface Termination of LaScO 3 Perovskite Using Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2024; 146:23487-23496. [PMID: 39112441 DOI: 10.1021/jacs.4c07055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Materials with well-defined surfaces are drawing increased attention for the design of bespoke catalysts and nanomaterials. Gaining a detailed understanding of the surfaces of these materials is an important challenge, which is often complicated by surface polymorphism and dynamic restructuring. We introduce the use of surface-enhanced NMR spectroscopy for the observation of such surfaces, focusing on LaScO3 as an example. We show that double-resonance NMR experiments correlating surface oxygen and probe molecules to the 139La and 45Sc nuclei at the surface reveal the material to be terminated by a ScOx monolayer. Surface-selective 17O and 45Sc NMR experiments further showed the material to be hydroxyl terminated and that the surface may be prone to dynamic restructuring as a result of moisture exposure. Perhaps most interestingly, surface-selective 139La NMR experiments revealed the existence of previously undetected surface lanthanum defects, suggesting that surface-enhanced NMR may be useful as a guide in the synthesis of defect-free surfaces in the design of various nanomaterials.
Collapse
Affiliation(s)
- Tommy Yunpu Zhao
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Emily P Greenstein
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ian L Peczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Sarkar D, Stelmakh A, Karmakar A, Aebli M, Krieg F, Bhattacharya A, Pawsey S, Kovalenko MV, Michaelis VK. Surface Structure of Lecithin-Capped Cesium Lead Halide Perovskite Nanocrystals Using Solid-State and Dynamic Nuclear Polarization NMR Spectroscopy. ACS NANO 2024; 18:21894-21910. [PMID: 39110153 DOI: 10.1021/acsnano.4c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX3 NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain. Herein, we use a versatile solid-state nuclear magnetic resonance (NMR) spectroscopic approach, in combination with dynamic nuclear polarization (DNP) and atomistic molecular dynamics (MD) simulations, to explore the effect of lecithin on the core-to-surface structures of CsPbX3 (X = Cl or Br) perovskites, sized from micron to nanoscale. Surface-selective (cross-polarization, CP) solid-state and DNP NMR (133Cs and 207Pb) methods were used to differentiate the unique surface and core chemical environments, while the head-groups {trimethylammonium [-N(CH3)3+] and phosphate (-PO4-)} of lecithin were assigned via 1H, 13C, and 31P NMR spectroscopy. A direct approach to determining the surface structure by capitalizing on the unique heteronuclear dipolar couplings between the lecithin ligand (1H and 31P) and the surface of the CsPbCl3 NCs (133Cs and 207Pb) is demonstrated. The 1H-133Cs heteronuclear correlation (HETCOR) DNP NMR indicates an abundance of Cs on the NC surface and an intimate proximity of the -N(CH3)3+ groups to the surface and subsurface 133Cs atoms, supported by 1H{133Cs} rotational-echo double-resonance (REDOR) NMR spectroscopy. Moreover, the 1H-31P{207Pb} CP REDOR dephasing curve provides average internuclear distance information that allows assessment of -PO4- groups binding to the subsurface Pb atoms. Atomistic MD simulations of ligand-capped CsPbCl3 surfaces aid in the interpretation of this information and suggest that ligand -N(CH3)3+ and -PO4- head-groups substitute Cs+ and Cl- ions, respectively, at the CsCl-terminated surface of the NCs. These detailed atomistic insights into surface structures can further guide the engineering of various relevant surface-capping zwitterionic ligands for diverse metal halide perovskite NCs.
Collapse
Affiliation(s)
- Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Abhoy Karmakar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Franziska Krieg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Amit Bhattacharya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shane Pawsey
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Li H, Zhu X, Zhang D, Gao Y, Feng Y, Ma Z, Huang J, He H, Ye Z, Dai X. Thermal management towards ultra-bright and stable perovskite nanocrystal-based pure red light-emitting diodes. Nat Commun 2024; 15:6561. [PMID: 39095426 PMCID: PMC11297279 DOI: 10.1038/s41467-024-50634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the promising candidacy of perovskite nanocrystals for light-emitting diodes, their pure red electroluminescence is hindered by low saturated luminance, severe external quantum efficiency roll-off, and inferior operational stability. Here, we report ultra-bright and stable pure red light-emitting diodes by manipulating Joule heat generation in the nanocrystal emissive layer and thermal management within the device. Diphenylphosphoryl azide-mediated regulation of the nanocrystal surface synergistically enhances the optical properties and carrier transport of the emissive layer, enabling reduced Joule heat generation and thus lowering the working temperature. These merits inhibit ion migration of the CsPb(Br/I)3 nanocrystal film, promising excellent spectra stability. Combined with the highly thermal-conductive sapphire substrates and implementation of pulse-driving mode, the pure red light-emitting diodes exhibit an ultra-bright luminance of 390,000 cd m-2, a peak external quantum efficiency of 25%, suppressed efficiency roll-off, an operational half-life of 20 hours, and superior spectral stability within 15 A cm-2.
Collapse
Affiliation(s)
- Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xiaofang Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| |
Collapse
|
7
|
Li Z, Goldoni L, Wu Y, Imran M, Ivanov YP, Divitini G, Zito J, Panneerselvam IR, Baranov D, Infante I, De Trizio L, Manna L. Exogenous Metal Cations in the Synthesis of CsPbBr 3 Nanocrystals and Their Interplay with Tertiary Amines. J Am Chem Soc 2024. [PMID: 39018374 DOI: 10.1021/jacs.4c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Current syntheses of CsPbBr3 halide perovskite nanocrystals (NCs) rely on overstoichiometric amounts of Pb2+ precursors, resulting in unreacted lead ions at the end of the process. In our synthesis scheme of CsPbBr3 NCs, we replaced excess Pb2+ with different exogenous metal cations (M) and investigated their effect on the synthesis products. These cations can be divided into two groups: group 1 delivers monodisperse CsPbBr3 cubes capped with oleate species (as for the case when Pb2+ is used in excess) and with a photoluminescence quantum yield (PLQY) as high as 90% with some cations (for example with M = In3+); group 2 yields irregularly shaped CsPbBr3 NCs with broad size distributions. In both cases, the addition of a tertiary ammonium cation (didodecylmethylammonium, DDMA+) during the synthesis, after the nucleation of the NCs, reshapes the NCs to monodisperse truncated cubes. Such NCs feature a mixed oleate/DDMA+ surface termination with PLQY values of up to 97%. For group 1 cations this happens only if the ammonium cation is directly added as a salt (DDMA-Br), while for group 2 cations this happens even if the corresponding tertiary amine (DDMA) is added, instead of DDMA-Br. This is attributed to the fact that only group 2 cations can facilitate the protonation of DDMA by the excess oleic acid present in the reaction environment. In all cases studied, the incorporation of M cations is marginal, and the reshaping of the NCs is only transient: if the reactions are run for a long time, the truncated cubes evolve to cubes.
Collapse
Affiliation(s)
- Zhanzhao Li
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Luca Goldoni
- Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Ye Wu
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Muhammad Imran
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Juliette Zito
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | | | - Dmitry Baranov
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Division of Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Ivan Infante
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque Basque Foundation for Science, Bilbao 48009, Spain
| | - Luca De Trizio
- Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
8
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Aebli M, Kaul CJ, Yazdani N, Krieg F, Bernasconi C, Guggisberg D, Marczak M, Morad V, Piveteau L, Bodnarchuk MI, Verel R, Wood V, Kovalenko MV. Disorder and Halide Distributions in Cesium Lead Halide Nanocrystals as Seen by Colloidal 133Cs Nuclear Magnetic Resonance Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2767-2775. [PMID: 38558917 PMCID: PMC10976639 DOI: 10.1021/acs.chemmater.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Colloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX3 NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In particular, we show that 133Cs cNMR is highly responsive to size variations from 3 to 11 nm or to altering the capping ligands on the surfaces of CsPbX3 NCs. Distinct 133Cs signals are attributed to the surface and core NC regions. Increased heterogeneous broadening of 133Cs signals, observed for smaller NCs as well as for long-chain zwitterionic capping ligands (phosphocholines, phosphoethanol(propanol)amine, and sulfobetaines), can be attributed to more significant surface disorder and multifaceted surfaces (truncated cubes). On the contrary, capping with dimethyldidodecylammonium bromide (DDAB) successfully reduces signal broadening owing to better surface passivation and sharper (001)-bound cuboid shape. DFT calculations on various sizes of NCs corroborate the notion that the surface disorder propagates over several octahedral layers. 133Cs NMR is a sensitive probe for studying halide gradients in mixed Br/Cl NCs, indicating bromide-rich surfaces and chloride-rich cores. On the contrary, mixed Br/I NCs exhibit homogeneous halide distributions.
Collapse
Affiliation(s)
- Marcel Aebli
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Christoph J. Kaul
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Nuri Yazdani
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Vladimir-Prelog-Weg
1-5, Zürich CH-8093, Switzerland
| | - Franziska Krieg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Caterina Bernasconi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Dominic Guggisberg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Malwina Marczak
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maryna I. Bodnarchuk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - René Verel
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
| | - Vanessa Wood
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Vladimir-Prelog-Weg
1-5, Zürich CH-8093, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
10
|
Zhang J, Wang X, Zhang L, Lin S, Ciampi S, Wang ZL. Triboelectric Spectroscopy for In Situ Chemical Analysis of Liquids. J Am Chem Soc 2024; 146:6125-6133. [PMID: 38323980 PMCID: PMC10921404 DOI: 10.1021/jacs.3c13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Chemical analysis of ions and small organic molecules in liquid samples is crucial for applications in chemistry, biology, environmental sciences, and health monitoring. Mainstream electrochemical and chromatographic techniques often suffer from complex and lengthy sample preparation and testing procedures and require either bulky or expensive instrumentation. Here, we combine triboelectrification and charge transfer on the surface of electrical insulators to demonstrate the concept of triboelectric spectroscopy (TES) for chemical analysis. As a drop of the liquid sample slides along an insulating reclined plane, the local triboelectrification of the surface is recorded, and the charge pattern along the sample trajectory is used to build a fingerprinting of the charge transfer spectroscopy. Chemical information extracted from the charge transfer pattern enables a new nondestructive and ultrafast (<1 s) tool for chemical analysis. TES profiles are unique, and through an automated identification, it is possible to match against standard and hence detect over 30 types of common salts, acids, bases and organic molecules. The qualitative and quantitative accuracies of the TES methodology is close to 93%, and the detection limit is as low as ppb levels. Instruments for TES chemical analysis are portable and can be further miniaturized, opening a path to in situ and rapid chemical detection relying on inexpensive, portable low-tech instrumentation.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuejiao Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Long Zhang
- Institute
of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiquan Lin
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Simone Ciampi
- School
of Molecular and Life Sciences, Curtin University,
Bentley, Western, Australia 6102, Australia
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Yonsei Frontier
Lab, Yonsei University, Seoul 03722, Republic of Korea
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
11
|
Dai J, Roshan H, De Franco M, Goldoni L, De Boni F, Xi J, Yuan F, Dong H, Wu Z, Di Stasio F, Manna L. Partial Ligand Stripping from CsPbBr 3 Nanocrystals Improves Their Performance in Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11627-11636. [PMID: 38381521 DOI: 10.1021/acsami.3c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Halide perovskite nanocrystals (NCs), specifically CsPbBr3, have attracted considerable interest due to their remarkable optical properties for optoelectronic devices. To achieve high-efficiency light-emitting diodes (LEDs) based on CsPbBr3 nanocrystals (NCs), it is crucial to optimize both their photoluminescence quantum yield (PLQY) and carrier transport properties when they are deposited to form films on substrates. While the exchange of native ligands with didodecyl dimethylammonium bromide (DDAB) ligand pairs has been successful in boosting their PLQY, dense DDAB coverage on the surface of NCs should impede carrier transport and limit device efficiency. Following our previous work, here, we use oleyl phosphonic acid (OLPA) as a selective stripping agent to remove a fraction of DDAB from the NC surface and demonstrate that such stripping enhances carrier transport while maintaining a high PLQY. Through systematic optimization of OLPA dosage, we significantly improve the performance of CsPbBr3 LEDs, achieving a maximum external quantum efficiency (EQE) of 15.1% at 516 nm and a maximum brightness of 5931 cd m-2. These findings underscore the potential of controlled ligand stripping to enhance the performance of CsPbBr3 NC-based optoelectronic devices.
Collapse
Affiliation(s)
- Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Hossein Roshan
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Manuela De Franco
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Università degli Studi di Genova, Via Dodecaneso 31, 16146Genova, Italy
| | - Luca Goldoni
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Francesco De Boni
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
12
|
Amador-Sánchez YA, Vargas B, Romero-Ibarra JE, Mendoza-Cruz R, Ramos E, Solis-Ibarra D. Surfactant-tail control of CsPbBr 3 nanocrystal morphology. NANOSCALE HORIZONS 2024; 9:472-478. [PMID: 38240821 DOI: 10.1039/d3nh00409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
CsPbBr3 nanocrystals (NCs) are promising optoelectronic and catalytic materials. Manipulating their morphology can improve their properties and stability. In this work, an alkene-derived zwitterionic ligand was used to control the morphology of CsPbBr3 NCs to yield the highly unusual rhombicuboctahedron morphology, showcasing the first example of a surfactant-tail controlled growth.
Collapse
Affiliation(s)
- Yoarhy A Amador-Sánchez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Brenda Vargas
- Instituto de Física, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Josué E Romero-Ibarra
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Rubén Mendoza-Cruz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Estrella Ramos
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Liu M, Tang G, Liu Y, Jiang FL. Ligand Exchange of Quantum Dots: A Thermodynamic Perspective. J Phys Chem Lett 2024; 15:1975-1984. [PMID: 38346356 DOI: 10.1021/acs.jpclett.3c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Colloidal quantum dots (QDs) consist of an inorganic core and organic surface ligands. Surface ligands play a dominant role in maintaining the colloidal stability of QDs and passivating the surface defects of QDs. However, the original ligands introduced in the synthetic process of QDs cannot meet the requirements for diverse applications; therefore, ligand exchanges with functional ligands are mandatory. Understanding the ligand exchange process requires a comprehensive combination of the concepts and techniques of surface chemistry. In this Perspective, the ligand exchange process is discussed in detail. Specifically, we elaborate on the thermodynamics that can reveal the feasibility and mechanism of ligand exchange. It depicts a critical physical picture of the surface of QDs along with the following ligand exchange.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ge Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
14
|
Tosa K, Ding C, Chen S, Hayase S, Shen Q. Classifying the Role of Surface Ligands on the Passivation and Stability of Cs 2NaInCl 6 Double Perovskite Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:376. [PMID: 38392749 PMCID: PMC10892567 DOI: 10.3390/nano14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Cs2NaInCl6 double perovskites, which have excellent photoelectric conversion properties and are non-toxic and lead-free, have recently gained significant attention. In particular, double-perovskite quantum dots (QDs) are viewed as a promising material for optoelectronic device applications. Ligands such as oleic acid (OA) and oleylamine (OAm) are essential for the synthesis of perovskite QDs, but their specific roles in double-perovskite QDs remain unclear. In this study, we have investigated the binding of OA and OAm to Cs2NaInCl6 QDs through FTIR and NMR and their effects on the surface defect reduction and stability improvement for Cs2NaInCl6 QDs. We found that only OAm was bound to the QD surfaces while OA was not. The OAm has a significant effect on the photoluminescence quantum yield (PLQY) improvement by passivating the QD surface defects. The stability of the QDs was also evaluated, and it was observed that OA played a significant role in the stability of the QDs. Our findings provide valuable insights into the roles of ligands in influencing the photophysical properties and stability of lead-free double-perovskite QDs.
Collapse
Affiliation(s)
- Keita Tosa
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; (K.T.); (S.C.); (S.H.)
| | - Chao Ding
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
| | - Shikai Chen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; (K.T.); (S.C.); (S.H.)
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; (K.T.); (S.C.); (S.H.)
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; (K.T.); (S.C.); (S.H.)
| |
Collapse
|
15
|
Morad V, Stelmakh A, Svyrydenko M, Feld LG, Boehme SC, Aebli M, Affolter J, Kaul CJ, Schrenker NJ, Bals S, Sahin Y, Dirin DN, Cherniukh I, Raino G, Baumketner A, Kovalenko MV. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 2024; 626:542-548. [PMID: 38109940 PMCID: PMC10866715 DOI: 10.1038/s41586-023-06932-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.
Collapse
Affiliation(s)
- Viktoriia Morad
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Mariia Svyrydenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Leon G Feld
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Simon C Boehme
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Joel Affolter
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christoph J Kaul
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yesim Sahin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Ihor Cherniukh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Gabriele Raino
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andrij Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland.
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
16
|
Xu Y, Chen J, Aydt AP, Zhang L, Sergeyev I, Keeler EG, Choi B, He S, Reichman DR, Friesner RA, Nuckolls C, Steigerwald ML, Roy X, McDermott AE. Electron and Spin Delocalization in [Co 6 Se 8 (PEt 3 ) 6 ] 0/+1 Superatoms. Chemphyschem 2024; 25:e202300064. [PMID: 38057144 DOI: 10.1002/cphc.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Molecular clusters can function as nanoscale atoms/superatoms, assembling into superatomic solids, a new class of solid-state materials with designable properties through modifications on superatoms. To explore possibilities on diversifying building blocks, here we thoroughly studied one representative superatom, Co6 Se8 (PEt3 )6 . We probed its structural, electronic, and magnetic properties and revealed its detailed electronic structure as valence electrons delocalize over inorganic [Co6 Se8 ] core while ligands function as an insulated shell. 59 Co SSNMR measurements on the core and 31 P, 13 C on the ligands show that the neutral Co6 Se8 (PEt3 )6 is diamagnetic and symmetric, with all ligands magnetically equivalent. Quantum computations cross-validate NMR results and reveal degenerate delocalized HOMO orbitals, indicating aromaticity. Ligand substitution keeps the inorganic core nearly intact. After losing one electron, the unpaired electron in [Co6 Se8 (PEt3 )6 ]+1 is delocalized, causing paramagnetism and a delocalized electron spin. Notably, this feature of electron/spin delocalization over a large cluster is attractive for special single-electron devices.
Collapse
Affiliation(s)
- Yunyao Xu
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Jia Chen
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Alexander P Aydt
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Lichirui Zhang
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Ivan Sergeyev
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Eric G Keeler
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Bonnie Choi
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Shoushou He
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | | | - Xavier Roy
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| | - Ann E McDermott
- Department of Chemistry, Columbia University New York, New York, 10027, USA
| |
Collapse
|
17
|
Yadav K, Ray N. Surface termination and strain-induced modulation of the structure and electronic properties in 2D perovskites (Cs 2BCl 4 & CsB 2Cl 5, B = Pb, Sn): a first-principles study. Phys Chem Chem Phys 2023; 25:32330-32335. [PMID: 37997148 DOI: 10.1039/d3cp04343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Two-dimensional (2D) halide perovskites have demonstrated impressive long-term stability and superior device performance as compared to their three-dimensional (3D) counterparts. The potential of 2D halide perovskites for advanced photovoltaic applications can be enhanced by an understanding of how external factors like strain could be used to tune their optoelectronic properties. This study explores the effects of biaxial strain on the structure and electronic transport properties of 2D halide perovskites, focusing on the lowest energy (001) surfaces of (Cs2BCl4 and CsB2Cl5, B = Pb or Sn) with CsCl and BCl2 terminations. Using first-principles calculations, we find that the lower energy CsCl terminated surface, resulting in Cs2BCl4, couples strongly with biaxial strain. This termination shows bandgap modulations from approximately 1.5 eV to 1.8 eV for Cs2PbCl4 and 1.2 eV to 1.5 eV for Cs2SnCl4 with biaxial strain. Within the acoustic deformation potential theory, we compute hole mobilities, and find substantial enhancements of approximately 80% for Pb-based and 50% for Sn-based systems, thereby emphasizing the potential of strain engineering to further optimize charge transport properties in 2D halide perovskites.
Collapse
Affiliation(s)
- Kiran Yadav
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Nirat Ray
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Perras FA, Culver DB. On the use of NMR distance measurements for assessing surface site homogeneity. Dalton Trans 2023. [PMID: 38015038 DOI: 10.1039/d3dt03201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The past few decades have seen tremendous growth in the area of single-site heterogeneous catalysis, which aims to combine the best aspects of homogeneous and heterogeneous catalysis, namely molecular-level site control and ease of separation/recycling. Despite this, we still do not have a means of assessing site homogeneity and whether the produced catalyst is indeed a "single-site". Recent developments have enabled the use of NMR-based distance measurements to determine the conformations and configurations of surface sites, leading to the question whether such measurements can be used to distinguish materials containing either single or multiple surface sites with otherwise indistinguishable NMR properties. We describe a Monte Carlo-based multi-structure search algorithm and its application to the determination of multi-site structures from supported metal complexes. The sensitivity of REDOR data to the existence of multiple sites is assessed using synthetic data and prior literature examples are revisited to determine whether the single-site approximation was indeed appropriate. We lastly apply this new methodology to differentiate the configurations of zirconocene complexes grafted onto alumina supports that were thermally treated at different temperatures.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
- Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA
| | - Damien B Culver
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
19
|
Zhu H, Kick M, Ginterseder M, Krajewska CJ, Šverko T, Li R, Lu Y, Shih MC, Van Voorhis T, Bawendi MG. Synthesis of Zwitterionic CsPbBr 3 Nanocrystals with Controlled Anisotropy using Surface-Selective Ligand Pairs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304069. [PMID: 37485908 DOI: 10.1002/adma.202304069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Mechanistic studies of the morphology of lead halide perovskite nanocrystals (LHP-NCs) are hampered by a lack of generalizable suitable synthetic strategies and ligand systems. Here, the synthesis of zwitterionic CsPbBr3 NCs is presented with controlled anisotropy using a proposed "surface-selective ligand pairs" strategy. Such a strategy provides a platform to systematically study the binding affinity of capping ligand pairs and the resulting LHP morphologies. By using zwitterionic ligands (ZwL) with varying structures, majority ZwL-capped LHP NCs with controlled morphology are obtained, including anisotropic nanoplatelets and nanorods, for the first time. Combining experiments with density functional theory calculations, factors that govern the ligand binding on the different surface facets of LHP-NCs are revealed, including the steric bulkiness of the ligand, the number of binding sites, and the charge distance between binding moieties. This study provides guidance for the further exploration of anisotropic LHP-NCs.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthias Ginterseder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tara Šverko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yongli Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Meng-Chen Shih
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Yang JN, Wang JJ, Yin YC, Yao HB. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem Soc Rev 2023; 52:5516-5540. [PMID: 37482807 DOI: 10.1039/d3cs00179b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Lead halide perovskite nanocrystals are promising for next-generation high-definition displays, especially in light of their tunable bandgaps, high color purities, and high carrier mobility. Within the past few years, the external quantum efficiency of perovskite nanocrystal-based light-emitting diodes has progressed rapidly, reaching the standard for commercial applications. However, the low operational stability of these perovskite nanocrystal-based light-emitting diodes remains a crucial issue for their industrial development. Recent experimental evidence indicates that the migration of ionic species is the primary factor giving rise to the performance degradation of perovskite nanocrystal-based light-emitting diodes, and ion migration is closely related to the defects on the surface of perovskite nanocrystals and at the grain boundaries of their thin films. In this review, we focus on the central idea of surface reconstruction of perovskite nanocrystals, discuss the influence of surface defects on halide ion migration, and summarize recent advances in resurfacing perovskite nanocrystal strategies toward mitigating halide ion migration to improve the stability of the as-fabricated light-emitting diode devices. From the perspective of perovskite nanocrystal resurfacing, we set out a promising research direction for improving both the spectral and operational stability of perovskite nanocrystal-based light-emitting diodes.
Collapse
Affiliation(s)
- Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Crans KD, Bain M, Bradforth SE, Oron D, Kazes M, Brutchey RL. The surface chemistry of ionic liquid-treated CsPbBr3 quantum dots. J Chem Phys 2023; 158:2888842. [PMID: 37144713 DOI: 10.1063/5.0147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
The power conversion efficiencies of lead halide perovskite thin film solar cells have surged in the short time since their inception. Compounds, such as ionic liquids (ILs), have been explored as chemical additives and interface modifiers in perovskite solar cells, contributing to the rapid increase in cell efficiencies. However, due to the small surface area-to-volume ratio of the large grained polycrystalline halide perovskite films, an atomistic understanding of the interaction between ILs and perovskite surfaces is limited. Here, we use quantum dots (QDs) to study the coordinative surface interaction between phosphonium-based ILs and CsPbBr3. When native oleylammonium oleate ligands are exchanged off the QD surface with the phosphonium cation as well as the IL anion, a threefold increase in photoluminescent quantum yield of as-synthesized QDs is observed. The CsPbBr3 QD structure, shape, and size remain unchanged after ligand exchange, indicating only a surface ligand interaction at approximately equimolar additions of the IL. Increased concentrations of the IL lead to a disadvantageous phase change and a concomitant decrease in photoluminescent quantum yields. Valuable information regarding the coordinative interaction between certain ILs and lead halide perovskites has been elucidated and can be used for informed pairing of beneficial combinations of IL cations and anions.
Collapse
Affiliation(s)
- Kyle D Crans
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Matthew Bain
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
22
|
Zhang Y, Hou G, Wu Y, Chen M, Dai Y, Liu S, Zhao Q, Lin H, Fang J, Jing C, Chu J. Surface Reconstruction of CsPbBr 3 Nanocrystals by the Ligand Engineering Approach for Achieving High Quantum Yield and Improved Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6222-6230. [PMID: 37079335 DOI: 10.1021/acs.langmuir.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.
Collapse
Affiliation(s)
- Yu Zhang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Guangning Hou
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yong Wu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Maosheng Chen
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yannan Dai
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Shaohua Liu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Qingbiao Zhao
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Hechun Lin
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junfeng Fang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junhao Chu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
23
|
Yang L, Shan Q, Zhang S, Zhou Y, Li Y, Zou Y, Zeng H. Improving anion-exchange efficiency and spectrum stability of perovskite quantum dots via an Al 3+ bonding-doping synergistic effect. NANOSCALE 2023; 15:5696-5704. [PMID: 36804729 DOI: 10.1039/d2nr07091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Anion-exchange reactions are recognized as a vital and facile post-synthesis method to precisely manipulate the emission spectra of perovskite quantum dots (QDs). However, the anion-exchange process often induces adverse structural evolution and trap-mediated mechanisms, so mixed-halide perovskite QDs suffer inefficient anion exchange and poor spectra-stability issues, which limits access to high-quality primary color perovskite QDs for display applications. Here we report an Al3+ bonding-doping synergistic strategy for manufacturing stable mixed Br/Cl deep-blue perovskite QDs. By doping Al3+ into perovskite QDs, highly-efficient Cl- anion exchange and a large-range blue shift of the PL spectrum (∼62 nm with only 0.1 mmol of Cl feed) can be easily achieved. Notably, the Al3+-mediated deep-blue emission sample exhibits superior stability against moisture and electric fields. It also shows an elevated valence band maximum level. Based on the anion-exchanged QDs, a spectrum-stable deep-blue QLED with an EQE of 1.38% at 463 nm is achieved. Our findings demonstrate a feasible and promising strategy for developing high-performance deep-blue perovskite materials and optoelectronic devices.
Collapse
Affiliation(s)
- Linxiang Yang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuai Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yihui Zhou
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yousheng Zou
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
24
|
Ding Y, Zhang Z, Toso S, Gushchina I, Trepalin V, Shi K, Peng JW, Kuno M. Mixed Ligand Passivation as the Origin of Near-Unity Emission Quantum Yields in CsPbBr 3 Nanocrystals. J Am Chem Soc 2023; 145:6362-6370. [PMID: 36881007 DOI: 10.1021/jacs.2c13527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Key features of syntheses, involving the quaternary ammonium passivation of CsPbBr3 nanocrystals (NCs), include stable, reproducible, and large (often near-unity) emission quantum yields (QYs). The archetypical example involves didodecyl dimethyl ammonium (DDDMA+)-passivated CsPbBr3 NCs where robust QYs stem from interactions between DDDMA+ and NC surfaces. Despite widespread adoption of this synthesis, specific ligand-NC surface interactions responsible for large DDDMA+-passivated NC QYs have not been fully established. Multidimensional nuclear magnetic resonance experiments now reveal a new DDDMA+-NC surface interaction, beyond established "tightly bound" DDDMA+ interactions, which strongly affects observed emission QYs. Depending upon the existence of this new DDDMA+ coordination, NC QYs vary broadly between 60 and 85%. More importantly, these measurements reveal surface passivation through unexpected didodecyl ammonium (DDA+) that works in concert with DDDMA+ to produce near-unity (i.e., >90%) QYs.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhuoming Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Stefano Toso
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Nanochemistry Department, Instituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Irina Gushchina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Vadim Trepalin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kejia Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Chen Y, Wang X, Wang Y, Liu X, Miao Y, Zhao Y. Functional organic cation induced 3D-to-0D phase transformation and surface reconstruction of CsPbI 3 inorganic perovskite. Sci Bull (Beijing) 2023; 68:706-712. [PMID: 36966116 DOI: 10.1016/j.scib.2023.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Efficiency and stability are the main research focuses for perovskite solar cells. Inorganic perovskites like CsPbI3 possess higher chemical stability than those with organic A-site cations, while they also exhibit higher defect density. Nonetheless, it is highly challenging to induce orderly secondary arrangement or reconstruction of inorganic perovskites with reduced defects because of their unique chemical properties. In this work, in-situ three-dimension-to-zero-dimension (3D-to-0D) phase transformation and surface reconstruction on CsPbI3 film is achieved as induced by a functional organic cation, benzyldodecyldimethylammonium (BDA), a process of which that is similar to phase-transfer catalysis. With the help of BDABr salt treatment, 0D Cs4PbI6 perovskites are secondarily formed along CsPbI3 grain boundaries with Cs-related cationic defects passivated, yielding structures of higher stability. The BDA-CsPbI3 films exhibit reduced non-radiative recombination and promoted charge transfer, leading to inorganic perovskite solar cells with a high power conversion efficiency of 20.63% and good operational stability.
Collapse
Affiliation(s)
- Yuetian Chen
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingtao Wang
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Wang
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaomin Liu
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanfeng Miao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China; State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Karmakar A, Bernard GM, Pominov A, Tabassum T, Chaklashiya R, Han S, Jain SK, Michaelis VK. Triangulating Dopant-Level Mn(II) Insertion in a Cs 2NaBiCl 6 Double Perovskite Using Magnetic Resonance Spectroscopy. J Am Chem Soc 2023; 145:4485-4499. [PMID: 36787417 DOI: 10.1021/jacs.2c10915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Lead-free metal halide double perovskites are gaining increasing attention for optoelectronic applications. Specifically, doping metal halide double perovskites using transition metals enables broadband tailorability of the optical bandgap for these emerging semiconducting materials. One candidate material is Mn(II)-doped Cs2NaBiCl6, but the nature of Mn(II) insertion on chemical structure is poorly understood due to low Mn loading. It is critical to determine the atomic-level structure at the site of Mn(II) incorporation in doped perovskites to better understand the structure-property relationships in these materials and thus to advance their applicability to optoelectronic applications. Magnetic resonance spectroscopy is uniquely qualified to address this, and thus a comprehensive three-pronged strategy, involving solid-state nuclear magnetic resonance (NMR), high-field dynamic nuclear polarization (DNP), and electron paramagnetic resonance (EPR) spectroscopies, is used to identify the location of Mn(II) insertion in Cs2NaBiCl6. Multinuclear (23Na, 35Cl, 133Cs, and 209Bi) one-dimensional (1D) magnetic resonance spectra reveal a low level of Mn(II) incorporation, with select spins affected by paramagnetic relaxation enhancement (PRE) induced by Mn(II) neighbors. EPR measurements confirm the oxidation state, octahedral symmetry, and low doping levels of the Mn(II) centers. Complementary EPR and NMR measurements confirm that the cubic structure is maintained with Mn(II) incorporation at room temperature, but the structure deviates slightly from cubic symmetry at low temperatures (<30 K). HYperfine Sublevel CORrelation (HYSCORE) EPR spectroscopy explores the electron-nuclear correlations of Mn(II) with 23Na, 133Cs, and 35Cl. The absence of 209Bi correlations suggests that Bi centers are replaced by Mn(II). Endogenous DNP NMR measurements from Mn(II) → 133Cs (<30 K) reveal that the solid effect is the dominant mechanism for DNP transfer and supports that Mn(II) is homogeneously distributed within the double-perovskite structure.
Collapse
Affiliation(s)
- Abhoy Karmakar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guy M Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Arkadii Pominov
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tarnuma Tabassum
- Department of Chemistry and Biochemistry, University of California─Santa Barbara, Santa Barbara, California 93106, United States
| | - Raj Chaklashiya
- Materials Department, University of California─Santa Barbara, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California─Santa Barbara, Santa Barbara, California 93106, United States
| | - Sheetal K Jain
- Department of Chemistry and Biochemistry, University of California─Santa Barbara, Santa Barbara, California 93106, United States.,Solid-State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
27
|
Ding Z, Li S, Jiang Y, Wang D, Yuan M. Open-circuit voltage loss in perovskite quantum dot solar cells. NANOSCALE 2023; 15:3713-3729. [PMID: 36723157 DOI: 10.1039/d2nr06976h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perovskite quantum dots are a competitive candidate for next-generation solar cells owing to their superior phase stability and multiple exciton generation effects. However, given the voltage loss in perovskite quantum dot solar cells (PQDSCs) is mainly caused by various surface and interfacial defects and the energy band mismatch in the devices, tremendous achievements have been made to mitigate the Voc loss of PQDSCs. Herein, we elucidate the potential threats that hinder the high Voc of PQDSCs. Then, we summarize recent progress in minimizing open-circuit voltage (Voc) loss, including defect manipulation and device optimization, based on band-alignment engineering. Finally, we attempt to shed light on the methodologies used to further improve the performance of PQDSCs.
Collapse
Affiliation(s)
- Zijin Ding
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Saisai Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Di Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, P. R. China.
| |
Collapse
|
28
|
Chen S, Yin H, Liu P, Wang Y, Zhao H. Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203836. [PMID: 35900361 DOI: 10.1002/adma.202203836] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Solar-energy-powered photocatalytic fuel production and chemical synthesis are widely recognized as viable technological solutions for a sustainable energy future. However, the requirement of high-performance photocatalysts is a major bottleneck. Halide perovskites, a category of diversified semiconductor materials with suitable energy-band-enabled high-light-utilization efficiencies, exceptionally long charge-carrier-diffusion-length-facilitated charge transport, and readily tailorable compositional, structural, and morphological properties, have emerged as a new class of photocatalysts for efficient hydrogen evolution, CO2 reduction, and various organic synthesis reactions. Despite the noticeable progress, the development of high-performance halide perovskite photocatalysts (HPPs) is still hindered by several key challenges: the strong ionic nature and high hydrolysis tendency induce instability and an unsatisfactory activity due to the need for a coactive component to realize redox processes. Herein, the recently developed advanced strategies to enhance the stability and photocatalytic activity of HPPs are comprehensively reviewed. The widely applicable stability enhancement strategies are first articulated, and the activity improvement strategies for fuel production and chemical synthesis are then explored. Finally, the challenges and future perspectives associated with the application of HPPs in efficient production of fuels and value-added chemicals are presented, indicating the irreplaceable role of the HPPs in the field of photocatalysis.
Collapse
Affiliation(s)
- Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, P. R. China
| | - Huajie Yin
- Institute of Solid State Physics, Hefei Institutes of Physical ScienceChinese Academy of Sciences, 230031, Hefei, P. R. China
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
29
|
Hautzinger MP, Raulerson EK, Harvey SP, Liu T, Duke D, Qin X, Scheidt RA, Wieliczka BM, Phillips AJ, Graham KR, Blum V, Luther JM, Beard MC, Blackburn JL. Metal Halide Perovskite Heterostructures: Blocking Anion Diffusion with Single-Layer Graphene. J Am Chem Soc 2023; 145:2052-2057. [PMID: 36649211 PMCID: PMC9896553 DOI: 10.1021/jacs.2c12441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of metal halide perovskite/perovskite heterostructures is hindered by rapid interfacial halide diffusion leading to mixed alloys rather than sharp interfaces. To circumvent this outcome, we developed an ion-blocking layer consisting of single-layer graphene (SLG) deposited between the metal halide perovskite layers and demonstrated that it effectively blocks anion diffusion in a CsPbBr3/SLG/CsPbI3 heterostructure. Spatially resolved elemental analysis and spectroscopic measurements demonstrate the halides do not diffuse across the interface, whereas control samples without the SLG show rapid homogenization of the halides and loss of the sharp interface. Ultraviolet photoelectron spectroscopy, DFT calculations, and transient absorbance spectroscopy indicate the SLG has little electronic impact on the individual semiconductors. In the CsPbBr3/SLG/CsPbI3, we find a type I band alignment that supports transfer of photogenerated carriers across the heterointerface. Light-emitting diodes (LEDs) show electroluminescence from both the CsPbBr3 and CsPbI3 layers with no evidence of ion diffusion during operation. Our approach provides opportunities to design novel all-perovskite heterostructures to facilitate the control of charge and light in optoelectronic applications.
Collapse
Affiliation(s)
| | - Emily K Raulerson
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Steven P Harvey
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Tuo Liu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States
| | - Daniel Duke
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina27708, United States
| | - Xixi Qin
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina27708, United States
| | - Rebecca A Scheidt
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Brian M Wieliczka
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Alan J Phillips
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina27708, United States
| | - Joseph M Luther
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | | |
Collapse
|
30
|
Zhang Z, Qiao L, Meng K, Long R, Chen G, Gao P. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem Soc Rev 2023; 52:163-195. [PMID: 36454225 DOI: 10.1039/d2cs00217e] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Lead halide perovskite solar cells (PSCs) have shown unprecedented development in efficiency and progressed relentlessly in improving stability. All the achievements have been accompanied by diverse passivation strategies to circumvent the pervasive defects in perovskite materials, which play crucial roles in the process of charge recombination, ion migration, and component degradation. Among the tremendous efforts made to solve these issues and achieve high-performance PSCs, we classify and review both well-established and burgeoning passivation strategies to provide further guidance for the passivation protocols in PSCs, including chemical passivation to eliminate defects by the formation of chemical bonds, physical passivation to eliminate defects by strain relaxation or physical treatments, energetic passivation to improve the stability toward light and oxygen, and field-effect passivation to regulate the interfacial carrier behavior. The subtle but non-trivial consequences from various passivation strategies need advanced characterization techniques combining synchrotron-based X-ray analysis, capacitance-based measurements, spatially resolved imaging, fluorescent molecular probe, Kelvin probe force microscope, etc., to scrutinize the mechanisms. In the end, challenges and prospective research directions on advancing these passivation strategies are proposed. Judicious combinations among chemical, physical, energetic, and field-effect passivation deserve more attention for future high-efficiency and stable perovskite photovoltaics.
Collapse
Affiliation(s)
- Zhihao Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China.
| | - Ke Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China.
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
31
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
32
|
Li X, Xue Z, Chen X, Qiao X, Mo G, Bu W, Guan B, Wang T. Printable assemblies of perovskite nanocubes on meter-scale panel. SCIENCE ADVANCES 2022; 8:eadd1559. [PMID: 36367933 PMCID: PMC9651854 DOI: 10.1126/sciadv.add1559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Hierarchical assemblies of functional nanoparticles can have applications exceeding those of individual constituents. Arranging components in a certain order, even at the atomic scale, can result in emergent effects. We demonstrate that printed atomic ordering is achieved in multiscale hierarchical structures, including nanoparticles, superlattices, and macroarrays. The CsPbBr3 perovskite nanocubes self-assemble into superlattices in ordered arrays controlled across 10 scales. These structures behave as single nanoparticles, with diffraction patterns similar to those of single crystals. The assemblies repeat as two-dimensional planar unit cells, forming crystalline superlattice arrays. The fluorescence intensity of these arrays is 5.2 times higher than those of random aggregate arrays. The multiscale coherent states can be printed on a meter-scale panel as a micropixel light-producing layer of primary-color photon emitters. These hierarchical assemblies can boost the performance of optoelectronic devices and enable the development of high-efficiency, directional quantum light sources.
Collapse
Affiliation(s)
- Xiao Li
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhenjie Xue
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wensheng Bu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
33
|
Mashiach R, Avram L, Bar-Shir A. Diffusion 19F-NMR of Nanofluorides: In Situ Quantification of Colloidal Diameters and Protein Corona Formation in Solution. NANO LETTERS 2022; 22:8519-8525. [PMID: 36255401 PMCID: PMC9650773 DOI: 10.1021/acs.nanolett.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The NMR-detectability of elements of organic ligands that stabilize colloidal inorganic nanocrystals (NCs) allow the study of their diffusion characteristics in solutions. Nevertheless, these measurements are sensitive to dynamic ligand exchange and often lead to overestimation of diffusion coefficients of dispersed colloids. Here, we present an approach for the quantitative assessment of the diffusion properties of colloidal NCs based on the NMR signals of the elements of their inorganic cores. Benefiting from the robust 19F-NMR signals of the fluorides in the core of colloidal CaF2 and SrF2, we show the immunity of 19F-diffusion NMR to dynamic ligand exchange and, thus, the ability to quantify, with high accuracy, the colloidal diameters of different types of nanofluorides in situ. With the demonstrated ability to characterize the formation of protein corona at the surface of nanofluorides, we envision that this study can be extended to additional formulations and applications.
Collapse
Affiliation(s)
- Reut Mashiach
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| |
Collapse
|
34
|
Kwon JI, Park G, Lee GH, Jang JH, Sung NJ, Kim SY, Yoo J, Lee K, Ma H, Karl M, Shin TJ, Song MH, Yang J, Choi MK. Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. SCIENCE ADVANCES 2022; 8:eadd0697. [PMID: 36288304 PMCID: PMC9604611 DOI: 10.1126/sciadv.add0697] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
High-definition red/green/blue (RGB) pixels and deformable form factors are essential for the next-generation advanced displays. Here, we present ultrahigh-resolution full-color perovskite nanocrystal (PeNC) patterning for ultrathin wearable displays. Double-layer transfer printing of the PeNC and organic charge transport layers is developed, which prevents internal cracking of the PeNC film during the transfer printing process. This results in RGB pixelated PeNC patterns of 2550 pixels per inch (PPI) and monochromic patterns of 33,000 line pairs per inch with 100% transfer yield. The perovskite light-emitting diodes (PeLEDs) with transfer-printed active layers exhibit outstanding electroluminescence characteristics with remarkable external quantum efficiencies (15.3, 14.8, and 2.5% for red, green, and blue, respectively), which are high compared to the printed PeLEDs reported to date. Furthermore, double-layer transfer printing enables the fabrication of ultrathin multicolor PeLEDs that can operate on curvilinear surfaces, including human skin, under various mechanical deformations. These results highlight that PeLEDs are promising for high-definition full-color wearable displays.
Collapse
Affiliation(s)
- Jong Ik Kwon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gyuri Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nak Jun Sung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seo Young Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyunghoon Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Minji Karl
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Karadaghi L, To AT, Habas SE, Baddour FG, Ruddy DA, Brutchey RL. Activating Molybdenum Carbide Nanoparticle Catalysts under Mild Conditions Using Thermally Labile Ligands. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8849-8857. [PMID: 36248231 PMCID: PMC9558459 DOI: 10.1021/acs.chemmater.2c02148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Transition-metal carbides are promising low-cost materials for various catalytic transformations due to their multifunctionality and noble-metal-like behavior. Nanostructuring transition-metal carbides offers advantages resulting from the large surface-area-to-volume ratios inherent in colloidal nanoparticle catalysts; however, a barrier for their utilization is removal of the long-chain aliphatic ligands on their surface to access active sites. Annealing procedures to remove these ligands require temperatures greater than the catalyst synthesis and catalytic reaction temperatures and may further result in coking or particle sintering that can reduce catalytic performance. One way to circumvent this problem is by replacing the long-chain aliphatic ligands with smaller ligands that can be easily removed through low-temperature thermolytic decomposition. Here, we present the exchange of native oleylamine ligands on colloidal α-MoC1-x nanoparticles for thermally labile tert-butylamine ligands. Analyses of the ligand exchange reaction by solution 1H NMR spectroscopy, FT-IR spectroscopy, and thermogravimetric analysis-mass spectrometry (TGA-MS) confirm the displacement of 60% of the native oleylamine ligands for the thermally labile tert-butylamine, which can be removed with a mild activation step at 250 °C. Catalytic site densities were determined by carbon monoxide (CO) chemisorption, demonstrating that the mild thermal treatment at 250 °C activates ca. 25% of the total binding sites, while the native oleylamine-terminated MoC1-x nanoparticles showed no available surface binding sites after this low-temperature treatment. The mild pretreatment at 250 °C also shows distinctly different initial activities and postinduction period selectivities in the CO2 hydrogenation reaction for the ligand exchanged MoC1-x nanoparticle catalysts and the as-prepared material.
Collapse
Affiliation(s)
- Lanja
R. Karadaghi
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anh T. To
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Susan E. Habas
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Frederick G. Baddour
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Daniel A. Ruddy
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
36
|
Wang D, Said A, Liu Y, Niu H, Liu C, Wang G, Li Z, Tung CH, Wang Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg Chem 2022; 61:14887-14898. [PMID: 36063420 DOI: 10.1021/acs.inorgchem.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solvothermal reaction of titanium isopropoxide and chromate in the presence of benzoate produced two novel host-guest clusters encapsulating Cs+ or H3O+, (H3O)@Ti7Cr14 and Cs@Ti7Cr14. The most remarkable feature is that the Ti7O7 ring is concentrically embraced by a Cr14O14 ring to form a rigid Ti7Cr14 host. ESI-MS and 133Cs NMR revealed that the overall framework structures are preserved, whereas the benzoate ligands on the two clusters may be labile in solutions. Both (H3O)@Ti7Cr14 and Cs@Ti7Cr14 exhibit good UV-vis light-responsive properties and photocatalytic activities, with absorption edges extending up to 780 nm. Cs@Ti7Cr14 is an effective visible-light-responsive photocatalyst in both the heterogeneous methylene dye degradation and homogeneous CO2 cycloaddition reaction under mild conditions like room temperature and 1 bar of CO2. According to the mechanism studies, Cs+, as a rigid guest, can significantly improve the photogenerated charge separation efficiency of the Ti7Cr14 host, thereby improving its interface charge separation properties, photocurrent, and photocatalytic activities. Our findings not only provide new members of heterometallic titanium oxide clusters to enrich the metal oxide cluster family but also open up new possibilities for their photoresponses, which may play an important role in solar energy harvesting for sustainable chemistry.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
37
|
Zhu H, Tong G, Li J, Xu E, Tao X, Sheng Y, Tang J, Jiang Y. Enriched-Bromine Surface State for Stable Sky-Blue Spectrum Perovskite QLEDs With an EQE of 14.6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205092. [PMID: 35906787 DOI: 10.1002/adma.202205092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Halogen vacancies are of great concern in blue-emitting perovskite quantum-dot light-emitting diodes because they affect their efficiency and spectral shift. Here, an enriched-bromine surface state is realized using a facile strategy that employs a PbBr2 stock solution for anion exchange based on Cd-doped perovskite quantum dots. It is found that the doped Cd ions are expected to reduce the formation energy of halogen vacancies filled by the external bromine ions, and the excess free bromine ions in solution are enriched in the surface by anchoring with halogen vacancies as sites, accompanied with the shedding of surface long-chain ligands during the anion exchange process, resulting in a Br-rich and "neat" surface. Moreover, the surface state exhibits good passivation of the surface defects of the controlled perovskite QDs and simultaneously increases the exciton binding energy, leading to excellent optical properties and stability. Finally, the sky-blue emitting perovskite quantum-dot light-emitting diodes (QLEDs) (490 nm) are conducted with a record external quantum efficiency of 14.6% and current efficiency of 19.9 cd A-1 . Meanwhile, the electroluminescence spectra exhibit great stability with negligible shifts under a constant operating voltage from 3 to 7 V. This strategy paves the way for improving the efficiency and stability of perovskite QLEDs.
Collapse
Affiliation(s)
- Hanwen Zhu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Guoqing Tong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Junchun Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Enze Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xuyong Tao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuanyuan Sheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jianxin Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Yang Jiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
38
|
Mishra A, Hope MA, Almalki M, Pfeifer L, Zakeeruddin SM, Grätzel M, Emsley L. Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films. J Am Chem Soc 2022; 144:15175-15184. [PMID: 35959925 PMCID: PMC9413210 DOI: 10.1021/jacs.2c05316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/26/2022]
Abstract
Surface and bulk molecular modulators are the key to improving the efficiency and stability of hybrid perovskite solar cells. However, due to their low concentration, heterogeneous environments, and low sample mass, it remains challenging to characterize their structure and dynamics at the atomic level, as required to establish structure-activity relationships. Nuclear magnetic resonance (NMR) spectroscopy has revealed a wealth of information on the atomic-level structure of hybrid perovskites, but the inherent insensitivity of NMR severely limits its utility to characterize thin-film samples. Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude, but DNP methods for perovskite materials have so far been limited. Here, we determined the factors that limit the efficiency of DNP NMR for perovskite samples by systematically studying layered hybrid perovskite analogues. We find that the fast-relaxing dynamic cation is the major impediment to higher DNP efficiency, while microwave absorption and particle morphology play a secondary role. We then show that the former can be mitigated by deuteration, enabling 1H DNP enhancement factors of up to 100, which can be harnessed to enhance signals from dopants or additives present in very low concentrations. Specifically, using this new DNP methodology at a high magnetic field and with small sample volumes, we have recorded the NMR spectrum of the 20 nm (6 μg) passivating layer on a single perovskite thin film, revealing a two-dimensional (2D) layered perovskite structure at the surface that resembles the n = 1 homologue but which has greater disorder than in bulk layered perovskites.
Collapse
Affiliation(s)
- Aditya Mishra
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael A. Hope
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masaud Almalki
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lukas Pfeifer
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shaik Mohammed Zakeeruddin
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Mourdikoudis S, Menelaou M, Fiuza-Maneiro N, Zheng G, Wei S, Pérez-Juste J, Polavarapu L, Sofer Z. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. NANOSCALE HORIZONS 2022; 7:941-1015. [PMID: 35770698 DOI: 10.1039/d2nh00111j] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of colloidal chemical approaches has been developed in the last few decades for the controlled synthesis of nanostructured materials in either water or organic solvents. Besides the precursors, the solvents, reducing agents, and the choice of surfactants are crucial for tuning the composition, morphology and other properties of the resulting nanoparticles. The ligands employed include thiols, amines, carboxylic acids, phosphines and phosphine oxides. Generally, adding a single ligand to the reaction mixture is not always adequate to yield the desired features. In this review, we discuss in detail the role of the oleic acid/oleylamine ligand pair in the chemical synthesis of nanoparticles. The combined use of these ligands belonging to two different categories of molecules aims to control the size and shape of nanoparticles and prevent their aggregation, not only during their synthesis but also after their dispersion in a carrier solvent. We show how the different binding strengths of these two molecules and their distinct binding modes on specific facets affect the reaction kinetics toward the production of nanostructures with tailored characteristics. Additional functions, such as the reducing function, are also noted, especially for oleylamine. Sometimes, the carboxylic acid will react with the alkylamine to form an acid-base complex, which may serve as a binary capping agent and reductant; however, its reducing capacity may range from lower to much lower than that of oleylamine. The types of nanoparticles synthesized in the simultaneous presence of oleic acid and oleylamine and discussed herein include metal oxides, metal chalcogenides, metals, bimetallic structures, perovskites, upconversion particles and rare earth-based materials. Diverse morphologies, ranging from spherical nanoparticles to anisotropic, core-shell and hetero-structured configurations are presented. Finally, the relation between tuning the resulting surface and volume nanoparticle properties and the relevant applications is highlighted.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 - Prague 6, Czech Republic.
| | - Melita Menelaou
- Department of Chemical Engineering, Faculty of Geotechnical Sciences and Environmental Management, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Nadesh Fiuza-Maneiro
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain.
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuangying Wei
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 - Prague 6, Czech Republic.
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 - Prague 6, Czech Republic.
| |
Collapse
|
40
|
Ye J, Li Z, Kubicki DJ, Zhang Y, Dai L, Otero-Martínez C, Reus MA, Arul R, Dudipala KR, Andaji-Garmaroudi Z, Huang YT, Li Z, Chen Z, Müller-Buschbaum P, Yip HL, Stranks SD, Grey CP, Baumberg JJ, Greenham NC, Polavarapu L, Rao A, Hoye RLZ. Elucidating the Role of Antisolvents on the Surface Chemistry and Optoelectronic Properties of CsPbBr xI 3-x Perovskite Nanocrystals. J Am Chem Soc 2022; 144:12102-12115. [PMID: 35759794 PMCID: PMC9284547 DOI: 10.1021/jacs.2c02631] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrxI3-x NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Zhenchao Li
- State
Key Laboratory of Luminescent Materials and Devices, School of Materials
Science and Engineering, South China University
of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dominik J. Kubicki
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yunwei Zhang
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
- School
of Physics, Sun Yat-sen University, 510275 Guangzhou, China
| | - Linjie Dai
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Clara Otero-Martínez
- CINBIO, Universidade
de Vigo, Materials Chemistry and Physics Group, Department of Physical
Chemistry, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| | - Manuel A. Reus
- Lehrstuhl
für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Rakesh Arul
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Kavya Reddy Dudipala
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Zahra Andaji-Garmaroudi
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Yi-Teng Huang
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Zewei Li
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Ziming Chen
- State
Key Laboratory of Luminescent Materials and Devices, School of Materials
Science and Engineering, South China University
of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Hin-Lap Yip
- State
Key Laboratory of Luminescent Materials and Devices, School of Materials
Science and Engineering, South China University
of Technology, 381 Wushan Road, Guangzhou 510640, China
- Department
of Materials Science and Engineering, City
University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeremy J. Baumberg
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Neil C. Greenham
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade
de Vigo, Materials Chemistry and Physics Group, Department of Physical
Chemistry, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
41
|
Atterberry BA, Carnahan SL, Chen Y, Venkatesh A, Rossini AJ. Double echo symmetry-based REDOR and RESPDOR pulse sequences for proton detected measurements of heteronuclear dipolar coupling constants. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107147. [PMID: 35149335 DOI: 10.1016/j.jmr.2022.107147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
1H{X} symmetry-based rotational echo double resonance pulse sequences (S-REDOR) and symmetry-based rotational echo saturation pulse double resonance (S-RESPDOR) solid-state NMR experiments have found widespread application for 1H detected measurements of difference NMR spectra, dipolar coupling constants, and internuclear distances under conditions of fast magic angle spinning (MAS). In these experiments the supercycled R412 (SR412) symmetry-based recoupling pulse sequence is typically applied to the 1H spins to reintroduce heteronuclear dipolar couplings. However, the timing of SR412 and other symmetry-based pulse sequences must be precisely synchronized with the rotation of the sample, otherwise, the evolution of 1H CSA and other interactions will not be properly refocused. For this reason, significant distortions are often observed in experimental dipolar dephasing difference curves obtained with S-REDOR or S-RESPDOR pulse sequences. Here we introduce a family of double echo (DE) S-REDOR/S-RESPDOR pulse sequences that function in an analogous manner to the recently introduced t1-noise eliminated (TONE) family of dipolar heteronuclear multiple quantum coherence (D-HMQC) pulse sequences. Through numerical simulations and experiments the DE S-REDOR/S-RESPDOR sequences are shown to provide dephasing difference curves similar to those obtained with S-REDOR/S-RESPDOR. However, the DE sequences are more robust to the deviations of the MAS frequency from the ideal value that occurs during typical solid-state NMR experiments. The DE sequences are shown to provide more reliable 1H detected dipolar dephasing difference curves for nuclei such as 15N (with isotopic labelling), 183W and 35Cl. The double echo sequences are therefore recommended to be used in place of conventional S-REDOR/S-RESPDOR sequences for measurement of weak dipolar coupling constants and long-range distances.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
42
|
Hooper RW, Ni C, Tkachuk DG, He Y, Terskikh VV, Veinot JGC, Michaelis VK. Exploring Structural Nuances in Germanium Halide Perovskites Using Solid-State 73Ge and 133Cs NMR Spectroscopy. J Phys Chem Lett 2022; 13:1687-1696. [PMID: 35148108 DOI: 10.1021/acs.jpclett.1c04033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Metal halide perovskites remain top candidates for higher-performance photovoltaic devices, but concerns about leading lead-based materials remain. Ge perovskites remain understudied for use in solar cells compared to their Sn-based counterparts. In this work, we undertake a combined 73Ge and 133Cs solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and density functional theory (DFT) study of the bulk CsGeX3 (X = Cl, Br, or I) series. We show how seemingly small structural variations within germanium halide perovskites have major effects on their 73Ge and 133Cs NMR signatures and reveal a near-cubic phase at room temperature for CsGeCl3 with severe local Ge polyhedral distortion. Quantum chemical computations are effective at predicting the structural impact on NMR parameters for 73Ge and 133Cs. This study demonstrates the value of a combined solid-state NMR and DFT approach for investigating promising materials for energy applications, providing information that is out of reach with conventional characterization methods, and adds the challenging 73Ge nucleus to the NMR toolkit.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chuyi Ni
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dylan G Tkachuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yingjie He
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Victor V Terskikh
- Metrology, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
43
|
Segura Lecina O, Hope MA, Venkatesh A, Björgvinsdóttir S, Rossi K, Loiudice A, Emsley L, Buonsanti R. Colloidal-ALD-Grown Hybrid Shells Nucleate via a Ligand-Precursor Complex. J Am Chem Soc 2022; 144:3998-4008. [PMID: 35195415 DOI: 10.1021/jacs.1c12538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal atomic layer deposition (c-ALD) enables the growth of hybrid organic-inorganic oxide shells with tunable thickness at the nanometer scale around ligand-functionalized inorganic nanoparticles (NPs). This recently developed method has demonstrated improved stability of NPs and of their dispersions, a key requirement for their application. Nevertheless, the mechanism by which the inorganic shells form is still unknown, as is the nature of multiple complex interfaces between the NPs, the organic ligands functionalizing the surface, and the shell. Here, we demonstrate that carboxylate ligands are the key element that enables the synthesis of these core-shell structures. Dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy (DNP SENS) in combination with density functional theory (DFT) structure calculations shows that the addition of the aluminum organometallic precursor forms a ligand-precursor complex that interacts with the NP surface. This ligand-precursor complex is the first step for the nucleation of the shell and enables its further growth.
Collapse
Affiliation(s)
- Ona Segura Lecina
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Michael A Hope
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Snædís Björgvinsdóttir
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| |
Collapse
|
44
|
Lee H, Han H, Park C, Oh JW, Kim HH, Kim S, Koo M, Choi WK, Park C. Halide Perovskite Nanocrystal-Enabled Stabilization of Transition Metal Dichalcogenide Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106035. [PMID: 34923744 DOI: 10.1002/smll.202106035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Transition metal dichalcogenide (TMD) nanosheets exfoliated in the liquid phase are of significant interest owing to their potential for scalable and flexible photoelectronic applications. Although various dispersants such as surfactants, oligomers, and polymers are used to obtain highly exfoliated TMD nanosheets, most of them are electrically insulating and need to be removed; otherwise, the photoelectric properties of the TMD nanosheets degrade. Here, inorganic halide perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, or I) are presented as non-destructive dispersants capable of dispersing TMD nanosheets in the liquid phase and enhancing the photodetection properties of the nanosheets, thus eliminating the need to remove the dispersant. MoSe2 nanosheets dispersed in the liquid phase are adsorbed with CsPbCl3 NCs. The CsPbCl3 nanocrystals on MoSe2 efficiently withdraw electrons from the nanosheets, and suppress the dark current of the MoSe2 nanosheets, leading to flexible near-infrared MoSe2 photodetectors with a high ON/OFF photocurrent ratio and detectivity. Moreover, lanthanide ion-doped CsPbCl3 NCs enhance the ON/OFF current ratio to >106 . Meanwhile, the dispersion stability of the MoSe2 nanosheets exfoliated with the perovskite NCs is sufficiently high.
Collapse
Affiliation(s)
- Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hong Hee Kim
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sohee Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Kook Choi
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
45
|
Zaccaria F, Zhang B, Goldoni L, Imran M, Zito J, van Beek B, Lauciello S, De Trizio L, Manna L, Infante I. The Reactivity of CsPbBr 3 Nanocrystals toward Acid/Base Ligands. ACS NANO 2022; 16:1444-1455. [PMID: 35005882 PMCID: PMC8793808 DOI: 10.1021/acsnano.1c09603] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
The interaction of lead bromide perovskite nanocrystals with charged ligands, such as salts, zwitterions, or acid-base pairs, has been extensively documented over the past few years. On the other hand, little is known about the reactivity of perovskite nanocrystals toward neutral ligands. To fill this gap, in this work we study the interaction of CsPbBr3 nanocrystals passivated with didodecyldimethylammonium bromide (DDABr) toward a series of exogenous acid/base ligands using a combined computational and experimental approach. Our analysis indicates that DDABr-capped nanocrystals are inert toward most ligands, except for carboxylic, phosphonic, and sulfonic acids. In agreement with the calculations, our experimental results indicate that the higher the acidity of the ligands employed in the treatment, the more etching is observed. In detail, dodecylbenzenesulfonic acid (pKa = -1.8) is found to etch the nanocrystals, causing their complete degradation. On the other hand, oleic and oleylphosphonic acids (pKa 9.9 and 2, respectively) interact with surface-bound DDA molecules, causing their displacement as DDABr in various amounts, which can be as high as 40% (achieved with oleylphosphonic acid). Despite the stripping of DDA ligands, the optical properties of the nanocrystals, as well as structure and morphology, remain substantially unaffected, empirically demonstrating the defect tolerance characterizing such materials. Our study provides not only a clear overview on the interaction between perovskite nanocrystals and neutral ligands but also presents an effective ligand stripping strategy.
Collapse
Affiliation(s)
- Francesco Zaccaria
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Baowei Zhang
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Luca Goldoni
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Muhammad Imran
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Juliette Zito
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Bas van Beek
- Department
of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Simone Lauciello
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ivan Infante
- Department
of Nanochemistry, Analytical Chemistry Lab, and Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
46
|
Forde A, Ghosh D, Kilin D, Evans AC, Tretiak S, Neukirch AJ. Induced Chirality in Halide Perovskite Clusters through Surface Chemistry. J Phys Chem Lett 2022; 13:686-693. [PMID: 35023749 DOI: 10.1021/acs.jpclett.1c04060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiroptical properties are of interest for various applications, including structure determination, polarized photodetectors, and spintronics. Inducing chiroptical activity into semiconductors is challenging because of difficulties in creating asymmetric crystal structures. One promising method is to use chirality transfer by deploying chiral organic molecules as capping ligands for nanocrystals. Experimentally, chiral-capped nanocrystals show emergent chiroptical signatures, but the mechanisms for chirality transfer remain unclear. Here we utilize atomistic modeling using time-dependent density functional theory calculations to explore chirality transfer in CsPbX3 (X = Cl, I) clusters capped with chiral diaminocyclohexane (DACH) enantiomers. When DACH enantiomers are bound to the cluster surface, the perovskite optical transitions gain chiral signatures. This observed chirality transfer is best rationalized by chiral molecular dipole-cluster transition dipole coupling. With multiple DACH molecules bound to the cluster surface, anisotropy factors are found to increase proportionally to the surface ligand density, providing mechanistic insight toward improving chiroptical functionality in semiconductor nanomaterials.
Collapse
Affiliation(s)
- Aaron Forde
- Department of Materials Science and Nanotechnology, North Dakota State University, Fargo, North Dakota 58102, United States
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Materials Science and Engineering and Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Amanda C Evans
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
47
|
Greytak AB, Abiodun SL, Burrell JM, Cook EN, Jayaweera NP, Islam MM, Shaker AE. Thermodynamics of nanocrystal–ligand binding through isothermal titration calorimetry. Chem Commun (Camb) 2022; 58:13037-13058. [DOI: 10.1039/d2cc05012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications.
Collapse
Affiliation(s)
- Andrew B. Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Sakiru L. Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Jennii M. Burrell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Emily N. Cook
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nuwanthaka P. Jayaweera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Md Moinul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Abdulla E Shaker
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
48
|
Bai Y, Hao M, Ding S, Chen P, Wang L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105958. [PMID: 34643300 DOI: 10.1002/adma.202105958] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/07/2021] [Indexed: 05/27/2023]
Abstract
The presence of surface ligands not only plays a key role in keeping the colloidal integrity and non-defective surface of metal halide perovskite quantum dots (PQDs), but also serves as a knob to tune their optoelectronic properties for a variety of exciting applications including solar cells and light-emitting diodes. However, these indispensable surface ligands may also deteriorate the stability and key properties of PQDs due to their highly dynamic binding and insulating nature. To address these issues, a number of innovative surface chemistry engineering approaches have been developed in the past few years. Based on an in-depth fundamental understanding of the surface atomistic structure and surface defect formation mechanism in the tiny nanoparticles, a critical overview focusing on the surface chemistry engineering of PQDs including advanced colloidal synthesis, in-situ surface passivation, and solution-phase/solid-state ligand exchange is presented, after which their unprecedented achievements in photovoltaics and other optoelectronics are presented. The practical hurdles and future directions are critically discussed to inspire more rational design of PQD surface chemistry toward practical applications.
Collapse
Affiliation(s)
- Yang Bai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mengmeng Hao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Shanshan Ding
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
49
|
Wieliczka BM, Márquez JA, Bothwell AM, Zhao Q, Moot T, VanSant KT, Ferguson AJ, Unold T, Kuciauskas D, Luther JM. Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics. ACS NANO 2021; 15:19334-19344. [PMID: 34859993 PMCID: PMC10156082 DOI: 10.1021/acsnano.1c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (VOC) in comparison. Further understanding of the VOC attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the VOC in CsPbI3 PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the VOC and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs+ with FA+ maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the VOC deficit. These results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.
Collapse
Affiliation(s)
- Brian M Wieliczka
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - José A Márquez
- Department of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum-Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | | | - Qian Zhao
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Taylor Moot
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kaitlyn T VanSant
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- NASA Glenn Research Center, Cleveland, Ohio, 44135, United States
| | - Andrew J Ferguson
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Thomas Unold
- Department of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum-Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Darius Kuciauskas
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph M Luther
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
50
|
Toso S, Baranov D, Giannini C, Manna L. Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction. ACS NANO 2021; 15:20341-20352. [PMID: 34843227 PMCID: PMC8717630 DOI: 10.1021/acsnano.1c08636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The research on two-dimensional colloidal semiconductors has received a boost from the emergence of ultrathin lead halide perovskite nanoplatelets. While the optical properties of these materials have been widely investigated, their accurate structural and compositional characterization is still challenging. Here, we exploited the natural tendency of the platelets to stack into highly ordered films, which can be treated as single crystals made of alternating layers of organic ligands and inorganic nanoplatelets, to investigate their structure by multilayer diffraction. Using X-ray diffraction alone, this method allowed us to reveal the structure of ∼12 Å thick Cs-Pb-Br perovskite and ∼25 Å thick Cs-Pb-I-Cl Ruddlesden-Popper nanoplatelets by precisely measuring their thickness, stoichiometry, surface passivation type and coverage, as well as deviations from the crystal structures of the corresponding bulk materials. It is noteworthy that a single, readily available experimental technique, coupled with proper modeling, provides access to such detailed structural and compositional information.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International
Doctoral Program in Science, Università
Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cinzia Giannini
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|