1
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Zhao X, Hao S, Zhang J, Yao Y, Li L, Sun L, Qin S, Nian F, Tang D. Aerial parts of Angelica sinensis supplementation for improved broiler growth and intestinal health. Poult Sci 2024; 103:103473. [PMID: 38340660 PMCID: PMC10869287 DOI: 10.1016/j.psj.2024.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
This research examined the impact of incorporating Angelica sinensis's aerial components (APA), commonly referred to as "female ginseng", into broilers' diet. Two hundred eighty-eight 1-day-old Cobb 500 broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the diets included 4 concentrations of APA (0, 1, 2, and 3%, respectively). The study spanned 42 d, categorized as the starter phase (1-21 d) and the finisher phase (22-42 d). Notably, broilers fed with 3% APA demonstrated a pronounced surge in feed consumption and weight gain during the 22 to 42 d and over the full 42-d period (P < 0.05). Furthermore, when examining the broilers' intestinal structure, there was a notable increase in the villus height and villi ratio across the duodenum, jejunum, and ileum, with a decrease in crypt depth upon 3% APA inclusion (P < 0.05). On a molecular note, certain genes connected to the intestinal mechanical barrier, such as Zona Occludens 1 and Claudin-2, saw significant elevation in the jejunum (P < 0.05). The jejunum also displayed heightened levels of antimicrobial peptides like lysozyme, mucin 2, sIgA, IgG, and IgM, showcasing an enhanced chemical and immune barrier (P < 0.05). Delving into the 16SrDNA sequencing of intestinal content, a higher microbial diversity was evident with a surge in beneficial bacteria, particularly Firmicutes, advocating a resilient and balanced microecosystem. The findings imply that a 3% APA dietary addition bolsters growth metrics and fortifies the intestinal barrier's structural and functional integrity in broilers.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Hao
- Animal Husbandry, Pasture and Green Agricultute, Gansu Academy of Agricultural Science, Lanzhou, 730070, China
| | - Jiawei Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yali Yao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lulu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Likun Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
van Breemen RB, Muchiri RN. Affinity selection-mass spectrometry in the discovery of anti-SARS-CoV-2 compounds. MASS SPECTROMETRY REVIEWS 2024; 43:39-46. [PMID: 35929396 PMCID: PMC9538385 DOI: 10.1002/mas.21800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Small molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is the cause of the COVID-19 pandemic. To expedite the discovery of lead compounds for development, assays have been developed based on affinity selection-mass spectrometry (AS-MS), which enables the rapid screening of mixtures such as combinatorial libraries and extracts of botanicals or other sources of natural products. AS-MS assays have been used to find ligands to the SARS-CoV-2 spike protein for inhibition of cell entry as well as to the 3-chymotrypsin-like cysteine protease (3CLpro) and the RNA-dependent RNA polymerase complex constituent Nsp9, which are targets for inhibition of viral replication. The AS-MS approach of magnetic microbead affinity selection screening has been used to discover high-affinity peptide ligands to the spike protein as well as the hemp cannabinoids cannabidiolic acid and cannabigerolic acid, which can prevent cell infection by SARS-CoV-2. Another AS-MS method, native mass spectrometry, has been used to discover that the flavonoids baicalein, scutellarein, and ganhuangenin, can inhibit the SARS-CoV-2 protease 3CLpro. Native mass spectrometry has also been used to find an ent-kaurane natural product, oridonin, that can bind to the viral protein Nsp9 and interfere with RNA replication. These natural lead compounds are under investigation for the development of therapeutic agents to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Richard B. van Breemen
- Department of Pharmaceutical Sciences, Linus Pauling Institute, College of PharmacyOregon State UniversityCorvallisOregonUSA
| | - Ruth N. Muchiri
- Department of Pharmaceutical Sciences, Linus Pauling Institute, College of PharmacyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
4
|
Puglia LT, Lowry J, Tamagno G. Vitex agnus castus effects on hyperprolactinaemia. Front Endocrinol (Lausanne) 2023; 14:1269781. [PMID: 38075075 PMCID: PMC10702745 DOI: 10.3389/fendo.2023.1269781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Background Vitex agnus castus (VAC), also known as chaste tree, is a plant from the Mediterranean area, Crimea, and central Asia. Its fruit has been used for more than 2500 years as phytotherapic agent. In the last century, VAC has been mostly used for the treatment of premenstrual syndrome (PMS), menstrual irregularities, fertility disorders, and symptoms of menopause. Since some degree of hyperprolactinaemia may be observed in patients with such disorders, VAC effects on hyperprolactinaemia have been assessed in a small number of studies and in some patient series or single case reports. It has been postulated that the diterpenes contained in VAC extract may interact with dopamine D2 receptors (D2R) and inhibit prolactin release via dopamine D2R activation in the anterior pituitary. Most of the published papers focus on the use of VAC for the management of PMS or infertility. However, due to its action on D2R, VAC could have a role in the treatment of mild hyperprolactinaemia, including patients with idiopathic hyperprolactinaemia, microprolactinoma, drug-induced hyperprolactinaemia, or polycystic ovary syndrome. Methods We have reviewed and analysed the data from the literature concerning the use of VAC extracts in patients with hyperprolactinaemia. Results Some evidence suggests a possible role of VAC for the management of hyperprolactinaemia in selected patients, though in an inhomogeneous way. However, there are not any large randomized controlled trials supporting the same and the precise pharmacological aspects of VAC extract in such a clinical setting still remain obscure. Conclusion It appears that VAC may represent a potentially useful and safe phytotherapic option for the management of selected patients with mild hyperprolactinaemia who wish to be treated with phytotherapy. However, larger studies of high quality are needed to corroborate it.
Collapse
Affiliation(s)
- Lídice Tavares Puglia
- Department of Endocrinology/Diabetes Mellitus, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jean Lowry
- Department of Endocrinology/Diabetes Mellitus, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Gianluca Tamagno
- Department of Medicine, Blackrock Clinic and Hermitage Clinic - Blackrock Health, Dublin, Ireland
| |
Collapse
|
5
|
Friedman J, Sheeder J, Lazorwitz A, Polotsky AJ. Herbal supplement use among reproductive-aged women in an academic infertility practice. F S Rep 2023; 4:104-111. [PMID: 36959959 PMCID: PMC10028423 DOI: 10.1016/j.xfre.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To address the knowledge gap surrounding herbal medicine and supplement usage patterns and supplement-prescription medication interactions among patients seeking treatment for infertility. Design Cross-sectional survey study. Setting Academic infertility practice. Patients Ninety-five reproductive-aged patients. Interventions Not applicable. Main Outcome Measures Use of herbal medications and supplements, baseline demographics, history of infertility treatments, and potential supplement-medication interactions. Results We surveyed 95 participants with a median age of 35 years. Overall, 68.4% of patients reported ever having used supplements or herbal medicines in the past. Current use of herbal supplements and vitamins was reported by 53.7% and 93.7% of participants, respectively, with a median of 2 (range 19) supplements used per person. There were no significant associations between patient demographics, comorbidities, or infertility treatments with increased rates of supplement use. The most commonly used herbal supplements were: green tea (n = 14), chamomile (n = 12), peppermint (n = 9), turmeric (n = 8), elderberry (n = 7), ginger (n = 7), maca (6) with the most common modalities being pills/capsules (23.8%) and tea (42.3%). The most common reasons for use were: general health and wellness (24.5%), immune support (16.2%), stress (14.0%), and fertility (15.0%). Patients used maca (n = 5), chasteberry (n = 3), goji berry (n = 2), ginger (n = 2), yam-based progesterone (n = 2), and combination product (n = 2) for fertility purposes. A total of 7.9% of patients learned about these products from their general health care provider, and 33.3% of supplements were disclosed by patients to their provider. We identified 41 moderate-risk supplement-drug interactions, with 12 of these interactions attributed to infertility therapies. Based on the interaction checker, the most commonly proposed mechanisms of interaction were CYP3A4 and CYP2C19 inhibition. In terms of safety in pregnancy, cannabidiol and chasteberry were suggested to be "possibly unsafe in pregnancy," and red raspberry leaf "likely unsafe in pregnancy" without direct medical supervision. Conclusions We found over two thirds of women seeking treatment for infertility reported past and over half reported current herbal medicine and supplement use. Notably, the Natural Medicines Interaction Checker suggested high rates of moderate-risk supplement-drug interactions and possible harmful effects in early pregnancy. Our results call for further investigation of clinically relevant supplement interactions with infertility therapies.
Collapse
Affiliation(s)
- Julie Friedman
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado
| | - Jeanelle Sheeder
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado
| | - Aaron Lazorwitz
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado
| | - Alex Joel Polotsky
- Shady Grove Fertility, Greenwood Village, Colorado
- Reprint requests: Alex Joel Polotsky, Shady Grove Fertility, 8200 E Belleview Ave Suite 615-E, Greenwood Village, Colorado 80111.
| |
Collapse
|
6
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
7
|
Lakshmi JN, Babu AN, Kiran SSM, Nori LP, Hassan N, Ashames A, Bhandare RR, Shaik AB. Herbs as a Source for the Treatment of Polycystic Ovarian Syndrome: A Systematic Review. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010004. [PMID: 36648830 PMCID: PMC9844343 DOI: 10.3390/biotech12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a neuroendocrine metabolic disorder characterized by an irregular menstrual cycle. Treatment for PCOS using synthetic drugs is effective. However, PCOS patients are attracted towards natural remedies due to the effective therapeutic outcomes with natural drugs and the limitations of allopathic medicines. In view of the significance of herbal remedies, herein, we discuss the role of different herbs in PCOS. METHODS By referring to the Scopus, PubMed, Google Scholar, Crossref and Hinari databases, a thorough literature search was conducted and data mining was performed pertaining to the effectiveness of herbal remedies against PCOS. RESULTS In this review, we discuss the significance of herbal remedies in the treatment of PCOS, and the chemical composition, mechanism of action and therapeutic application of selected herbal drugs against PCOS. CONCLUSIONS The present review will be an excellent resource for researchers working on understanding the role of herbal medicine in PCOS.
Collapse
Affiliation(s)
- Jada Naga Lakshmi
- Department of Pharmacology, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi 522213, Andhra Pradesh, India
- Correspondence: (J.N.L.); (A.A.); (A.B.S.)
| | - Ankem Narendra Babu
- Department of Pharmacology, Sir C.R. Reddy College of Pharmaceutical Sciences, Andhra University, Eluru 534007, Andhra Pradesh, India
| | - S. S. Mani Kiran
- Department of Pharmacognosy, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi 522213, Andhra Pradesh, India
| | - Lakshmi Prasanthi Nori
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India
| | - Nageeb Hassan
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Akram Ashames
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (J.N.L.); (A.A.); (A.B.S.)
| | - Richie R. Bhandare
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Afzal B. Shaik
- St. Mary’s College of Pharmacy, St. Mary’s Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Correspondence: (J.N.L.); (A.A.); (A.B.S.)
| |
Collapse
|
8
|
Chen JM, Feng WM, Yan H, Liu P, Zhou GS, Guo S, Yu G, Duan JA. Explore the interaction between root metabolism and rhizosphere microbiota during the growth of Angelica sinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:1005711. [PMID: 36420035 PMCID: PMC9676459 DOI: 10.3389/fpls.2022.1005711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Angelica sinensis is a medicinal plant widely used to treat multiple diseases in Asia and Europe, which contains numerous active components with therapeutic value. The interaction between root and rhizosphere microorganisms is crucial for the growth and quality formation of medicinal plants. But the micro-plant-metabolite regulation patterns for A. sinensis remain largely undetermined. Here, we collected roots and rhizosphere soils from A. sinensis in seedling stage (M) and picking stage (G), respectively cultivated for one year and two years, generated metabolite for roots, microbiota data for rhizospheres, and conducted a comprehensive analysis. Changes in metabolic and microbial communities of A.sinensis over growth were distinct. The composition of rhizosphere microbes in G was dominated by proteobacteria, which had a strong correlation with the synthesis of organic acids, while in M was dominated by Actinobacteria, which had a strong correlation with the synthesis of phthalide and other organoheterocyclic compounds, flavonoids, amines, and fatty acid. Additionally, co-occurrence network analysis identified that Arthrobacter was found to be strongly correlated with the accumulation of senkyunolide A and n-butylidenephthalide. JGI 0001001.H03 was found to be strongly correlated with the accumulation of chlorogenic acid. Based on rhizosphere microorganisms, this study investigated the correlation between root metabolism and rhizosphere microbiota of A. sinensis at different growth stages in traditional geoherb region, which could provide references for exploring the quality formation mechanism of A. sinensis in the future.
Collapse
Affiliation(s)
| | | | - Hui Yan
- *Correspondence: Hui Yan, ; Pei Liu, ; Jin-Ao Duan,
| | - Pei Liu
- *Correspondence: Hui Yan, ; Pei Liu, ; Jin-Ao Duan,
| | | | | | | | - Jin-Ao Duan
- *Correspondence: Hui Yan, ; Pei Liu, ; Jin-Ao Duan,
| |
Collapse
|
9
|
Reher R, Aron AT, Fajtová P, Stincone P, Wagner B, Pérez-Lorente AI, Liu C, Shalom IYB, Bittremieux W, Wang M, Jeong K, Matos-Hernandez ML, Alexander KL, Caro-Diaz EJ, Naman CB, Scanlan JHW, Hochban PMM, Diederich WE, Molina-Santiago C, Romero D, Selim KA, Sass P, Brötz-Oesterhelt H, Hughes CC, Dorrestein PC, O'Donoghue AJ, Gerwick WH, Petras D. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat Commun 2022; 13:4619. [PMID: 35941113 PMCID: PMC9358669 DOI: 10.1038/s41467-022-32016-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
The identity and biological activity of most metabolites still remain unknown. A bottleneck in the exploration of metabolite structures and pharmaceutical activities is the compound purification needed for bioactivity assignments and downstream structure elucidation. To enable bioactivity-focused compound identification from complex mixtures, we develop a scalable native metabolomics approach that integrates non-targeted liquid chromatography tandem mass spectrometry and detection of protein binding via native mass spectrometry. A native metabolomics screen for protease inhibitors from an environmental cyanobacteria community reveals 30 chymotrypsin-binding cyclodepsipeptides. Guided by the native metabolomics results, we select and purify five of these compounds for full structure elucidation via tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy as well as evaluation of their biological activities. These results identify rivulariapeptolides as a family of serine protease inhibitors with nanomolar potency, highlighting native metabolomics as a promising approach for drug discovery, chemical ecology, and chemical biology studies. Bioactivity-guided isolation of specialized metabolites is an iterative process. Here, the authors demonstrate a native metabolomics approach that allows for fast screening of complex metabolite extracts against a protein of interest and simultaneous structure annotation.
Collapse
Affiliation(s)
- Raphael Reher
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Paolo Stincone
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Berenike Wagner
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Alicia I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Chenxi Liu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Ido Y Ben Shalom
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Kyowon Jeong
- Applied Bioinformatics, Computer Science Department, University of Tuebingen, Tuebingen, Germany
| | - Marie L Matos-Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | - Kelsey L Alexander
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Eduardo J Caro-Diaz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - J H William Scanlan
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Phil M M Hochban
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Khaled A Selim
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Peter Sass
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Chambers C Hughes
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA.
| | - Daniel Petras
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA. .,Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany. .,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Kamal N, Mio Asni NS, Rozlan INA, Mohd Azmi MAH, Mazlan NW, Mediani A, Baharum SN, Latip J, Assaw S, Edrada-Ebel RA. Traditional Medicinal Uses, Phytochemistry, Biological Properties, and Health Applications of Vitex sp. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151944. [PMID: 35893648 PMCID: PMC9370779 DOI: 10.3390/plants11151944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/13/2023]
Abstract
The genus Vitex is also known as a chaste tree, in which it is a large shrub native to the tropical and subtropical regions of the world. A diverse range of species is distributed throughout Southern Europe, the Mediterranean, and Central Asia. The Vitex tree, including its leaves and fruits, has been used for herbal remedies in the form of pastes, decoctions, and dried fruits since ancient times. This article aimed to prepare a comprehensive review of traditional uses and secondary metabolites derived from Vitex sp., including the chemical compounds, biological activities, application of Vitex in human clinical trials, toxicology and safety, marketed products, and patents. The scientific findings were obtained using a number of search engines and databases, including Google Scholar, PMC, and ScienceDirect. Vitex species are well known in pharmacology to have medicinal values, such as anti-inflammatory, antibacterial, antifungal, antimicrobial, antioxidant, and anticancer properties. Previous studies reported that some species are proven to be effective in treating diseases, such as diabetes, and improving female health. A total of 161 compounds from different Vitex species are reported, covering the literature from 1982 to 2022. A chemical analysis report of various studies identified that Vitex exhibited a wide range of phytoconstituents, such as iridoid, diterpenoid, ecdysteroid, and flavonoid and phenolic compounds. Apart from that, the review will also discuss the application of Vitex in human clinical trials, toxicology and safety, marketed products, and patents of the genus. While the extracts of the genus have been made into many commercial products, including supplements and essential oils, most of them are made to be used by women to improve menstrual conditions and relieve premenstrual syndrome. Among the species, Vitex agnus-castus L. is the only one that has been reported to undergo clinical trials, mainly related to the use of the genus for the treatment of mastalgia, menstrual bleeding problems, amenorrhea, menorrhagia, luteal insufficiency, and premenstrual syndrome. Overall, the review addresses recent therapeutic breakthroughs and identifies research gaps that should be explored for prospective research work.
Collapse
Affiliation(s)
- Nurkhalida Kamal
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.S.M.A.); (I.N.A.R.); (A.M.); (S.N.B.)
| | - Nurul Syahidah Mio Asni
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.S.M.A.); (I.N.A.R.); (A.M.); (S.N.B.)
| | - Ivana Nur Allisya Rozlan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.S.M.A.); (I.N.A.R.); (A.M.); (S.N.B.)
| | - Muhammad Aniq Hamzah Mohd Azmi
- Analytical and Environmental Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
| | - Noor Wini Mazlan
- Analytical and Environmental Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.S.M.A.); (I.N.A.R.); (A.M.); (S.N.B.)
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.S.M.A.); (I.N.A.R.); (A.M.); (S.N.B.)
| | - Jalifah Latip
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Suvik Assaw
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
- Marine Biology Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Ru Angelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde (SIPBS), The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK;
| |
Collapse
|
11
|
Drewe J, Boonen G, Culmsee C. Treat more than heat-New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154060. [PMID: 35338990 DOI: 10.1016/j.phymed.2022.154060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cimicifuga racemosa extracts (CRE) have obtained a "well-established use status" in the treatment of postmenopausal (i.e., climacteric) complaints, which predominantly include vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints are known for a very long time and the beneficial effects of CRE on climacteric symptoms are well accepted, both the pathophysiology of postmenopausal symptoms and the mechanism of action of CREs are not yet fully understood. In particular, current hypotheses suggest that changes in the α-adrenergic and serotonergic signaling pathways secondary to estrogen depletion are responsible for the development of hot flushes. PURPOSE Some of the symptoms associated with menopause cannot be explained by these hypotheses. Therefore, we attempted to extend our classic understanding of menopause by integrating of partly age-related metabolic impairments. METHODS A comprehensive literature survey was performed using the PubMed database for articles published through September 2021. The following search terms were used: (cimicifuga OR AMPK) AND (hot flush* OR hot flash* OR menopaus* OR osteoporos* OR cancer OR antioxida* OR cardiovasc*). No limits were set with respect to language, and the references cited in the articles retrieved were used to identify additional publications. RESULTS We found that menopause is a manifestation of the general aging process, with specific metabolic changes that aggravate menopausal symptoms, which are accelerated by estrogen depletion and associated neurotransmitter dysregulation. Cimicifuga extracts with their metabolic effects mitigate climacteric symptoms but may also modulate the aging process itself. Central to these effects are effects of CRE on the metabolic key regulator, the AMP-activated protein kinase (AMPK). CONCLUSIONS As an extension of this effect dimension, other off-label indications may appear attractive in the sense of repurposing of this herbal treatment.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland.
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, D-35043 Marburg, Germany; Center for Mind, Brain and Behavior, D-35032 Marburg, Germany
| |
Collapse
|
12
|
Physiological Concentrations of Cimicifuga racemosa Extract Do Not Affect Expression of Genes Involved in Estrogen Biosynthesis and Action in Endometrial and Ovarian Cell Lines. Biomolecules 2022; 12:biom12040545. [PMID: 35454133 PMCID: PMC9032045 DOI: 10.3390/biom12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
In postmenopausal women, estrogen levels exclusively depend on local formation from the steroid precursors dehydroepiandrosterone sulfate and estrone sulfate (E1-S). Reduced estrogen levels are associated with menopausal symptoms. To mitigate these symptoms, more women nowadays choose medicine of natural origin, e.g., Cimicifuga racemosa (CR), instead of hormone replacement therapy, which is associated with an increased risk of breast cancer, stroke, and pulmonary embolism. Although CR treatment is considered safe, little is known about its effects on healthy endometrial and ovarian tissue and hormone-dependent malignancies, e.g., endometrial and ovarian cancers that arise during menopause. The aim of our study was to examine the effects of CR on the expression of genes encoding E1-S transporters and estrogen-related enzymes in control and cancerous endometrial and ovarian cell lines. CR affected the expression of genes encoding E1-S transporters and estrogen-related enzymes only at very high concentrations, whereas no changes were observed at physiological concentrations of CR. This suggests that CR does not exert estrogenic effects in endometrial and ovarian tissues and probably does not affect postmenopausal women’s risks of endometrial or ovarian cancer or the outcomes of endometrial and ovarian cancer patients.
Collapse
|
13
|
Le Y, Li X, Chen S, Ning KG, Guo X, Wu CG, Manjanatha MG, Mei N. Actein contributes to black cohosh extract-induced genotoxicity in human TK6 cells. J Appl Toxicol 2022; 42:1491-1502. [PMID: 35261072 DOI: 10.1002/jat.4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy, but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells. Among the five constituents, actein (up to 50 μM) showed the highest cytotoxicity and was thus selected for further genotoxicity evaluations. Actein caused DNA damage proportionally to concentration as evidenced by the phosphorylation of the histone protein H2A.X (γH2A.X) and resulted in chromosomal damage as measured by the increased percentage of micronuclei (MN) in cells. In addition, actein activated DNA damage response (DDR) pathway through induction of p-ATM, p-Chk1, and p-Chk2, which subsequently induced cell cycle changes and apoptosis. Moreover, both BCE and actein increased intracellular reactive oxygen species (ROS) production, decreased glutathione levels, and activated the mitogen-activated protein kinases (MAPK) signaling pathway. N-acetylcysteine, a ROS scavenger, attenuated BCE- and actein-induced ROS production, apoptosis, and DNA damage. These findings indicate that BCE- and actein-induced genotoxicity is mediated through oxidative stress. Taken together, our data show that actein is likely one of the major contributors to BCE-induced genotoxicity.
Collapse
Affiliation(s)
- Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Charles G Wu
- Botanical Review Team, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
14
|
Zanardi MV, Gastiazoro MP, Kretzschmar G, Wober J, Vollmer G, Varayoud J, Durando M, Zierau O. AHR agonistic effects of 6-PN contribute to potential beneficial effects of Hops extract. Mol Cell Endocrinol 2022; 543:111540. [PMID: 34965452 DOI: 10.1016/j.mce.2021.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Hops (Humulus lupulus) is used as an alternative to hormone replacement therapy due to the phytoestrogen, 8-prenylnaringenin (8-PN). To examine the potential risks/benefits of hops extract and its compounds (8-PN and 6-prenylnaringenin, 6-PN), we aimed to evaluate the estrogen receptor α (ERα) and aryl hydrocarbon receptor (AHR) signaling pathways in human endometrial cancer cells. Hops extract, 8-PN and 6-PN showed estrogenic activity. Hops extract and 6-PN activated both ERα and AHR pathways. 6-PN increased the expression of the tumor suppressor gene (AHRR), and that of genes involved in the estrogen metabolism (CYP1A1, CYP1B1). Although 6-PN might activate the detoxification and genotoxic pathways of estrogen metabolism, hops extract as a whole only modulated the genotoxic pathway by an up-regulation of CYP1B1 mRNA expression. These data demonstrate the relevant role of 6-PN contained in the hops extract as potential modulator of estrogen metabolism due to its ERα and AHR agonist activity.
Collapse
Affiliation(s)
- María Victoria Zanardi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany.
| | - María Paula Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georg Kretzschmar
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Jannette Wober
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Günter Vollmer
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
15
|
Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. J Pharm Biomed Anal 2022; 210:114553. [PMID: 34968995 PMCID: PMC8792363 DOI: 10.1016/j.jpba.2021.114553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cayman Stephen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
16
|
van Breemen RB, Muchiri RN, Bates TA, Weinstein JB, Leier HC, Farley S, Tafesse FG. Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. JOURNAL OF NATURAL PRODUCTS 2022; 85:176-184. [PMID: 35007072 PMCID: PMC8768006 DOI: 10.1021/acs.jnatprod.1c00946] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 05/27/2023]
Abstract
As a complement to vaccines, small-molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, which cause COVID-19. Affinity selection-mass spectrometry was used for the discovery of botanical ligands to the SARS-CoV-2 spike protein. Cannabinoid acids from hemp (Cannabis sativa) were found to be allosteric as well as orthosteric ligands with micromolar affinity for the spike protein. In follow-up virus neutralization assays, cannabigerolic acid and cannabidiolic acid prevented infection of human epithelial cells by a pseudovirus expressing the SARS-CoV-2 spike protein and prevented entry of live SARS-CoV-2 into cells. Importantly, cannabigerolic acid and cannabidiolic acid were equally effective against the SARS-CoV-2 alpha variant B.1.1.7 and the beta variant B.1.351. Orally bioavailable and with a long history of safe human use, these cannabinoids, isolated or in hemp extracts, have the potential to prevent as well as treat infection by SARS-CoV-2.
Collapse
Affiliation(s)
- Richard B. van Breemen
- Linus
Pauling Institute, Department of Pharmaceutical Sciences, College
of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, Oregon 97331, United States
| | - Ruth N. Muchiri
- Linus
Pauling Institute, Department of Pharmaceutical Sciences, College
of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, Oregon 97331, United States
| | - Timothy A. Bates
- Molecular
Microbiology & Immunology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Jules B. Weinstein
- Molecular
Microbiology & Immunology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Hans C. Leier
- Molecular
Microbiology & Immunology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Scotland Farley
- Molecular
Microbiology & Immunology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Fikadu G. Tafesse
- Molecular
Microbiology & Immunology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
17
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Muchiri RN, van Breemen RB. Drug discovery from natural products using affinity selection-mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:59-63. [PMID: 34916024 DOI: 10.1016/j.ddtec.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022]
Abstract
As a starting point for drug discovery, affinity selection-mass spectrometry (AS-MS) is ideal for the discovery of lead compounds from chemically diverse sources such as botanical, fungal and microbial extracts. Based on binding interactions between macromolecular receptors and ligands of low molecular mass, AS-MS enables the rapid isolation of pharmacologically active small molecules from complex mixtures for mass spectrometric characterization and identification. Unlike conventional high-throughput screening, AS-MS requires no radiolabels, no UV or fluorescent chromophores, and is compatible with all classes of receptors, enzymes, incubation buffers, cofactors, and ligands. The most successful types of AS-MS include pulsed ultrafiltration (PUF) AS-MS, size exclusion chromatography (SEC) AS-MS, and magnetic microbead affinity selection screening (MagMASS), which differ in their approaches for separating the ligand-receptor complexes from the non-binding compounds in mixtures. After affinity isolation, the ligand(s) from the mixture are characterized using high resolution UHPLC-MS and tandem mass spectrometry. Based on these elemental composition and structural data, the identities of the lead compounds are determined by searching on-line databases for known natural products and by comparison with standards. The structures of novel natural products are determined using a combination of spectroscopic techniques including two-dimensional NMR and MS.
Collapse
Affiliation(s)
- Ruth N Muchiri
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; College of Pharmacy, Oregon State University, Corvallis, OR 97331, United States
| | - Richard B van Breemen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States; College of Pharmacy, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
19
|
Kokturk S, Kaya Dagistanli F, Dogan S, Usta E, Colgecen H, Tanriverdi G, Atar H, Ozdemir F. The Effects of the Trifolium Pratense L. Extract on the Leukemia Inhibitory Factor and its Receptor in The Endometrial Epithelial Cell Line. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211045467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Isoflavones have attracted much notice due to their health advantages; however, a comprehensive understanding of the effects of isoflavones on endometrium biology remains undiscovered. The expression and deficiency of leukemia inhibitory factor (LIF) and LIF receptor (LIFR) has been shown to be involved in multiple implantations failures in female infertility. Mechanisms implicated in the failure of implantations require further researches, thus our aim is to investigate the effect of the Trifolium pratense L. isoflavone extract with abundant formononetin content on implantation through assessing LIF and LIFR expressions. The Ishikawa cells were cultured with 20, 30, and 40 µg/mL concentrations of Trifolium pratense L. isoflavone extracts for 24 h and detected staining intensity of LIF and LIFR by immunocytochemistry and immunofluorescence staining using image analysis software. As compared with the control and 20 µg/mL Trifolium pratense L. groups, the staining intensity of LIF and LIFR in 30 and 40 µg/mL Trifolium pratense L. groups were significantly increased ( P < .0001). Our findings suggest that Trifolium pratense L. isoflavone extract may alter the endometrium expression of LIF and LIFR in the human endometrial adenocarcinoma cell line.
Collapse
Affiliation(s)
| | | | | | - Emel Usta
- Istanbul University, Istanbul, Turkey
| | | | | | - Havva Atar
- Zonguldak Karaelmas University, Zonguldak, Turkey
| | | |
Collapse
|
20
|
Tan Y, Zhang C, Zhang Y, Dai X, Wei Q, Wei J, Xu P, Chen Y. Combination of ferulic acid, ligustrazine and tetrahydropalmatine inhibits invasion and metastasis through MMP/TIMP signaling in endometriosis. PeerJ 2021; 9:e11664. [PMID: 34249506 DOI: 10.7717/peerj.11664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background The design of the combination of ferulic acid, ligustrazine and tetrahydropalmatine (FLT) is inspired by the Chinese herbal prescription Foshou San. Previous work has shown that FLT inhibited endometriosis growth in rat autograft models. However, the mechanism behind this is unclear. MMP/TIMP signaling is considered as the vital pathway of metastasis and invasion in endometriosis. In this study, we aim to disclose effects of FLT on MMP/TIMP signaling in invasion and metastasis during endometrial cells and xenograft endometriosis. Methods In vivo, effect of FLT on endometriosis was evaluated in a xenogeneic mice model. In vitro, cell viability assay was performed with an IC50 measurement of FLT in hEM15A and HEC1-B cells. The effect of FLT on invasion and metastasis was analyzed in scratch wound and transwell assay. Gene and protein expression of MMP/TIMP signaling were detected by qPCR and Western blotting. Results In xenograft endometriosis, FLT reduced ectopic volume without effect on weight. FLT inhibitory effects on cell growth exhibited a dose-dependent manner in hEM15A and HEC1-B cells. IC50s of FLT in hEM15A cells were 839.30 ± 121.11 or 483.53 ±156.91 μg·ml-1 after the treatment for 24 or 48 h, respectively. In HEC1-B cells, IC50 values of 24 or 48 h were 625.20 ± 59.52 or 250.30 ± 68.12 μg·ml-1. In addition, FLT significantly inhibited invasion and metastasis in scratch wound and transwell assay. Furthermore, FLT inactivated MMP/TIMP signaling with decreasing expression of MMP-2/9, and an enhancing expression of TIMP-1. Conclusions MMP/TIMP inactivation is a reasonable explanation for the inhibition of FLT on invasion and metastasis in endometriosis. This result reveals a potential mechanism on the role of FLT in endometriosis and may benefit for its further application.
Collapse
Affiliation(s)
- Yi Tan
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Chengling Zhang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Ying Zhang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Xueshan Dai
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Qinghua Wei
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Jiahui Wei
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Pingli Xu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yi Chen
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| |
Collapse
|
21
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
22
|
Kanadys W, Barańska A, Błaszczuk A, Polz-Dacewicz M, Drop B, Kanecki K, Malm M. Evaluation of Clinical Meaningfulness of Red Clover ( Trifolium pratense L.) Extract to Relieve Hot Flushes and Menopausal Symptoms in Peri- and Post-Menopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13041258. [PMID: 33920485 PMCID: PMC8069620 DOI: 10.3390/nu13041258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
The meta-analysis presented in this article covered the efficacy of red clover isoflavones in relieving hot flushes and menopausal symptoms in perimenopausal and postmenopausal women. Studies were identified by MEDLINE (PubMed), Embase, and the Cochrane Library searches. The quality of the studies was evaluated according to Cochrane criteria. A meta-analysis of eight trials (ten comparisons) demonstrated a statistically significant reduction in the daily incidence of hot flushes in women receiving red clover compared to those receiving placebo: weighted mean difference (WMD—weighted mean difference) −1.73 hot flushes per day, 95% CI (confidence interval) −3.28 to −0.18; p = 0.0292. Due to 87.34% homogeneity, the performed analysis showed substantive difference in comparisons of postmenopausal women with ≥5 hot flushes per day, when the follow-up period was 12 weeks, with an isoflavone dose of ≥80 mg/day, and when the formulations contained a higher proportion of biochanin A. The meta-analysis of included studies assessing the effect of red clover isoflavone extract on menopausal symptoms showed a statistically moderate relationship with the reduction in the daily frequency of hot flushes. However, further well-designed studies are required to confirm the present findings and to finally determine the effects of red clover on the relief of flushing episodes.
Collapse
Affiliation(s)
- Wiesław Kanadys
- Department of Informatics and Medical Statistics, Medical University of Lublin, 20-090 Lublin, Poland; (W.K.); (B.D.); (M.M.)
| | - Agnieszka Barańska
- Department of Informatics and Medical Statistics, Medical University of Lublin, 20-090 Lublin, Poland; (W.K.); (B.D.); (M.M.)
- Correspondence:
| | - Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Medical University of Lublin, 20-090 Lublin, Poland; (W.K.); (B.D.); (M.M.)
| | - Krzysztof Kanecki
- Department of Social Medicine and Public Health, Warsaw Medical University, 02-007 Warsaw, Poland;
| | - Maria Malm
- Department of Informatics and Medical Statistics, Medical University of Lublin, 20-090 Lublin, Poland; (W.K.); (B.D.); (M.M.)
| |
Collapse
|
23
|
Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops ( Humulus lupulus L.). Pharm Pat Anal 2021; 10:37-49. [PMID: 33445965 DOI: 10.4155/ppa-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent - aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.
Collapse
|
24
|
Muchiri RN, van Breemen RB. Affinity selection-mass spectrometry for the discovery of pharmacologically active compounds from combinatorial libraries and natural products. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4647. [PMID: 32955158 DOI: 10.1002/jms.4647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 05/12/2023]
Abstract
Invented to address the high-throughput screening (HTS) demands of combinatorial chemistry, affinity selection-mass spectrometry (AS-MS) utilizes binding interactions between ligands and receptors to isolate pharmacologically active compounds from mixtures of small molecules and then relies on the selectivity, sensitivity, and speed of mass spectrometry to identify them. No radiolabels, fluorophores, or chromophores are required. Although many variations of AS-MS have been devised, three approaches have emerged as the most flexible, productive, and popular, and they differ primarily in how ligand-receptor complexes are separated from nonbinding compounds in the mixture. These are pulsed ultrafiltration (PUF) AS-MS, size exclusion chromatography (SEC) AS-MS, and magnetic microbead affinity selection screening (MagMASS). PUF and SEC AS-MS are solution-phase screening approaches, and MagMASS uses receptors immobilized on magnetic microbeads. Because pools of compounds are screened using AS-MS, each containing hundreds to thousands of potential ligands, hundreds of thousands of compounds can be screened per day. AS-MS is also compatible with complex mixtures of chemically diverse natural products in extracts of botanicals and fungi and microbial cultures, which often contain fluorophores and chromophores that can interfere with convention HTS. Unlike conventional HTS, AS-MS may be used to discover ligands binding to allosteric as well as orthosteric receptor sites, and AS-MS has been useful for discovering ligands to targets that are not easily incorporated into conventional HTS such as membrane-bound receptors.
Collapse
Affiliation(s)
- Ruth N Muchiri
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Richard B van Breemen
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
25
|
Zhang Y, Li Q, Feng Y, Yang L, Wang Q, Guo Y, Qiu D. Simultaneous Determination of Eight Chemical Components in Angelicae Sinensis Radix and Its Herbal Products by QAMS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:7178982. [PMID: 33859864 PMCID: PMC8026313 DOI: 10.1155/2021/7178982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 05/14/2023]
Abstract
A HPLC method has been developed for simultaneously detecting chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H, coniferyl ferulate, senkyunolide A, ligustilide, and levistolide A in Angelicae Sinensis Radix through quantitative analysis of multicomponents by single-marker (QAMS) method with ferulic acid as internal standard substance. The relative analysis correction factors of each component in Angelicae Sinensis Radix have good reproducibility under different chromatography conditions. In addition, no significant difference of results was found between quantitative analysis of multicomponents by single-marker (QAMS) method and external standard method in determining content of these components of different Angelicae Sinensis Radix and its 12 kinds of preparations. As a result, the established QAMS method for Angelicae Sinensis Radix analysis with ferulic acid as internal standard substance is accurate and feasible, which could be used as an effective and economical method to control quality of Angelicae Sinensis Radix and its herbal products.
Collapse
Affiliation(s)
- Yu Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Fanjia Zhuozi Health Center Huanglong County, Yanan 715700, China
| | - Qian Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanmei Feng
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lan Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yehong Guo
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Daiyu Qiu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
26
|
Roe AL, Venkataraman A. The Safety and Efficacy of Botanicals with Nootropic Effects. Curr Neuropharmacol 2021; 19:1442-1467. [PMID: 34315377 PMCID: PMC8762178 DOI: 10.2174/1570159x19666210726150432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Recent estimates for the global brain health supplement category, i.e. nootropic market size, will grow to nearly $5.8 billion by 2023. Overall, nearly one-quarter (23%) of adults currently take a supplement to maintain or improve brain health or delay and reverse dementia. Not surprisingly, the use of such supplements increases with age - more than one-third of the oldest generation (ages 74 and older) takes a supplement for brain health. This widespread use is being driven by a strong desire both in the younger and older generations to enhance cognitive performance and achieve healthy aging. The most prevalent botanicals currently dominating the nootropic marketplace include Gingko biloba, American ginseng, and Bacopa monnieri. However, other botanicals that affect stress, focus, attention, and sleep have also been procured by dietary supplement companies developing products for improving both, short and long-term brain health. This review focuses on efficacy data for neuroactive botanicals targeted at improving cognitive function, stress reduction, memory, mood, attention, concentration, focus, and alertness, including Bacopa monnieri, Ginkgo biloba, Holy basil, American ginseng, Gotu kola, Lemon balm, Common and Spanish sages and spearmint. Botanicals are discussed in terms of available clinical efficacy data and current safety profiles. Data gaps are highlighted for both efficacy and safety to bring attention to unmet needs and future research.
Collapse
Affiliation(s)
- Amy L. Roe
- Personal Healthcare Division, The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Arvind Venkataraman
- Personal Healthcare Division, The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| |
Collapse
|
27
|
Tanwar AK, Dhiman N, Kumar A, Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem 2020; 213:113037. [PMID: 33257172 DOI: 10.1016/j.ejmech.2020.113037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Cancer is the world's devastating disease, and breast cancer is the most common reason for the death of women worldwide. Many synthetic drugs and medications are provided with their beneficial actions, but all of these have side effects and resistance problems. Natural remedies are coming forward to overcome the disadvantages of synthetic drugs. Among the natural categories, phytoestrogens having a structural similarity of mammalian oestradiol proves its benefit with various mechanisms not only in the treatment of breast cancer but even to prevent the occurrence of postmenopausal symptoms. Phytoestrogens are plant-derived compounds that were utilized in ancient medications and traditional knowledge for its sex hormone properties. Phytoestrogens exert pleiotropic effects on cellular signalling and show effects on estrogen-dependent diseases. However, because of activation/inhibition of steroid hormonal receptor ER-α or ER-β, these compounds induce or inhibit steroid hormonal (estrogen) action and, therefore, have the potential to disrupt hormone (estrogen) signalling pathway. In this review, we have discussed and summarize the effect of certain phytoestrogens and their possible mechanisms that can substantiate advantageous benefits for the treatment of post-menopausal symptoms as well as for breast cancer.
Collapse
Affiliation(s)
- Ankur Kumar Tanwar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Neha Dhiman
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India.
| |
Collapse
|
28
|
Wangsa K, Sarma I, Saikia P, Ananthakrishnan D, Sarma HN, Velmurugan D. Estrogenic Effect of Scoparia dulcis (Linn) Extract in Mice Uterus and In Silico Molecular Docking Studies of Certain Compounds with Human Estrogen Receptors. J Reprod Infertil 2020; 21:247-258. [PMID: 33209741 PMCID: PMC7648873 DOI: 10.18502/jri.v21i4.4329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Scoparia dulcis Linn. is reported to be used by women of Assam and Arunachal Pradesh in northeast India for treating menstrual disorders. Scoparia dulcis contains compounds that bind with estrogen receptors (ERα and ERβ) evidenced by increased PCNA in endometrial epithelium. Methods: Crude extract was orally administered at the dose of 500 mg/kg body weight/day to the female mice (60–70 days old) in five different groups. Each group containing six females included: (I) cyclic control, (II) cyclic extract treated, (III) Ovariectomized (OVX)-vehicle treated (Control), (IV) OVX-E2 treated (V) OVX- extract treated. Extract was administered for eight days to the cyclic groups and three days to the OVX groups. PCNA was detected immunohistochemically in uterine tissues and signals were analyzed by Image J software (NIH, USA). Compounds were separated by GC-MS and identified using NIST. In silico molecular docking studies was performed with human estrogen receptors (ERα and ERβ). Molecular dynamics (MD) simulations of the best interacting compound was done using gromacs. Results: The results showed cell proliferation in the uterine endometrium evidenced by PCNA. Two phytocompounds, Octadecanoic acid and methyl stearate showed binding affinity with ERα and ERβ. Conclusion: Scoparia dulcis contains compounds having binding affinity with ERα and ERβ. The present study is the first report on compounds from Scoparia dulcis showing binding affinity with human estrogen receptors which may have biological effect on female reproduction.
Collapse
Affiliation(s)
- Khamhee Wangsa
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Indira Sarma
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Purbajyoti Saikia
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Dhanabalan Ananthakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Hirendra Nath Sarma
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| |
Collapse
|
29
|
Influence of processing methods and storage on phenolic compounds and carotenoids of apricots. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Lu C, Liu M, Shang W, Yuan Y, Li M, Deng X, Li H, Yang K. Knowledge Mapping of Angelica sinensis (Oliv.) Diels (Danggui) Research: A Scientometric Study. Front Pharmacol 2020; 11:294. [PMID: 32231572 PMCID: PMC7082756 DOI: 10.3389/fphar.2020.00294] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been widely accepted and applied worldwide, and many publications related to Angelica sinensis (Oliv.) Diels (AS, Chinese name is "Danggui") have been published. However, to date, there has not been a scientometric study to systematically analyze the intellectual landscape and emerging research trends regarding AS. Therefore, we performed a scientometric study to address this gap. METHODS Publications related to AS published from 2009 to 2018 were identified and selected from the Web of Science (WoS) Core Collection on May 30, 2019 using relevant keywords. HistCite, CiteSpace, and Excel 2016 software tools were used to conduct this scientometric study. RESULTS Seven hundred and sixty-seven articles (including 717 primary articles and 60 review articles) and their cited references were included and analyzed. The majority of publications (N = 565, 73.7%) were published in mainland China, with Nanjing University of Chinese Medicine contributing the most publications (N = 42, 5.5%). The first core journal was Journal of Ethnopharmacology (N = 58, 7.6%; impact factor = 3.414). The identification and assessment of active components (like ferulic acid) of AS and their pharmacological actions (such as immunomodulatory effects) are the current research foci for AS research. CONCLUSION The present scientometric study provides an overview of the development of AS research over the previous decade using quantitative and qualitative methods, and this overview can provide references for researchers focusing on AS.
Collapse
Affiliation(s)
- Cuncun Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Ming Liu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Wenru Shang
- School of Public Health, Fudan University, Shanghai, China
| | - Yuan Yuan
- Clinical College of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiuxiu Deng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huijuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
He X, Yang L, Liu X, Wei W, Shi C, Li B, Li J. Ginsenoside Rb1 Upregulating AQP5 Protein Expression and Alleviating Salivary Secretion Impairment in Ovariectomized Sjögren’s Syndrome Mice. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Evaluation of the Anxiolytic Effect of Vitex agnus-castus on Female Mice and Possible Role of Estrogen Receptors. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.63570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Gray SL, Lackey BR. Optimizing a recombinant estrogen receptor binding assay for analysis of herbal extracts. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Bolton JL, Dunlap TL, Hajirahimkhan A, Mbachu O, Chen SN, Chadwick L, Nikolic D, van Breemen RB, Pauli GF, Dietz BM. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem Res Toxicol 2019; 32:222-233. [PMID: 30608650 PMCID: PMC6643004 DOI: 10.1021/acs.chemrestox.8b00345] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Botanical dietary supplements for women's health are increasingly popular. Older women tend to take botanical supplements such as hops as natural alternatives to traditional hormone therapy to relieve menopausal symptoms. Especially extracts from spent hops, the plant material remaining after beer brewing, are enriched in bioactive prenylated flavonoids that correlate with the health benefits of the plant. The chalcone xanthohumol (XH) is the major prenylated flavonoid in spent hops. Other less abundant but important bioactive prenylated flavonoids are isoxanthohumol (IX), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN). Pharmacokinetic studies revealed that these flavonoids are conjugated rapidly with glucuronic acid. XH also undergoes phase I metabolism in vivo to form IX, 8-PN, and 6-PN. Several hop constituents are responsible for distinct effects linked to multiple biological targets, including hormonal, metabolic, inflammatory, and epigenetic pathways. 8-PN is one of the most potent phytoestrogens and is responsible for hops' estrogenic activities. Hops also inhibit aromatase activity, which is linked to 8-PN. The weak electrophile, XH, can activate the Keap1-Nrf2 pathway and turn on the synthesis of detoxification enzymes such as NAD(P)H-quinone oxidoreductase 1 and glutathione S-transferase. XH also alkylates IKK and NF-κB, resulting in anti-inflammatory activity. Antiobesity activities have been described for XH and XH-rich hop extracts likely through activation of AMP-activated protein kinase signaling pathways. Hop extracts modulate the estrogen chemical carcinogenesis pathway by enhancing P450 1A1 detoxification. The mechanism appears to involve activation of the aryl hydrocarbon receptor (AhR) by the AhR agonist, 6-PN, leading to degradation of the estrogen receptor. Finally, prenylated phenols from hops are known inhibitors of P450 1A1/2; P450 1B1; and P450 2C8, 2C9, and 2C19. Understanding the biological targets of hop dietary supplements and their phytoconstituents will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha L. Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Obinna Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Luke Chadwick
- Bell’s Brewery, 8938 Krum Avenue, Galesburg, Michigan 49053, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Richard B. van Breemen
- Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, Corvallis, Oregon 97331, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
35
|
Formononetin and biochanin A protects against ritonavir induced hepatotoxicity via modulation of NfκB/pAkt signaling molecules. Life Sci 2018; 213:174-182. [DOI: 10.1016/j.lfs.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 01/13/2023]
|
36
|
Hajirahimkhan A, Mbachu O, Simmler C, Ellis SG, Dong H, Nikolic D, Lankin DC, van Breemen RB, Chen SN, Pauli GF, Dietz BM, Bolton JL. Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ERβ Agonist from Glycyrrhiza inflata and Highlights the Importance of Chemical and Biological Authentication. JOURNAL OF NATURAL PRODUCTS 2018; 81:966-975. [PMID: 29641206 PMCID: PMC5928484 DOI: 10.1021/acs.jnatprod.7b01070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Postmenopausal women are increasingly using botanicals for menopausal symptom relief due to the increased breast cancer risk associated with traditional estrogen therapy. The deleterious effects of estrogens are associated with estrogen receptor (ER)α-dependent proliferation, while ERβ activation could enhance safety by opposing ERα effects. Three medicinal licorice species, Glycyrrhiza glabra ( G. glabra), G. uralensis, and G. inflata, were studied for their differential estrogenic efficacy. The data showed higher estrogenic potency for G. inflata in an alkaline phosphatase induction assay in Ishikawa cells (ERα) and an estrogen responsive element (ERE)-luciferase assay in MDA-MB-231/β41 breast cancer cells (ERβ). Bioassay-guided fractionation of G. inflata led to the isolation of 8-prenylapigenin (3). Surprisingly, a commercial batch of 3 was devoid of estrogenic activity. Quality control by MS and qNMR revealed an incorrect compound, 4'- O-methylbroussochalcone B (10), illustrating the importance of both structural and purity verification prior to any biological investigations. Authentic and pure 3 displayed 14-fold preferential ERβ agonist activity. Quantitative analyses revealed that 3 was 33 times more concentrated in G. inflata compared to the other medicinal licorice extracts. These data suggest that standardization of G. inflata to 3 might enhance the safety and efficacy of G. inflata supplements used for postmenopausal women's health.
Collapse
Affiliation(s)
- Atieh Hajirahimkhan
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Obinna Mbachu
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Charlotte Simmler
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Sarah G. Ellis
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Huali Dong
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Dejan Nikolic
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - David C. Lankin
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Richard B. van Breemen
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Guido F. Pauli
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M. Dietz
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Judy L. Bolton
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies (CENAPT), Department of Medicinal Chemistry and
Pharmacognosy, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
- E-mail (J. L. Bolton): . Tel: +1 (312) 996-5280. Fax: +1 (312) 996-7107
| |
Collapse
|
37
|
Reis LTC, da Silva MRD, Costa SL, Velozo EDS, Batista R, da Cunha Lima ST. Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E8. [PMID: 29342924 PMCID: PMC5874573 DOI: 10.3390/medicines5010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: Species were extracted and assayed for receptor activation through both ER and TR gene-reporter assays, using 17β-estradiol and triiodothyronine (T3), respectively, as the positive controls. Results: Cajanus cajan (Fabaceae), Abarema cochliacarpus (Fabaceae), and Borreria verticillata (Rubiaceae) were able to activate ER as much as the positive control (17β-estradiol). These three plant species were also assayed for TR activation. At the concentration of 50 µg/mL, C. cajans exerted the highest positive modulation on TR, causing an activation of 59.9%, while B. verticillata and A. cochliacarpus caused 30.8% and 23.3%, respectively. Conclusions: Our results contribute towards the validation of the traditional use of C. cajans, B. verticillata, and A. cochliacarpus in the treatment of metabolic disorders related to ER and TR functions. The gene-reporter assay was proven effective in screening crude plant extracts for ER/TR activation, endorsing this methodology as an important tool for future bioprospection studies focused on identifying novel starting molecules for the development of estrogen and thyroid agonists.
Collapse
Affiliation(s)
- Luã Tainã Costa Reis
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Magnus Régios Dias da Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo (UNIFESP), R. Sena Madureira, 1500-Vila Clementino, São Paulo, SP 04021-001, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biofunction, Institute of Health Sciences, Federal University of Bahia (UFBA), Reitor Miguel Calmon Avenue, 1272-Canela, Salvador, BA 40231-300, Brazil.
| | - Eudes da Silva Velozo
- Laboratory of Research in Materia Medica, Department of Medicament, Faculty of Pharmacy, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Ronan Batista
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Suzana Telles da Cunha Lima
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| |
Collapse
|
38
|
Balakireva AV, Kuznetsova NV, Petushkova AI, Savvateeva LV, Zamyatnin AA. Trends and Prospects of Plant Proteases in Therapeutics. Curr Med Chem 2017; 26:465-486. [PMID: 29173148 DOI: 10.2174/0929867325666171123204403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The main function of proteases in any living organism is the cleavage of proteins resulting in the degradation of damaged, misfolded and potentially harmful proteins and therefore providing the cell with amino acids essential for the synthesis of new proteins. Besides this main function, proteases may play an important role as signal molecules and participate in numerous protein cascades to maintain the vital processes of an organism. Plant proteases are no exception to this rule. Moreover, in contrast to humanencoded enzymes, many plant proteases possess exceptional features such as higher stability, unique substrate specificity and a wide pH range for enzymatic activity. These valuable features make plant-derived proteolytic enzymes suitable for many biomedical applications, and furthermore, the plants can serve as factories for protein production. Plant proteases are already applied in the treatment of several pathological conditions in the human organism. Some of the enzymes possess antitumour, antibacterial and antifungal activity. The collagenolytic activity of plant proteases determines important medical applications such as the healing of wounds and burn debridement. Plant proteases may affect blood coagulation processes and can be applied in the treatment of digestive disorders. The present review summarizes recent advances and possible applications for plant proteases in biomedicine, and proposes further development of plant-derived proteolytic enzymes in the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Natalia V Kuznetsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | | | - Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russian Federation
| |
Collapse
|
39
|
Applová L, Karlíčková J, Říha M, Filipský T, Macáková K, Spilková J, Mladěnka P. The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 35:11-17. [PMID: 28991640 DOI: 10.1016/j.phymed.2017.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND One reason for the lower incidence of cardiovascular diseases in Asian countries may be the high intake of isoflavonoids and their antiplatelet effects may be an important factor. To date, there is limited comparison of a range of isoflavonoids and knowledge of their effects at different levels of platelet aggregation. PURPOSE To screen the antiplatelet effects of a number of isoflavonoids on the arachidonic acid based aggregation pathway and investigate how the antiplatelet activity might occur. METHODS The antiplatelet effects were first screened in whole human blood where platelet aggregation was induced by arachidonic acid. Further analysis was targeted at search of the mechanism of action. RESULTS Thirteen of the eighteen tested isoflavonoids had significant inhibitory effect on platelet aggregation in whole human blood. Genistein had the same potency as clinically used acetylsalicylic acid (ASA) while tectorigenin was clearly stronger than ASA. Further analyses showed that the effect of tectorigenin was not based on inhibition of cyclooxygenase-1 in contrast to ASA or thromboxane synthase but by competitive antagonism at thromboxane receptors. CONCLUSION Tectorigenin is a more potent antiplatelet compound than ASA and thus an interesting substance for further testing.
Collapse
Affiliation(s)
- Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michal Říha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Filipský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Macáková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jiřina Spilková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
40
|
Identification of ginseng root using quantitative X-ray microtomography. J Ginseng Res 2017; 41:290-297. [PMID: 28701869 PMCID: PMC5489746 DOI: 10.1016/j.jgr.2016.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. METHODS The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. RESULTS The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. CONCLUSION This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.
Collapse
|
41
|
Suzuki S, Nakashima N, Kageyama M, Yamagata K. A phytoestrogen supplement prevents the altered gene expression associated with pregnancy implantation induced by IL-1β in endometrial epithelial cells. Reprod Biol 2017. [PMID: 28647515 DOI: 10.1016/j.repbio.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phytoestrogens stimulate expression of the uterine estrogen receptor and regulate uterine functions in reproductive tissues. However, comprehensive understanding of the beneficial impacts of phytoestrogens on uterine biology at the molecular level remains unexplored. Interleukin-1β (IL-1β) expression is increased in the inflamed decidua and is associated with first trimester pregnancy loss. AglyMax-Sup has the same composition as that of the phytoestrogen supplement AglyMax but with added vitamins and other components. Expression of genes associated with implantation may be enhanced by AglyMax-Sup compared with AglyMax. We tested the hypothesis that AglyMax-Sup has greater effects on implantation compared with AglyMax, using RT-PCR and Western blotting in the endometrial epithelial cell line. Furthermore, we investigated the protective effect of AglyMax-Sup on IL-1βinduced changes in estrogen-responsive gene expression in endometrial epithelial cells. The purpose of this study was to compare the effects of the phytoestrogen supplement AglyMax-Sup with those of AglyMax on estrogen-responsive gene expression. AglyMax and AglyMax-Sup significantly (p<0.05) induced gene expression of glycodelin-A, HoxA10, IL-11, LIF, MEG-E8 and TGFβ1. AglyMax-Sup induced high levels of these genes compared with the levels induced by AglyMax. The enhanced expression of LIF, IL-11, integrin αV, and HOXA10 induced by AglyMax-Sup was abolished by the ER antagonist fulvestrant and the ERK inhibitor PD98059. Meanwhile, IL-1β inhibited progesterone plus estrogen-induced TGFβ1, glycodelin-A, HOXA10, and integrin αV expression. IL-1β-induced suppression of these expression was reversed by AglyMax-Sup. These results indicate that expression of genes associated with implantation may be increased by AglyMax-Sup compared with AglyMax. AglyMax-Sup might abrogate IL-1β-mediated changes that can affect embryo implantation via the MAPK pathway.
Collapse
Affiliation(s)
- Sayaka Suzuki
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University (NUBS), Japan
| | | | | | - Kazuo Yamagata
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University (NUBS), Japan.
| |
Collapse
|
42
|
Clark AK, Haas KN, Sivamani RK. Edible Plants and Their Influence on the Gut Microbiome and Acne. Int J Mol Sci 2017; 18:ijms18051070. [PMID: 28513546 PMCID: PMC5454980 DOI: 10.3390/ijms18051070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Acne vulgaris affects most people at some point in their lives. Due to unclear etiology, likely with multiple factors, targeted and low-risk treatments have yet to be developed. In this review, we explore the multiple causes of acne and how plant-based foods and supplements can control these. The proposed causative factors include insulin resistance, sex hormone imbalances, inflammation and microbial dysbiosis. There is an emerging body of work on the human gut microbiome and how it mediates feedback between the foods we eat and our bodies. The gut microbiome is also an important mediator of inflammation in the gut and systemically. A low-glycemic load diet, one rich in plant fibers and low in processed foods, has been linked to an improvement in acne, possibly through gut changes or attenuation of insulin levels. Though there is much interest in the human microbiome, there is much more unknown, especially along the gut-skin axis. Collectively, the evidence suggests that approaches such as plant-based foods and supplements may be a viable alternative to the current first line standard of care for moderate acne, which typically includes antibiotics. Though patient compliance with major dietary changes is likely much lower than with medications, it is a treatment avenue that warrants further study and development.
Collapse
Affiliation(s)
- Ashley K Clark
- School of Medicine, University of California-Davis, Sacramento, CA 95816, USA.
| | - Kelly N Haas
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
| | - Raja K Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA.
| |
Collapse
|
43
|
Lin J, Li XL, Song H, Li Q, Wang MY, Qiu XM, Li DJ, Wang L. A general description for Chinese medicine in treating premature ovarian failure. Chin J Integr Med 2017; 23:91-97. [PMID: 28265850 DOI: 10.1007/s11655-016-2642-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/11/2022]
Abstract
Premature ovarian failure (POF) is a kind of gynecological disease that causes amenorrhea, infertility, menopause and urogenital symptoms. Currently hormone replacement therapy (HRT) is the most popular choice for women with POF to get rid of menopausal syndrome. However, as the popularization of Chinese herbs made Chinese medicine (CM) shine new lights, physicians are able to treat POF with both meno-herbs and integrated therapy. HRT has its own indications and contraindications. For example, unexplained vaginal bleeding, acute liver damage, liver dysfunction, vascular embolization, and breast cancer are all contraindications of HRT, and CM is taken by more physicians as an adjuvant therapy. This review, including a range of common Chinese herbs and formulations according to the existing literature, provides a general description of CM treating POF from the aspects of mechanisms and clinical application. It also highlights acupuncture as a unique physiotherapy for POF. Although the validity of CM has been supported by the evidence of many preclinical trials, clinical trials and meta-analysis, the adverse events with CM therapy still exist and no guarantee has been made for its safety. This review concludes the updated information for CM treating POF contributing to further studies.
Collapse
Affiliation(s)
- Jing Lin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xue-Lian Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Hui Song
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Qian Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ming-Yan Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, 200032, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, 200032, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institutes of Biomedical Sciences (IBS), Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
- The Academy of Integrative Medicine of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
44
|
Wang T, Sun HG, Hua YL, Li PL, Wei YM. Urine metabonomic study for blood-replenishing mechanism of Angelica sinensis in a blood-deficient mouse model. Chin J Nat Med 2016; 14:210-9. [PMID: 27025368 DOI: 10.1016/s1875-5364(16)30018-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/22/2022]
Abstract
This study aimed at determining the effects of Angelica sinensis (AS) on urinary metabolites in blood deficiency mice and exploring its replenishing blood mechanism. Gas chromatography-mass spectrometry (GC-MS) was applied to detect metabolites in the urine samples in different collection periods. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate the differences in metabolic profiles among control group (CG), blood deficiency model group (MG), AS groups, and Colla Corii Asini group (CCAG). The potential biomarkers were identified based on the variable importance in the projection (VIP), T-test, and National Institute of Standards and Technology (NIST) and mass spectra library. The metabolites were analyzed using metabolomics pathway analysis (MetPA) to build the metabolic pathways. Our results indicated that, on the seventh day, the levels of glucose, lactic acid, pyruvic acid, alanine, acetoacetic acid, and citric acid changed significantly in blood deficiency mice. However, these metabolic deviations came to closer to normal levels after AS intervention. The reversing blood-deficiency mechanism of AS might involve regulating synthesis and degradation of ketone bodies, Pyruvate metabolism, TCA cycle, and Glycolysis/Gluconeogenesis. In conclusion, metabonomics is a robust and promising means for the identification of biomarkers and elucidation of the mechanisms of a disease, thereby highlighting its importance in drug discovery.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Hong-Guo Sun
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Li Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng-Ling Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan-Ming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
45
|
Abstract
Xanthohumol (Xan) is a natural constituent of human nutrition. Little is known about its actions on leishmanial parasites and their mitochondria as putative target. Therefore, we determined the antileishmanial activity of Xan and resveratrol (Res, as alternative compound with antileishmanial activity) with respect to mitochondria in Leishmania amazonensis promastigotes/amastigotes (LaP/LaA) in comparison with their activity in peritoneal macrophages from mouse (PMM) and macrophage cell line J774A.1 (J774). Mechanistic studies were conducted in Leishmania tarentolae promastigotes (LtP) and mitochondrial fractions isolated from LtP. Xan and Res demonstrated antileishmanial activity in LaA [half inhibitory concentration (IC50): Xan 7 µ m, Res 14 µ m]; while they had less influence on the viability of PMM (IC50: Xan 70 µ m, Res >438 µ m). In contrast to Res, Xan strongly inhibited oxygen consumption in Leishmania (LtP) but not in J774 cells. This was based on the inhibition of the mitochondrial electron transfer complex II/III by Xan, which was less pronounced with Res. Neither Xan nor Res increased mitochondrial superoxide release in LtP, while both decreased the mitochondrial membrane potential in LtP. Bioenergetic studies showed that LtP mitochondria have no spare respiratory capacity in contrast to mitochondria in J774 cells and can therefore much less adapt to stress by mitochondrial inhibitors, such as Xan. These data show that Xan may have antileishmanial activity, which is mediated by mitochondrial inhibition.
Collapse
|
46
|
Song H, Wang H, Liang J, Qian C, Wu S, Xu W, Wu B, Liu X, Li P, Yang H. Integration of Multiple Analytical and Computational Tools for the Discovery of High‐Potency Enzyme Inhibitors from Herbal Medicines. ChemMedChem 2016; 11:2588-2597. [DOI: 10.1002/cmdc.201600489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hui‐Peng Song
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Hong Wang
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Jin‐Xiu Liang
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Cheng Qian
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Si‐Qi Wu
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Wen‐Jun Xu
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Bin Wu
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Xin‐Guang Liu
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Ping Li
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| | - Hua Yang
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
47
|
Cieśla Ł, Moaddel R. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat Prod Rep 2016; 33:1131-45. [PMID: 27367973 PMCID: PMC5042860 DOI: 10.1039/c6np00016a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: 2000 to 2016Natural product extracts are a rich source of bioactive compounds. As a result, the screening of natural products for the identification of novel biologically active metabolites has been an essential part of several drug discovery programs. It is estimated that more than 70% of all drugs approved from 1981 and 2006, were either derived from or structurally similar to nature based compounds indicating the necessity for the development of a rapid method for the identification of novel compounds from plant extracts. The screening of biological matrices for the identification of novel modulators is nevertheless still challenging. In this review we discuss current techniques in phytochemical analysis and the identification of biologically active components.
Collapse
Affiliation(s)
- Łukasz Cieśla
- Laboratory of Clinical Investigation, Biomedical Research Center, 8C232, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
48
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:116-141. [PMID: 27211015 DOI: 10.1016/j.jep.2016.05.023] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. AIM OF THE REVIEW This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). RESULT This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects. CONCLUSIONS Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Wen-Long Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Cai-Mei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Qu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
50
|
Tava A, Stochmal A, Pecetti L. Isoflavone Content in Subterranean Clover Germplasm from Sardinia. Chem Biodivers 2016; 13:1038-45. [PMID: 27415852 DOI: 10.1002/cbdv.201500360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 11/06/2022]
Abstract
Subterranean clover (Trifolium subterraneum) is an important pasture legume, and Sardinia is known as a major centre of diversification of this species. As other legumes, this clover produces biologically active flavonoids including the subclass of isoflavones that are natural phytoestrogens with positive health effects. Present sources of isoflavones for medical/nutraceutical treatments are red clover (Trifolium pratense) and soybean (Glycine max). This study assessed the content and composition of flavonoids in 14 subterranean clover genotypes from Sardinia, grown ex-situ in comparison with two red clover ecotypes, to acquire information on the potential of the species as an alternative source of isoflavones for possible exploitation. Twenty compounds were tentatively identified across the two clovers after HPLC and LC/ESI-MS analyses, including clovamide, four flavonols, and 15 isoflavones. Most compounds were present as glucosides or glucosyl malonates. Subterranean clover extracts mainly comprised of derivatives of the isoflavones genistein, biochanin A, and formononetin. Compared to red clover, subterranean clover had higher content of total isoflavones and lower concentration of total flavonols. The isoflavone concentration in subterranean clover was higher than literature data for soybean or red clover. The existing genotypic variation warrants the possibility of selecting varieties with high isoflavone concentration for nutraceutical or pharmaceutical purposes.
Collapse
Affiliation(s)
- Aldo Tava
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC), viale Piacenza 29, 26900, Lodi, Italy
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Luciano Pecetti
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC), viale Piacenza 29, 26900, Lodi, Italy
| |
Collapse
|