1
|
Asghar M, Khan N, Fatima M, Arslan M, Davies SJ, ul Haque N. Feasibility of replacing fish oil with sunflower oil on the growth, body composition, fatty acid profile, antioxidant activity, stress response, and blood biomarkers of Labeo rohita. PLoS One 2024; 19:e0299195. [PMID: 38483972 PMCID: PMC10939255 DOI: 10.1371/journal.pone.0299195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
A 90-day study was conducted to investigate the effects of substituting sunflower oil (SFO) for fish oil (FO) on various parameters in Labeo rohita (initial weight 18.21 ± 0.22 g). Five experimental diets with different levels of SFO (up to 7%) substitution for FO (0%, 25%, 50%, 75%, and 100%) were formulated, ensuring equal levels of nitrogen and lipids. The results indicated that even with 100% substitution of SFO with FO, there were no significant differences (P>0.05) were observed in growth performance. The survival rate (SR), hepato-somatic index (HSI), and viscero-somatic index (VSI) as well as whole-body composition were also nonsignificant by SFO substitution. However, the fatty acid profiles in both muscle and liver were influenced (P<0.05) by dietary substitution. Saturated fats (SFA) decreased, while monounsaturated fats (MUFA), and linoleic acid (LA) increased (P<0.05). On the other hand, the contribution of linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) decreased (P<0.05) as the amount of SFO in the diet increased. Hematology parameters, including red blood cells (RBCs), hemoglobin (Hb), and hematocrit (Hct), were not affected. Globulin (GLO) levels decreased significantly (P<0.05), while alanine transaminase (ALT) and aspartate transaminase (AST) activity showed nonsignificant increases (P>0.05). Total protein (TP) increased (P<0.05) at 100% SFO inclusion in the diet, and albumin (ALB) levels increased (P<0.05) at 75% and 100% SFO inclusion in the diet. Cholesterol (CHOL), triacylglycerol (TG), and high-density lipids (HDL) were not significantly affected (P>0.05), while low-density lipids (LDL) were significantly increased (P<0.05) compared to the control group. Cortisol (CORT) and glucose (GLU) levels showed nonsignificant (P>0.05) changes. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities in the liver and serum were not significantly (P>0.05) affected, while malondialdehyde (MDA) status was significantly (P<0.05) reduced. In conclusion, the fatty acid profile of the muscle and liver of fish was modified by the diets, and FO can be substituted with SFO up to 100% for L. rohita, which is beneficial for growth and immunity while marinating the lipid contents in fish. Our study revealed that fully replacing fish oil with SFO shows promise in fully replacing FO without compromising the growth and overall health status of the fish.
Collapse
Affiliation(s)
- Muhammad Asghar
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Khan
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mahroze Fatima
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Murat Arslan
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Simon John Davies
- Aquaculture Nutrition Research Unit, ANRU, Carna Research Station, School of Natural Sciences and Ryan Institute, University of Galway, Carna, Co., Galway, Ireland
| | - Naveed ul Haque
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Khoklang A, Kersanté P, Nontasan S, Sutthi N, Pakdeenarong N, Wang T, Wangkahart E. Insights into the functional properties of a natural free amino acid mix: Effect on growth performance, nutrient metabolism, and immune response in a carnivorous fish, Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109232. [PMID: 37984611 DOI: 10.1016/j.fsi.2023.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Dietary supplements containing a functional feed additive have been shown to be beneficial to fish and shellfish aquaculture. However, the functional properties of aquafeed formulations have rarely been reported in fish. This study aimed to investigate the effects of natural free amino acid mix (FAAM) supplementation as a functional solution on the growth performance and nutrient utilization in a carnivorous fish, Asian seabass (Lates calcarifer). Five isonitrogenous and isolipidic diets were prepared with graded supplementation levels of FAAM at 0 % (control group), 0.25 %, 0.50 %, 0.75 %, and 1.0 %, denoted as FAAM0, FAAM0.25, FAAM0.5, FAAM0.75, and FAAM1.0, respectively. The experimental fish were fed different dietary FAAM supplementations to apparent satiation twice daily for eight weeks. Significant improvements were observed in the growth performance of fish among the five groups (P < 0.05). Fish fed with FAAM0.75 displayed significantly increased activities of lysozyme, myeloperoxidase, catalase, and glutathione peroxidase (P < 0.05). The activities of digestive enzymes, including amylase, protease, and lipase, were enhanced by the supplementation of FAAM in the feed (P < 0.05), especially for the groups that contained more than 0.5 % FAAM in the feed. Furthermore, the morphological profile of the intestinal tract, including the mucosal fold height, width, thickness, and goblet cell, increased in fish fed with FAAM at 1.0 % (P < 0.05). Moreover, FAAM supplementation in diets not only modulated the expression of immune-related genes (glutathione peroxidase (GPx), complement (C)3, C4, and C-reactive protein) in the liver but also positively impacted the growth-ralated genes, including growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I), and IGF-II. In addition, the amounts of monounsaturated fatty acids (mainly oleic acid (C18:1n9c)) and polyunsaturated fatty acids-especially γ-linolenic acid (C18:3 n6) and α-linolenic acid (C18:3n3)-increased in fish fed with diets containing FAAMs (P < 0.05). Interestingly, the diets supplemented with FAAMs also had a positive effect on the economic indices in terms of revenue-to-cost ratios. These findings provide a scientific basis for the application of FAAMs as a functional solution that can be used in feed formulations for Asian seabass.
Collapse
Affiliation(s)
- Aniwat Khoklang
- Master of Science Program in Agriculture, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand
| | | | - Supap Nontasan
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand; Faculty of Tourism and Hotel Management, Mahasarakham University, Talad Sub-district, Muang, Maha Sarakham, 44000, Thailand
| | - Nantaporn Sutthi
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Noppakun Pakdeenarong
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
3
|
Amyoony J, Gorman M, Dabas T, Moss R, McSweeney MB. Consumer perception of collagen from different sources: An investigation using hedonic scale and check all that apply. J Food Sci 2023; 88:5236-5247. [PMID: 37921549 DOI: 10.1111/1750-3841.16822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Consumers are adding collagen powder to their diets for its health benefits. However, few studies have investigated consumer perception of collagens produced from different sources. As such, the objective of this study was to evaluate the acceptability and sensory properties of commercially available collagen powders (bovine, marine, and mixed). Two different sensory trials were conducted. First, six different collagen powders were mixed with water and evaluated for their sensory properties and acceptability (n = 98; referred to as collagen-in-water). In the second trial, the collagen powders were mixed into strawberry smoothies and their sensory properties were assessed (n = 92; referred to as collagen-in-smoothie). Both studies used the 9-point hedonic scale and check all that apply to evaluate the collagen powders. The results indicated that the collagens could be grouped based on their source when evaluated in water and in a smoothie. Also, the aroma and taste of the marine collagens impacted their acceptability and were associated with fishy, sour, bitter, and salty attributes. Overall, collagen that was low in flavor was more acceptable to the participants in this study. PRACTICAL APPLICATION: Recently, consumers have begun to purchase collagen powder for its health benefits, specifically its positive effects on skin appearance. Understanding the sensory properties of the different collagens can allow for the ingredients to be incorporated into different food products and help promote consumer purchases. Collagen should be mixed into beverages rather than be consumed in water alone to increase acceptability. Also, marine collagen incorporation into foods should be avoided unless off-aromas and flavors can be masked by other properties.
Collapse
Affiliation(s)
- Jamal Amyoony
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Tanvi Dabas
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
4
|
Dong Y, Wei Y, Wang L, Song K, Zhang C, Lu K, Rahimnejad S. Dietary n-3/n-6 polyunsaturated fatty acid ratio modulates growth performance in spotted seabass ( Lateolabrax maculatus) through regulating lipid metabolism, hepatic antioxidant capacity and intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:20-31. [PMID: 37234947 PMCID: PMC10208799 DOI: 10.1016/j.aninu.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
An 8-week feeding experiment was carried out to explore the effects of dietary n-3/n-6 polyunsaturated fatty acid (PUFA) ratio on growth performance, lipid metabolism, hepatic antioxidant status, and gut flora of spotted seabass (Lateolabrax maculatus). Six experimental diets were formulated to contain different levels of two purified oil sources including docosahexaenoic and eicosapentaenoic acids enriched oil (n-3) and linoleic acid-enriched oil (n-6) leading to n-3/n-6 PUFA ratios of 0.04, 0.35, 0.66, 1.35, 2.45 and 16.17. Each diet was fed to triplicate groups of juvenile L. maculatus (11.06 ± 0.20 g, 30 fish/tank). Final body weight (FBW), weight gain (WG), specific growth rates (SGR), protein efficiency ratio (PER) and feed utilization efficiency increased as n-3/n-6 PUFA ratio increased up to a certain level, and then decreased thereafter. Fish fed the diet with n-3/n-6 PUFA ratio of 0.66 exhibited the highest FBW, WG, SGR and PER and the lowest feed conversion ratio. Lower n-3/n-6 PUFA ratios induced up-regulated expression of lipid synthesis-related genes (fas, acc2 and srebp-1c) and down-regulated expression of lipolysis related genes (atgl, pparα, cpt-1 and aox). Higher expression of lipolysis-related genes (atgl, pparα and cpt-1) was recorded at moderate n-3/n-6 PUFA ratios (0.66 to 1.35). Moreover, inappropriate n-3/n-6 PUFA ratios triggered up-regulation of pro-inflammatory genes (il-6 and tnf-α) and down-regulation of anti-inflammatory genes (il-4 and il-10) in the intestine. The diet with n-3/n-6 PUFA ratio of 0.66 inhibited intestine inflammation, improved intestinal flora richness, increased the abundance of beneficial bacteria such as Lactobacillus, Alloprevotella and Ruminococcus, and reduced the abundance of harmful bacteria including Escherichia-Shigella and Enterococcus. In summary, it could be suggested that a dietary n-3/n-6 PUFA ratio of 0.66 can improve growth performance and feed utilization in L. maculatus, as is deemed to be mediated through regulation of lipid metabolism and intestinal flora.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yu Wei
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
5
|
Azad AM, Bernhard A, Shen A, Myrmel LS, Lundebye AK, Lecaudey LA, Fjære E, Tri Ho Q, Sveier H, Kristiansen K, Limborg MT, Madsen L. Metabolic effects of diet containing blue mussel (Mytilus edulis) and blue mussel-fed salmon in a mouse model of obesity. Food Res Int 2023; 169:112927. [PMID: 37254353 DOI: 10.1016/j.foodres.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.
Collapse
Affiliation(s)
| | | | - Anne Shen
- Institute of Marine Research, Norway
| | | | | | - Laurène Alicia Lecaudey
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; SINTEF Ocean, Aquaculture Department, Trondheim, Norway; Department of Natural History, NTNU University Museum, Trondheim, Norway
| | | | | | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Norway; Department of Clinical Medicine, University of Bergen, Norway
| |
Collapse
|
6
|
Cao S, Guan L, Li C, Sun G, Tian H, Sun R, Tu J, Meng Y, Ma R. Effects of Dietary Protein and Lipid Levels on Growth, Metabolism, Antioxidative Capacity, and Fillet Quality of Adult Triploid Rainbow Trout Farmed in Net Cage. AQUACULTURE NUTRITION 2023; 2023:4733343. [PMID: 37288329 PMCID: PMC10243945 DOI: 10.1155/2023/4733343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
The research is aimed at investigating the effects of dietary protein and lipid levels on adult triploid rainbow trout growth performance, feed utilization, digestive and metabolic enzyme activities, antioxidative capacity, and fillet quality. Nine diets containing three dietary protein levels (DP) (300, 350, and 400 g kg-1) and three dietary lipid levels (DL) (200, 250, and 300 g kg-1) were prepared using a 3 × 3 factorial design. In freshwater cages, 13,500 adult female triploid rainbow trout (3.2 ± 0.1 kg) were cultured for 77 days. Triplicate cages (500 fish per cage) were used as repetitions of each experimental diet. The findings revealed that as DP increased to 400 g kg-1 and DL raised to 300 g kg-1, the weight gain ratio (WGR) elevated significantly (P < 0.05). However, when DP ≥ 350 g kg-1, WGR was similar in the DL250 and DL300 groups. As DP raised to 350 g kg-1, the feed conversion ratio (FCR) notably decreased (P < 0.05). In the DP350DL300 group, lipids had a protein-sparing impact. High DP diet (400 g kg-1) generally improved fish health status by increasing antioxidant capacity in the liver and intestine. A high DL diet (300 g kg-1) showed no harmful effect on hepatic health based on plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and antioxidant capacity in the liver. For fillet quality, a high DP diet could increase fillet yield, improve fillet hardness, springiness, and water-holding capacity values, and inhibit the production of off-flavors caused by n-6 fatty acids. A high DL diet could increase odor intensity, and EPA, DHA, and n-3 fatty acid concentrations decrease the thrombogenicity index value. The maximum fillet redness value was discovered in the DP400DL300 group. Overall, for adult triploid rainbow trout (≥3 kg), the minimum recommended DP and DL according to growth performance were 400 and 250 g kg-1, respectively; DP and DL based on feed utilization were 350 and 200 g kg-1, respectively; DP and DL based on fillet quality were 400 and 300 g kg-1, respectively.
Collapse
Affiliation(s)
- Songjing Cao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Lingling Guan
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Guoliang Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Haining Tian
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Ruijian Sun
- Tongwei Agricultural Development Co., LTD., Chengdu 610000, China
| | - Jun Tu
- Tongwei Agricultural Development Co., LTD., Chengdu 610000, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecological Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
7
|
Østbye TKK, Gudbrandsen OA, Drotningsvik A, Ruyter B, Berge GM, Vogt G, Nilsson A. Different Dietary Ratios of Camelina Oil to Sandeel Oil Influence the Capacity to Synthesise and Deposit EPA and DHA in Zucker Fa/Fa Rats. Nutrients 2023; 15:nu15102344. [PMID: 37242227 DOI: 10.3390/nu15102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Plant-based food provides more ALA (α-linolenic acid) and less EPA (eicosapentaenoic acid) and DHA (docosahexanoic acid) than marine food. Earlier studies indicate that cetoleic acid (22:1n-11) stimulates the n-3 pathway from ALA to EPA and DHA. The present study aimed to investigate the dietary effects of camelina oil (CA) high in ALA and sandeel oil (SA) high in cetoleic acid on the conversion of ALA to EPA and DHA. Male Zucker fa/fa rats were fed a diet of soybean oil (Ctrl) or diets of CA, SA, or a combination of CA and SA. Significantly higher levels of DPA (docosapentaenoic acid) and DHA in blood cells from the CA group compared to the Ctrl indicate an active conversion of ALA to DPA and DHA. Increasing the uptake and deposition of EPA and DHA meant that a trend towards a decrease in the liver gene expression of Elovl5, Fads1, and Fads2 along with an increase in the dietary content of SA was observed. However, 25% of the SA could be exchanged with CA without having a significant effect on EPA, DPA, or DHA in blood cells, indicating that bioactive components in SA, such as cetoleic acid, might counteract the inhibiting effect of the high dietary content of DHA on the n-3 biosynthetic pathway.
Collapse
Affiliation(s)
| | - Oddrun Anita Gudbrandsen
- Dietary Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Aslaug Drotningsvik
- Dietary Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Vedde AS, 6030 Langevåg, Norway
| | - Bente Ruyter
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Gerd Marit Berge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Gjermund Vogt
- Eurofins Food & Agro Testing Norway AS, 1538 Moss, Norway
| | - Astrid Nilsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| |
Collapse
|
8
|
Ytrestøyl T, Bou M, Dimitriou C, Berge GM, Østbye TK, Ruyter B. Dietary Level of the Omega-3 Fatty Acids EPA and DHA Influence the Flesh Pigmentation in Atlantic Salmon. AQUACULTURE NUTRITION 2023; 2023:5528942. [PMID: 36909926 PMCID: PMC9998164 DOI: 10.1155/2023/5528942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Atlantic salmon with a start weight of 53 g were fed diets with different levels of EPA and DHA or a diet with 1 : 1 EPA+DHA (0%, 1.0%, and 2.0% of the diet). At 400 g, all fish groups were mixed and equally distributed in new tanks and fed three diets with 0.2%, 1.0%, or 1.7% of EPA+DHA. At 1200 g, the fish were transferred to seawater pens where they were fed the same three diets until they reached a slaughter size of 3.5 kg. The fillet concentration of astaxanthin and its metabolite idoxanthin was analysed before transfer to seawater pens at 1200 g and at slaughter. The fatty acid composition in the fillet was also analysed at the same time points. Salmon fed low levels of EPA and DHA had lower fillet astaxanthin concentration and higher metabolic conversion of astaxanthin to idoxanthin compared to salmon fed higher dietary levels of EPA and/or DHA. DHA had a more positive effect on fillet astaxanthin concentrations than EPA. There were positive correlations between fillet DHA, EPA, sum N-3 fatty acids, and fillet astaxanthin concentration. A negative correlation was found between the concentration of N-6 fatty acids in the fillet and the astaxanthin concentration.
Collapse
Affiliation(s)
- T. Ytrestøyl
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 6600 Sunndalsøra, Norway
| | - M. Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
| | - C. Dimitriou
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - G. M. Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 6600 Sunndalsøra, Norway
| | - T.-K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
| | - B. Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
9
|
Lintvedt TA, Andersen PV, Afseth NK, Heia K, Lindberg SK, Wold JP. Raman spectroscopy and NIR hyperspectral imaging for in-line estimation of fatty acid features in salmon fillets. Talanta 2023; 254:124113. [PMID: 36473242 DOI: 10.1016/j.talanta.2022.124113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Raman spectroscopy was compared with near infrared (NIR) hyperspectral imaging for determination of fat composition (%EPA + DHA) in salmon fillets at short exposure times. Fillets were measured in movement for both methods. Salmon were acquired from several different farming locations in Norway with different feeding regimes, representing a realistic variation of salmon in the market. For Raman, we investigated three manual scanning strategies; i) line scan of loin, ii) line scan of belly and iii) sinusoidal scan of belly at exposure times of 2s and 4s. NIR images were acquired while the fillets moved on a conveyor belt at 40 cm/s, which corresponds to an acquisition time of 1s for a 40 cm long fillet. For NIR images, three different regions of interest (ROI) were investigated including the i) whole fillet, ii) belly segment, and iii) loin segment. For both Raman and NIR measurements, we investigated an untrimmed and trimmed version of the fillets, both relevant for industrial in-line evaluation. For the trimmed fillets, a fat rich deposition layer in the belly was removed. The %EPA + DHA models were validated by cross validation (N = 51) and using an independent test set (N = 20) which was acquired in a different season. Both Raman and NIR showed promising results and high performances in the cross validation, with R2CV = 0.96 for Raman at 2s exposure and R2CV = 0.97 for NIR. High performances were obtained also for the test set, but while Raman had low and stable biases for the test set, the biases were high and varied for the NIR measurements. Analysis of variance on the squared test set residuals showed that performance for Raman measurements were significantly higher than NIR at 1% significance level (p = 0.000013) when slope-and-bias errors were not corrected, but not significant when residuals were slope-and-bias corrected (p = 0.28). This indicated that NIR was more sensitive to matrix effects. For Raman, signal-to-noise ratio was the main limitation and there were indications that Raman was close to a critical sample exposure time at the 2s signal accumulation.
Collapse
Affiliation(s)
- Tiril Aurora Lintvedt
- Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, Tromsø, 9291, Norway; Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, 1432, Norway.
| | - Petter Vejle Andersen
- Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, Tromsø, 9291, Norway
| | - Nils Kristian Afseth
- Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, Tromsø, 9291, Norway
| | - Karsten Heia
- Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, Tromsø, 9291, Norway
| | - Stein-Kato Lindberg
- Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, Tromsø, 9291, Norway
| | - Jens Petter Wold
- Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, Tromsø, 9291, Norway
| |
Collapse
|
10
|
Sarker PK. Microorganisms in Fish Feeds, Technological Innovations, and Key Strategies for Sustainable Aquaculture. Microorganisms 2023; 11:microorganisms11020439. [PMID: 36838404 PMCID: PMC9961935 DOI: 10.3390/microorganisms11020439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Aquaculture, the world's fastest growing food sector, produces over half of all fish for human consumption. Aquaculture feeds include fishmeal and fish oil, extracted from wild-caught fish such as sardines, and poses ecological, food security, and economic drawbacks. Microalgae, yeasts, fungi, bacteria, and other alternative ingredients show promise as potential ingredients in aquafeeds that provide protein/amino acids, lipids, or omega-3 sources and sources of bioactive molecules. This review article discusses the issues that the literature often lacks data on, such as the recent development of using microorganisms, technological innovation, challenges, and opportunities to develop a low environmental footprint of aquaculture diet. The ingredients often require novel processing technology to improve digestibility and fish growth and reduce antinutritional factors. This is an important gap to fill because microalgae are the most frequently used organism in fish feed, particularly as a dietary supplement or mixed with other ingredients. The production, processing, and formulating steps can affect the nutritional qualities. Stepwise strategies are required to evaluate these ingredients for feed application, and in this article, I articulated the stepwise key approaches of evaluating nutritional and environmental response metrics to develop highly sustainable aquaculture feed using these microorganisms, which would guide a more judicious inclusion of these novel ingredients.
Collapse
Affiliation(s)
- Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Lutfi E, Berge GM, Bæverfjord G, Sigholt T, Bou M, Larsson T, Mørkøre T, Evensen Ø, Sissener NH, Rosenlund G, Sveen L, Østbye TK, Ruyter B. Increasing dietary levels of the n-3 long-chain PUFA, EPA and DHA, improves the growth, welfare, robustness and fillet quality of Atlantic salmon in sea cages. Br J Nutr 2023; 129:10-28. [PMID: 35236527 PMCID: PMC9816656 DOI: 10.1017/s0007114522000642] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
The present study evaluated the effects of increasing the dietary levels of EPA and DHA in Atlantic salmon (Salmo salar) reared in sea cages, in terms of growth performance, welfare, robustness and overall quality. Fish with an average starting weight of 275 g were fed one of four different diets containing 10, 13, 16 and 35 g/kg of EPA and DHA (designated as 1·0, 1·3, 1·6 and 3·5 % EPA and DHA) until they reached approximately 5 kg. The 3·5 % EPA and DHA diet showed a significantly beneficial effect on growth performance and fillet quality compared with all other diets, particularly the 1 % EPA and DHA diet. Fish fed the diet containing 3·5 % EPA and DHA showed 400-600 g higher final weights, improved internal organ health scores and external welfare indicators, better fillet quality in terms of higher visual colour score and lower occurrence of dark spots and higher EPA and DHA content in tissues at the end of the feeding trial. Moreover, fish fed the 3·5 % EPA and DHA diet showed lower mortality during a naturally occurring cardiomyopathy syndrome outbreak, although this did not reach statistical significance. Altogether, our findings emphasise the importance of dietary EPA and DHA to maintain good growth, robustness, welfare and fillet quality of Atlantic salmon reared in sea cages.
Collapse
Affiliation(s)
- Esmail Lutfi
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | | | | | | | - Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Thomas Larsson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Turid Mørkøre
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Lene Sveen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues. Curr Atheroscler Rep 2023; 25:1-17. [PMID: 36580204 PMCID: PMC9834373 DOI: 10.1007/s11883-022-01075-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The omega-3 fatty acids (n3-FAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have recently undergone testing for their ability to reduce residual cardiovascular (CV) risk among statin-treated subjects. The outcome trials have yielded highly inconsistent results, perhaps attributable to variations in dosage, formulation, and composition. In particular, CV trials using icosapent ethyl (IPE), a highly purified ethyl ester of EPA, reproducibly reduced CV events and progression of atherosclerosis compared with mixed EPA/DHA treatments. This review summarizes the mechanistic evidence for differences among n3-FAs on the development and manifestations of atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials with n3-FAs have produced discordant outcomes despite similar patient profiles, doses, and triglyceride (TG)-lowering effects. A large, randomized trial with IPE, a prescription EPA only formulation, showed robust reduction in CV events in statin treated patients in a manner proportional to achieved blood EPA concentrations. Multiple trials using mixed EPA/DHA formulations have not shown such benefits, despite similar TG lowering. These inconsistencies have inspired investigations into mechanistic differences among n3-FAs, as EPA and DHA have distinct membrane interactions, metabolic products, effects on cholesterol efflux, antioxidant properties, and tissue distribution. EPA maintains normal membrane cholesterol distribution, enhances endothelial function, and in combination with statins improves features implicated in plaque stability and reduces lipid content of plaques. Insights into reductions in residual CV risk have emerged from clinical trials using different formulations of n3-FAs. Among high-risk patients on contemporary care, mixed n3-FA formulations showed no reduction in CV events. The distinct benefits of IPE in multiple trials may arise from pleiotropic actions that correlate with on-treatment EPA levels beyond TG-lowering. These effects include altered platelet function, inflammation, cholesterol distribution, and endothelial dysfunction. Elucidating such mechanisms of vascular protection for EPA may lead to new interventions for atherosclerosis, a disease that continues to expand worldwide.
Collapse
|
13
|
Molversmyr E, Devle HM, Naess‐Andresen CF, Ekeberg D. Identification and quantification of lipids in wild and farmed Atlantic salmon ( Salmo salar), and salmon feed by GC-MS. Food Sci Nutr 2022; 10:3117-3127. [PMID: 36171771 PMCID: PMC9469852 DOI: 10.1002/fsn3.2911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The fatty acid profiles of wild and farmed Atlantic salmon (Salmo salar) and salmon feed was elucidated and quantitated. Due to the increasing proportion of vegetable oils in salmon feed, it was of interest to evaluate the effects on the farmed salmon fatty acid profile. There was found to be four times more fat in the muscle in farmed compared to wild salmon, 8.97 ± 0.63% and 2.14 ± 0.32%, respectively. The contents of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were 15.0%, 55.4%, and 29.6%, respectively, in farmed salmon, while 26.3%, 47.4%, and 26.3% in wild salmon. The lipids were also fractioned into neutral lipids, free fatty acids, and polar lipids by solid-phase extraction. Both wild and farmed salmon contained approximately equal amount of eicosapentaenoic acid and docosahexaenoic acid with 520 and 523 mg/100 g fish muscle, respectively. The salmons of both kinds were evaluated from a health perspective by discussing the contents of n-3 and n-6 fatty acids, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids together with nutritional quality indices. In conjunction with a lower fat intake by consumption, the wild Atlantic salmon displayed the most nutritionally beneficial profile.
Collapse
Affiliation(s)
- Eivind Molversmyr
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Hanne Marie Devle
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | | | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
14
|
Mason RP, Sherratt SCR, Eckel RH. Omega-3-fatty acids: Do they prevent cardiovascular disease? Best Pract Res Clin Endocrinol Metab 2022; 37:101681. [PMID: 35739003 DOI: 10.1016/j.beem.2022.101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite cardiovascular disease (CVD) reductions with high-intensity statins, there remains residual risk among patients with metabolic disorders. Alongside low-density lipoproteins (LDL-C), elevated triglycerides (TG) are associated with incident CVD events. Omega-3 fatty acids (n3-FAs), specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower TG levels, but their ability to reduce CV risk has been highly inconsistent. Trials using icosapent ethyl (IPE), a purified EPA ethyl ester, produced reductions in CVD events and atherosclerotic plaque regression compared with mixed EPA/DHA formulations despite similar TG-reductions. The separate effects of EPA and DHA on tissue distribution, oxidative stress, inflammation, membrane structure and endothelial function may contribute to these discordant outcomes. Additional mechanistic trials will provide further insights into the role of n3-FAs in reducing CVD risk beyond TG lowering.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Samuel C R Sherratt
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism & Diabetes, Division of Cardiology, University of Colorado Anschutz Medical Campus, 1635 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Partial Substitution of Fish Oil with Microalgae ( Schizochytrium sp.) Can Improve Growth Performance, Nonspecific Immunity and Disease Resistance in Rainbow Trout, Oncorhynchus mykiss. Animals (Basel) 2022; 12:ani12091220. [PMID: 35565646 PMCID: PMC9099930 DOI: 10.3390/ani12091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
The price of fish oil has reached a historical peak due to a consistent downward production trend, and therefore, the search for sustainable alternative sources has received great attention. This research was conducted to evaluate dietary micro-algae, Schizochytrium sp. (SC) as fish oil (FO) replacer in rainbow trout, Oncorhynchus mykiss. In the first trial, apparent digestibility coefficient (ADC) was 92.4% for dry matter, 91.4% for crude protein, and 94.2% for crude lipid in rainbow trout. In the second trial, six diets were formulated to replace FO at 0% (CON), 20% (T20), 40% (T40), 60% (T60), 80% (T80), and 100% (T100) with SC in the rainbow trout (3.0 ± 0.4 g, mean ± SD) diet. After eight weeks’ feeding trial, weight gain (WG), specific growth rate (SGR), and feed efficiency (FE) of fish fed the T20 diet were significantly higher than those of fish fed other diets (p < 0.05). However, there were no significant differences in these parameters among those of fish fed CON, T40, T60, and T80 diets. Lysozyme activity of fish fed the T20 diet was significantly higher than those of fish fed other experimental diets (p < 0.05). After 10 days of disease challenge testing with pathogenic bacteria (Lactococcus garvieae 1 × 108 CFU/mL), the cumulative survival rate of fish fed the T20 diet was significantly higher than those of fish fed the CON, T80, and T100 diets. Therefore, these results suggest dietary microalgae SC is well-digested and could replace up to 80% of fish oil in the diet of rainbow trout without negative effects on growth and immune responses.
Collapse
|
16
|
Qin Y, He L, Wang Y, Li D, Chen W, Ye J. Growth performance, fatty acid composition, and lipid metabolism are altered in groupers ( Epinephelus coioides) by dietary fish oil replacement with palm oil. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:102-113. [PMID: 34977380 PMCID: PMC8669253 DOI: 10.1016/j.aninu.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
In this study, we conducted a 56-d feeding trial to investigate the effects of replacing the fish oil (FO) with palm oil (PO) on the performance, tissue fatty acid (FA) composition, and mRNA levels of genes related to hepatic lipid metabolism in grouper (Epinephelus coioides). Five isolipidic (13% crude lipid) and isonitrogenous (48% CP) diets were formulated by incrementally adding PO to the control diet (25% fish meal and 9% added FO) to replace FO in the control diets. Triplicate groups of 30 groupers (initial weight: 12.6 ± 0.1 g) were fed one of the diets twice daily, to apparent satiety. The replacement of FO with 50% PO revealed maximum growth without affecting the performance and whole-body proximate compositions, and replacing FO with 100% PO revealed a comparable (P > 0.05) growth with that of the control diet, suggesting PO as a suitable alternative to FO. The analysis of FA profiles in the dorsal muscle and liver though reflected the FA profile of the diet, PO substitutions above 50% could compromise (P < 0.05) the FA profile in the liver and flesh of the fish species in comparison with the control diet. Furthermore, the mRNA levels of FAS, G6PD, LPL, PPARΑ, and Δ6FAD genes in the liver had positive linear and/or quadratic responses, but the SCD, HSL, ATGL, FABP, SREBP-1C and ELOVL5 had the opposite trend, with increasing dietary PO inclusion levels, whereas the mRNA level of ACC was not affected by dietary treatments. The optimal level of PO substitution for FO was estimated to be 47.1% of the feed, based on the regression analysis of percent weight gains against dietary PO inclusion levels; however, it might affect the FA profile in the liver and flesh of the fish species, and further study is required to investigate whether the changes in tissue FA composition will affect the welfare and market value over a production cycle of grouper.
Collapse
Affiliation(s)
| | | | - Yanfei Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Dong Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Weijun Chen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
17
|
High DHA Algae Meal as Cost-effective Alternative to High DHA Fish Oil in Finisher Feed for Sobaity Sea Bream (Sparidentex hasta). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Blay C, Haffray P, D'Ambrosio J, Prado E, Dechamp N, Nazabal V, Bugeon J, Enez F, Causeur D, Eklouh-Molinier C, Petit V, Phocas F, Corraze G, Dupont-Nivet M. Genetic architecture and genomic selection of fatty acid composition predicted by Raman spectroscopy in rainbow trout. BMC Genomics 2021; 22:788. [PMID: 34732127 PMCID: PMC8564959 DOI: 10.1186/s12864-021-08062-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Background In response to major challenges regarding the supply and sustainability of marine ingredients in aquafeeds, the aquaculture industry has made a large-scale shift toward plant-based substitutions for fish oil and fish meal. But, this also led to lower levels of healthful n−3 long-chain polyunsaturated fatty acids (PUFAs)—especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids—in flesh. One potential solution is to select fish with better abilities to retain or synthesise PUFAs, to increase the efficiency of aquaculture and promote the production of healthier fish products. To this end, we aimed i) to estimate the genetic variability in fatty acid (FA) composition in visceral fat quantified by Raman spectroscopy, with respect to both individual FAs and groups under a feeding regime with limited n-3 PUFAs; ii) to study the genetic and phenotypic correlations between FAs and processing yields- and fat-related traits; iii) to detect QTLs associated with FA composition and identify candidate genes; and iv) to assess the efficiency of genomic selection compared to pedigree-based BLUP selection. Results Proportions of the various FAs in fish were indirectly estimated using Raman scattering spectroscopy. Fish were genotyped using the 57 K SNP Axiom™ Trout Genotyping Array. Following quality control, the final analysis contained 29,652 SNPs from 1382 fish. Heritability estimates for traits ranged from 0.03 ± 0.03 (n-3 PUFAs) to 0.24 ± 0.05 (n-6 PUFAs), confirming the potential for genomic selection. n-3 PUFAs are positively correlated to a decrease in fat deposition in the fillet and in the viscera but negatively correlated to body weight. This highlights the potential interest to combine selection on FA and against fat deposition to improve nutritional merit of aquaculture products. Several QTLs were identified for FA composition, containing multiple candidate genes with indirect links to FA metabolism. In particular, one region on Omy1 was associated with n-6 PUFAs, monounsaturated FAs, linoleic acid, and EPA, while a region on Omy7 had effects on n-6 PUFAs, EPA, and linoleic acid. When we compared the effectiveness of breeding programmes based on genomic selection (using a reference population of 1000 individuals related to selection candidates) or on pedigree-based selection, we found that the former yielded increases in selection accuracy of 12 to 120% depending on the FA trait. Conclusion This study reveals the polygenic genetic architecture for FA composition in rainbow trout and confirms that genomic selection has potential to improve EPA and DHA proportions in aquaculture species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08062-7.
Collapse
Affiliation(s)
- Carole Blay
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Jonathan D'Ambrosio
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,SYSAAF, Station LPGP-INRAE, Rennes, France
| | - Enora Prado
- University of Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, Rennes, France
| | - Nicolas Dechamp
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Virginie Nazabal
- University of Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, Rennes, France
| | | | | | - David Causeur
- Laboratoire de Mathématiques Appliquées, IRMAR, Agrocampus Ouest, Rennes, France
| | | | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Geneviève Corraze
- INRAE, University of Pau & Pays Adour, E2S UPPA, UMR1419 NuMéA, St Pée sur, Nivelle, France
| | | |
Collapse
|
19
|
Moxness Reksten A, Ho QT, Nøstbakken OJ, Wik Markhus M, Kjellevold M, Bøkevoll A, Hannisdal R, Frøyland L, Madsen L, Dahl L. Temporal variations in the nutrient content of Norwegian farmed Atlantic salmon (Salmo salar), 2005-2020. Food Chem 2021; 373:131445. [PMID: 34731805 DOI: 10.1016/j.foodchem.2021.131445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
The changes in the feed of farmed Atlantic salmon (Salmo salar) towards a more plant-based diet affect the nutritional value of the fillets. By compiling the contents of a range of nutrients in 1108 samples of Norwegian farmed Atlantic salmon collected between 2005 and 2020, we found that the median contents of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) have decreased by > 60%. However, farmed Atlantic salmon remains a considerable source of EPA and DHA, with one and two portions being sufficient to meet the weekly adequate intake of EPA and DHA for adults (175 g) and two-year-olds (80 g), respectively. Farmed Atlantic salmon also remains a considerable source of protein, selenium, vitamin B12, and vitamin D3. Together, we demonstrate that farmed Atlantic salmon can contribute substantially to the nutrient intake of the consumers. These data are important for the Norwegian food composition table and future risk-benefit assessments on fatty fish consumption.
Collapse
Affiliation(s)
- Amalie Moxness Reksten
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway; The Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Quang Tri Ho
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | | | - Maria Wik Markhus
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Marian Kjellevold
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Annbjørg Bøkevoll
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Rita Hannisdal
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Livar Frøyland
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway; The Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Lise Madsen
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Lisbeth Dahl
- Institute of Marine Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
20
|
Selvam C, Powell MD, Liland NS, Rosenlund G, Sissener NH. Impact of dietary level and ratio of n-6 and n-3 fatty acids on disease progression and mRNA expression of immune and inflammatory markers in Atlantic salmon ( Salmo salar) challenged with Paramoeba perurans. PeerJ 2021; 9:e12028. [PMID: 34540364 PMCID: PMC8415286 DOI: 10.7717/peerj.12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L−1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1β, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.
Collapse
Affiliation(s)
- Chandrasekar Selvam
- Institute of Marine Research, Bergen, Norway.,Central Marine Fisheries Research Institute, Kochi, India
| | - Mark D Powell
- Marineholmen RAS Lab AS & University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
21
|
Eilertsen HC, Elvevoll E, Giæver IH, Svenning JB, Dalheim L, Svalheim RA, Vang B, Siikavuopio S, Dragøy R, Ingebrigtsen RA, Hansen E, Hustad A, Eilertsen KE. Inclusion of photoautotrophic cultivated diatom biomass in salmon feed can deter lice. PLoS One 2021; 16:e0255370. [PMID: 34324572 PMCID: PMC8321285 DOI: 10.1371/journal.pone.0255370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/14/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to evaluate the potential of diatom (microalgae) biomass as a lice-reducing ingredient in salmon feed. The original hypothesis was based on the fact that polyunsaturated aldehydes (PUAs), e.g. 2-trans, 4-trans decadenial (A3) produced by diatoms can function as grazing deterrents and harm copepod development. Salmon lice (Lepeophtheirus salmonis) is a copepod, and we intended to test if inclusion of diatom biomass in the feed could reduce the infestation of lice on salmon. We performed experiments where salmon kept in tanks were offered four different diets, i.e. basic feed with diatoms, fish oil, Calanus sp. oil or rapeseed oil added. After a feeding period of 67 days a statistically representative group of fishes, tagged with diet group origin, were pooled in a 4000L tank and exposed to salmon lice copepodites whereafter lice infestation was enumerated. Salmon from all four diet groups had good growth with SGR values from 1.29 to 1.44% day-1 (increase from ca. 130 g to 350 g). At the termination of the experiment the number of lice on salmon offered diatom feed were statistically significantly lower than on salmon fed the other diets. Mean lice infestation values increased from diatom feed through Calanus and fish oil to standard feed with terrestrial plant ingredients. Analysis of the chemical composition of the different diets (fatty acids, amino acids) failed to explain the differences in lice infestation. The only notable result was that diatom and Calanus feed contained more FFA (free fatty acids) than feed with fish oil and the control feed. None of the potential deleterious targeted polyunsaturated aldehydes could be detected in skin samples of the salmon. What was exclusive for salmon that experienced reduced lice was diatom inclusion in the feed. This therefore still indicates the presence of some lice deterring ingredient, either in the feed, or an ingredient can have triggered production of an deterrent in the fish. An obvious follow up of this will be to perform experiments with different degrees of diatom inclusion in the feeds, i.e. dose response experiments combined with targeted PUA analyses, as well as to perform large scale experiments under natural conditions in aquaculture pens.
Collapse
Affiliation(s)
- Hans Chr. Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Edel Elvevoll
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingeborg Hulda Giæver
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jon Brage Svenning
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Lars Dalheim
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Birthe Vang
- NOFIMA Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Sten Siikavuopio
- NOFIMA Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Ragnhild Dragøy
- NOFIMA Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | | | - Espen Hansen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anette Hustad
- NOFIMA Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Karl-Erik Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
22
|
Østbye TK, Woldemariam NT, Lundberg CE, Berge GM, Ruyter B, Andreassen R. Modulation of hepatic miRNA expression in Atlantic salmon (Salmo salar) by family background and dietary fatty acid composition. JOURNAL OF FISH BIOLOGY 2021; 98:1172-1185. [PMID: 33332611 PMCID: PMC8048513 DOI: 10.1111/jfb.14649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
This study finds significant differences in hepatic fatty acid composition between four groups of Atlantic salmon (Salmo salar) consisting of offspring from families selected for high and low capacities to express the delta 6 desaturase isomer b and fed diets with 10% or 75% fish oil. The results demonstrated that hepatic lipid metabolism was affected by experimental conditions (diet/family). The fatty acid composition in the four groups mirrored the differences in dietary composition, but it was also associated with the family groups. Small RNA sequencing followed by RT-qPCR identified 12 differentially expressed microRNAs (DE miRNAs), with expression associated with family groups (miR-146 family members, miR-200b, miR-214, miR-221, miR-125, miR-135, miR-137, miR_nov_1), diets (miR-203, miR-462) or both conditions. All the conserved DE miRNAs have been reported as associated with lipid metabolism in other vertebrates. In silico predictions revealed 37 lipid metabolism pathway genes, including desaturases, transcription factors and key enzymes in the synthesis pathways as putative targets (e.g., srebp-1 and 2, Δ6fad_b and c, hmdh, elovl4 and 5b, cdc42). RT-qPCR analysis of selected target genes showed expression changes that were associated with diet and with family groups (d5fad, d6fad_a, srebp-1). There was a reciprocal difference in the abundance of ssa-miR-203a-3p and srebp-1 in one group comparison, whereas other predicted targets did not reveal any evidence of being negatively regulated by degradation. More experimental studies are needed to validate and fully understand the predicted interactions and how the DE miRNAs may participate in the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Tone‐Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research)ÅsNorway
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health SciencesOsloMet – Oslo Metropolitan UniversityOsloNorway
| | - Camilla E. Lundberg
- Department of Life Sciences and Health, Faculty of Health SciencesOsloMet – Oslo Metropolitan UniversityOsloNorway
| | - Gerd M. Berge
- Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research)ÅsNorway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research)ÅsNorway
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health SciencesOsloMet – Oslo Metropolitan UniversityOsloNorway
| |
Collapse
|
23
|
Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae ( Schizochytrium sp.) Fed to Rainbow Trout ( Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution. Animals (Basel) 2021; 11:ani11020456. [PMID: 33572470 PMCID: PMC7916424 DOI: 10.3390/ani11020456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Aquaculture is the world’s fastest growing sector of the global food system. Aquaculture feed producers are seeking substitutes for fishmeal and fish oil to develop more sustainable feeds. Marine microalgae show promise as potential ingredients in aquafeeds; however, the literature lacks data on the digestibility and availability of macronutrients and individual fatty acids for omega 3-rich microalgal biomass, Schizochytrium spp., in rainbow trout. This is an important gap to fill because, among marine microalgae, this species is the most frequently used in fish feed, particularly as a dietary supplement or mixed with other ingredients; digestibility data would guide more judicious inclusion of this microalga biomass. High digestibility of macronutrients, energy and fatty acids showed that Schizochytrium spp. is a high-quality substitute for fish oil and potential candidate as a supplement of LC-PUFA in trout feed with vegetable oils. Digestibility is influenced by temperature and several trials have shown increased macronutrient digestibility with increasing temperature. There is an urgent need to determine the effect of temperature on lipid and fatty acid digestibility. We found that the digestibility of nutrients in rainbow trout maintained at 8 °C or 15 °C was not significantly different. However, the digestibility of DHA omega 3 was significantly higher at 8 °C than at 15 °C. Abstract Aquaculture feed formulation has recently turned its focus to reduce the reliance on marine-derived resources and utilise alternative feedstuffs, as an approach to improve the environmental sustainability of the aquaculture sector. The fish oil market is highly volatile, and availability of this commodity is continuously decreasing for use in aquaculture. Currently, a growing number of commercial efforts producing microalgae are providing omega 3-rich oil for sustainable aquaculture feed. This study was focused to determine the nutrient digestibility of a marine microalga, Schizochytrium spp., which is rich in docosahexaenoic acid (DHA) and long-chain polyunsaturated fatty acids (LC-PUFA), as a novel dietary lipid source that could be utilized effectively by rainbow trout (Oncorhynchus mykiss). A whole-cell Schizochytrium spp. biomass was used in the digestibility experiment at two different temperatures, 8 °C and 15 °C. No significant differences were detected between the two temperatures for the apparent digestibility coefficients (ADCs) of the dry matter (94.3 ± 4.9%), total lipids (85.8 ± 0.0%), crude proteins (89.5 ± 1.8%), energy (83.1 ± 1.7%) and fatty acids (85.8 ± 7.5%). The ADCs of the nutrients, energy, DHA and other fatty acids showed that Schizochytrium spp. is a high-quality candidate for fish oil substitution and supplement of LC-PUFA in fish feed with vegetable oils.
Collapse
|
24
|
Effects of oleogels prepared with fish oil and beeswax on the gelation behaviors of protein recovered from Alaska Pollock. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Increasing dietary n-6 fatty acids while keeping n-3 fatty acids stable decreases EPA in polar lipids of farmed Atlantic salmon ( Salmo salar). Br J Nutr 2021; 125:10-25. [PMID: 32660682 DOI: 10.1017/s0007114520002494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is an increased use of vegetable oils containing n-6 fatty acids (FA) in aquafeeds, and several trials indicate that there might be an increased requirement of EPA and DHA for Atlantic salmon when they are fed higher dietary n-6 FA. With a limited supply of EPA and DHA for production of aquafeeds, it is important to know how to efficiently use these FA to maintain growth and health of the fish. In the present trial, three diets containing equal amounts of n-3 FA (about 7·7 % of total FA) and different n-6:n-3 FA ratios (about 1, 2 and 6), as well as one diet with n-6:n-3 FA ratio at about 1 but twice as much n-3 FA, were fed to Atlantic salmon. Despite constant dietary n-3, increasing dietary n-6 led to significantly reduced n-3 in tissue polar lipids. Interestingly, EPA was significantly reduced while DHA was not. Maintaining a stable n-3 content in the polar lipids when increasing dietary n-6 FA was only obtained by simultaneously increasing the dietary n-3 content and with this maintaining the same n-6:n-3 FA ratio. Polar lipid n-6 FA in tissues thus primarily reflected the dietary n-6:n-3 FA ratio and not the absolute dietary n-6 FA content. Neutral lipids, on the other hand, reflected the dietary absolute levels of both n-3 and n-6 FA. This study indicates that a better use of dietary EPA is achieved by keeping the dietary n-6:n-3 FA ratio low.
Collapse
|
26
|
Hasselberg AE, Wessels L, Aakre I, Reich F, Atter A, Steiner-Asiedu M, Amponsah S, Pucher J, Kjellevold M. Composition of nutrients, heavy metals, polycyclic aromatic hydrocarbons and microbiological quality in processed small indigenous fish species from Ghana: Implications for food security. PLoS One 2020; 15:e0242086. [PMID: 33180860 PMCID: PMC7660496 DOI: 10.1371/journal.pone.0242086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The triple burden of malnutrition is an incessant issue in low- and middle-income countries, and fish has the potential to mitigate this burden. In Ghana fish is a central part of the diet, but data on nutrients and contaminants in processed indigenous fish species, that are often eaten whole, are missing. Samples of smoked, dried or salted Engraulis encrasicolus (European anchovy), Brachydeuterus auritus (bigeye grunt), Sardinella aurita (round sardinella), Selene dorsalis (African moonfish), Sierrathrissa leonensis (West African (WA) pygmy herring) and Tilapia spp. (tilapia) were collected from five different regions in Ghana. Samples were analyzed for nutrients (crude protein, fat, fatty acids, several vitamins, minerals, and trace elements), microbiological quality (microbial loads of total colony counts, E. coli, coliforms, and Salmonella), and contaminants (PAH4 and heavy metals). Except for tilapia, the processed small fish species had the potential to significantly contribute to the nutrient intakes of vitamins, minerals, and essential fatty acids. High levels of iron, mercury and lead were detected in certain fish samples, which calls for further research and identification of anthropogenic sources along the value chains. The total cell counts in all samples were acceptable; Salmonella was not detected in any sample and E. coli only in one sample. However, high numbers of coliform bacteria were found. PAH4 in smoked samples reached high concentrations up to 1,300 μg/kg, but in contrast salted tilapia samples had a range of PAH4 concentration of 1 μg/kg to 24 μg/kg. This endpoint oriented study provides data for the nutritional value of small processed fish as food in Ghana and also provides information about potential food safety hazards. Future research is needed to determine potential sources of contamination along the value chains in different regions, identify critical points, and develop applicable mitigation strategies to improve the quality and safety of processed small fish in Ghana.
Collapse
Affiliation(s)
| | - Laura Wessels
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Inger Aakre
- Institute of Marine Research, Bergen, Norway
| | - Felix Reich
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amy Atter
- Council for Scientific and Industrial Research, Food Research Institute, Accra, Ghana
| | - Matilda Steiner-Asiedu
- Department of Nutrition and Food Science, School of Biological Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Amponsah
- Council for Scientific and Industrial Research, Food Research Institute, Accra, Ghana
- Department of Fisheries and Water Resources, University of Energy and Natural Resources, Sunyani, Ghana
| | - Johannes Pucher
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | |
Collapse
|
27
|
Partial replacement of fish oil with vegetal oils in commercial diets: The effect on the quality of gilthead seabream (Sparus aurata). Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Xue X, Hall JR, Caballero-Solares A, Eslamloo K, Taylor RG, Parrish CC, Rise ML. Liver Transcriptome Profiling Reveals That Dietary DHA and EPA Levels Influence Suites of Genes Involved in Metabolism, Redox Homeostasis, and Immune Function in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:263-284. [PMID: 32040779 DOI: 10.1007/s10126-020-09950-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
The optimal dietary requirement of omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for Atlantic salmon that promotes growth and health warrants careful investigation. We used 44K microarrays to study the influence of increasing levels of dietary DHA + EPA (0, 1.0, and 1.4% of the diet, as formulated) in the presence of high linoleic acid (LA) on Atlantic salmon growth and liver transcriptome. After a 14-week feeding trial, Atlantic salmon fed diet ω3LC0 (i.e. 0% of DHA + EPA) showed significantly lower final weight and weight gain, and higher feed conversion ratio compared with ω3LC1.0 and ω3LC1.4 diet groups. The microarray experiment identified 55 and 77 differentially expressed probes (Rank Products analyses; PFP < 10%) in salmon fed diets ω3LC1.4 and ω3LC1.0 compared with those fed diet ω3LC0, respectively. The comparison between ω3LC1.4 and ω3LC1.0 revealed 134 differentially expressed probes. The microarray results were confirmed by qPCR analyses of 22 microarray-identified transcripts. Several key genes involved in fatty acid metabolism including LC-PUFA synthesis were upregulated in fish fed ω3LC0 compared with both other groups. Hierarchical clustering and linear regression analyses of liver qPCR and fatty acid composition data demonstrated significant correlations. In the current study, 1.0% ω3 LC-PUFA seemed to be the minimum requirement for Atlantic salmon based on growth performance; however, multivariate statistical analyses (PERMANOVA and SIMPER) showed that fish fed ω3LC1.0 and ω3LC1.4 diets had similar hepatic fatty acid profiles but marked differences in the transcript expression of biomarker genes involved in redox homeostasis (mgst1), immune responses (mxb, igmb, irf3, lect2a, srk2, and lyz2), and LC-PUFA synthesis (srebp1, fadsd5, and elovl2). This research has provided new insights into dietary requirement of DHA and EPA and their impact on physiologically important pathways in addition to lipid metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
29
|
Yan XB, Dong XH, Tan BP, Zhang S, Chi SY, Liu HY, Yang YZ. Influence of different oil sources on growth, disease resistance, immune response and immune-related gene expression on the hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu), to Vibrio parahaemolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 99:310-321. [PMID: 32070783 DOI: 10.1016/j.fsi.2020.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effects of feeding alternative dietary oils to hybrid grouper fish (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) on their growth, histological morphology of hepatocytes, disease resistance, immune response, and expression of immune-related genes. Seven experimental fish meal-based isonitrogenous and isolipidic diets were formulated containing 5% fish oil (FO; acting as controls) and various vegetable oils (VOs): corn oil (CO), sunflower oil (SO), tea oil (TO), olive oil (OO), rice oil (RO), and mixed oil (MO); comprising equal amounts of these oils). Each diet was fed to triplicate groups of 40 fish (initial mean body weight ± standard error = 15.09 ± 0.01 g) for eight weeks. The results show that 1) alternative dietary oils had no significant effects on weight gain rate, specific growth rate, protein efficiency ratio, and survival rate compared with controls (P > 0.05). The weight gain rate (WGR) and specific growth rate (SGR) of the SO group were lower than in the CO and OO groups. 2) These were no differences in morphological indexes among groups; except for the CO group, in which the condition factor and hepatosomatic index were lower than those in other groups. 3) Compared with controls, the whole-body moisture and crude protein contents in the VO groups were higher, while their crude lipid contents were lower. 4) The fatty acid contents in liver and muscle were affected by lipid type, and the contents of eicosapentaenoic acid and docosahexaenoic acid in liver and muscle in the VO groups were markedly lower than in controls. 5) Compared with control group, VO groups damaged the histological morphology of hepatocytes. 6) After a challenge with the Vibrio parahaemolyticus bacterium, there were no differences in mortality among groups. However, VO enhanced the activity of non-specific immune enzymes while down-regulating the expression of Nrf2 and inducing the expression of pro-inflammatory factors (IL1β, TNFα, TLR22, and MyD88) in the kidney. It can be concluded that dietary VO substitution does not affect the growth of fish but damaged the histological morphology of hepatocytes and induced the expression of pro-inflammatory factors in tissues. Finally, OO and CO were recommended as the appropriate lipid replacement for FO.
Collapse
Affiliation(s)
- Xiao-Bo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiao-Hui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Bei-Ping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Shu-Yan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Hong-Yu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Yuan-Zhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| |
Collapse
|
30
|
Vera LM, Lock EJ, Hamre K, Migaud H, Leeming D, Tocher DR, Taylor JF. Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110327. [PMID: 31461683 DOI: 10.1016/j.cbpb.2019.110327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Previously we showed that, for optimum growth, micronutrient levels should be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when they are fed diets formulated with low levels of marine ingredients. In the present study, the impact of graded levels (100, 200, 400%) of a micronutrient package (NP) on vertebral deformities and bone gene expression were determined in diploid and triploid salmon parr fed low marine diets. The prevalence of radiologically detectable spinal deformities decreased with increasing micronutrient supplementation in both ploidy. On average, triploids had a higher incidence of spinal deformity than diploids within a given diet. Micronutrient supplementation particularly reduced prevalence of fusion deformities in diploids and compression and reduced spacing deformities in triploids. Prevalence of affected vertebrae within each spinal region (cranial, caudal, tail and tail fin) varied significantly between diet and ploidy, and there was interaction. Prevalence of deformities was greatest in the caudal region of triploids and the impact of graded micronutrient supplementation in reducing deformities also greatest in triploids. Diet affected vertebral morphology with length:height (L:H) ratio generally increasing with level of micronutrient supplementation in both ploidy with no difference between ploidy. Increased dietary micronutrients level in diploid salmon increased the vertebral expression of several bone biomarker genes including bone morphogenetic protein 2 (bmp2), osteocalcin (ostcn), alkaline phosphatase (alp), matrix metallopeptidase 13 (mmp13), osteopontin (opn) and insulin-like growth factor 1 receptor (igf1r). In contrast, although some genes showed similar trends in triploids, vertebral gene expression was not significantly affected by dietary micronutrients level. The study confirmed earlier indications that dietary micronutrient levels should be increased in salmon fed diets with low marine ingredients and that there are differences in nutritional requirements between ploidies.
Collapse
Affiliation(s)
- Luisa M Vera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Erik-Jan Lock
- Institute of Marine Research (formerly National Institute of Nutrition and Seafood Research), Nordnes, Bergen 5817, Norway
| | - Kristen Hamre
- Institute of Marine Research (formerly National Institute of Nutrition and Seafood Research), Nordnes, Bergen 5817, Norway
| | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - John F Taylor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
31
|
Andresen AMS, Lutfi E, Ruyter B, Berge G, Gjøen T. Interaction between dietary fatty acids and genotype on immune response in Atlantic salmon (Salmo salar) after vaccination: A transcriptome study. PLoS One 2019; 14:e0219625. [PMID: 31365530 PMCID: PMC6668776 DOI: 10.1371/journal.pone.0219625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023] Open
Abstract
A pivotal matter to aquaculture is the sourcing of sustainable resources as ingredients to aquafeeds. Levels of plant delivered oils as source of fatty acids (FA) in aquafeeds have reached around 70% resulting in reduced levels of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in salmon fillet composition. EPA and DHA can modulate inflammation and immune response, so it is crucial to understand how fish immune response is affected by low LC n-3 PUFA diet and if this diet can have a detrimental effect on vaccine response. Atlantic salmon (Salmo salar) can produce EPA/DHA from α-linolenic acid (ALA) and this endogenous capacity can be explored to develop families with higher tolerance to low LC n-3 PUFA diets. Here we analyze innate and adaptive immune response in Atlantic salmon to a commercial vaccine after being fed low levels of EPA and DHA, and we also compare three strains of salmon selected by their endogenous capacity of synthesizing LC- n-3 PUFA. A total of 2,890 differentially expressed genes (DEGs) were identified (p-value adjusted < 0.1) when comparing vaccinated fish against control non-vaccinated. Gene ontology (GO) and KEGG analysis with 442 up/downregulated genes revealed that most DEGs were both related to immune response as well as part of important immune related pathways, as "Toll-like receptor" and "Cytokine-Cytokine interaction". Adaptive response was also addressed by measuring antigen specific IgM, and titers were significantly higher than in the pre-immune fish at 62 days post-immunization. However, diet and strain had no/little effect on vaccine-specific IgM or innate immune responses. Atlantic salmon therefore display robustness in its response to vaccination even when feed low levels of LC n-3 PUFA.
Collapse
Affiliation(s)
| | - Esmail Lutfi
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Gerd Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
The long-chain monounsaturated cetoleic acid improves the efficiency of the n-3 fatty acid metabolic pathway in Atlantic salmon and human HepG2 cells. Br J Nutr 2019; 122:755-768. [PMID: 31288871 DOI: 10.1017/s0007114519001478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to determine if the long-chain MUFA cetoleic acid (22 : 1n-11) can improve the capacity to synthesise the health-promoting n-3 fatty acids EPA and DHA in human and fish models. Human hepatocytes (HepG2) and salmon primary hepatocytes were first enriched with cetoleic acid, and thereafter their capacities to convert radio-labelled 18 : 3n-3 (α-linolenic acid, ALA) to EPA and DHA were measured. Increased endogenous levels of cetoleic acid led to increased production of radio-labelled EPA + DHA in HepG2 by 40 % and EPA in salmon hepatocytes by 12 %. In order to verify if dietary intake of a fish oil rich in cetoleic acid would have the same beneficial effects on the n-3 fatty acid metabolic pathway in vivo as found in vitro, Atlantic salmon were fed four diets supplemented with either sardine oil low in cetoleic acid or herring oil high in cetoleic acid at two inclusion levels (Low or High). The diets were balanced for EPA + DHA content within the Low and within the High groups. The salmon were fed these diets from 110 to 242 g. The level of EPA + DHA in liver and whole-body retention of docosapentaenoic acid and EPA + DHA relative to what was eaten, increased with increased dietary cetoleic acid levels. Thus, it is concluded that cetoleic acid stimulated the synthesis of EPA and DHA from ALA in human HepG2 and of EPA in salmon hepatocytes in vitro and increased whole-body retention of EPA + DHA in salmon by 15 % points after dietary intake of cetoleic acid.
Collapse
|
33
|
Beheshti Foroutani M, Parrish CC, Wells J, Taylor RG, Rise ML, Shahidi F. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition. PLoS One 2018; 13:e0198538. [PMID: 30240394 PMCID: PMC6150467 DOI: 10.1371/journal.pone.0198538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Due to limited fish meal and fish oil resources and their high costs for the aquaculture industry, it is necessary to find alternative sustainable sources of protein and lipids. Therefore, seven different diets were formulated with different levels of animal by-products, vegetable proteins, fish oil and rapeseed oil, to feed farmed Atlantic salmon, and their effects on growth performance, muscle lipid class, and fatty acid composition were examined. Protein sources included anchovy, poultry, feather, blood, corn, soy and wheat. Growth performance indicated that the diet with the lowest fish meal and fish oil content resulted in the lowest weight gain and final weight, followed by the diet containing the highest level of animal by-products. The lipid class analysis showed no statistical difference in the muscle total lipid content using different diets. However, significant statistical differences were observed among the main lipid classes; triacylglycerols, phospholipids, and sterols. The diet containing 1.4% omega-3 long-chain fatty acids resulted in the highest content of triacylglycerols and phospholipids. Diets containing medium and low levels of fish oil and fish meal, respectively, led to as high a level of ω3 fatty acids in muscle as when fish were fed diets with high levels of fish meal and fish oil. The results of this study suggest that feeding a diet containing low levels of fish meal and moderate levels of fish oil does not significantly affect ω3 fatty acid composition in muscle. Fish meal could be reduced to 5% without affecting growth as long as there was a minimum of 5% fish oil, and animal by-products did not exceed 26% of the diet.
Collapse
Affiliation(s)
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Jeanette Wells
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
34
|
Álvarez A, Fontanillas R, García-García B, Hernández MD. Impact of Dietary Oil Source on the Shelf-Life of Gilthead Seabream (Sparus aurata). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2018. [DOI: 10.1080/10498850.2018.1484543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ana Álvarez
- IMIDA-Acuicultura, Consejería de Agua, Agricultura, Ganadería y Pesca de la Región de Murcia, Murcia, Spain
| | - Ramón Fontanillas
- Nutrition Department, Skretting Aquaculture Research Center, ARC, Stavanger, Norway
| | - Benjamín García-García
- IMIDA-Acuicultura, Consejería de Agua, Agricultura, Ganadería y Pesca de la Región de Murcia, Murcia, Spain
| | - Mª Dolores Hernández
- IMIDA-Acuicultura, Consejería de Agua, Agricultura, Ganadería y Pesca de la Región de Murcia, Murcia, Spain
| |
Collapse
|
35
|
Mu H, Shen H, Liu J, Xie F, Zhang W, Mai K. High level of dietary soybean oil depresses the growth and anti-oxidative capacity and induces inflammatory response in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2018; 77:465-473. [PMID: 29631026 DOI: 10.1016/j.fsi.2018.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Increasing demand, uncertain availability and high price of fish oil with the expansion of aquaculture made it essential to search alternative lipid sources. Vegetable oil has been proved to be the best candidate for the replacement of fish oil in aquafeeds. However, this replacement especially in high level potentially has some negative effects on fish. The present study was conducted to investigate the growth performance, anti-oxidative and inflammatory responses of large yellow croaker to replacement of dietary fish oil by soybean oil. Three isonitrogenous (46% crude protein) and isolipidic (13% crude lipids) diets were formulated to feed fish (initial body weight: 36.80 ± 0.39 g) for 12 weeks. The control diet was designed to contain 6.5% of fish oil, and named as FO. On the basis of the control diet, the fish oil was 50% and 100% replaced by soybean oil, and these two diets were named as FS and SO, respectively. Results showed that the specific growth rate significantly decreased in the SO group. Crude lipid contents in muscle and liver of fish fed SO diet were significantly higher than those in the FO group. The ratio of n-3 poly-unsaturated fatty acids (PUFAs) to identified fatty acids in liver decreased significantly, while n-6 PUFAs increased significantly with increasing dietary soybean oil inclusion. The levels of triacylglycerol, non-esterified fatty acid and tumour necrosis factor α, and the activity of aspartate aminotransferase in serum significantly increased in SO group. The total anti-oxidative capacity and expressions of the anti-oxidation-related genes (superoxide dismutase 1 and 2, catalase, glutathion peroxidase and nuclear factor erythroid 2-related factor 2) were significantly decreased by dietary soybean inclusion. Dietary soybean oil significantly decreased the gene expressions of the anti-inflammatory cytokines (arginase I and interleukin 10), and increased the pro-inflammatory cytokines (tumour necrosis factor α and interleukin 1β). The replacement of dietary fish oil by soybean oil also induced an over-expression of toll-like receptor 22 and myeloid differentiation factor 88 in liver. In conclusion, dietary soybean oil could suppress growth performance and liver anti-oxidative capacity, and induce inflammatory responses of large yellow croaker.
Collapse
Affiliation(s)
- Hua Mu
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Haohao Shen
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Fangli Xie
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China; Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou 434024, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao 266237, China
| |
Collapse
|
36
|
Horn SS, Ruyter B, Meuwissen THE, Hillestad B, Sonesson AK. Genetic effects of fatty acid composition in muscle of Atlantic salmon. Genet Sel Evol 2018; 50:23. [PMID: 29720078 PMCID: PMC5932797 DOI: 10.1186/s12711-018-0394-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The replacement of fish oil (FO) and fishmeal with plant ingredients in the diet of farmed Atlantic salmon has resulted in reduced levels of the health-promoting long-chain polyunsaturated omega-3 fatty acids (n-3 LC-PUFA) eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in their filets. Previous studies showed the potential of selective breeding to increase n-3 LC-PUFA levels in salmon tissues, but knowledge on the genetic parameters for individual muscle fatty acids (FA) and their relationships with other traits is still lacking. Thus, we estimated genetic parameters for muscle content of individual FA, and their relationships with lipid deposition traits, muscle pigmentation, sea lice and pancreas disease in slaughter-sized Atlantic salmon. Our aim was to evaluate the selection potential for increased n-3 LC-PUFA content and provide insight into FA metabolism in Atlantic salmon muscle. RESULTS Among the n-3 PUFA, proportional contents of alpha-linolenic acid (ALA; 18:3n-3) and DHA had the highest heritability (0.26) and EPA the lowest (0.09). Genetic correlations of EPA and DHA proportions with muscle fat differed considerably, 0.60 and 0.01, respectively. The genetic correlation of DHA proportion with visceral fat was positive and high (0.61), whereas that of EPA proportion with lice density was negative. FA that are in close proximity along the bioconversion pathway showed positive correlations with each other, whereas the start (ALA) and end-point (DHA) of the pathway were negatively correlated (- 0.28), indicating active bioconversion of ALA to DHA in the muscle of fish fed high FO-diet. CONCLUSIONS Since contents of individual FA in salmon muscle show additive genetic variation, changing FA composition by selective breeding is possible. Taken together, our results show that the heritabilities of individual n-3 LC-PUFA and their genetic correlations with other traits vary, which indicates that they play different roles in muscle lipid metabolism, and that proportional muscle contents of EPA and DHA are linked to body fat deposition. Thus, different selection strategies can be applied in order to increase the content of healthy omega-3 FAin the salmon muscle. We recommend selection for the proportion of EPA + DHA in the muscle because they are both essential FA and because such selection has no clear detrimental effects on other traits.
Collapse
Affiliation(s)
- Siri S Horn
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210, 1432, Ås, Norway. .,Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway.
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210, 1432, Ås, Norway
| | - Theo H E Meuwissen
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway
| | | | - Anna K Sonesson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210, 1432, Ås, Norway
| |
Collapse
|
37
|
Sustainable Alternatives for Dietary Fish Oil in Aquafeeds: Actual Situation and Future Perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-77941-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
38
|
Sissener NH. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. ACTA ACUST UNITED AC 2018. [PMID: 29514891 DOI: 10.1242/jeb.161521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
'Are we what we eat?' Yes and no. Although dietary fat affects body fat, there are many modifying mechanisms. In Atlantic salmon, there is a high level of retention of the n-3 fatty acid (FA) docosahexaenoic acid (DHA, 22:6n-3) relative to the dietary content, whereas saturated FAs never seem to increase above a specified level, which is probably an adaptation to low and fluctuating body temperature. Net production of eicosapentaenoic acid (EPA, 20:5n-3) and especially DHA occurs in salmon when dietary levels are low; however, this synthesis is not sufficient to maintain EPA and DHA at similar tissue levels to those of a traditional fish oil-fed farmed salmon. The commercial diets of farmed salmon have changed over the past 15 years towards a more plant-based diet owing to the limited availability of the marine ingredients fish meal and fish oil, resulting in decreased EPA and DHA and increased n-6 FAs. Salmon is part of the human diet, leading to the question 'Are we what the salmon eats?' Dietary intervention studies using salmon have shown positive effects on FA profiles and health biomarkers in humans; however, most of these studies used salmon that were fed high levels of marine ingredients. Only a few human intervention studies and mouse trials have explored the effects of the changing feed composition of farmed salmon. In conclusion, when evaluating feed ingredients for farmed fish, effects throughout the food chain on fish health, fillet composition and human health need to be considered.
Collapse
Affiliation(s)
- Nini H Sissener
- Fish Nutrition, Requirements and Welfare, Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
39
|
Holen E, Araujo P, Sissener NH, Rosenlund G, Waagbø R. A comparative study: Difference in omega-6/omega-3 balance and saturated fat in diets for Atlantic salmon (Salmo salar) affect immune-, fat metabolism-, oxidative and apoptotic-gene expression, and eicosanoid secretion in head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 72:57-68. [PMID: 29080687 DOI: 10.1016/j.fsi.2017.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to compare how different dietary vegetable oil n-6/n-3 ratios affect gene responses involved in inflammation, signaling pathways, fatty acid synthesis and oxidation, oxidation and apoptosis as well as eicosanoid production in salmon head kidney tissues and isolated head kidney leukocytes. Salmon smolts (200 g) were fed four different diets where the main lipid components were palm oil (n-6/n-3 ratio = 0.7), rapeseed oil (n-6/n-3 ratio = 0.9), and soybean oil (n-6/n-3 ratio = 2.4) and a high soybean oil diet with an n-6/n-3 ratio = 4. Both head kidney tissue and leukocytes isolated from head kidneys were sampled from the four diets, but from different fish. Leukocytes isolated from the head kidneys were seeded into culture wells and added lipopolysaccharide (LPS) to induce inflammatory responses. Controls without LPS were included. Head kidney leukocytes and the tissues should have the same phenotype reflecting the different diets. Interleukin 1β (IL-1β) transcription was elevated in head kidney tissue and especially in LPS treated leukocytes isolated from soybean oil (n-6/n-3 = 2.4) fed salmon, which confirmed the suitability of the in vitro model in this experiment. Leukocytes, treated with LPS, and isolated from salmon fed the soybean oil diet (n-6/n-3 = 2.4) also upregulated tumor necrosis factor alpha (tnf-α), cyclooxygenase (cox2), prostaglandin D and E synthase (ptgds, ptges), fatty acyl synthase (fas), 5 and 6 desaturases (5des, 6 des) and a fatty acid translocase protein (cd36) when compared to the other diets. The results suggest that diets with a specific n-6/n-3 ratio influence the transcription of pro-inflammatory genes and may be cross-linked to transcription of selected fatty acid metabolism genes. Salmon fed the palm oil diet (n-6/n-3 = 0.7) showed a lower expression of inflammatory genes. Instead, peroxisome proliferator activated receptor β1 (pparβ1), acyl coenzyme A (aco), apoptosis regulator (bax) and superoxide dismutase (sod) were upregulated in leukocytes in vitro, while head kidney tissue transcription of a dendritic marker (cd83) was lower than measured in tissues from fish fed the other diets. The concentration of LTB4 (10-20 ng/mL) were relatively constant in leukocyte supernatants, all diets. Head kidney leukocytes from soybean oil (n-6/n-3 = 2.4) fed fish produced LPS induced PGE2 (mean 0.5 ng/mL) while leukocytes isolated from palm oil diet (n-6/n-3 = 0.7) secreted very high amounts of LTB5 (50-70 ng/mL). In addition, equal amounts of LPS induced PGE2 and PGE3 (mean 0, 5 ng/mL) were produced, indicating that the n-6/n-3 ratio of this saturated fatty acid may have a specific impact on eicosanoid production in the head kidney of salmon.
Collapse
|
40
|
Callet T, Médale F, Larroquet L, Surget A, Aguirre P, Kerneis T, Labbé L, Quillet E, Geurden I, Skiba-Cassy S, Dupont-Nivet M. Successful selection of rainbow trout (Oncorhynchus mykiss) on their ability to grow with a diet completely devoid of fishmeal and fish oil, and correlated changes in nutritional traits. PLoS One 2017; 12:e0186705. [PMID: 29059226 PMCID: PMC5653330 DOI: 10.1371/journal.pone.0186705] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 11/19/2022] Open
Abstract
In the context of limited marine resources, the exponential growth of aquaculture requires the substitution of fish oil and fishmeal, the traditional components of fish feeds by terrestrial plant ingredients. High levels of such substitution are known to negatively impact fish performance such as growth and survival in rainbow trout (Oncorhynchus mykiss) as in other salmonids. In this respect, genetic selection is a key enabler for improving those performances and hence for the further sustainable development of aquaculture. We selected a rainbow trout line over three generations for its ability to survive and grow on a 100% plant-based diet devoid of both fish oil and fishmeal (V diet) from the very first meal. In the present study, we compared the control line and the selected line after 3 generations of selection, both fed either the V diet or a marine resources-based diet (M diet). The objective of the study was to assess the efficiency of selection and the consequences on various correlated nutritional traits: feed intake, feed efficiency, digestibility, composition of whole fish, nutrient retention and fatty acid (FA) profile. We demonstrated that the genetic variability present in our rainbow trout population can be selected to improve survival and growth. The major result of the study is that after only three generations of selection, selected fish fed the V diet grew at the same rate as the control line fed the M diet, whilst the relative reduction of body weight was 36.8% before the selection. This enhanced performance on the V diet seems to be mostly linked to a higher feed intake for the selected fish.
Collapse
Affiliation(s)
- Thérèse Callet
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- UMR NuMéA, INRA, St-Pée-sur-Nivelle, France
| | | | | | | | | | | | | | - Edwige Quillet
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Mathilde Dupont-Nivet
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
41
|
Multi-class determination of undesirables in aquaculture samples by gas chromatography/tandem mass spectrometry with atmospheric pressure chemical ionization: A novel approach for polycyclic aromatic hydrocarbons. Talanta 2017; 172:109-119. [DOI: 10.1016/j.talanta.2017.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022]
|
42
|
Arnemo M, Kavaliauskis A, Andresen AMS, Bou M, Berge GM, Ruyter B, Gjøen T. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1065-1080. [PMID: 28280951 DOI: 10.1007/s10695-017-0353-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.
Collapse
Affiliation(s)
- Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | - Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | | | - Marta Bou
- Nofima, P. O. Box 210, 1431, Ås, Norway
| | | | | | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
43
|
Lundebye AK, Lock EJ, Rasinger JD, Nøstbakken OJ, Hannisdal R, Karlsbakk E, Wennevik V, Madhun AS, Madsen L, Graff IE, Ørnsrud R. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). ENVIRONMENTAL RESEARCH 2017; 155:49-59. [PMID: 28189073 DOI: 10.1016/j.envres.2017.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 05/19/2023]
Abstract
Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week).
Collapse
Affiliation(s)
- Anne-Katrine Lundebye
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway.
| | - Erik-Jan Lock
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Josef D Rasinger
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Ole Jakob Nøstbakken
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Rita Hannisdal
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Egil Karlsbakk
- Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Vidar Wennevik
- Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Abdullah S Madhun
- Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Ingvild Eide Graff
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Robin Ørnsrud
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| |
Collapse
|
44
|
Johnson RB, Kroeger EL, Reichert WL, Carter CS, Rust MB. Uptake and selective partitioning of dietary lipids to ovarian and muscle tissue of maturing female coho salmon, Oncorhynchus kisutch, during secondary oocyte growth. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:7-18. [PMID: 28377114 DOI: 10.1016/j.cbpb.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/30/2022]
Abstract
Female coho salmon, Oncorhynchus kisutch, were fed one of two experimental feeds containing lipids with markedly different stable 13C isotope signatures during the late cortical alveolus, lipid droplet, and vitellogenesis stages of secondary oocyte growth. Ovarian and muscle lipids fatty acid concentrations were significantly affected by treatment during all three stages of development. Stable 13C isotope analyses confirmed that dietary lipids were incorporated into both ovarian and muscle lipids during all three stages and revealed that ovarian lipids were more affected than muscle lipids during vitellogenesis. Arachidonic acid (ARA) was incorporated into ovarian lipids at the highest rate of all fatty acids examined with the greatest uptake observed during the cortical alveolus and lipid droplet stages of development. Docosahexaenoic acid (DHA) was incorporated into ovarian lipids at the next highest rate with the greatest uptake observed during the lipid droplet stage of development. The presence of an ovary specific, fatty acid transfer mechanism is proposed. Results from this study demonstrate the ability to greatly alter the fatty acid composition of ovarian lipids through a dietary change during secondary oocyte growth and may be of great interest to producers of farmed salmon and salmon broodstock programs.
Collapse
Affiliation(s)
- Ronald B Johnson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| | - Eric L Kroeger
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - William L Reichert
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Cameron S Carter
- Aquaculture Research Institute, University of Idaho, c/o 2725 Montlake Blvd E., Seattle, WA 98112, USA
| | - Michael B Rust
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
45
|
Berntssen MHG, Ørnsrud R, Rasinger J, Søfteland L, Lock EJ, Kolås K, Moren M, Hylland K, Silva J, Johansen J, Lie K. Dietary vitamin A supplementation ameliorates the effects of poly-aromatic hydrocarbons in Atlantic salmon (Salmo salar). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:171-183. [PMID: 27060237 DOI: 10.1016/j.aquatox.2016.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Several studies have reported on the interaction between vitamin A (VA) and aryl hydrocarbon receptor (AhR)-binding toxicants, including poly-aromatic hydrocarbons (PAHs). In aquaculture, the use of plant oils in novel aquafeeds can increase PAH levels while simultaneously lowering natural VA background levels, causing the need to supplement plant oil-based feeds with synthetic VA. To study dietary VA-PAH interactions, Atlantic salmon (initial weight 195±0.15g) were fed four identical plant-based diets that were supplemented with PAHs (100 and 10mgkg(-1) benzo[a]pyrene (BaP) and phenanthrene (Phe), respectively) or VA (retinyl acetate 8721IUkg(-1)) separately or combined for 2.5 months in a 2×2 factorial design, with triplicate net-pens per diet. Dietary PAH significantly reduced hepatic VA storage, and VA-enriched diets restored hepatic VA. There was a significant PAH-VA interaction effect on hepatic BaP, but not Phe, accumulation, with reduced hepatic BaP concentrations in fish fed VA+PAH compared to fish fed PAH alone. Concurrently, PAH and VA significantly interacted in their effects on CYP1A phase I biotransformation as observed from increased ethoxyresorufin-O-deethylase (EROD) activity, increased CYP1A protein concentration, and elevated transcription (cyp1a1 gene expression) in fish fed PAH+VA compared to PAH alone. Dietary VA supplementation alone had no significant effect on CYP1A phase I biotransformation. Metabolomic assessment showed that dietary VA caused a restoration of metabolic intermediates involved in energy metabolism that were affected by dietary PAH. Moreover, a PAH-induced growth inhibition was partially ameliorated by dietary VA supplementation. In conclusion, dietary VA interacted with PAH toxicity on the level of CYP1A-mediated detoxification, hepatic PAH accumulation, energy allocation, and growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ketil Hylland
- University of Oslo, Department of Bioscience, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
46
|
Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. J Nutr Sci 2016; 5:e19. [PMID: 27293556 PMCID: PMC4891698 DOI: 10.1017/jns.2016.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022] Open
Abstract
The nutritional requirement for n-3 long-chain PUFA in fast-growing
Atlantic salmon (Salmo salar) during grow out in the sea is not well
documented. Diets were formulated with levels of EPA (20 : 5n-3) and DHA
(22 : 6n-3) ranging from 1·3 to 7·4 % of fatty acids (4–24 g/kg feed).
Two long-term trials were conducted through the seawater phase, the first at 6 and 12°C,
and the second at 12°C. In the first trial, growth at both temperatures was significantly
lower in fish fed 1·4 % EPA+DHA of total fatty acids compared with the 5·2 % EPA+DHA
group. In the second trial, growth was significantly lower in fish fed 1·3 and 2·7 %
compared with 4·4 and 7·4 % EPA + DHA. Fatty acid composition in the fish reflected diet
composition, but only after a 7-fold increase in body weight did the fatty acid profile of
the fish stabilise according to dietary fatty acids (shown for EPA and DHA). The retention
efficiency of DHA increased with decreasing dietary levels, and was 120–190 and 120–200 %
in trials 1 and 2, respectively. The retention efficiency of EPA was lower (60–200 %), and
values >100 % were only achieved at the lowest dietary levels in both trials.
Temperature did not affect fatty acid retention efficiency. These results suggest that
Atlantic salmon have a specific requirement for EPA + DHA >2·7 % of fatty acids for
optimal long-term growth in seawater, and that short-term growth trials with less weight
increase would not show these effects.
Collapse
Key Words
- Atlantic salmon
- BW, body weight
- EFA, essential fatty acid
- FA, fatty acid
- FCR, feed conversion ratio
- FO, fish oil
- Fish requirements
- Growth performance in seawater
- LC-PUFA, long-chain PUFA
- LNA, α-linolenic acid
- PL, phospholipid
- SGR, specific growth rate
- TGC, thermal growth coefficient
- VO, vegetable oil
- n-3 Fatty acids
Collapse
|
47
|
Fry JP, Love DC, MacDonald GK, West PC, Engstrom PM, Nachman KE, Lawrence RS. Environmental health impacts of feeding crops to farmed fish. ENVIRONMENT INTERNATIONAL 2016; 91:201-14. [PMID: 26970884 DOI: 10.1016/j.envint.2016.02.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/22/2016] [Accepted: 02/18/2016] [Indexed: 05/15/2023]
Abstract
Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates.
Collapse
Affiliation(s)
- Jillian P Fry
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of Health, Behavior, and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, Baltimore, MD, USA.
| | - David C Love
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA
| | - Graham K MacDonald
- Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada
| | - Paul C West
- Institute on the Environment (IonE), University of Minnesota, 1954 Buford Avenue, St. Paul, MN, USA
| | - Peder M Engstrom
- Institute on the Environment (IonE), University of Minnesota, 1954 Buford Avenue, St. Paul, MN, USA
| | - Keeve E Nachman
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, Baltimore, MD, USA
| | - Robert S Lawrence
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, USA
| |
Collapse
|
48
|
Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep 2016; 6:21892. [PMID: 26899924 PMCID: PMC4761991 DOI: 10.1038/srep21892] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/03/2016] [Indexed: 12/04/2022] Open
Abstract
As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids.
Collapse
Affiliation(s)
- M Sprague
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - J R Dick
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
49
|
Søfteland L, Berntssen MH, Kirwan JA, Størseth TR, Viant MR, Torstensen BE, Waagbø R, Olsvik PA. Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon ( Salmo salar L.) than omega-6 and gamma tocopherol. Toxicol Rep 2016; 3:211-224. [PMID: 28959541 PMCID: PMC5615787 DOI: 10.1016/j.toxrep.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
Extended use of plant ingredients in Atlantic salmon farming has increased the need for knowledge on the effects of new nutrients and contaminants in plant based feeds on fish health and nutrient-contaminant interactions. Primary Atlantic salmon hepatocytes were exposed to a mixture of PAHs and pesticides alone or in combination with the nutrients ARA, EPA, α-tocopherol, and γ-tocopherol according to a factorial design. Cells were screened for effects using xCELLigence cytotoxicity screening, NMR spectroscopy metabolomics, mass spectrometry lipidomics and RT-qPCR transcriptomics. The cytotoxicity results suggest that adverse effects of the contaminants can be counteracted by the nutrients. The lipidomics suggested effects on cell membrane stability and vitamin D metabolism after contaminant and fatty acid exposure. Co-exposure of the contaminants with EPA or α-tocopherol contributed to an antagonistic effect in exposed cells, with reduced effects on the VTG and FABP4 transcripts. ARA and γ-tocopherol strengthened the contaminant-induced response, ARA by contributing to an additive and synergistic induction of CYP1A, CYP3A and CPT2, and γ-tocopherol by synergistically increasing ACOX1. Individually EPA and α-tocopherol seemed more beneficial than ARA and γ-tocopherol in preventing the adverse effects induced by the contaminant mixture, though a combination of all nutrients showed the greatest ameliorating effect.
Collapse
Affiliation(s)
- Liv Søfteland
- National Institute of Nutrition and Seafood Research, Norway
| | | | | | | | - Mark R. Viant
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Rune Waagbø
- National Institute of Nutrition and Seafood Research, Norway
| | - Pål A. Olsvik
- National Institute of Nutrition and Seafood Research, Norway
| |
Collapse
|
50
|
Todorčević M, Hodson L. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function. J Clin Med 2015; 5:jcm5010003. [PMID: 26729182 PMCID: PMC4730128 DOI: 10.3390/jcm5010003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.
Collapse
Affiliation(s)
- Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK.
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK.
| |
Collapse
|