1
|
Thangsiri S, Inthachat W, Temviriyanukul P, Sahasakul Y, Trisonthi P, Pan-Utai W, Siriwan D, Suttisansanee U. Bioactive compounds and in vitro biological properties of Arthrospira platensis and Athrospira maxima: a comparative study. Sci Rep 2024; 14:23786. [PMID: 39390067 PMCID: PMC11467430 DOI: 10.1038/s41598-024-74492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Cyanobacteria, especially Arthrospira, are valuable resources of nutrients and natural pigments with many beneficial health-related properties. This study optimized the extraction conditions of Arthrospira to achieve high phenolic contents and antioxidant activities. Under optimized extraction conditions, the bioactive compounds (phenolics and pigment components), antioxidant activities, and inhibitions of the key enzymes relevant to some non-communicable diseases were compared between Arthrospira platensis and Arthrospira maxima. Optimized extraction conditions were determined as 2 h shaking time, 50 °C extraction temperature, and 1% (w/v) solid-to-liquid ratio, giving effective phenolic and phycocyanin contents using aqueous extraction, while 80% (v/v) aqueous ethanolic extraction provided high total chlorophyll content. Most antioxidant activities were higher using 80% (v/v) aqueous ethanolic extracts. Both Arthrospira species inhibited the key enzymes involved in controlling non-communicable diseases including hyperlipidemia (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (acetylcholinesterase, butyrylcholinesterase and β-secretase), and hypertension (angiotensin-converting enzyme). High inhibitory activities were detected against β-secretase (BACE-1), the enzyme responsible for β-amyloid plaque formation in the brain that acts as a significant hallmark of Alzheimer's disease. Arthrospira extract and donepezil (Alzheimer's disease drug) synergistically inhibited BACE-1, suggesting the potential of Arthrospira extracts as effective BACE-1 inhibitors. Interestingly, A. maxima exhibited higher bioactive compound contents, antioxidant activities, and key enzyme inhibitions than A. platensis, indicating high potential for future food and medicinal applications.
Collapse
Affiliation(s)
- Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Wanida Pan-Utai
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand.
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Krüger-Genge A, Harb K, Braune S, Jung CHG, Westphal S, Bär S, Mauger O, Küpper JH, Jung F. Effects of Arthrospira platensis on Human Umbilical Vein Endothelial Cells. Life (Basel) 2024; 14:1253. [PMID: 39459553 PMCID: PMC11508656 DOI: 10.3390/life14101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024] Open
Abstract
Atherosclerosis is initiated by injury or damage to the vascular endothelial cell monolayer. Therefore, the early repair of the damaged vascular endothelium by a proliferation of neighbouring endothelial cells is important to prevent atherosclerosis and thrombotic events. Arthrospira platensis (AP) has been used as a dietary supplement, mainly due to its high content of vitamins, minerals, amino acids, and pigments such as chlorophylls, carotenoids, and phycocyanin, ingredients with antioxidant, anti-inflammatory, and anti-thrombotic properties. Therefore, in this prospective, placebo-controlled, data-driven, sample-size-estimated in vitro study, we tested whether an aqueous extract of AP at different concentrations (50, 100, and 200 µg/mL) had an effect on the different cellular parameters of human umbilical vein endothelial cells. Therefore, cell impedance measurement and cell proliferation were measured to investigate the monolayer formation. In addition, cell viability, integrity, and metabolism were analysed to evaluate singular cellular functions, especially the antithrombotic state. Furthermore, cell-cell and cell-substrate interactions were observed. The highest proliferation was achieved after the addition of 100 µg/mL. This was consistently confirmed by two independent optical experiments in cell cultures 48 h and 85 h after seeding and additionally by an indirect test. At this concentration, the activation or dysfunction of HUVECs was completely prevented, as confirmed by prostacyclin and interleukin-6 levels. In conclusion, in this study, AP induced a significant increase in HUVEC proliferation without inducing an inflammatory response but altered the hemostasiological balance in favour of prostacyclin over thromboxane, thereby creating an antithrombotic state. Thus, APE could be applied in the future as an accelerator of endothelial cell proliferation after, e.g., stent placement or atherosclerosis.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Kudor Harb
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (J.-H.K.); (F.J.)
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Conrad H. G. Jung
- Carbon Biotech, Social Enterprise Stiftungs AG, 01968 Senftenberg, Germany
| | - Sophia Westphal
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Stefanie Bär
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Olivia Mauger
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (J.-H.K.); (F.J.)
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Carbon Biotech, Social Enterprise Stiftungs AG, 01968 Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (J.-H.K.); (F.J.)
| |
Collapse
|
3
|
Citi V, Torre S, Flori L, Usai L, Aktay N, Dunford NT, Lutzu GA, Nieri P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis ( Spirulina). Nutrients 2024; 16:1752. [PMID: 38892686 PMCID: PMC11174898 DOI: 10.3390/nu16111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Arthrospira platensis, commonly known as Spirulina, is a photosynthetic filamentous cyanobacterium (blue-green microalga) that has been utilized as a food source since ancient times. More recently, it has gained significant popularity as a dietary supplement due to its rich content of micro- and macro-nutrients. Of particular interest is a water soluble phycobiliprotein derived from Spirulina known as phycocyanin C (C-PC), which stands out as the most abundant protein in this cyanobacterium. C-PC is a fluorescent protein, with its chromophore represented by the tetrapyrrole molecule phycocyanobilin B (PCB-B). While C-PC is commonly employed in food for its coloring properties, it also serves as the molecular basis for numerous nutraceutical features associated with Spirulina. Indeed, the comprehensive C-PC, and to some extent, the isolated PCB-B, has been linked to various health-promoting effects. These benefits encompass conditions triggered by oxidative stress, inflammation, and other pathological conditions. The present review focuses on the bio-pharmacological properties of these molecules, positioning them as promising agents for potential new applications in the expanding nutraceutical market.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41122 Modena, MO, Italy; (L.U.); (G.A.L.)
| | - Nazlim Aktay
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | - Nurhan Turgut Dunford
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| |
Collapse
|
4
|
Papadaki S, Tricha N, Panagiotopoulou M, Krokida M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis-An Overview. Mar Drugs 2024; 22:152. [PMID: 38667769 PMCID: PMC11050870 DOI: 10.3390/md22040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.
Collapse
Affiliation(s)
- Sofia Papadaki
- DIGNITY Private Company, 30-32 Leoforos Alexandrou Papagou, Zografou, 157 71 Athens, Greece
| | - Nikoletta Tricha
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Margarita Panagiotopoulou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| |
Collapse
|
5
|
Prete V, Abate AC, Di Pietro P, De Lucia M, Vecchione C, Carrizzo A. Beneficial Effects of Spirulina Supplementation in the Management of Cardiovascular Diseases. Nutrients 2024; 16:642. [PMID: 38474769 DOI: 10.3390/nu16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In recent decades, as a result of rising mortality rates due to cardiovascular diseases (CVDs), there has been a growing urgency to find alternative approaches to conventional pharmaceutical treatment to prevent the onset of chronic diseases. Arthrospira platensis, commonly known as Spirulina, is a blue-green cyanobacterium, classified as a "superfood", used worldwide as a nutraceutical food supplement due to its remarkable nutritional value, lack of toxicity, and therapeutic effects. Several scientific studies have evaluated the cardioprotective role of Spirulina. This article presents a comprehensive review of the therapeutic benefits of Spirulina in improving cardio- and cerebrovascular health. It focuses on the latest experimental and clinical findings to evaluate its antihypertensive, antidiabetic, and antihyperlipidemic properties. The objective is to highlight its potential in preventing and managing risk factors associated with cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Valeria Prete
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | | | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
6
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Chromatographic Analyses of Spirulina (Arthrospira platensis) and Mechanism of Its Protective Effects against Experimental Obesity and Hepatic Steatosis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1823. [PMID: 37893541 PMCID: PMC10608300 DOI: 10.3390/medicina59101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Obesity is currently a major health problem due to fatty acid accumulation and excess intake of energy, which leads to an increase in oxidative stress, particularly in the liver. The main goal of this study is to evaluate the protective effects of spirulina (SP) against cafeteria diet (CD)-induced obesity, oxidative stress, and lipotoxicity in rats. Materials and Methods: The rats were divided into four groups and received daily treatments for eight weeks as follows: control group fed a standard diet (SD 360 g/d); cafeteria diet group (CD 360 g/d); spirulina group (SP 500 mg/kg); and CD + SP group (500 mg/kg, b.w., p.o.) according to body weight (b.w.) per oral (p.o.). Results: Our results show that treatment with a CD increased the weights of the body, liver, and abdominal fat. Additionally, severe hepatic alteration, disturbances in the metabolic parameters of serum, and lipotoxicity associated with oxidative stress in response to the CD-induced obesity were observed. However, SP treatment significantly reduced the liver alteration of CD feed and lipid profile disorder associated with obesity. Conclusions: Our findings suggest that spirulina has a marked potential therapeutic effect against obesity and mitigates disturbances in liver function parameters, histological alterations, and oxidative stress status.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Ala Ayari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Nouha Dakhli
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Chayma Ben Fayala
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute of Tunisia, Tunis 1002, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute of Tunisia, Tunis 1002, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| |
Collapse
|
7
|
Chaouachi M, Vincent S, Groussard C. A Review of the Health-Promoting Properties of Spirulina with a Focus on athletes' Performance and Recovery. J Diet Suppl 2023; 21:210-241. [PMID: 37143238 DOI: 10.1080/19390211.2023.2208663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Spirulina species are photosynthetic and filamentous bacteria, commonly called 'blue-green microalgae'. Spirulina has a high nutrient content. It contains 60-70% protein with all essential amino acids present, and is rich in several vitamins, minerals, and bioactive compounds. Spirulina is also rich in essential fatty acids, and antioxidants. This rich nutritional content provides to Spirulina several health benefits including antioxidant, anti-inflammatory, immunomodulation, and insulin-sensitizing properties as well as positive effects in various diseases which could be also interesting for athletes. This paper mainly aims to review the interest and effects of Spirulina supplementation in athletes at rest, and in relation to exercise/training. Spirulina's biochemical composition, health properties/effects in humans, and effects in athletes including nutritional status, body composition, physical performance and intense exercise-related disorders were discussed in this review. Literature data showed that Spirulina seems to have positive effects on body composition especially in overweight and obese subjects which could not be the case in other pathologies and athletes. Spirulina appears to be also effective in improving aerobic fitness especially in untrained and moderately trained subjects. Results reported in the literature suggest that Spirulina may improve strength and power performance despite the minor or no significant effects in highly trained subjects. Most studies have shown that Spirulina improves antioxidant status, prevents and accelerates the recovery of exercise-induced lipid peroxidation, muscle damage and inflammation in trained and untrained subjects. Taken together, the results from these studies are encouraging and may demonstrate the potential benefits of Spirulina supplementation in athletes despite methodological differences.
Collapse
|
8
|
Gentscheva G, Nikolova K, Panayotova V, Peycheva K, Makedonski L, Slavov P, Radusheva P, Petrova P, Yotkovska I. Application of Arthrospira platensis for Medicinal Purposes and the Food Industry: A Review of the Literature. Life (Basel) 2023; 13:life13030845. [PMID: 36984000 PMCID: PMC10058336 DOI: 10.3390/life13030845] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Arthrospira platensis is a filamentous cyanobacterium of the class Cyanophyceae and is the most cultivated photosynthetic prokaryote. It is used in the pharmaceutical sector, medicine and the food industry. It has a rich micro- and macro-element composition, containing proteins, lipids, carbohydrates, essential amino acids, polyunsaturated fatty acids, minerals and raw fibers. It is a commonly used ingredient in food products and nutritional supplements. The wide range of biologically active components determines its diverse pharmacological properties (antioxidant, antidiabetic, antimicrobial, antineoplastic, antitumor, anti-inflammatory, photoprotective, antiviral, etc.). This review summarizes research related to the taxonomy, distribution and chemical composition of Arthrospira platensis as well as its potential application in the food and pharmaceutical industries. Attention is drawn to its various medical applications as an antidiabetic and antiobesity agent, with hepatoprotective, antitumor, antimicrobial and antiviral effects as well as regulatory effects on neurodegenerative diseases.
Collapse
Affiliation(s)
- Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Medical University-Varna, 9000 Varna, Bulgaria
| | | | - Katya Peycheva
- Department of Chemistry, Medical University-Varna, 9000 Varna, Bulgaria
| | | | - Pavlo Slavov
- Student of Medicine, Medical University-Varna, 9000 Varna, Bulgaria
| | - Poli Radusheva
- Department of Physics and Biophysics, Medical University-Varna, 9000 Varna, Bulgaria
| | - Petia Petrova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ina Yotkovska
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
9
|
Tamtaji OR, Heidari-Soureshjani R, Asemi Z, Kouchaki E. The effects of spirulina intake on clinical and metabolic parameters in Alzheimer's disease: A randomized, double-blind, controlled trial. Phytother Res 2023. [PMID: 36861852 DOI: 10.1002/ptr.7791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
The current study aimed to determine the effects of spirulina intake on cognitive function and metabolic status among patients with Alzheimer's disease (AD). This randomized, double-blind, controlled clinical trial was done among 60 subjects with AD. Patients were randomly assigned to receive either 500 mg/day spirulina or a placebo (each n = 30) twice a day for 12 weeks. Mini-mental state examination score (MMSE) was recorded in all patients before and after intervention. Blood samples were obtained at baseline and after 12 weeks' intervention to determine metabolic markers. Compared with placebo, spirulina intake resulted in a significant improvement in MMSE score (spirulina group: +0.30 ± 0.99 vs. Placebo group: -0.38 ± 1.06, respectively, p = 0.01). In addition, spirulina intake decreased high-sensitivity C-reactive protein (hs-CRP) (spirulina group: -0.17 ± 0.29 vs. Placebo group: +0.05 ± 0.27 mg/L, p = 0.006), fasting glucose (spirulina group: -4.56 ± 7.93 vs. Placebo group: +0.80 ± 2.95 mg/dL, p = 0.002), insulin (spirulina group: -0.37 ± 0.62 vs. Placebo group: +0.12 ± 0.40 μIU/mL, p = 0.001) and insulin resistance (spirulina group: -0.08 ± 0.13 vs. Placebo group: 0.03 ± 0.08, p = 0.001), and increased insulin sensitivity (spirulina group: +0.003 ± 0.005 vs. Placebo group: -0.001 ± 0.003, p = 0.003) compared with the placebo. Overall, our study showed that spirulina intake for 12 weeks in patients with AD improved cognitive function, glucose homeostasis parameters, and hs-CRP levels.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ebrahim Kouchaki
- Department of Neurology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
11
|
Sibiya T, Ghazi T, Mohan J, Nagiah S, Chuturgoon AA. Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 12:119. [PMID: 36616248 PMCID: PMC9824462 DOI: 10.3390/plants12010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The introduction of highly active antiretroviral therapy (HAART) in the treatment of HIV/AIDS has recently gained popularity. In addition, the significant role of microRNA expression in HIV pathogenesis cannot be overlooked; hence the need to explore the mechanisms of microRNA expression in the presence of HAART and Spirulina platensis (SP) in HepG2 cells. This study investigates the biochemical mechanisms of microRNA expression in HepG2 cells in the presence of HAART, SP, and the potential synergistic effect of HAART−SP. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell viability following SP treatment. The cellular redox status was assessed using the quantification of intracellular reactive oxygen species (ROS), lipid peroxidation, and a lactate dehydrogenase (LDH) assay. The fluorometric JC-1 assay was used to determine mitochondrial polarisation. The quantitative polymerase chain reaction (qPCR) was also employed for micro-RNA and gene expressions. The results show that MiR-146a (p < 0.0001) and miR-155 (p < 0.0001) levels increased in SP-treated cells. However, only miR-146a (p < 0.0001) in HAART−SP indicated an increase, while miR-155 (p < 0.0001) in HAART−SP treatment indicated a significant decreased expression. Further inflammation analysis revealed that Cox-1 mRNA expression was reduced in SP-treated cells (p = 0.4129). However, Cox-1 expression was significantly increased in HAART−SP-treated cells (p < 0.0001). The investigation revealed that HepG2 cells exposed to HAART−SP treatment showed a significant decrease in Cox-2 (p < 0.0001) expression. mRNA expression also decreased in SP-treated cells (p < 0.0001); therefore, SP potentially controls inflammation by regulating microRNA expressions. Moreover, the positive synergistic effect is indicated by normalised intracellular ROS levels (p < 0.0001) in the HAART−SP treatment. We hereby recommend further investigation on the synergistic roles of SP and HAART in the expression of microRNA with more focus on inflammatory and oxidative pathways.
Collapse
Affiliation(s)
- Thabani Sibiya
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Terisha Ghazi
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Jivanka Mohan
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| | - Savania Nagiah
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
- Department of Human Biology, Medical Programme, Faculty of Health Sciences, Nelson Mandela University Missionvale, Bethelsdorp, Port Elizabeth 6059, South Africa
| | - Anil A. Chuturgoon
- Department of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4013, South Africa
| |
Collapse
|
12
|
Sibiya T, Ghazi T, Mohan J, Nagiah S, Chuturgoon AA. Spirulina platensis Ameliorates Oxidative Stress Associated with Antiretroviral Drugs in HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223143. [PMID: 36432871 PMCID: PMC9694780 DOI: 10.3390/plants11223143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/01/2023]
Abstract
Lately, Spirulina platensis (SP), as an antioxidant, has exhibited high potency in the treatment of oxidative stress, diabetes, immune disorder, inflammatory stress, and bacterial and viral-related diseases. This study investigated the possible protective role of Spirulina platensis against ARV-induced oxidative stress in HepG2 cells. Human liver (HepG2) cells were treated with ARVs ((Lamivudine (3TC): 1.51 µg/mL, tenofovir disoproxil fumarate (TDF): 0.3 µg/mL and Emtricitabine (FTC): 1.8 µg/mL)) for 96 h and thereafter treated with 1.5 µg/mL Spirulina platensis for 24 h. After the treatments, the gene and protein expressions of the antioxidant response pathway were determined using a quantitative polymerase chain reaction (qPCR) and Western blots. The results show that Spirulina platensis decreased the gene expressions of Akt (p < 0.0001) and eNOS (↓p < 0.0001) while, on the contrary, it increased the transcript levels of NRF-2 (↑p = 0.0021), Keap1 (↑p = 0.0002), CAT (↑p < 0.0001), and NQO-1 (↑p = 0.1432) in the HepG2 cells. Furthermore, the results show that Spirulina platensis also decreased the protein expressions of NRF-2 (↓p = 0.1226) and pNRF-2 (↓p = 0.0203). Interestingly, HAART-SP induced an NRF-2 pathway response through upregulating NRF-2 (except for FTC-SP) (↑p < 0.0001), CAT (↑p < 0.0001), and NQO-1 (except for FTC-SP) (↑p < 0.0001) mRNA expression. In addition, NRF-2 (↑p = 0.0085) and pNRF-2 (↑p < 0.0001) protein expression was upregulated in the HepG2 cells post-exposure to HAART-SP. The results, therefore, allude to the fact that Spirulina platensis has the potential to mitigate HAART-adverse drug reactions (HAART toxicity) through the activation of antioxidant response in HepG2 cells. We hereby recommend further studies on Spirulina platensis and HAART synergy.
Collapse
Affiliation(s)
- Thabani Sibiya
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Jivanka Mohan
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
- Medical Programme, Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University Missionvale, Port Elizabeth 6059, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| |
Collapse
|
13
|
Dietary intake of Spirulina platensis alters HSP70 gene expression profiles in the brain of rats in an experimental model of mixed stress. J Genet 2022. [DOI: 10.1007/s12041-022-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
El-Deeb MM, Abdel-Gawad M, Abdel-Hafez MAM, Saba FE, Ibrahim EMM. Effect of adding Spirulina platensis algae to small ruminant rations on productive, reproductive traits and some blood components. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.57546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
This experiment conducted using 20 Rahmani ewes at the last third of pregnancy in two equal groups. One group served as control, while the other group received Spirulina platensis (SP) at the rate of 0.5 gm 10 kg-1 live body weight. The objective was to find out the effect of adding Spirulina platensis algae to small ruminant rations on reproductive and productive traits and blood components of sheep. The experiments lasted for 120 days for both dams and their lambs after weaning. The findings proved that adding SP in ewes' diets had no effect on the average of live body weight change. Average milk yield was significantly (p <0.01) higher in the treatment group than the control. Lamb's birth weight and daily body gain of the treated group were significantly (p <0.01) higher than the control. Blood and serum picture profile of ewes were significantly higher when fed SP additive than the control. It could be concluded that the addition of SP to the ration of sheep positively preserved their health, productive and reproductive status as well as their lambs' growth rate. Also the additive improved the economic efficiency of treated animals by about 53.13%.
Collapse
|
15
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Growth performance and physiological status evaluation of Spirulina platensis algae supplementation in broiler chicken diet. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Saidi H, Bounihi A, Bouazza A, Hichami A, Koceir EHA, Khan NA. Spirulina reduces diet-induced obesity through downregulation of lipogenic genes expression in Psammomys obesus. Arch Physiol Biochem 2022; 128:1001-1009. [PMID: 32207345 DOI: 10.1080/13813455.2020.1743724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study evaluates the protective effect of spirulina against diet-induced obesity and metabolic disorders in Psammomys obesus, an animal model of metabolic syndrome. Psammomys obesus lives on a low-energy diet, in order to remain healthy. However, under a standard laboratory chow diet (SLCD), this animal exhibits insulin resistance, which occurs as a result of obesity. Psammomys obesus was maintained on SLCD, in order to evaluate the effect of spirulina on obesity development with a particular focus on glucose and lipid metabolism, as well as the mRNA expression of some pro-inflammatory cytokines. After 12 weeks of treatment with spirulina, there was a significant reduction in body weight gain, plasma glucose, insulin and triglyceride levels. There was also a significant reduction in the mRNA expression of genes involved in lipogenesis and inflammation. Spirulina improved insulin sensitivity, glucose and lipid metabolism. These findings highlight the positive effect of spirulina on weight maintenance.
Collapse
Affiliation(s)
- Hamza Saidi
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Abdenour Bounihi
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Aziz Hichami
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | - El Hadj Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Naim Akhtar Khan
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| |
Collapse
|
18
|
Sibiya T, Ghazi T, Chuturgoon A. The Potential of Spirulina platensis to Ameliorate the Adverse Effects of Highly Active Antiretroviral Therapy (HAART). Nutrients 2022; 14:nu14153076. [PMID: 35893930 PMCID: PMC9332774 DOI: 10.3390/nu14153076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022] Open
Abstract
The human immunodeficiency virus (HIV) is one of the most prevalent diseases globally. It is estimated that 37.7 million people are infected with HIV globally, and 8.2 million persons are infected with the virus in South Africa. The highly active antiretroviral therapy (HAART) involves combining various types of antiretroviral drugs that are dependent on the infected person’s viral load. HAART helps regulate the viral load and prevents its associated symptoms from progressing into acquired immune deficiency syndrome (AIDS). Despite its success in prolonging HIV-infected patients’ lifespans, the use of HAART promotes metabolic syndrome (MetS) through an inflammatory pathway, excess production of reactive oxygen species (ROS), and mitochondrial dysfunction. Interestingly, Spirulina platensis (SP), a blue-green microalgae commonly used as a traditional food by Mexican and African people, has been demonstrated to mitigate MetS by regulating oxidative and inflammatory pathways. SP is also a potent antioxidant that has been shown to exhibit immunological, anticancer, anti-inflammatory, anti-aging, antidiabetic, antibacterial, and antiviral properties. This review is aimed at highlighting the biochemical mechanism of SP with a focus on studies linking SP to the inhibition of HIV, inflammation, and oxidative stress. Further, we propose SP as a potential supplement for HIV-infected persons on lifelong HAART.
Collapse
|
19
|
Singh KB, Kaushalendra, Rajan JP. Therapeutical and Nutraceutical Roles of Cyanobacterial Tetrapyrrole Chromophore: Recent Advances and Future Implications. Front Microbiol 2022; 13:932459. [PMID: 35928159 PMCID: PMC9344041 DOI: 10.3389/fmicb.2022.932459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria have attracted the attention of researchers because of their promising role as primary and secondary metabolites in functional food and drug design. Due to an ever-increasing awareness of health and the use of natural products to avoid the onset of many chronic and lifestyle metabolic diseases, the global demand for the use of natural drugs and food additives has increased in the last few decades. There are several reports about the highly valuable cyanobacterial products such as carotenoids, vitamins, minerals, polysaccharides, and phycobiliproteins showing antioxidant, anti-cancerous, anti-inflammatory, hypoglycemic, and antimicrobial properties. Recently, it has been shown that allophycocyanin increases longevity and reduces the paralysis effect at least in Caenorhabditis elegans. Additionally, other pigments such as phycoerythrin and phycocyanin show antioxidative properties. Because of their high solubility in water and zero side effects, some of the cyanobacterial tetrapyrrole derivatives, i.e., pigments, facilitate an innovative and alternative way for the beverage and food industries in place of synthetic coloring agents at the commercial level. Thus, not only are the tetrapyrrole derivatives essential constituents for the synthesis of most of the basic physiological biomolecules, such as hemoglobin, chlorophyll, and cobalamin, but also have the potential to be used for the synthesis of synthetic compounds used in the pharmaceutical and nutraceutical industries. In the present review, we focused on the different aspects of tetrapyrrole rings in the drug design and food industries and addressed its remaining limitations to be used as natural nutrient supplements and therapeutic agents.
Collapse
|
20
|
Positive effects of Phycocyanobilin on gene expression in glutamate-induced excitotoxicity in SH-SY5Y cells and animal models of multiple sclerosis and cerebral ischemia. Heliyon 2022; 8:e09769. [PMID: 35800718 PMCID: PMC9253351 DOI: 10.1016/j.heliyon.2022.e09769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Oxidative stress has a predominant role in the pathogenesis of neurodegenerative diseases and therefore the modulation of genes and the identification of biological pathways associated with antioxidant therapies, have an impact on its treatment. Objective The objective of this study was the comparison of 2 methods for the analysis of real-time PCR (qPCR) data, through the use of the evaluation of genes that mediate the effect of Phycocyanobilin (PCB) and its validation in animal models. Methods We evaluated the effect of PCB:” in vitro” on gene modulation through qPCR analyzed by parametric ANOVA and multivariate principal component analysis (PCA) in a model of glutamate-induced excitotoxicity in the SH-SY5Y cell line and” in vivo”; in animal models of multiple sclerosis (MS) and cerebral ischemia (CI). Results The results showed that PCA is a robust and powerful method that allows the assessment of gene expression profiles. We detected the significant down-regulation of the CYBB (NOX2), and HMOX1 by the action of PCB in SH-5YSH cell line insulted with Glutamate. The decrease in pro-inflammatory cytokines and markers related to apoptosis and innate immune response, mediated the effect of PCB in the animal models of MS and CI, respectively. Conclusion We concluded that the mechanisms by which PCB protected cells included the reduction of oxidative stress damage, which could contribute to its clinical efficacy for the treatment of neurodegenerative diseases.
Collapse
|
21
|
Marín-Prida J, Liberato JL, Llópiz-Arzuaga A, Stringhetta-Padovani K, Pavón-Fuentes N, Leopoldino AM, Cruz OG, González IH, Pérez ML, Espuny AC, Santos WFDSD, Uyemura SA, Pardo-Andreu GL, Pentón-Rol G. Novel Insights into the Molecular Mechanisms Involved in the Neuroprotective Effects of C-Phycocyanin Against Brain Ischemia in Rats. Curr Pharm Des 2022; 28:1187-1197. [PMID: 35524676 DOI: 10.2174/1381612828666220506145542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ischemic stroke produces a large health impact worldwide, with scarce therapeutic options. OBJECTIVE This study aimed to reveal the role of NADPH oxidase and neuroinflammatory genes on the cerebral anti-ischemic effects of C-Phycocyanin (C-PC), the chief biliprotein of Spirulina platensis. METHODS Rats with either focal cerebral ischemia/reperfusion (I/R) or acute brain hypoperfusion, received C-PC at different doses, or a vehicle, for up to 6 h post-stroke. Neurological, behavioral and histochemical parameters were assessed in I/R rats at 24 h. Cerebral gene expression and hippocampal neuron viability were evaluated in hypoperfused rats at acute (24 h) or chronic phases (30 days), respectively. A molecular docking analysis between NOX2 and C-PC-derived Phycocyanobilin (PCB) was also performed. RESULTS C-PC, obtained with a purity of 4.342, significantly reduced the infarct volume and neurologic deficit in a dose-dependent manner, and improved the exploratory activity of the I/R rats. This biliprotein inhibited NOX2 expression, a crucial NAPDH oxidase isoform in the brain, and the superoxide increase produced by the ischemic event. Moreover, C-PC-derived PCB showed a high binding affinity in silico with NOX2. C-PC downregulated the expression of pro-inflammatory genes (IFN-γ, IL-6, IL-17A, CD74, CCL12) and upregulated immune suppressive genes (Foxp3, IL-4, TGF-β) in hypoperfused brain areas. This compound also decreased chronic neuronal death in the hippocampus of hypoperfused rats. CONCLUSION These results suggest that the inhibition of cerebral NADPH oxidase and the improvement of neuroinflammation are key mechanisms mediating the neuroprotective actions of C-PC against brain ischemia.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana
| | - José Luiz Liberato
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Karina Stringhetta-Padovani
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Mariela León Pérez
- Isotopes Center, Ave. Monumental Km 3.5, San José de Las Lajas, Mayabeque, Cuba
| | - Antoni Camins Espuny
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Sergio Akira Uyemura
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Gilberto L Pardo-Andreu
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology, Havana, Cuba.,Latin American School of Medicine, Playa, Havana, Cuba
| |
Collapse
|
22
|
Efficient extraction of carrageenans from Chondrus crispus for the green synthesis of gold nanoparticles and formulation of printable hydrogels. Int J Biol Macromol 2022; 206:553-566. [PMID: 35245577 DOI: 10.1016/j.ijbiomac.2022.02.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
The integral utilization of sustainable resources with versatile, efficient and cleaner processes is encouraged. Hydrothermal treatment with subcritical water is a chemical free, tunable and rapid technology providing enhanced yield compared to conventional extraction and was explored for the benign by design extraction and depolymerization of carrageenan from Chondrus crispus. Up to 90% of the seaweed was solubilized operating under nonisothermal regime during heating up to 200 °C and 75.5% crude carrageenan yield was attained at 140 °C. Crude carrageenan could not be precipitated by ethanol from the extracts produced at 180 °C and higher temperatures, but ultrafiltration (100 kDa) of the extract obtained at 160 °C provided comparable recovery yields and similar rheological features to those of the ethanol precipitated product. Operation at 140 °C was preferred based on the higher recovery yield of the biopolymer and the whole extract was suitable for the green synthesis of polycrystalline decahedral quasi-spherical gold nanoparticles with a mean size distribution of 8.4 nm and Z potential value of -40.2 mV. Alternatively, the crude carrageen fraction was used for the formulation of printable biopolymer based gels with suitable mechanical properties, including a relevant gel strength enhancement (about 10-fold) when compared with conventional procedures.
Collapse
|
23
|
Montaño-González RI, Gutiérrez-Salmeán G, Mojica-Villegas MA, Cristóbal-Luna JM, Briseño-Bugarín J, Chamorro-Cevallos G. Phycobiliproteins extract from Spirulina protects against single-dose cadmium-induced reproductive toxicity in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17441-17455. [PMID: 34664174 DOI: 10.1007/s11356-021-16668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is known for its many toxic effects on male population such as hypogonadism and fertility difficulties, which are oftenly associated with oxidative stress. As beneficial food, Spirulina(Sp) has been proved efficient against the heavy metal toxicity. This capacity can be associated with its phycobiliproteins (PBP). In this study, the capability of PBP and Sp to treat Cd-induced oxidative damage on the testes and spermatozoa was considered. CD-1 strain mice were orally treated with either Sp or PBP for 10 days prior to single-dose Cd challenge. Sperm quality determinations and testicle histology analysis were performed. Testosterone on serum was measured using enzyme-linked immunosorbent assay (ELISA). Oxidative damage was determined. Antioxidant enzyme activity was analyzed by measuring the activity of super oxide dismutase (SOD), catalase (Cat), and glutathione peroxidase (GpX). The motility and viability of sperm decrease with Cd and improve with PBP and Sp, as the acrosomal reaction (AR) is diminished by PBPs. Testosterone levels decrease due to Cd, and only Sp maintains elevated levels. Cd increases the production of malondialdehyde in the spermatozoa, but not in testes; this production of malondialdehyde in the spermatozoa decreases in the presence of PBP. ROS only decreases with Cd, FBP, and Sp at high concentrations. Advanced oxidative protein products (AOPP) decrease with Cd and PBPs. Cat and GpX increase their activity with Cd and are altered by FBP. Cd produces vascular alterations testes. Within the seminiferous tubule, it produces areas of necrosis and apoptosis, which improve with PBPs and Sp. PBPs have a strong antioxidant activity as they show protective properties against Cd oxidative-induced toxicity on testes and sperm.
Collapse
Affiliation(s)
- Ricardo Iván Montaño-González
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - Gabriela Gutiérrez-Salmeán
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac, Avenida Universidad Anáhuac 46, Lomas Anáhuac, Huixquilucan, Estado de México, 52786, México
| | - María Angélica Mojica-Villegas
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - Jorge Briseño-Bugarín
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México.
| |
Collapse
|
24
|
Beneficial Effects of Spirulina Consumption on Brain Health. Nutrients 2022; 14:nu14030676. [PMID: 35277035 PMCID: PMC8839264 DOI: 10.3390/nu14030676] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
Spirulina is a microscopic, filamentous cyanobacterium that grows in alkaline water bodies. It is extensively utilized as a nutraceutical food supplement all over the world due to its high levels of functional compounds, such as phycocyanins, phenols and polysaccharides, with anti-inflammatory, antioxidant, immunomodulating properties both in vivo and in vitro. Several scientific publications have suggested its positive effects in various pathologies such as cardiovascular diseases, hypercholesterolemia, hyperglycemia, obesity, hypertension, tumors and inflammatory diseases. Lately, different studies have demonstrated the neuroprotective role of Spirulina on the development of the neural system, senility and a number of pathological conditions, including neurological and neurodegenerative diseases. This review focuses on the role of Spirulina in the brain, highlighting how it exerts its beneficial anti-inflammatory and antioxidant effects, acting on glial cell activation, and in the prevention and/or progression of neurodegenerative diseases, in particular Parkinson’s disease, Alzheimer’s disease and Multiple Sclerosis; due to these properties, Spirulina could be considered a potential natural drug.
Collapse
|
25
|
Mazloomi SM, Samadi M, Davarpanah H, Babajafari S, Clark CCT, Ghaemfar Z, Rezaiyan M, Mosallanezhad A, Shafiee M, Rostami H. The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients: A randomized double-blinded clinical trial. Food Sci Nutr 2022; 10:317-328. [PMID: 35154670 PMCID: PMC8825726 DOI: 10.1002/fsn3.2368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This study sought to investigate the effect of Spirulina on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease (NAFLD) patients. METHODS This randomized, double-blind clinical trial was performed on 46 NAFLD patients. Subjects were allocated to consume either Spirulina sauce or placebo, each 20 g/day for 8 weeks. Fatty liver grade, liver enzymes, anthropometric parameters, blood pressure, and serum lipids, glucose, insulin, malondialdehyde, and antioxidant capacity were assessed pre- and postintervention. RESULTS Fatty liver grade was significantly different between the two groups. A significant change for ALT (alanine aminotransferase) and AST (aspartate aminotransferase) was seen between the two groups (p = .03 and .02, respectively), while ALP (alkaline phosphatase) serum levels were not significantly different within or between groups. Pertaining to glycemic profile, all variables, except HOMA-IR, were not significantly different within or between groups. Finally, statistically significant changes were seen in both MDA (malondialdehyde) and TAC (total antioxidant capacity) among the groups (p = .04 and <.001, respectively). CONCLUSIONS Spirulina may improve fatty liver grade by modifying liver enzymes, oxidative stress, and some lipid profiles; however, there was effect of Spirulina on anthropometric characteristics and blood pressure.
Collapse
Affiliation(s)
- Seyed Mohammad Mazloomi
- Nutrition Research CenterDepartment of Food Hygiene and Quality ControlSchool of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style InstituteBaqiyatallah University of Medical sciencesTehranIran
| | - Hajar Davarpanah
- Nutrition Research CenterDepartment of Food Hygiene and Quality ControlSchool of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Siavash Babajafari
- Nutrition Research CentreDepartment of Clinical NutritionSchool of Food and Nutrition SciencesShiraz University of Medical SciencesShirazIran
| | | | - Zohreh Ghaemfar
- Nutrition Research CentreDepartment of Clinical NutritionSchool of Food and Nutrition SciencesShiraz University of Medical SciencesShirazIran
| | - Mojtaba Rezaiyan
- Nutrition Research CentreDepartment of Clinical NutritionSchool of Food and Nutrition SciencesShiraz University of Medical SciencesShirazIran
| | - Abdolhamid Mosallanezhad
- Nutrition Research CenterDepartment of Food Hygiene and Quality ControlSchool of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Maryam Shafiee
- Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Hosein Rostami
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
26
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets? Endocr Metab Immune Disord Drug Targets 2022; 22:765-777. [PMID: 34994321 DOI: 10.2174/1871530322666220107114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques. PATHOGENESIS Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture. THERAPY A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
27
|
Tan KC, Pham TX, Lee Y, Lee JY, Balunas MJ. Identification of Apocarotenoids as Chemical Markers of In Vitro Anti-Inflammatory Activity for Spirulina Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12674-12685. [PMID: 34672564 PMCID: PMC11290940 DOI: 10.1021/acs.jafc.1c03015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification of chemical markers in food additives and dietary supplements is crucial for quantitative assessment and standardization of their quality and efficacy. Arthrospira platensis, formerly Spirulina platensis and known colloquially as spirulina, has been widely investigated for its various biological effects, including anti-inflammation, antihypertension, antioxidant, and antiatherosclerosis. In this study, we utilized an approach involving a combination of bioassay-guided fractionation, synthesis, mass spectral molecular networking, principal component analysis (PCA), and correlation analysis to identify measurable chemical markers in spirulina products that can be used to evaluate the efficacy of commercial products in downregulating the expression level of the proinflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNFα). Consequently, we found that the apocarotenoids 3-hydroxy-β-ionone (1) and apo-13-zeaxanthinones (2a/2b) significantly repressed expression of IL-1β (9.5 ± 1.5 and 28.7 ± 0.6%, respectively) and IL-6 (10.1 ± 0.7 and 6.1 ± 0.4%, respectively) at 10 μg/mL (p < 0.05) using RAW 264.7 mouse macrophages. Notably, this is the first report of the isolation of these apocarotenoids from spirulina and their in vitro anti-inflammatory properties. Finally, we propose the use of our approach as a convenient way to establish markers in other dietary supplements.
Collapse
Affiliation(s)
- Karen C. Tan
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Tho X. Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Marcy J. Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| |
Collapse
|
28
|
Naeini F, Zarezadeh M, Mohiti S, Tutunchi H, Ebrahimi Mamaghani M, Ostadrahimi A. Spirulina supplementation as an adjuvant therapy in enhancement of antioxidant capacity: A systematic review and meta-analysis of controlled clinical trials. Int J Clin Pract 2021; 75:e14618. [PMID: 34235823 DOI: 10.1111/ijcp.14618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Spirulina, a type of blue-green algae, is used as an adjuvant treatment of metabolic and inflammatory diseases. Evidence about the effects of spirulina on antioxidant system are conflicting. Thus, this quantitative review aimed to summarise the effects of spirulina administration on antioxidant status biomarkers. METHODS Systematic searches were conducted using the PubMed/Medline, Scopus, Web of Science and EMBASE, up to May 2021. Random effect analysis was applied to perform meta-analysis. Subgroup analyses and multivariate meta-regression were performed to find heterogeneity sources. Quality assessment was conducted using Cochrane Collaboration's tool. Trim and fill analysis were also carried out in case of the presence of publication bias. RESULTS A total of nine articles that enrolled 415 subjects were included in the present meta-analysis. Obtained findings exhibited that spirulina supplementation had marginal significant effect on total antioxidant capacity (TAC) (SMD = 0.49; 95% CI: -0.001, 0.98; P = .05) and superoxide dismutase (SOD) activity (SMD = 0.72; 95% CI: -0.03, 1.46; P = .06), while did not affect glutathione peroxidase (GPx) activity (SMD=0.27; 95% CI: -0.23, 0.77; P = .29). CONCLUSIONS Spirulina consumption may exert beneficial effects on enhancement of antioxidant system. A marginal significant increasing effect on TAC and SOD activity were found by spirulina administration. However, it did not affect GPx activity.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Mohiti
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi Mamaghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Ghaem Far Z, Babajafari S, Kojuri J, Mohammadi S, Nouri M, Rostamizadeh P, Rahmani MH, Azadian M, Ashrafi-Dehkordi E, Zareifard A, Golchin Vafa R, Mazloomi SM. Antihypertensive and antihyperlipemic of spirulina (Arthrospira platensis) sauce on patients with hypertension: A randomized triple-blind placebo-controlled clinical trial. Phytother Res 2021; 35:6181-6190. [PMID: 34542204 DOI: 10.1002/ptr.7254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 08/08/2021] [Indexed: 01/29/2023]
Abstract
Systemic arterial hypertension is an independent risk factor for coronary heart disease, stroke, heart failure, and chronic kidney diseases. Spirulina is microalgae with nutritious ingredients and has potential attenuating effects on chronic diseases including hypertension. Spirulina can be added to food products in order to develop functional foods. The aim of this study was to assess the effects of 8-week consumption of a salad dressing containing 2 g of spirulina platensis powder versus a placebo dressing on patients with hypertension. In this triple-blind randomized clinical trial, 48 patients with hypertension were enrolled to receive daily either spirulina-fortified dressing or placebo for 2 months. A total of 41 patients completed this study. We observed that the consumption of spirulina dressing significantly reduced systolic blood pressure (p = .02), diastolic blood pressure (p = .03), serum triglyceride (p = .01), total cholesterol, and low-density lipoprotein (LDL) levels, compared to nonsignificant changes in the placebo group. Significant changes in TAC and hs-CRP levels were observed in none of the groups. According to our findings, spirulina-fortified dressing as a functional food can be used a supportive treatment for patients with hypertension along with standard antihypertensive drugs. However, further investigations are required for a more comprehensive conclusion.
Collapse
Affiliation(s)
- Zohreh Ghaem Far
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojuri
- Department of Cardiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salman Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
- Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouya Rostamizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohsen Azadian
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - Elham Ashrafi-Dehkordi
- Nutrition Research Center and Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Zareifard
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - Reza Golchin Vafa
- Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center and Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Mohiti S, Zarezadeh M, Naeini F, Tutunchi H, Ostadrahimi A, Ghoreishi Z, Ebrahimi Mamaghani M. Spirulina supplementation and oxidative stress and pro-inflammatory biomarkers: A systematic review and meta-analysis of controlled clinical trials. Clin Exp Pharmacol Physiol 2021; 48:1059-1069. [PMID: 33908048 DOI: 10.1111/1440-1681.13510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/06/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
Studies investigating the effects of spirulina on inflammation and oxidative stress status are controversial. Therefore, the current systematic review and meta-analysis aimed to evaluate the impacts of spirulina supplementation on oxidative stress indicators and inflammatory markers. PubMed-Medline, SCOPUS, Web of Science, Embase databases and Google Scholar were searched up to 1 October 2020. Random-effect analysis was applied to perform meta-analysis. Subgroup analyses and multivariate meta-regression were performed to find heterogeneity sources. Quality assessment was conducted using Cochrane Collaboration's tool. A total of 11 studies that enrolled 465 subjects were included in our meta-analysis. Pooled results demonstrated a significant increase in interleukin-2 (IL-2) concentrations [Standardized mean difference (SMD = 2.69 pg/mL; 95% CI: 0.26, 5.11; P = .03)]; however this result changed to insignificant (SMD = 0.54 pg/mL; 95% CI: -1.29, 2.27; P > .05) when sensitivity analysis performed. A marginal decreasing effect were also found on interleukin-6 (IL-6) (SMD = -0.72 mg/dL; 95% CI: -1.50, 0.07; P = .073) and thiobarbituric acid reactive substances (TBARS) levels (SMD = -0.65; 95% CI: -1.37, 0.08; P = .08). In addition, results of subgroup analysis revealed a significant reduction in IL-6 and TBARS concentrations when the baseline body mass index (BMI) of participants was lower than 25 kg/m2 . Moreover, spirulina had no significant effect on tumour necrosis factor-α (TNF-α) (SMD = -0.07 mg/dL; 95% CI: -0.33, 0.18; P = .56) and malondialdehyde (MDA) concentrations (SMD = -0.42; 95% CI: -0.98, 0.14; P = .14). Spirulina consumption contributed to a significant increase in IL-2 concentrations changing to insignificant after sensitivity analysis and marginal decreasing effects on IL-6 and TBARS levels. No considerable impacts were observed on TNF-α and MDA concentrations.
Collapse
Affiliation(s)
- Sara Mohiti
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Ghoreishi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi Mamaghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Carbone DA, Pellone P, Lubritto C, Ciniglia C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 2021; 10:746. [PMID: 34202941 PMCID: PMC8234452 DOI: 10.3390/antibiotics10060746] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| | - Paola Pellone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
- National Institute of Nuclear Physics, Complesso Universitario di Monte S, 80126 Naples, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| |
Collapse
|
32
|
McCarty MF, DiNicolantonio JJ, Lerner A. Review - Nutraceuticals Can Target Asthmatic Bronchoconstriction: NADPH Oxidase-Dependent Oxidative Stress, RhoA and Calcium Dynamics. J Asthma Allergy 2021; 14:685-701. [PMID: 34163181 PMCID: PMC8214517 DOI: 10.2147/jaa.s307549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Activation of various isoforms of NADPH oxidase contributes to the pathogenesis of asthma at multiple levels: promoting hypercontractility, hypertrophy, and proliferation of airway smooth muscle; enabling lung influx of eosinophils via VCAM-1; and mediating allergen-induced mast cell activation. Free bilirubin, which functions physiologically within cells as a feedback inhibitor of NADPH oxidase complexes, has been shown to have a favorable impact on each of these phases of asthma pathogenesis. The spirulina chromophore phycocyanobilin (PhyCB), a homolog of bilirubin’s precursor biliverdin, can mimic the inhibitory impact of biliverdin/bilirubin on NADPH oxidase activity, and spirulina’s versatile and profound anti-inflammatory activity in rodent studies suggests that PhyCB may have potential as a clinical inhibitor of NADPH oxidase. Hence, spirulina or PhyCB-enriched spirulina extracts merit clinical evaluation in asthma. Promoting biosynthesis of glutathione and increasing the expression and activity of various antioxidant enzymes – as by supplementing with N-acetylcysteine, Phase 2 inducers (eg, lipoic acid), selenium, and zinc – may also blunt the contribution of oxidative stress to asthma pathogenesis. Nitric oxide (NO) and hydrogen sulfide (H2S) work in various ways to oppose pathogenic mechanisms in asthma; supplemental citrulline and high-dose folate may aid NO synthesis, high-dose biotin may mimic and possibly potentiate NO’s activating impact on soluble guanylate cyclase, and NAC and taurine may boost H2S synthesis. The amino acid glycine has a hyperpolarizing effect on airway smooth muscle that is bronchodilatory. Insuring optimal intracellular levels of magnesium may modestly blunt the stimulatory impact of intracellular free calcium on bronchoconstriction. Nutraceutical regimens or functional foods incorporating at least several of these agents may have utility as nutraceutical adjuvants to standard clinical management of asthma.
Collapse
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, MO, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, 5262000, Israel
| |
Collapse
|
33
|
Keller M, Manzocchi E, Rentsch D, Lugarà R, Giller K. Antioxidant and Inflammatory Gene Expression Profiles of Bovine Peripheral Blood Mononuclear Cells in Response to Arthrospira platensis before and after LPS Challenge. Antioxidants (Basel) 2021; 10:antiox10050814. [PMID: 34065248 PMCID: PMC8161185 DOI: 10.3390/antiox10050814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress and inflammatory diseases are closely related processes that need to be controlled to ensure the desirable high performance of livestock. The microalga spirulina has shown antioxidant and anti-inflammatory properties in monogastric species. To investigate potential beneficial effects in ruminants, we replaced soybean meal (SOY) in the diets of dairy cows and fattening bulls by spirulina (SPI) and analyzed plasma concentrations of antioxidants (β-carotene, α-tocopherol, polyphenols) and serum total antioxidant capacity. Following in vitro stimulation with lipopolysaccharide (LPS), peripheral blood mononuclear cells (PBMCs) were isolated for expression analysis of inflammation- and antioxidant-defense-related genes. Plasma β-carotene concentration was higher in SPI, compared to SOY cows, but did not differ in bulls. Plasma total phenol concentration was significantly higher in SPI, compared to SOY bulls, but not in cows. Stimulation of bovine PBMCs with LPS increased the expression of most cytokines and some antioxidant enzymes. Gene expression of PBMCs derived from SPI animals, compared to SOY animals, hardly differed. Our results indicate that in ruminants, spirulina might not have potent antioxidant and anti-inflammatory properties. Future studies should evaluate the microbial degradation of spirulina and its bioactive compounds in the rumen to provide further data on potential beneficial health effects in ruminants.
Collapse
|
34
|
Han P, Li J, Zhong H, Xie J, Zhang P, Lu Q, Li J, Xu P, Chen P, Leng L, Zhou W. Anti-oxidation properties and therapeutic potentials of spirulina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Bocanegra A, Macho-González A, Garcimartín A, Benedí J, Sánchez-Muniz FJ. Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus. Int J Mol Sci 2021; 22:3816. [PMID: 33917044 PMCID: PMC8067684 DOI: 10.3390/ijms22083816] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is a major systemic disease which involves impaired pancreatic function and currently affects half a billion people worldwide. Diet is considered the cornerstone to reduce incidence and prevalence of this disease. Algae contains fiber, polyphenols, ω-3 PUFAs, and bioactive molecules with potential antidiabetic activity. This review delves into the applications of algae and their components in T2DM, as well as to ascertain the mechanism involved (e.g., glucose absorption, lipids metabolism, antioxidant properties, etc.). PubMed, and Google Scholar databases were used. Papers in which whole alga, algal extracts, or their isolated compounds were studied in in vitro conditions, T2DM experimental models, and humans were selected and discussed. This review also focuses on meat matrices or protein concentrate-based products in which different types of alga were included, aimed to modulate carbohydrate digestion and absorption, blood glucose, gastrointestinal neurohormones secretion, glycosylation products, and insulin resistance. As microbiota dysbiosis in T2DM and metabolic alterations in different organs are related, the review also delves on the effects of several bioactive algal compounds on the colon/microbiota-liver-pancreas-brain axis. As the responses to therapeutic diets vary dramatically among individuals due to genetic components, it seems a priority to identify major gene polymorphisms affecting potential positive effects of algal compounds on T2DM treatment.
Collapse
Affiliation(s)
- Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
36
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
37
|
Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL. Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients 2021; 13:nu13020563. [PMID: 33572056 PMCID: PMC7916042 DOI: 10.3390/nu13020563] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Marine and freshwater algae and their products are in growing demand worldwide because of their nutritional and functional properties. Microalgae (unicellular algae) will constitute one of the major foods of the future for nutritional and environmental reasons. They are sources of high-quality protein and bioactive molecules with potential application in the modern epidemics of obesity and diabetes. They may also contribute decisively to sustainability through carbon dioxide fixation and minimization of agricultural land use. This paper reviews current knowledge of the effects of consuming edible microalgae on the metabolic alterations known as metabolic syndrome (MS). These microalgae include Chlorella, Spirulina (Arthrospira) and Tetraselmis as well as Isochrysis and Nannochloropsis as candidates for human consumption. Chlorella biomass has shown antioxidant, antidiabetic, immunomodulatory, antihypertensive, and antihyperlipidemic effects in humans and other mammals. The components of microalgae reviewed suggest that they may be effective against MS at two levels: in the early stages, to work against the development of insulin resistance (IR), and later, when pancreatic -cell function is already compromised. The active components at both stages are antioxidant scavengers and anti-inflammatory lipid mediators such as carotenoids and -3 PUFAs (eicosapentaenoic acid/docosahexaenoic acid; EPA/DHA), prebiotic polysaccharides, phenolics, antihypertensive peptides, several pigments such as phycobilins and phycocyanin, and some vitamins, such as folate. As a source of high-quality protein, including an array of bioactive molecules with potential activity against the modern epidemics of obesity and diabetes, microalgae are proposed as excellent foods for the future. Moreover, their incorporation into the human diet would decisively contribute to a more sustainable world because of their roles in carbon dioxide fixation and reducing the use of land for agricultural purposes.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
- Correspondence: ; Tel.: +34-934-021-556
| | - Joan Ramon Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Teresa Pagès
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Josep Lluís Torres
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
38
|
Abidizadegan M, Peltomaa E, Blomster J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front Pharmacol 2021; 11:618836. [PMID: 33603668 PMCID: PMC7884888 DOI: 10.3389/fphar.2020.618836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Environmental Laboratory, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Patel AS, Lakshmibalasubramaniam S, Nayak B, Tripp C, Kar A, Sappati PK. Improved stability of phycobiliprotein within liposome stabilized by polyethylene glycol adsorbed cellulose nanocrystals. Int J Biol Macromol 2020; 163:209-218. [DOI: 10.1016/j.ijbiomac.2020.06.262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/21/2023]
|
40
|
Niccolai A, Bažec K, Rodolfi L, Biondi N, Zlatić E, Jamnik P, Tredici MR. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front Microbiol 2020; 11:560684. [PMID: 33193143 PMCID: PMC7649261 DOI: 10.3389/fmicb.2020.560684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
The main objective of this study was to evaluate the suitability of Arthrospira platensis F&M-C256 (spirulina) biomass in a vegetal soybean drink or in water, as substrate for lactic acid fermentation by the probiotic bacterium Lactiplantibacillus plantarum ATCC 8014 (LAB8014) and to evaluate the fermented products in terms of bacteria content and organic acids content, biochemical composition, total phenolics, and phycocyanin content, in vitro digestibility, in vitro and in vivo antioxidant activity. After 72 h of fermentation, a bacterial concentration of about 10.5 log CFU mL–1 in the broths containing the soybean drink + spirulina + LAB8014 (SD + S + LAB8014) or water + spirulina + LAB8014 (W + S + LAB8014) was found. Lactic acid concentration reached similar values (about 1.7 g L–1) in the two broths, while a different acetic acid concentration between SD + S + LAB8014 and W + S + LAB8014 broths was observed (7.7 and 4.1 g L–1, respectively). A. platensis biomass was shown to be a suitable substrate for LAB8014 growth. After fermentation, both broths contained a high protein content (>50%). In both broths, total phenolics, in vitro and in vivo antioxidant activity increased after fermentation (+35, +20, and +93% on average, respectively), while phycocyanin content decreased (−40% on average). Digestibility of W + S + LAB8014 broth statistically improved after fermentation. This study highlights the potential of A. platensis F&M-C256 biomass as a substrate for the production of new functional lactose-free beverages.
Collapse
Affiliation(s)
- Alberto Niccolai
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Kaja Bažec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Liliana Rodolfi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy.,Fotosintetica & Microbiologica S.r.l., Florence, Italy
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Emil Zlatić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Jamnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mario R Tredici
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Abdelnour SA, Swelum AA, Salama A, Al-Ghadi MQ, Qattan SYA, Abd El-Hack ME, Khafaga AF, Alhimaidi AR, Almutairi BO, Ammari AA, El-Saadony MT. The beneficial impacts of dietary phycocyanin supplementation on growing rabbits under high ambient temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1815598] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Salama
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaza Y. A. Qattan
- Department of Biological Sciences, Microbiology, Faculty of Science, King Abdulaziz University, Kingdom of Saudi Arabia, Jeddah
| | | | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
42
|
One structure, multiple features: The phycocyanin in biotechnology. NUTRITION & SANTÉ 2020. [DOI: 10.30952/9.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phycocyanine (PC) is a water-soluble, non-toxic and bioactive (antioxidant, anti-inflammatory, antitumor, etc.) phycobiliprotein isolated, mainly, from cyanobacteria. Due to its several properties, PC is considered to be a rising biomolecule for Industrial exploitation, and has become an important research axis in order to promote its production, and optimize its biotechnological applications. The aim of this review article was to discuss the basic, and recent properties and applications of PC, and to bring together data on various aspects of PC stabilization, and PC nanopar-ticles formulation. In addition, an overview of the main structural characteristics and process-ses of PC extraction and purification were also discussed. The recent scientific research findings concluded that PC is a promising both functional, and bioactive additive in industry, especially, in food as a dye, in imaging as a fluorescent labeling agent, and in the phar-maceutical and nano-pharmaceutical field as a bioactive molecule and nanopar-ticles, particularly, due to it antitumor capacity. Phycocyanine is, thus, a promising bio-active molecules in pharmacological, and medical fields.
Collapse
|
43
|
Bannu SM, Lomada D, Gulla S, Chandrasekhar T, Reddanna P, Reddy MC. Potential Therapeutic Applications of C-Phycocyanin. Curr Drug Metab 2020; 20:967-976. [PMID: 31775595 DOI: 10.2174/1389200220666191127110857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.
Collapse
Affiliation(s)
- Saira M Bannu
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Thummala Chandrasekhar
- Department of Environmental Science, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Pallu Reddanna
- Department of Animal Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| |
Collapse
|
44
|
Kumar MS, Sharma SA. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 2020; 61:500-521. [PMID: 32188262 DOI: 10.1080/10408398.2020.1738334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine environment is a rich and diverse source for many biologically active substances including functional foods and nutraceuticals. It is well exploited for useful compounds, natural products and aquaculture industry; and seaweeds is one of the major contributors in terms of both food security and healthy nutrition. They are well-known due to their enormous benefits and is consumed globally in many countries. However, there is lack of attention toward their toxicity reports which might be due toxic chemical compounds from seaweed, epiphytic bacteria or harmful algal bloom and absorbed heavy metals from seawater. The excess of these components might lead to harmful interactions with drugs and hormone levels in the human body. Due to their global consumption and to meet increasing demands, it is necessary to address their hazardous and toxic aspects. In this review, we have done extensive literature for healthy seaweeds, their nutritional composition while summarizing the toxic effects of selected seaweeds from red, brown and green group which includes- Gracilaria, Acanthophora, Caulerpa, Cladosiphon, and Laminaria sp. Spirulina, a microalgae (cyanobacteria) biomass is also included in toxicity discussion as it an important food supplement and many times shows adverse reactions and drug interactions. The identified compounds from seaweeds were concluded to be toxic to humans, though they exhibited certain beneficial effects too. They have an easy access in food chain and thus invade the higher trophic level organisms. This review will create an awareness among scientific and nonscientific community, as well as government organization to regulate edible seaweed consumption and keep them under surveillance for their beneficial and safe consumption.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Simran A Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
45
|
Liang Y, Bao Y, Gao X, Deng K, An S, Wang Z, Huang X, Liu D, Liu Z, Wang F, Fan Y. Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat Sci 2020; 164:108094. [PMID: 32146297 DOI: 10.1016/j.meatsci.2020.108094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of spirulina supplementation in a high-energy (HE) diet on lipid metabolism, oxidative status and immunity in Hu lambs. The lambs were assigned to two groups receiving either a standard diet (ST) or a HE diet. Each group was divided into three subgroups: no spirulina supplementation (control), 1% spirulina supplementation, or 3% spirulina supplementation. The body fat, serum cholesterol, triacylglycerol and oxidative stress increased in lambs fed the HE diet. However, 3% spirulina supplementation in the HE diet reduced above parameters and enhanced antioxidant capacity, including increased SOD activity and T-AOC content in serum and Longissimus thoracis et lumborum (LTL). Additionally, lambs receiving 3% spirulina supplementation showed an improvement in immunity-related parameters, including increased IgG concentration in serum and red and white blood cell counts. In conclusion, 3% spirulina supplementation in HE diet ameliorated lipid metabolic disorder and oxidative stress caused by a HE diet.
Collapse
Affiliation(s)
- Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yongjin Bao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaoxiao Gao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Kaiping Deng
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shiyu An
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xinai Huang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Dong Liu
- Inner Mongolia Caolv Agricultural Science and Technology Development Co., Ltd, Ordos, Inner Mongolia 016100, PR China
| | - Zhinan Liu
- Inner Mongolia Caolv Agricultural Science and Technology Development Co., Ltd, Ordos, Inner Mongolia 016100, PR China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| | - Yixuan Fan
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
46
|
Silva METD, Correa KDP, Martins MA, da Matta SLP, Martino HSD, Coimbra JSDR. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
47
|
Araujo LCC, Brito AF, Souza ILL, Ferreira PB, Vasconcelos LHC, Silva AS, Silva BA. Spirulina Platensis Supplementation Coupled to Strength Exercise Improves Redox Balance and Reduces Intestinal Contractile Reactivity in Rat Ileum. Mar Drugs 2020; 18:md18020089. [PMID: 32013202 PMCID: PMC7073603 DOI: 10.3390/md18020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/01/2023] Open
Abstract
The blue alga Spirulina platensis has presented several pharmacological activities, highlighting its actions as an anti-inflammatory and antioxidant. In addition, there are few studies with the influence of strength training on physiological parameters, as intestinal contractility and oxidative cell damage. We evaluated the influence of S. platensis supplementation, strength training, and its association on contractile reactivity of rat ileum, as well as the balance of oxidative stress/antioxidant defenses. Methods: Male Wistar rats were divided into; sedentary (S); S + supplemented with algae at 50 (S50), 150 (S150), and 500 mg/kg (S500); trained (T); and T + supplemented (T50, T150, and T500). Contractile reactivity was analyzed by kymographs; oxidative stress on ileum by the malondialdehyde (MDA) formation; and the antioxidant capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. S. platensis supplementation reduced the reactivity of rat ileum to carbachol (CCh) and KCl, while training reduced only the CCh efficacy. In addition, association potentiated the reduction on contractile reactivity. Supplementation reduced the oxidative stress and increased oxidation inhibition; training alone did not alter this parameter, however association potentiated this beneficial effect. Therefore, this study demonstrated that both supplementation and its association with strength training promote beneficial effects regarding intestinal contractile reactivity and oxidative stress, providing new insights for intestinal disorders management.
Collapse
Affiliation(s)
- Layanne C. C. Araujo
- Programa de Pós-graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biológicas, Universidade de São Paulo, Sao Paulo/SP 05508900, Brazil
| | - Aline F. Brito
- Escola de Educação Física, Universidade de Pernambuco, Recife/PE 50740-465, Brazil;
| | - Iara L. L. Souza
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa/PB, 58051900, Brazil; (I.L.L.S.); (P.B.F.); (L.H.C.V.)
| | - Paula B. Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa/PB, 58051900, Brazil; (I.L.L.S.); (P.B.F.); (L.H.C.V.)
| | - Luiz Henrique C. Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa/PB, 58051900, Brazil; (I.L.L.S.); (P.B.F.); (L.H.C.V.)
| | - Alexandre S. Silva
- Departamento de Educação Física, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa/PB 58051900, Brazil;
| | - Bagnólia A. Silva
- Programa de Pós-graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biológicas, Universidade de São Paulo, Sao Paulo/SP 05508900, Brazil
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa/PB, 58051900, Brazil; (I.L.L.S.); (P.B.F.); (L.H.C.V.)
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Joao Pessoa/PB 58051900, Brazil
- Correspondence:
| |
Collapse
|
48
|
Patel AS, Lakshmibalasubramaniam S, Nayak B. Steric stabilization of phycobiliprotein loaded liposome through polyethylene glycol adsorbed cellulose nanocrystals and their impact on the gastrointestinal tract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Gharaie Fathabad S, Arumanayagam AS, Tabatabai B, Chen H, Lu J, Sitther V. Augmenting Fremyella diplosiphon Cellular Lipid Content and Unsaturated Fatty Acid Methyl Esters Via Sterol Desaturase Gene Overexpression. Appl Biochem Biotechnol 2019; 189:1127-1140. [PMID: 31168708 PMCID: PMC6884679 DOI: 10.1007/s12010-019-03055-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 01/31/2023]
Abstract
Cyanobacteria have immense prospective as a platform for renewable energy; however, a major barrier in achieving optimal productivity is the low lipid yield. Fremyella diplosiphon, a model cyanobacterium, is an ideal biofuel agent due to its desirable fatty acid methyl esters (FAMEs). To enhance lipid content, we overexpressed the sterol desaturase (SD) gene in F. diplosiphon B481 wild type by genetic transformation. This effort resulted in a transformant (B481-SD) with a 64-fold increase in the SD gene at the mRNA transcript level, with no loss in growth and pigmentation. The transformant was persistently grown for over 32 generations indicating long-term stability and vitality. We observed 27.3% and 23% increases in total lipid content and unsaturated FAMEs respectively in B481-SD transesterified lipids with methyl octadecadienoate as the most abundant unsaturated component. In addition, we detected an 81% increase in FAME composition in the transformant compared with the wild type. Theoretical physical and chemical properties confirmed a FAME profile with very high cetane number (65.972-67.494) and oxidative stability (50.493-18.66 h) in the engineered strain. Results of the study offer a promising approach to augment F. diplosiphon total lipid content and unsaturated FAMEs, thus paving the way to enhance biofuel capacity of the organism.
Collapse
Affiliation(s)
- Somayeh Gharaie Fathabad
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | | | - Behnam Tabatabai
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Jie Lu
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
- Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.
| |
Collapse
|
50
|
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. Spirulina extract enriched for Braun-type lipoprotein (Immulina®) for inhibition of 4T1 breast tumors' growth and metastasis. Phytother Res 2019; 34:368-378. [PMID: 31691383 DOI: 10.1002/ptr.6527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/21/2019] [Accepted: 09/28/2019] [Indexed: 12/27/2022]
Abstract
Spirulina platensis extracts have exhibited considerable anti-cancer effects. To investigate the efficacy of the Spirulina extract enriched for Braun-type lipoprotein (Immulina®) for breast cancer treatment, 4T1 breast tumor-bearing mice were treated with 40 mg/kg Immulina® daily and the tumors' growth and metastasis were assessed. Also, CD4, CD8, and CD56 staining were performed to investigate the Immulina® effect on the immune cells' recruitment to the tumors by immunohistochemistry. Immulina® could significantly (P < 0.001) inhibit 4T1 breast tumors' growth. Immulina®-treated group exhibited a 63% decrease in the tumors' volume in comparison with control (P < 0.001). Also, Immulina® could significantly (P < 0.001) decrease metastatic burden at the vital organs as 68% and 61% decrease in the liver and lungs metastatic colonies were observed, respectively. Also, Immulina® could increase mean survival time of the tumor-bearing mice for 29 days. The Spirulina-treated mice tumors contained significantly more infiltrated NK, CD4+, and CD8+ T lymphocytes in comparison with control. Taking together, Immulina® can be a safe anti-cancer supplement with the ability to cause direct apoptosis to the cancer cells and activate the immune system against tumor. This supplement with natural origin seems to have bright future to help breast cancer patients.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, 38481-76941, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jamal Moshtaghian
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|