1
|
Tan L, Zhang H, Li H, Sun S, Lyu Q, Jiang Y. Blueberry extracts antagonize Aβ 25-35 neurotoxicity and exert a neuroprotective effect through MEK-ERK-BDNF/UCH-L1 signaling pathway in rat and mouse hippocampus. Nutr Neurosci 2024; 27:745-760. [PMID: 37647279 DOI: 10.1080/1028415x.2023.2252640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND The neuroprotective potential of blueberry (BB) extracts against Alzheimer's disease (AD) has been previously hinted at, while its exact mechanism has remained largely enigmatic. OBJECTIVE Our study endeavored to unravel the impacts and mechanisms by which BB extracts ameliorated the learning and memory prowess of AD-afflicted mice, with a specific focus on the MEK-ERK pathway. METHODS We employed 3-month-old APP/PS1 transgenic mice and stratified them into three distinct groups: AD+BB, AD, and control (CT). The Morris Water Maze Test (MWMT) was then administered to gauge their learning and memory faculties. In vitro experiments were executed on Aβ25-35-afflicted rat hippocampal neurons, which were subsequently treated with varying concentrations of BB extracts. We then assessed the expression levels of genes and proteins integral to the MEK-ERKBDNF/UCH-L1 pathway. RESULTS The data showed that the AD mice demonstrated compromised learning and memory faculties in MWMT. However, the AD+BB cohort showcased marked improvements in performance. Furthermore, in the AD subset, significant elevations in the expressions of MEK2 and ERK1/2 were observed, both at the mRNA and protein levels. Conversely, UCH-L1 mRNA expressions exhibited a decline, while BDNF expressions surged significantly. However, post BB extract treatment, the expressions of MEK2 and ERK1/2 were subdued, with UCH-L1 and BDNF mRNA expressions reverting to control levels. CONCLUSIONS Our findings propounded that BB extracts could offer therapeutic promise for AD by bolstering learning and memory capacities. The unwarranted activation of the MEK-ERK pathway, coupled with the aberrant expressions of BDNF and UCH-L1, might underpin AD's pathogenesis.
Collapse
Affiliation(s)
- Long Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Han Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haiqiang Li
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
- Yantai Economic and Technological Development Area Hospital, Yantai Economic and Technological Development Area, Yantai, People's Republic of China
| | - Shoudan Sun
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yugang Jiang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Chen Y, Zhao J, Li HH, Qian W, Zhou BY, Yang CQ. Pharmacokinetics of cyanidin-3- O-galactoside and cyanidin-3- O-arabinoside after intravenous administration in rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:714-725. [PMID: 37950686 DOI: 10.1080/10286020.2023.2279541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Cyanidin-3-O-galactoside and cyanidin-3-O-arabinoside (purity >98%) were isolated from black chokeberry by preparative high-performance liquid chromatography, and an animal experiment was conducted to investigate the pharmacokinetics of two anthocyanin monomers after intravenous administration. The results showed that cyanidin-3-O-galactoside has preferable druggability than cyanidin-3-O-arabinoside in pharmacokinetic area.
Collapse
Affiliation(s)
- Yan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Jing Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Han-Han Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Wen Qian
- Nanjing BRT-Biomed Company Limited, Nanjing 210000, China
| | - Bing-Yu Zhou
- Department of Pharmacy, Dongliao People's Hospital, Liaoyuan 136200, China
| | - Chang-Qing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| |
Collapse
|
3
|
Chen K, Wei X, Zhang J, Kortesniemi M, Zhang Y, Yang B. Effect of Acylated and Nonacylated Anthocyanins on Urine Metabolic Profile during the Development of Type 2 Diabetes in Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15143-15156. [PMID: 36410712 PMCID: PMC9732871 DOI: 10.1021/acs.jafc.2c06802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The effect of nonacylated and acylated anthocyanins on urinary metabolites in diabetic rats was investigated. Nonacylated anthocyanins extract from bilberries (NAAB) or acylated anthocyanins extract from purple potatoes (AAPP) was given to Zucker diabetic fatty (ZDF) rats for 8 weeks at daily doses of 25 and 50 mg/kg body weight. 1H NMR metabolomics was applied to study alterations in urinary metabolites from three time points (weeks 1, 4, and 8). Both types of anthocyanins modulated the metabolites associated with the tricarboxylic acid cycle, gut microbiota metabolism, and renal function at weeks 1 and 4, such as 2-oxoglutarate, fumarate, alanine, trigonelline, and hippurate. In addition, only a high dose of AAPP decreased monosaccharides, formate, lactate, and glucose levels at week 4, suggesting improvement in energy production in mitochondria, glucose homeostasis, and oxidative stress. This study suggested different impacts of AAPP and NAAB on the metabolic profile of urine in diabetes.
Collapse
Affiliation(s)
- Kang Chen
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jian Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Maaria Kortesniemi
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Baoru Yang
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| |
Collapse
|
4
|
Liang Z, Liang H, Guo Y, Yang D. Cyanidin 3- O-galactoside: A Natural Compound with Multiple Health Benefits. Int J Mol Sci 2021; 22:ijms22052261. [PMID: 33668383 PMCID: PMC7956414 DOI: 10.3390/ijms22052261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cyanidin 3-O-galactoside (Cy3Gal) is one of the most widespread anthocyanins that positively impacts the health of animals and humans. Since it is available from a wide range of natural sources, such as fruits (apples and berries in particular), substantial studies were performed to investigate its biosynthesis, chemical stability, natural occurrences and content, extraction methods, physiological functions, as well as potential applications. In this review, we focus on presenting the previous studies on the abovementioned aspects of Cy3Gal. As a conclusion, Cy3Gal shares a common biosynthesis pathway and analogous stability with other anthocyanins. Galactosyltransferase utilizing uridine diphosphate galactose (UDP-galactose) and cyanidin as substrates is unique for Cy3Gal biosynthesis. Extraction employing different methods reveals chokeberry as the most practical natural source for mass-production of this compound. The antioxidant properties and other health effects, including anti-inflammatory, anticancer, antidiabetic, anti-toxicity, cardiovascular, and nervous protective capacities, are highlighted in purified Cy3Gal and in its combination with other polyphenols. These unique properties of Cy3Gal are discussed and compared with other anthocyanins with related structure for an in-depth evaluation of its potential value as food additives or health supplement. Emphasis is laid on the description of its physiological functions confirmed via various approaches.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Yizhan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-10-6273-7129
| |
Collapse
|
5
|
TMT-based quantitative proteomic analysis of hepatic tissue reveals the effects of dietary cyanidin-3-diglucoside-5-glucoside-rich extract on alleviating D-galactose-induced aging in mice. J Proteomics 2020; 232:104042. [PMID: 33161165 DOI: 10.1016/j.jprot.2020.104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Cyanidin-3-diglucoside-5-glucoside (CY3D5G) derivatives as major pigments in red cabbage exhibit in vitro antioxidant effects. This study evaluated the effects of CY3D5G-rich extract on oxidative stress in D-galactose-induced accelerated aging. Thirty male C57BL/6 J mice were divided into three groups: a normal control group and two D-galactose-injected groups orally administered with or without CY3D5G-rich extract (700 μmol/kg body weight). Dietary supplementation of CY3D5G-rich extract for 6 weeks increased superoxide dismutase activity, glutathione peroxidase activity, and total antioxidant capacity while suppressed malondialdehyde content in serum (p < 0.05) and tissues. Hepatic proteome analysis revealed that 243 proteins were significantly modulated by experimental treatment (p < 0.05). CY3D5G-rich extract treatment suppressed proteins involved in electron transport chain and up-regulated proteins that play important roles in glycolysis, tricarboxylic acid cycle, and actin cytoskeleton. These changes in above metabolic pathways may contribute to reducing the production and release of ROS and attenuating oxidative damage in aged mice. SIGNIFICANCE: Anthocyanins are the most abundant dietary flavonoids with potential health benefits. The proteomic analysis of mice liver in this study revealed the effect of cyanidin-3-diglucoside-5-glucoside (CY3D5G) consumption in D-galactose-induced accelerated aging. In total, 2054 protein groups were quantified in all samples without any missing value, and 243 protein groups were identified with statistical significance (p < 0.05). Bioinformatics analysis suggested that electron transport chain, glycolysis, tricarboxylic acid cycle, and actin cytoskeleton were closely correlated with CY3D5G treatment. These findings provide useful information to understand the anti-aging effect of anthocyanin, and the results of which could promote the use of anthocyanins in food and pharmaceutical industries.
Collapse
|
6
|
Chen K, Wei X, Zhang J, Pariyani R, Jokioja J, Kortesniemi M, Linderborg KM, Heinonen J, Sainio T, Zhang Y, Yang B. Effects of Anthocyanin Extracts from Bilberry ( Vaccinium myrtillus L.) and Purple Potato ( Solanum tuberosum L. var. 'Synkeä Sakari') on the Plasma Metabolomic Profile of Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9436-9450. [PMID: 32786839 PMCID: PMC7586333 DOI: 10.1021/acs.jafc.0c04125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study compared the effects of the nonacylated and acylated anthocyanin-rich extracts on plasma metabolic profiles of Zucker diabetic fatty rats. The rats were fed with the nonacylated anthocyanin extract from bilberries (NAAB) or the acylated anthocyanin extract from purple potatoes (AAPP) at daily doses of 25 and 50 mg/kg body weight for 8 weeks. 1H NMR metabolomics was used to study the changes in plasma metabolites. A reduced fasting plasma glucose level was seen in all anthocyanin-fed groups, especially in the groups fed with NAAB. Both NAAB and AAPP decreased the levels of branched-chain amino acids and improved lipid profiles. AAPP increased the glutamine/glutamate ratio and decreased the levels of glycerol and metabolites involved in glycolysis, suggesting improved insulin sensitivity, gluconeogenesis, and glycolysis. AAPP decreased the hepatic TBC1D1 and G6PC messenger RNA level, suggesting regulation of gluconeogenesis and lipogenesis. This study indicated that AAPP and NAAB affected the plasma metabolic profile of diabetic rats differently.
Collapse
Affiliation(s)
- Kang Chen
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, School of Public Health, Peking
University, Beijing 100191, China
| | - Jian Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Raghunath Pariyani
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Johanna Jokioja
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Maaria Kortesniemi
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Kaisa M. Linderborg
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Jari Heinonen
- School
of Engineering Science, Lappeenranta University
of Technology, Lappeenranta FI-53850, Finland
| | - Tuomo Sainio
- School
of Engineering Science, Lappeenranta University
of Technology, Lappeenranta FI-53850, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- . Phone: +8613426134251
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
- . Phone: +358 452737988
| |
Collapse
|
7
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
8
|
Wang Z, Pang W, He C, Li Y, Jiang Y, Guo C. Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM 2.5)-Induced Cardiovascular Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:87-94. [PMID: 27996266 DOI: 10.1021/acs.jafc.6b04603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Blueberry anthocyanin-enriched extracts (BAE) at three doses (0.5, 1.0, and 2.0 g/kg) were administered by oral gavage to rats exposed to 10 mg/kg fine particulate matter (PM2.5) three times a week. A positive control group was exposed to PM2.5 without BAE treatment. We analyzed heart rate (HR), electrocardiogram (ECG), and histopathology, and biomarkers of cardiovascular system injuries, systemic inflammation, oxidative stress, endothelial function, and apoptosis. Results indicated that BAE, particularly at 1.0 g/kg, improved ECG and decreased cytokine levels in PM2.5-exposed rats. These changes were accompanied by an increase in interleukin 10 levels and superoxide dismutase activity in heart tissue and Bcl-2 protein expression, as well as a decrease in interleukin 6, malondialdehyde, endothelin 1, and angiotensin II levels and a reduction in Bax protein expression. This study demonstrates that BAE at certain doses can protect the cardiovascular system from PM2.5-induced damage.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Public Health, Guangxi Medical University , Nanning 530021, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Wei Pang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Congcong He
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Yibo Li
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Yugang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Changjiang Guo
- School of Public Health, Guangxi Medical University , Nanning 530021, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| |
Collapse
|
9
|
Bellocco E, Barreca D, Laganà G, Calderaro A, El Lekhlifi Z, Chebaibi S, Smeriglio A, Trombetta D. Cyanidin-3- O -galactoside in ripe pistachio ( Pistachia vera L. variety Bronte) hulls: Identification and evaluation of its antioxidant and cytoprotective activities. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
10
|
Pan X, Qi H, Mu L, Wen J, Jia X. Comparative metabolomic-based metabolic mechanism hypothesis for microbial mixed cultures utilizing cane molasses wastewater for higher 2-phenylethanol production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9927-9935. [PMID: 25199087 DOI: 10.1021/jf502239d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mixed microbes coculture method in cane molasses wastewater (CMW) was adopted to produce 2-phenylethanol (2-PE). Comparative metabolomics combined with multivariate statistical analysis was performed to profile the differences of overall intracellular metabolites concentration for the mixed microbes cocultured under two different fermentation conditions with low and high 2-PE production. In total 102 intracellular metabolites were identified, and 17 of them involved in six pathways were responsible for 2-PE biosynthesis. After further analysis of metabolites and verification by feeding experiment, an overall metabolic mechanism hypothesis for the microbial mixed cultures (MMC) utilizing CMW for higher 2-PE production was presented. The results demonstrated that the branches of intracellular pyruvate metabolic flux, as well as the flux of phenylalanine, tyrosine, tryptophan, glutamate, proline, leucine, threonine, and oleic acid, were closely related to 2-PE production and cell growth, which provided theoretical guidance for domestication and selection of species as well as medium optimization for MMC metabolizing CMW to enhance 2-PE yield.
Collapse
Affiliation(s)
- Xinrong Pan
- Key Laboratory of Systems Bioengineering (Ministry of Education) and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Xie B, Liu A, Zhan X, Ye X, Wei J. Alteration of gut bacteria and metabolomes after glucaro-1,4-lactone treatment contributes to the prevention of hypercholesterolemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7444-7451. [PMID: 24972288 DOI: 10.1021/jf501744d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
D-Glucaro-1,4-lactone (1,4-GL) has been shown to have a hypocholesterolemic effect in rats and human subjects. However, little information is known concerning the alteration of metabolome associated with the effect. Here, we show that 1,4-GL delays the development of hypercholesterolemia with the coadministration of a high-fat, high-cholesterol diet (HFHC) in rats. Metabonomic results based on proton nuclear magnetic resonance indicate that urinary trimethylamine N-oxide, trimethylamine, lactate, acetate, formate, and creatinine are significantly altered after 1,4-GL and HFHC treatments. Colonic flora test results reveal that the quantity of Bifidobacterium and Lactobacillus in the intestines respectively increase by about 1.7- and 4.2-fold in rats treated with 1,4-GL compared with those in the control group. Rats that were coadministered with HFHC and 1,4-GL exhibit normal levels of lactate and acetate in serum and display urinary excretions of lactate and acetate that are 2 to 3 times higher compared with those treated with HFHC alone. The results imply that the increased probiotic quantities and urinary excretion of breakdown products of fat/cholesterol after 1,4-GL treatment contribute to the prevention of hypercholesterolemia. Our study offers insights into the model of action for 1,4-GL in preventing hypercholesterolemia.
Collapse
Affiliation(s)
- Baogang Xie
- School of Pharmacy, Nanchang University , Nanchang, 330006, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Geamanu A, Goja A, Saadat N, Khosla P, Gupta SV. ProAlgaZyme subfraction improves the lipoprotein profile of hypercholesterolemic hamsters, while inhibiting production of betaine, carnitine, and choline metabolites. Nutr Metab (Lond) 2013; 10:55. [PMID: 23981691 PMCID: PMC3844637 DOI: 10.1186/1743-7075-10-55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022] Open
Abstract
Background Previously, we reported that ProAlgaZyme (PAZ) and its biologically active fraction improved plasma lipids in hypercholesterolemic hamsters, by significantly increasing the high density lipoprotein cholesterol (HDL-C) while reducing non-HDL cholesterol and the ratio of total cholesterol/HDL-C. Moreover, hepatic mRNA expression of genes involved in HDL/reverse cholesterol transport were significantly increased, while cholesteryl ester transfer protein (CETP) expression was partially inhibited. In the current study, we investigated the therapeutic efficacy of the biologically active fraction of PAZ (BaP) on the plasma lipid and plasma metabolomic profiles in diet induced hypercholesterolemic hamsters. Methods Fifty male Golden Syrian hamsters were fed a high fat diet for 4 weeks prior to randomization into 6 groups, based on the number of days they received subsequent treatment. Thus animals in T0, T3, T7, T10, T14, and T21 groups received BaP for 0, 3, 7, 10, 14, and 21 days, respectively, as their drinking fluid. Plasma lipids were assayed enzymatically, while real-time reverse transcriptase polymerase chain reaction (RT-PCR) provided the transcription levels of the Apolipoprotein (Apo) A1 gene. The plasma metabolomic profile was determined using 1H nuclear magnetic resonance (NMR) spectroscopy in conjunction with multivariate analysis. Results Plasma HDL-C was significantly increased in T3 (P < 0.05) and T21 (P < 0.001), while non-HDL cholesterol was significantly reduced in T3, T7, T10 (P < 0.001) and T14, T21 (P < 0.01). Moreover, the ratio of total cholesterol/HDL-C was significantly lower in all BaP treated groups (P < 0.001) as compared with T0. Quantitative RT-PCR showed an increase in Apo A1 expression in T10 (3-fold) and T21 (6-fold) groups. NMR data followed by multivariate analysis showed a clear separation between T0 and T21 groups, indicating a difference in their metabolomic profiles. Plasma concentrations of metabolites associated with a risk for atherosclerosis and cardiovascular disease, including choline, phosphocholine, glycerol-phosphocholine, betaine and carnitine metabolites were significantly lower in the T21 group. Conclusion Treatment with BaP significantly improved the plasma lipid profile by increasing HDL-C and lowering non-HDL cholesterol. In addition, BaP potentially improved the plasma metabolomic profile by reducing the concentration of key metabolites associated with risk for atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Andreea Geamanu
- Nutrition and Food Science, 3009 Science Hall, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
13
|
De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1091-1104. [PMID: 22661299 PMCID: PMC3705111 DOI: 10.1007/s11357-012-9430-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Calorie restriction (CR) remains the most robust metabolic intervention to extend lifespan and improve healthspan in several species. Using global and targeted mass spectrometry-based metabolomics approaches, here we show that chronic CR prevents age-related changes in specific metabolic signatures. Global metabolomic analysis using ultra-performance liquid chromatography-tandem mass spectrometry detected more than 7,000 metabolites in sera from ad-libitum-fed young, aged, and aged C57BL/6 mice maintained on 40 % CR. Multivariate statistical analysis of mass spectrometry data revealed a clear separation among the young, aged, and aged-CR mice demonstrating the potential of this approach for producing reliable metabolic profiles that discriminate based on age and diet. We have identified 168 discriminating features with high statistical significance (p ≤ 0.001) and validated and quantified three of these metabolites using targeted metabolite analysis. Calorie restriction prevented the age-related alteration in specific metabolites, namely lysophosphatidylcholines (16:1 and 18:4), sphingomyelin (d18:1/12:0), tetracosahexaenoic acid, and 7α-dihydroxy-4-cholesten-3-one, in the serum. Pathway analysis revealed that CR impacted the age-related changes in metabolic byproducts of lipid metabolism, fatty acid metabolism, and bile acid biosynthesis. Our data suggest that metabolomics approach has the potential to elucidate the metabolic mechanism of CR's potential anti-aging effects in larger-scale investigations.
Collapse
Affiliation(s)
- Jennifer M. De Guzman
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ginger Ku
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ryan Fahey
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Yun-Hee Youm
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | | | - Donald K. Ingram
- />Nutritional Neuroscience and Aging, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Vishwa Deep Dixit
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Indu Kheterpal
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| |
Collapse
|
14
|
Protective effects of anthocyanins on the ectonucleotidase activity in the impairment of memory induced by scopolamine in adult rats. Life Sci 2012; 91:1221-8. [DOI: 10.1016/j.lfs.2012.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022]
|
15
|
Bertram HC, Larsen LB, Chen X, Jeppesen PB. Impact of high-fat and high-carbohydrate diets on liver metabolism studied in a rat model with a systems biology approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:676-684. [PMID: 22224854 DOI: 10.1021/jf203994k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the use of an integrated metabolomics and proteomics approach in the elucidation of diet-induced effects on hepatic metabolism in a rat model. Nuclear magnetic resonance (NMR)-based metabolomics of liver extracts revealed a pronounced effect of a high-fat diet on the hepatic betaine content, whereas a carbohydrate-rich diet induced increases in hepatic glucose. In addition, the metabolomic investigations revealed that the high-fat diet was associated with increased hepatic lipid levels, which was not evident with the carbohydrate-rich diet. The proteomic investigations revealed strong high-fat diet effects on the expression of 186 proteins in the liver including malate dehydrogenase. Comparison of malate dehydrogenase expression determined by proteomics and NMR metabolite profiles revealed correlations between malate dehydrogenase and lactate, glucose, and glutamine/glutamate signals, thereby demonstrating a diet-induced regulation that was evident at both proteomic and metabolomic levels.
Collapse
|