1
|
Sun X, Du H, Mao Q, Li P, Agathokleous E, Ma M. Mechanisms of Hg 0 Uptake, Transport, Distribution, and Redistribution in the Leaves of Hg Bioindicator Tillandsia Usneoides (Spanish Moss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40490882 DOI: 10.1021/acs.est.5c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Atmospheric hydrargyrum (Hg) is a neurotoxic heavy metal, and plant leaves are active Hg reservoirs. Tillandsia usneoides is an indicator plant for atmospheric Hg pollution; however, the uptake, transport modes, and redistribution mechanisms of Hg in T. usneoides are underexplored. Herein, we investigated these mechanisms and the influencing factors of Hg0 in T. usneoides at multiple levels. We found that Hg0 can be absorbed through both stomata and lipids, with higher Hg concentrations showing a greater tendency to be taken up by lipids. Hg passes through cell membranes via active transport, facilitated by Ca2+ ion channels and water channel proteins. Most Hg (50.1-97.9%) is retained in tissue cells in a low-toxicity and low-activity form (phosphate, pectinate, protein-bound and oxalate), with a small fraction located on leaf surfaces and in cuticular cells. After entering the cells, Hg was primarily retained in the cell wall (26.7-47.9%), with HC-2 demonstrating maximal retention (88.8-96.6%). As much as 61.3-91.5% of organelle-associated Hg was localized in chloroplasts. The -OH functional group in HC-2 might play an important role in Hg retention, closing a significant gap in our understanding of the underlying mechanisms. Furthermore, we discovered that after the removal of Hg stress, T. usneoides did not release Hg for a month. However, there was a tendency for Hg in the tissue and surface to be transported toward the cuticle. Our findings expand the understanding of plant leaf-atmosphere Hg interactions and reveal the intrinsic mechanisms of Hg detoxification in T. usneoides.
Collapse
Affiliation(s)
- Xingyue Sun
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-Resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Peng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Evgenios Agathokleous
- Department of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 21044, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
- Yibin Academy of Southwest University, Yibin, Sichuan 644005, PR China
| |
Collapse
|
2
|
Zhang Y, Wei S, Jia J, Zhan J, Zhan L, Robinson BH, Skuza L, Xue J, Dai H, Kou L, Zhang C, Huang K. Screening of chili cultivars with low cadmium accumulation and analysis of their physiological properties of tolerance. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-11. [PMID: 40296429 DOI: 10.1080/15226514.2025.2496412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chili (Capsicum annuum L.) is a widely eaten condiment that may accumulate the toxic element cadmium (Cd) from environments, thus presenting a human health risk. This experiment aimed to identify cultivars with low Cd-uptake characteristics that could be used to produce safe spicy food in Cd-contaminated soil. Five chili cultivars responses to Cd exposure in soils with 0.18 mg kg-1 (CK), 2.88 mg kg-1 (T1), 7.69 mg kg-1 (T2), 16.72 mg kg-1 (T3), and 33.46 mg kg-1 (T4) in a greenhouse were compared. The results showed that Cd concentration in roots, shoots, and fruits of the cultivar Bolafengxiang was the lowest. Additionally, its biomass was not reduced compared to the CK, and both the enrichment factor (EF) and translocation factor (TF) were all lower than 1. Notably, under soil Cd concentrations of 2.88 mg kg-1, the Cd content in the fruits of Bolafengxiang was 0.07 mg kg-1, which is below the safety standard limit (0.1 mg kg-1) for "Green Food Chili Products." This indicates its potential for low Cd accumulation. The above research indicates that selecting and cultivating low-Cd-accumulating chili cultivars is an effective approach to reduce Cd accumulation in edible parts, thereby ensuring agricultural food safety.
Collapse
Affiliation(s)
- Yating Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jibao Jia
- Yunnan Key Laboratory for Platform Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jie Zhan
- Liaoning Vocational College of Medicine, Shenyang, China
| | - Li Zhan
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Brett H Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, Poland
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch, New Zealand
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Lingjiang Kou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Chao Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Kaimei Huang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
3
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
4
|
Arinzechi C, Huang P, Ping Y, Xu H, Wang Q, Tang C, Si M, Li Q, Yang Z. Calcium-magnesium synergy in reducing cadmium bioavailability and uptake in rice plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:832-841. [PMID: 39789874 DOI: 10.1080/15226514.2024.2449167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.7%, p < 0.05), followed by Ca2:Mg1 (47.6%), and Ca1:Mg2 (40.7%), all below China's National Food Safety Standard (0.2 mg kg-1). Significant reductions were also observed in roots, stems, and leaves (p < 0.05). Ca1:Mg1 minimized Cd translocation by decreasing stem-to-grain transfer by 61.0% and xylem sap Cd by 50.1% (p < 0.05). It also reduced mobile Cd fractions in roots (F_E from 25% to 18%, F_Di from 44% to 37%) and increased DCB-extractable Fe (DCB-Fe) on roots, enhancing Cd immobilization. Ca:Mg treatments raised soil pH by 23.6-25.7% (p < 0.05), shifting Cd from bioavailable forms (F_EX reduced by 9.3%, F_CB by 17.8%) to more stable forms (F_Fe/Mn increased by 15.5%, F_OM by 1.9%). Strong negative correlations (p < 0.05, 0.01) between soil pH, DCB-Fe, Ca, Mg_TF, F_Fe/Mn, and grain Cd indicating their effect in reducing Cd uptake.
Collapse
Affiliation(s)
- Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Yang Ping
- Power China Eco-Environmental Group Co., LTD., Shenzhen, China
| | - Hao Xu
- Power China Eco-Environmental Group Co., LTD., Shenzhen, China
| | - Qiming Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
- Power China Eco-Environmental Group Co., LTD., Shenzhen, China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
5
|
Jiang W, Jiang P, You S, Qiu H, Liu J, Zhang X, Chen M. Mechanisms of manganese uptake and long-distance transport in the hyperaccumulator Celosia argentea Linn. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117514. [PMID: 39667325 DOI: 10.1016/j.ecoenv.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Celosia argentea Linn. is a hyperaccumulator for the remediation of manganese (Mn)-contaminated soil owing to its rapid growth, high decontamination capacity, and strong stress resistance. However, little is known about the processes involved in long-distance transport of Mn in hyperaccumulators. In this study, synchrotron-based micro X-ray fluorescence (μ-XRF) imaging showed that root tips and root hairs may be the focal sites for root uptake of Mn. Furthermore, the high Mn intensity in the vascular bundles (xylem and phloem) of stems and petioles indicates that the xylem and phloem play crucial roles in Mn transport from roots to leaves. High concentrations of Mn and three organic acids (oxalic, citric, and malic) were detected in the xylem sap under Mn treatment, and Mn may be chelated with them in the xylem for transport from the root to the shoot. Additionally, rooting and leaf-sourcing experiments confirmed that accumulated Mn in mature leaves could be re-transported via the phloem. However, the majority of Mn exported from mature leaves was translocated upward to the shoots (approximately 96 %), and only 4 % was translocated to the roots. These results provide new insights into the mechanisms of long-distance transport of Mn in plants.
Collapse
Affiliation(s)
- Wenxuan Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Guangxi Science and Technology Normal University, Laibin 546199, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Gulin University of Technology, Guilin, Guangxi 541004, China.
| | - Hui Qiu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
6
|
Xu X, Peng C, Shao X, Gong K, Zhao X, Xie W, Zhang W, Tan J. Unveiling the impacts of biodegradable microplastics on cadmium toxicity, translocation, transformation, and metabolome in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177669. [PMID: 39579896 DOI: 10.1016/j.scitotenv.2024.177669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Biodegradable microplastics (BMPs) may impact the environmental fate and ecotoxicity of Cd, but the effect mechanism in soil-plant system remain poorly understood. This study investigated the impact of BMPs (poly(lactic acid) (PLA) and poly(butylene adipate terephthalate) (PBAT) microplastics) on the Cd toxicity, translocation, transformation, and metabolome in lettuce (Lactuca sativa L.) by pot experiments. The results show that co-exposure to BMPs and Cd synergistically inhibited the shoot growth. 0.2 % PLA MPs enhanced but 2.5 % PLA MPs inhibited the photosynthesis; however, the dose of PBAT MPs was negatively correlated with the content of chlorophyll a. Moreover, the presence of 2.5 % PBAT MPs increased the nitrate content of leaves by 9.5 % compared to single Cd exposure. The partial least squares path model (PLS-PM) indicates that BMPs exacerbated the inhibitory effects of Cd on lettuce growth. PLA MPs enhanced K, Ca, Cu, and Zn accumulation in root stele, whereas PBAT MPs promoted Fe and Mn enrichment in epidermis. Furthermore, co-exposure resulted in higher inorganic and water-soluble Cd proportions in shoots. PLA MPs elevated Cd contents in cell wall fractions of both roots and shoots, while PBAT MPs increased Cd contents in shoot cell walls and root cells and soluble Cd ratio in shoots. BMPs enhanced Cd toxicity and bioaccumulation by downregulating the expression of ABC transporters and phenylpropanoid biosynthesis pathways, and the relative abundance of related metabolites.
Collapse
Affiliation(s)
- Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
7
|
Dong Y, Li J, Guo Z, Han L, Zhao J, Wu X, Chen X. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176285. [PMID: 39288875 DOI: 10.1016/j.scitotenv.2024.176285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Collapse
Affiliation(s)
- Yibo Dong
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiaohong Li
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China
| | - Zhenxiang Guo
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lei Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Zhao
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaomao Wu
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China; Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xiangsheng Chen
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
8
|
Xu K, Zheng L, Chu K, Xing C, Shu J, Fang K, Ma S, Fang Y, Yan J, Cai M, Wu XL. Soil application of graphitic carbon nitride nanosheets alleviate cadmium toxicity by altering subcellular distribution, chemical forms of cadmium and improving nitrogen availability in soybean (Glycine max L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122204. [PMID: 39142102 DOI: 10.1016/j.jenvman.2024.122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd)-contamination impairs biological nitrogen fixation in legumes (BNF), threatening global food security. Innovative strategies to enhance BNF and improve plant resistance to Cd are therefore crucial. This study investigates the effects of graphitic carbon nitride nanosheets (g-C3N4 NSs) on soybean (Glycine max L.) in Cd contaminated soil, focusing on Cd distribution, chemical forms and nitrogen (N) fixation. Soybean plants were treated with 100 mg kg-1 g-C3N4 NSs, with or without 10 mg kg-1 Cd for 4 weeks. Soil addition of g-C3N4 NSs alleviated Cd toxicity and promote soybean growth via scavenging Cd-mediated oxidative stress and improving photosynthesis. Compared to Cd treatment, g-C3N4 NSs increased shoot and root dry weights under Cd toxicity by 49.5% and 63.4%, respectively. g-C3N4 NSs lowered Cd content by 35.7%-54.1%, redistributed Cd subcellularly by increasing its proportion in the cell wall and decreasing it in soluble fractions and organelles, and converted Cd from high-toxicity to low-toxicity forms. Additionally, g-C3N4 NSs improved the soil N cycle, stimulated nodulation, and increased the N-fixing capacity of nodules, thus increasing N content in shoots and roots by 12.4% and 43.2%, respectively. Mechanistic analysis revealed that g-C3N4 NSs mitigated Cd-induced loss of endogenous nitric oxide in nodules, restoring nodule development. This study highlights the potential of g-C3N4 NSs for remediating Cd-contaminated soil, reducing Cd accumulation, and enhancing plant growth and N fixation, offering new insights into the use of carbon nanomaterials for soil improvement and legume productivity under metal(loid)s stress.
Collapse
Affiliation(s)
- Kai Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Lifan Zheng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Kaifei Chu
- College of Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Chenghua Xing
- College of Agriculture, Jinhua University of Vocational Technology, Jinhua, 321007, PR China
| | - Jiajing Shu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Keming Fang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Shuting Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Yong Fang
- College of Agriculture, Jinhua University of Vocational Technology, Jinhua, 321007, PR China
| | - Jianfang Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| |
Collapse
|
9
|
Wang L, Tao X, Liu C, Liang X, Xu Y, Sun Y. Influence of Foliar Zinc Application on Cadmium and Zinc Bioaccessibility in Brassica chinensis L.: In Vitro Digestion and Chemical Sequential Extraction. Foods 2024; 13:2430. [PMID: 39123624 PMCID: PMC11311326 DOI: 10.3390/foods13152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Foliar zinc (Zn) application can affect the accumulation and bioaccessibility of cadmium (Cd) and Zn in crops. However, the mechanisms by which foliar Zn application influences Cd and Zn bioaccessibility remain elusive. This study examined the effects of spraying ZnSO4 and ZnNa2EDTA on bioaccessibility and chemical forms of Cd and Zn in pakchoi (Brassica chinensis L.) shoots and evaluated human health risks via pakchoi consumption. Spraying ZnSO4 reduced the concentrations of ethanol-extractable (Fethanol) and deionized water-extractable (Fd-H2O) Cd, as well as the corresponding bioaccessible Cd concentrations (20.3-66.4%) and attendant health risks of Cd, whereas spraying high-dose ZnNa2EDTA significantly increased the concentrations of both Cd forms and bioaccessible Cd. Spraying ZnSO4 and high-dose ZnNa2EDTA significantly increased the concentrations of Zn in Fethanol and Fd-H2O and the corresponding bioaccessible Zn concentrations (0.8-8.3-fold). Fethanol and Fd-H2O were the primary sources of bioaccessible Cd and Zn, contributing more than 59% of the bioaccessible Cd and Zn. These results indicate that foliar Zn application can affect Cd and Zn bioaccessibility in pakchoi mainly by modulating Cd and Zn in Fethanol and Fd-H2O. These findings provide scientific support for the development of more efficient measures to produce safe and high-quality leafy vegetables from Cd-polluted soils.
Collapse
Affiliation(s)
- Lin Wang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xueying Tao
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chang Liu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuefeng Liang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingming Xu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
10
|
Shen C, Huang B, Hu L, Yuan H, Huang Y, Wang Y, Sun Y, Li Y, Zhang J, Xin J. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133365. [PMID: 38163407 DOI: 10.1016/j.jhazmat.2023.133365] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.
Collapse
Affiliation(s)
- Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Lu Hu
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yanbin Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingfang Sun
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yi Li
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jirong Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
11
|
Liao Q, Fu H, Shen C, Huang Y, Huang B, Hu C, Xiong X, Huang Y, Xin J. Physiological and biochemical characteristics of high and low Cd accumulating Brassica napus genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11873-11885. [PMID: 38224442 DOI: 10.1007/s11356-024-31942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Phytoremediation is a widely used and cost-effective technique for in situ remediation of heavy metals. Brassica napus L. genotype with high Cd accumulation and strong Cd tolerance is an ideal candidate for phytoremediation. In this study, a hydroponic experiment was conducted to select a Brassica napus genotype with either high or low Cd accumulation from a panel of 55 genotypes. The physiological mechanisms governing Cd accumulation and Cd tolerance were then explored. BN400 and BN147 were identified as the high and low Cd accumulating genotypes, respectively. Additionally, BN400 exhibited greater tolerance to Cd stress compared to BN147. Root morphology analysis revealed that BN400 exhibited longer root length, smaller root surface area and root volume, and less root tips but bigger root diameter than BN147. Subcellular Cd distribution showed that the Cd concentrations in the cell wall and vacuole in shoot were significantly higher in BN400 than in BN147, whereas the opposite trend was observed in the roots.. Pectate/protein-integrated Cd was found to be the predominant form of Cd in both shoots and roots, with significantly higher levels in BN400 compared to BN147 in the shoot, but the opposite trend was observed in the roots. These results suggest that the long fine roots play a role in Cd accumulation. The high Cd accumulating genotype was able to retain Cd in leaf cell walls and vacuoles, and Cd was mainly present in the form of pectate/protein-integrated Cd, which contributes to its strong Cd tolerance. These findings have important implications for the screening and breeding of Brassica napus genotypes with high Cd accumulation for phytoremediation purposes.
Collapse
Affiliation(s)
- Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Huilin Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Chongyang Hu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Xiaokang Xiong
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Yuxi Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, China.
| |
Collapse
|
12
|
Shen C, Fu H, Huang B, Liao Q, Huang Y, Wang Y, Wang Y, Xin J. Physiological and molecular mechanisms of boron in alleviating cadmium toxicity in Capsicum annuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166264. [PMID: 37579800 DOI: 10.1016/j.scitotenv.2023.166264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Soil cadmium (Cd) contamination threatens food safety and human health, particularly in developing countries. Previously, we have proposed that boron (B) could reduce Cd uptake and accumulation in hot peppers (Capsicum annuum) by regulating the expression of genes related to Cd transport in roots. However, only few studies have examined the role of B in plant leaves under Cd stress. It is unclear how B induces the expression of relevant genes and metabolites in hot pepper leaves and to what extent B is involved in leaf growth and Cd accumulation. The purpose of this study was to investigate the effects of B on growth and Cd accumulation in hot pepper leaves by determining physiological parameters and transcriptome sequencing. The results showed that B application significantly improved the concentration of chlorophyll a and intercellular CO2, stomatal conductance, and photosynthetic and transpiration rates by 18-41 % in Cd-stressed plants. Moreover, B enhanced Cd retention in the cell wall by upregulating the expression levels of pectin-, lignin-, and callose-related genes and improving the activity of pectin methylesterase by 30 %, resulting in an approximate 31 % increase in Cd retention in the cell wall. Furthermore, B application not only enhanced the expression levels of genes related to antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and their activities by 28-40 %, thereby counteracting Cd-induced oxidative stress, but also improved Cd chelation, sequestration, and exclusion by upregulating the expression levels of genes related to sulfur metabolism, heavy metal-associated isoprenylated plant protein (HIPP), and transporters such as vacuolar cation/proton exchanger (CAX3), metal-nicotianamine transporter (YSL), ATP-binding cassette (ABC), zinc/iron transporters (ZIP) and oxic-compound detoxification (DTX), ultimately reinforcing Cd tolerance. Together, our results suggest that B application reduces the negative effects of Cd on leaf growth, promotes photosynthesis, and decreases Cd transfer to fruits through its sequestration and retention.
Collapse
Affiliation(s)
- Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Huiling Fu
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingying Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yanbin Wang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
13
|
Shehzad J, Khan I, Zaheer S, Farooq A, Chaudhari SK, Mustafa G. Insights into heavy metal tolerance mechanisms of Brassica species: physiological, biochemical, and molecular interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108448-108476. [PMID: 37924172 DOI: 10.1007/s11356-023-29979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal (HM) contamination of soil due to anthropogenic activities has led to bioaccumulation and biomagnification, posing toxic effects on plants by interacting with vital cellular biomolecules such as DNA and proteins. Brassica species have developed complex physiological, biochemical, and molecular mechanisms for adaptability, tolerance, and survival under these conditions. This review summarizes the HM tolerance strategies of Brassica species, covering the role of root exudates, microorganisms, cell walls, cell membranes, and organelle-specific proteins. The first line of defence against HM stress in Brassica species is the avoidance strategy, which involves metal ion precipitation, root sorption, and metal exclusion. The use of plant growth-promoting microbes, Pseudomonas, Psychrobacter, and Rhizobium species effectively immobilizes HMs and reduces their uptake by Brassica roots. The roots of Brassica species efficiently detoxify metals, particularly by flavonoid glycoside exudation. The composition of the cell wall and callose deposition also plays a crucial role in enhancing HMs resistance in Brassica species. Furthermore, plasma membrane-associated transporters, BjCET, BjPCR, BjYSL, and BnMTP, reduce HM concentration by stimulating the efflux mechanism. Brassica species also respond to stress by up-regulating existing protein pools or synthesizing novel proteins associated with HM stress tolerance. This review provides new insights into the HM tolerance mechanisms of Brassica species, which are necessary for future development of HM-resistant crops.
Collapse
Affiliation(s)
- Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saira Zaheer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop growth and Development, Ministry of Agri-culture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Ouyang X, Ma J, Liu Y, Li P, Wei R, Chen Q, Weng L, Chen Y, Li Y. Foliar cadmium uptake, transfer, and redistribution in Chili: A comparison of foliar and root uptake, metabolomic, and contribution. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131421. [PMID: 37080031 DOI: 10.1016/j.jhazmat.2023.131421] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Atmospheric deposition is an essential cadmium (Cd) pollution source in agricultural ecosystems, entering crops via roots and leaves. In this study, atmospherically deposited Cd was simulated using cadmium sulfide nanoparticles (CdSN), and chili (Capsicum frutescens L.) was used to conduct a comparative foliar and root experiment. Root and foliar uptake significantly increased the Cd content of chili tissues as well as the subcellular Cd content. Scanning electron microscopy and high-resolution secondary ion mass spectrometry showed that Cd that entered the leaves via stomata was fixed in leaf cells, and the rest was mainly through phloem transport to the other organs. In leaf, stem, and root cell walls, Cd signal intensities were 47.4%, 72.2%, and 90.0%, respectively. Foliar Cd uptake significantly downregulated purine metabolism in leaves, whereas root Cd uptake inhibited stilbenoid, diarylheptanoid, and gingerol biosynthesis in roots. Root uptake contributed 90.4% Cd in fruits under simultaneous root and foliar uptake conditions attributed to xylem and phloem involvement in Cd translocation. Moreover, root uptake had a more significant effect on fruit metabolic pathways than foliar uptake. These findings are critical for choosing pollution control technologies and ensuring food security.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Sun P, Chen Y, Li X, Liu L, Guo J, Zheng X, Liu X. Detoxification mechanisms of biochar on plants in chromium contaminated soil: Chromium chemical forms and subcellular distribution. CHEMOSPHERE 2023; 327:138505. [PMID: 36965535 DOI: 10.1016/j.chemosphere.2023.138505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The complete pathway of chromium (Cr) transfer from soil to plant tissues and subcellular components under biochar amendment remains to be quantified, as well as the involved diverse detoxification processes in roots and stems respectively. Pot experiments and quantitative analysis were conducted to investigate Cr fixation in soil amended with Enteromorpha prolifera-derived biochar and subsequent phytoprocesses (Cr uptake, transfer, and phytotoxicity) in cultivated Secale cereale L. (rye). The results indicated that adding 5-30 g kg-1 of biochar increased the residual form of Cr (B4) in soil by 8-21% and decreased the bioavailable form of Cr (B1) by 9-29%. For Cr transferred to rye, Cr in the rye was mainly present in the low-toxicity bound state, with the acetic acid-extracted Cr (F4) (45-54%) in roots and the NaCl-extracted Cr (F3) (37-47%) in stems. The subcellular distribution of Cr in both roots and stems was predominantly in the cell wall and residues (T1), followed by the cytoplasm (T4). Partial least squares path model (PLS-PM) was used for quantifying the effect of biochar on the form changes and subcellular detoxification of Cr from soil to roots and stems to sub-cells. In soils, biochar reduced the bioavailability of Cr and decreased the transfer of Cr to rye. In plant roots, Cr was distributed mainly as low-toxicity phosphate complexes in cell walls and vacuoles in sub-cells (with the largest path coefficients of 0.90 and -0.91, respectively). In the stems, Cr was distributed mainly as proteins integrated into the cell walls and vacuoles. This was due to the difference in subcellular compartmentalization of detoxification in the roots and stems. These PLS-PM results provide new insights into the entire process of pollutant detoxification in complex environments.
Collapse
Affiliation(s)
- Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiaochen Li
- China Institute for Radiation Protection, Taiyuan, 030006, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
16
|
Xin J, Yuan H, Yang L, Liao Q, Luo J, Wang Y, Ye Z, Huang B. Effect of boron supply on the uptake and translocation of cadmium in Capsicum annuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114925. [PMID: 37080127 DOI: 10.1016/j.ecoenv.2023.114925] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Large areas of soil in southern China are contaminated with cadmium (Cd) and are deficient in boron (B). Previously, we suggested that B supplementation could reduce Cd accumulation in hot peppers (Capsicum annuum L.); however, the physiological mechanisms underlying this reduction remain unclear. In this study, the uptake and translocation of Cd in hot pepper plants were investigated using hydroponic experiments with different B and Cd treatments. A pot experiment was performed to verify whether B decreased the Cd concentration in hot peppers by minimizing the Cd translocation rate. The results of the dose- and time-dependent experiments showed that B supplementation reduced root Cd uptake and root-to-shoot Cd translocation. Additionally, B supplementation increased the root length, diameter, volume, surface area, and number of root forks and tips, as well as improving the relative absorbance of carboxyl groups under Cd exposure, leading to enhanced Cd fixation in the cell walls of the roots. As a result, the fruit Cd concentration decreased because B inhibited Cd translocation from the roots. Overall, the results demonstrate that B supplementation can reduce Cd accumulation in hot peppers by promoting normal root growth and development and by limiting the uptake and translocation of Cd.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Lang Yang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China; School of Humanity, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiemei Luo
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ziyi Ye
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
17
|
Huang YY, Shen C, Fu HL, Xin JL, He CT, Yang ZY. Proteomic and Biochemical Evidence Involving Root Cell Wall Biosynthesis and Modification, Tricarboxylic Acid Cycle, and Glutathione Metabolism in Cultivar-Dependent Cd Accumulation of Water Spinach ( Ipomoea aquatica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2784-2794. [PMID: 36727512 DOI: 10.1021/acs.jafc.2c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteomic analysis and biochemical tests were employed to investigate the critical biological processes responsible for the different cadmium (Cd) accumulations between two water spinach (Ipomoea aquatica) cultivars, QLQ and T308. QLQ, with lower shoot Cd accumulation and translocation factor than T308, possessed higher expression of cell wall biosynthesis and modification proteins in roots, together with higher lignin and pectin contents, higher pectin methylesterase activity, and lower pectin methylation. The results demonstrated that QLQ could more effectively restrict root-to-shoot Cd translocation by compartmentalizing more Cd in root cell walls. In contrast, T308 showed higher expression of the tricarboxylic acid (TCA) cycle, glutathione (GSH) metabolism, and heavy metal transporter proteins, accompanied by higher GSH content and glutathione S-transferase (GST) and glutathione reductase (GR) activity, which accelerated Cd uptake and translocation in T308. These findings revealed several critical biological processes responsible for cultivar-dependent Cd accumulation in water spinach, which are important for elucidating Cd accumulation and transport mechanisms in different cultivars.
Collapse
Affiliation(s)
- Ying-Ying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, People's Republic of China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, People's Republic of China
| | - Hui-Ling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, People's Republic of China
| | - Jun-Liang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, People's Republic of China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong 510275, People's Republic of China
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong 510275, People's Republic of China
| |
Collapse
|
18
|
Li S, Zhuo R, Yu M, Lin X, Xu J, Qiu W, Li H, Han X. A novel gene SpCTP3 from the hyperaccumulator Sedum plumbizincicola redistributes cadmium and increases its accumulation in transgenic Populus × canescens. FRONTIERS IN PLANT SCIENCE 2023; 14:1111789. [PMID: 36844053 PMCID: PMC9945123 DOI: 10.3389/fpls.2023.1111789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A cadmium (Cd) tolerance protein (SpCTP3) involved in the Sedum plumbizincicola response to Cd stress was identified. However, the mechanism underlying the Cd detoxification and accumulation mediated by SpCTP3 in plants remains unclear. We compared wild-type (WT) and SpCTP3-overexpressing transgenic poplars in terms of Cd accumulation, physiological indices, and the expression profiles of transporter genes following with 100 μmol/L CdCl2. Compared with the WT, significantly more Cd accumulated in the above-ground and below-ground parts of the SpCTP3-overexpressing lines after 100 μmol/L CdCl2 treatment. The Cd flow rate was significantly higher in the transgenic roots than in the WT roots. The overexpression of SpCTP3 resulted in the subcellular redistribution of Cd, with decreased and increased Cd proportions in the cell wall and the soluble fraction, respectively, in the roots and leaves. Additionally, the accumulation of Cd increased the reactive oxygen species (ROS) content. The activities of three antioxidant enzymes (peroxidase, catalase, and superoxide dismutase) increased significantly in response to Cd stress. The observed increase in the titratable acid content in the cytoplasm might lead to the enhanced chelation of Cd. The genes encoding several transporters related to Cd2+ transport and detoxification were expressed at higher levels in the transgenic poplars than in the WT plants. Our results suggest that overexpressing SpCTP3 in transgenic poplar plants promotes Cd accumulation, modulates Cd distribution and ROS homeostasis, and decreases Cd toxicity via organic acids. In conclusion, genetically modifying plants to overexpress SpCTP3 may be a viable strategy for improving the phytoremediation of Cd-polluted soil.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiaoyu Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Haiying Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
20
|
Liu J, Cheng J, Zhou C, Ma L, Chen X, Li Y, Sun X, Yan X, Geng R, Wan Q, Yu X. Uptake kinetics and subcellular distribution of three classes of typical pesticides in rice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159826. [PMID: 36374729 DOI: 10.1016/j.scitotenv.2022.159826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Food safety problems caused by pesticide residues have always been a concern for many people. In this study, we investigated the uptake, translocation and subcellular distribution of neonicotinoid insecticides, triazole fungicides, and sulfonylurea herbicides in rice plants (Oryza sativa L.). The time-dependent uptake kinetics of the three categories of pesticides with different molecular structures fit a first-order one-compartment kinetic model. The neonicotinoids (log Kow -0.66-0.8) were mainly concentrated in the leaves, and the triazoles (log Kow 3.72-4.4) were mainly concentrated in the roots. Neonicotinoid pesticides in the roots were preferentially transported across the membrane through the symplastic pathway; triazole pesticides except for triadimefon and myclobutanil preferentially passed through the symplastic pathway; and sulfonylurea pesticides (log Kow 0.034-2.89) were first transported upward through the apoplastic pathway. In the roots, neonicotinoids, triazoles, and sulfonylurea herbicides were mainly concentrated in the soluble fractions, cell wall and apoplast fractions, respectively. In addition, there was a high positive correlation between the subcellular distribution of pesticides in the roots, stems and leaves. Molecular weight and log Kow jointly affected the enrichment of triazole pesticides in the roots, stems and leaves and the transfer from stems to leaves, while water solubility and log Kow commonly affected neonicotinoids. There was a correlation between pesticide absorption and the molecular structures of pesticides. To develop pesticides with strong uptake and transport capabilities, it is necessary to consider that the electronegativity of some atoms is stronger, the sum of the topological indices of heteroatoms can be large, and the van der Waals volume increases accordingly.
Collapse
Affiliation(s)
- Jianan Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jinjin Cheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Chunli Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Liya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Xiaolong Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Yong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Xing Sun
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Xiaolong Yan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Renhua Geng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Qun Wan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China.
| | - Xiangyang Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| |
Collapse
|
21
|
Zou J, Wang Y, Wang S, Shang X. Ca alleviated Cd-induced toxicity in Salix matsudana by affecting Cd absorption, translocation, subcellular distribution, and chemical forms. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153926. [PMID: 36680839 DOI: 10.1016/j.jplph.2023.153926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a ubiquitous and highly toxic heavy metal pollutant, is toxic to animals and plants. Calcium (Ca) is an essential component for plant growth and reduces plant Cd absorption by competing with Cd. To gain deeper insight into the effects of Ca on Cd absorption, translocation, subcellular distribution, and chemical forms in S. matsudana seedlings under Cd stress, an investigation was conducted on these properties. Adding Ca alleviated Cd physiological toxicity in S. matsudana, reduced Cd absorption, increased the translocation from roots to shoots, lead to subcellular redistribution of Cd by increasing the proportion of Cd in soluble fractions but decreasing Cd in the cell wall and changed the chemical forms of Cd from 0.6 mol/L HCl- and 2% HAc-extracted Cd to 1 mol/L NaCl-extracted Cd. The energy dispersive X-ray analyses (EDXA) results revealed that after adding Ca, Cd was transferred through the root epidermis, cortex, endodermis, and vascular cylinder, transported to the shoots, and was highly accumulated in leaf epidermal and mesophyll cells, but less in leaf vein and guard cells. The genes involved in Cd uptake and xylem loading included NRAMP1, ZIP8, HMA2, and HMA4, which were up-regulated significantly (P < 0.05) in the Cd and Cd + Ca treatments compared to the control. The findings of this study provide new insight into the mechanism that Ca alleviates Cd toxicity in woody tree species, as well as propose an important prospect of Ca addition for improving the phytoremediation of Cd contamination.
Collapse
Affiliation(s)
- Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
| | - Yuerui Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Siyuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoshuo Shang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; Dalat Banner No .1 Middle School, Ordos City, 014300, Inner Mongolia, China
| |
Collapse
|
22
|
Xue X, Liu G, Tang Q, Shi H, Wu D, Jin C, Zhao H, Wei Y, Zhang Y. Multi-elements characteristic and potential risk of heavy metals in MOUTAN CORTEX from Anhui Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:7829-7842. [PMID: 35968156 PMCID: PMC9361998 DOI: 10.1007/s13762-022-04402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 06/12/2023]
Abstract
To ensure the quality and safety of herbs, the content of 54 elements in MOUTAN CORTEX (MC) was determined by the ICP-AES and ICP-MS, and the health risks of Cu, As, Cd, Pb, Hg and rare earth elements (REEs) were assessed. These herbs were collected from 5 producing areas in Anhui Province, China, namely Wuhu, Tongling, Bozhou, Xuancheng and Chizhou. The multi-elements fingerprint identification of MC in Anhui Province was established. The total amount of macro-elements from Wuhu and Tongling is significantly lower than Bozhou. Among all MC from 5 producing areas, the highest content is Ca. Except for Bozhou, the content of macro-elements and REES in the other 4 origins of MC is from highest to lowest: Ca > K > Mg > Al > Fe > Na and Ce > La > Nd > Y > Pr > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chemical forms of Cd in MC from Bozhou with the highest percentage were PH2O of high toxicity and migration, while the other 4 regions were PNaCl of low activity and mobility. There was a great difference in the content of inorganic elements and chemical forms of Cd between the MC produced from the plain (Bozhou) and the hilly areas (Wuhu, Tongling, Chizhou and Xuancheng). Except for Cd, the content of Cu, As, Pb and Hg in MC did not exceed the limit. The results of PTWIFact and ADI for Cd and REEs showed that MC herbs did not pose a risk to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s13762-022-04402-6.
Collapse
Affiliation(s)
- X. Xue
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 Anhui China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, 230012 China
| | - G. Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Q. Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - H. Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - D. Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, 230012 China
| | - C. Jin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, 230012 China
| | - H. Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, 230012 China
| | - Y. Wei
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Y. Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
23
|
Yang B, Shan J, Xing F, Dai X, Wang G, Ma J, Adegoke TV, Zhang X, Yu Q, Yu X. Distribution, accumulation, migration and risk assessment of trace elements in peanut-soil system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119193. [PMID: 35337887 DOI: 10.1016/j.envpol.2022.119193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Trace elements contamination is mainly originated from industrial emission, sewage irrigation and pesticides, and poses a threat to the environment and human health. This study analyzed the trace element pollutants in peanut-soil systems, the enrichment and translocation capacity of peanut to trace elements, and the potential risk of trace elements to environment and human health. The results indicated that Cd and Ni in peanut kernels exceeded the standard limits in 2019, and the exceeding rate were 9% and 31%, respectively. Cd in 8% of soil samples and As in 98% of soil samples exceeded the risk screening value of trace elements. The concentration of trace elements in peanuts was related to varieties and planting regions. In addition, there was a significant positive correlation between the concentration of Cd in peanut kernel and its concentration in soil. Compared with other trace elements, peanut kernels had stronger ability to enrich and transport Cd, Cu, and Zn, the BFs were 0.45, 0.51 and 0.47, respectively. After oil extraction, trace elements were mainly concentrated in peanut meal, and only 0.25% of Cd was in oil. The RI of trace elements was less than 150, indicating that the study area was under low degree of ecological risk. However, As and Cd might pose moderate risk to environment. Trace elements in soil and peanut could not cause non-carcinogenic and carcinogenic risks to human, but the HI and CR value of As (0.59 and 9.54 × 10-5) in soil and CRing value of Cd (9.25 × 10-7) in peanut were close to the critical value. We conclude that Cd pollution in peanut kernel, and Cd and As pollution in soil should be monitored to enter into the food chain or environment and to avoid the possible health hazards and environment risks.
Collapse
Affiliation(s)
- Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jihao Shan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaodong Dai
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, Henan, China
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tosin Victor Adegoke
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinyou Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, Henan, China
| | - Qiang Yu
- Qingdao Tianxiang Foods Group Co., Ltd, Qingdao, 266737, China
| | - Xiaohua Yu
- Qingdao Tianxiang Foods Group Co., Ltd, Qingdao, 266737, China
| |
Collapse
|
24
|
Huang Y, Huang B, Shen C, Zhou W, Liao Q, Chen Y, Xin J. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128713. [PMID: 35316635 DOI: 10.1016/j.jhazmat.2022.128713] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Large areas of farmland in southern China are facing environmental problems such as cadmium (Cd) contamination and boron (B) deficiency. The aim of this study was to investigate the biochemical and molecular mechanisms underlying the reduction in Cd accumulation in hot pepper (Capsicum annuum) by B application. A hydroponic experiment was conducted to compare the subcellular distribution of Cd, transcriptome profile, degree of pectin methylation, and glutathione (GSH) synthesis in the roots of hot pepper under different B and Cd conditions. Boron supply promoted root cell wall biosynthesis and pectin demethylation by upregulating related genes and increasing cell wall Cd concentration by 28%. In addition, with the application of B, the proportion of Cd in root cell walls increased from 27% to 37%. Boron supplementation upregulated sulfur metabolism-related genes but decreased cysteine and GSH contents in the roots. As a result, shoot Cd concentration decreased by 27% due to the decrease in GSH, a critical long-distance transport carrier of Cd. Consequently, B supply could reduce the uptake, translocation, and accumulation of Cd in hot pepper by retaining Cd in the root cell walls and decreasing GSH content.
Collapse
Affiliation(s)
- Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China
| | - Wenjing Zhou
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China
| | - Yixiang Chen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, Hunan Province, China.
| |
Collapse
|
25
|
Ouyang X, Ma J, Zhang R, Li P, Gao M, Sun C, Weng L, Chen Y, Yan S, Li Y. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128624. [PMID: 35278953 DOI: 10.1016/j.jhazmat.2022.128624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Atmospherically deposited cadmium (Cd) may accumulate in plants through foliar uptake; however, the foliar uptake, accumulation, and distribution processes of Cd are still under discussion. Atmospherically deposited Cd was simulated using cadmium sulfide (CdS) with various particle sizes and solubility. Water spinach (Ipomoea aquatica Forsk, WS) and pak choi (Brassica chinensis L., PC) leaves were treated with suspensions of CdS nanoparticles (CdSN), which entered the leaves via the stomata. Cd concentrations of WS and PC leaves treated with 125 mg L-1 CdSN reached up to 39.8 and 11.0 mg kg-1, respectively, which are higher than the critical leaf concentration for toxicity. Slight changes were observed in fresh biomass, photosynthetic parameters, lipid peroxidation, and mineral nutrient uptake. Exposure concentration, rather than particle size or solubility, regulated the foliar uptake and accumulation of Cd. Subcellular and the high-resolution secondary ion mass spectrometry (NanoSIMS) results revealed that Cd was majorly stored in the soluble fraction and cell walls, which is an important Cd detoxification mechanism in leaves. The potential health risks associated with consuming CdS-containing vegetables were highlighted. These findings facilitate a better understanding of the fate of atmospheric Cd in plants, which is critical in ensuring food security.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Ran Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Man Gao
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Chuanqiang Sun
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, The Netherlands.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Sun Yan
- Institute of Eeo-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
26
|
Yu X, Liang L, Xie Y, Tang Y, Tan H, Zhang J, Lin L, Sun B, Huang Z, Liu J, Li X, Tu L, Li H. Comparative Analysis of Italian Lettuce ( Lactuca sativa L. var. ramose) Transcriptome Profiles Reveals the Molecular Mechanism on Exogenous Melatonin Preventing Cadmium Toxicity. Genes (Basel) 2022; 13:955. [PMID: 35741717 PMCID: PMC9223142 DOI: 10.3390/genes13060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) accumulation in lettuce causes a large amount of yield loss during industry. Although many studies report that exogenous melatonin helps to alleviate the Cd stress of lettuce, the molecular mechanism for how plant tissue responds to Cd treatment is unclear. Herein, we applied both PacBio and Illumina techniques for Italian lettuce under different designed treatments of Cd and melatonin, aiming to reveal the potential molecular pathway of the response to Cd stress as well as the how the pre-application of exogenous melatonin affect this process. This result reveals that the root has the biggest expression pattern shift and is a more essential tissue to respond to both Cd and melatonin treatments than leaves. We reveal the molecular background of the Cd stress response in prospects of antioxidant and hormone signal transduction pathways, and we found that their functions are diverged and specifically expressed in tissues. We also found that candidate genes related to melatonin detoxify during Cd stress. Our study sheds new light for future research on how melatonin improves the cadmium resistance of lettuce and also provide valuable data for lettuce breeding.
Collapse
Affiliation(s)
- Xuena Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Yongdong Xie
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| | - Huaqiang Tan
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Ji Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Xiaomei Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan, Chengdu 610300, China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huanxiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| |
Collapse
|
27
|
Luo K, Liu H, Liu Q, Tu Y, Yu E, Xing D. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly. ENVIRONMENTAL TECHNOLOGY 2022; 43:10-20. [PMID: 32431241 DOI: 10.1080/09593330.2020.1772375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The high geological background of heavy metal cadmium (Cd) in geochemical anomaly areas in Southwest China and the anthropogenic pollution superposition effect in some typical areas due to mining exploitation have attracted special attention for several decades. The accumulation and migration of Cd in the farmland soil-crop system was worth discussing. In this study, the representative yellow soil and limestone soil in Guizhou Province, as well as three types of pepper (Capsicum annuum L.) were selected to investigate Cd accumulation and migration regulation from soil to plants using pot tests at different Cd concentration levels. For red cluster pepper, line pepper and hybrid pepper, the accumulation capacity of Cd in various parts was similar as follows: Cdroot > Cdstem ≈ Cdleaf > Cdfruit. The differences in the Cd concentration between pepper varieties were as follows: Cd in line pepper roots was higher than that in red cluster pepper and hybrid pepper, but for leaves and fruits, the Cd concentration of red cluster pepper was higher than the others. A higher accumulation and lower transport capacity of Cd in yellow soil as well as a lower accumulation and higher transport capacity of Cd in limestone soil were achieved based on the results of enrichment coefficients and transport coefficients in yellow soil. The red pepper Cd concentration was higher than that of the other two types. The accumulation and transformation of Cd for peppers in yellow soil is more significant (p < 0.05), which results in a higher risk of migration through the food chain.
Collapse
Affiliation(s)
- Kai Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Qingdong Liu
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Yu Tu
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Enjiang Yu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Dan Xing
- Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| |
Collapse
|
28
|
Shen C, Fu HL, Liao Q, Huang B, Fan X, Liu XY, Xin JL, Huang YY. Transcriptome analysis and physiological indicators reveal the role of sulfur in cadmium accumulation and transportation in water spinach (Ipomoea aquatica Forsk.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112787. [PMID: 34544020 DOI: 10.1016/j.ecoenv.2021.112787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination of croplands has become a threat to crop food safety and human health. In this study, we investigated the effect of sulfur on the growth of water spinach under Cd stress and the amount of Cd accumulation by increasing the soil sulfate content. We found that the biomass of water spinach significantly increased after the application of sulfur while the shoot Cd concentration was considerably reduced (by 31%). The results revealed that sulfur could promote the expression of PME and LAC genes, accompanied by an increase in PME activity and lignin content. Also, the cell wall Cd content of water spinach roots was significantly increased under sulfur treatment. This finding suggests that sulfur could enhance the adsorption capacity of Cd by promoting the generation of cell wall components, thereby inhibiting the transportation of Cd via the apoplastic pathway. In addition, the higher expression of Nramp5 under the Cd1S0 (concentration of Cd and sulfur are 2.58 and 101.31 mg/kg respectively) treatment led to increased Cd uptake. The CAX3 and ABC transporters and GST were expressed at higher levels along with a higher cysteine content and GSH/GSSR value under Cd1S1 (concentration of Cd and sulfur are 2.60 and 198.36 mg/kg respectively) treatment, which contribute to the Cd detoxification and promotion of Cd compartmentalization in root vacuoles, thereby reducing the translocation of Cd to the shoot via the symplastic pathway.
Collapse
Affiliation(s)
- Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Hui-Ling Fu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Xi Fan
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Xue-Yang Liu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jun-Liang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Ying-Ying Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
29
|
Shen C, Fu HL, Liao Q, Huang BF, Huang YY, Xin JL. Selection for low-cadmium cultivars and cadmium subcellular distribution comparison between two selected cultivars of eggplant (Solanum melongena L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57739-57750. [PMID: 34091834 DOI: 10.1007/s11356-021-14652-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Excessive accumulation of cadmium (Cd) in vegetables poses a serious threat to human health; therefore, it is urgent to screen and cultivate vegetable cultivars with low Cd accumulation in the edible parts. Eggplant has a high tendency for Cd accumulation, but research on its low Cd accumulation cultivars is still rare. In this study, to screen low-Cd cultivars, 30 eggplant cultivars were screened using soils containing 0.22 mg/kg, 2.9 mg/kg (low-Cd), and 4.7 mg/kg of Cd (high-Cd). MYCQ and ZGQ were confirmed as low-Cd cultivars, BXGZ and WCCQ were confirmed as high-Cd cultivars, and a 2.52-3.88-fold difference in Cd concentration was observed in their fruits. The subcellular distribution revealed that the root cell wall and vacuole Cd concentrations of a typical low-Cd cultivar (MYCQ) were significantly higher than those of a typical high-Cd cultivar (BXGZ); however, the Cd concentrations in the cell wall and vacuole in fruits, leaves, and stems were significantly lower in MYCQ than in BXGZ. These results indicated that the low-Cd cultivars of eggplant could lessen Cd toxicity through the elevated Cd retention and sequestration levels of root cell walls and vacuoles, thus reducing Cd transport from roots to aboveground tissues, leading to low Cd accumulation. The findings of this study can provide a physiological and biochemical foundation for the screening and breeding of low-Cd cultivars of fruit vegetables and demonstrates that the application of low-Cd cultivars is necessary for food safety in humans.
Collapse
Affiliation(s)
- Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang, 421002, China
| | - Hui-Ling Fu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang, 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang, 421002, China
| | - Bai-Fei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang, 421002, China
| | - Ying-Ying Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang, 421002, China.
| | - Jun-Liang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang, 421002, China.
| |
Collapse
|
30
|
Yu PF, Li YW, Zou LJ, Liu BL, Xiang L, Zhao HM, Li H, Cai QY, Hou XW, Mo CH, Wong MH, Li QX. Variety-Selective Rhizospheric Activation, Uptake, and Subcellular Distribution of Perfluorooctanesulfonate (PFOS) in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8730-8741. [PMID: 34169723 DOI: 10.1021/acs.est.1c01175] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.
Collapse
Affiliation(s)
- Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Long-Jun Zou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Wen Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- Consortium on Environment, Health, Education and Research (CHEER), The Education University of Hong Kong, Hong Kong, P. R. China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
31
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10. [PMID: 34068211 DOI: 10.20944/preprints202104.0637.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - José Manuel Martí-Guillen
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Sara E Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
32
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10:antiox10050775. [PMID: 34068211 PMCID: PMC8153167 DOI: 10.3390/antiox10050775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
|
33
|
Jiang Y, Han J, Xue W, Wang J, Wang B, Liu L, Zou J. Overexpression of SmZIP plays important roles in Cd accumulation and translocation, subcellular distribution, and chemical forms in transgenic tobacco under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112097. [PMID: 33667736 DOI: 10.1016/j.ecoenv.2021.112097] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Plant ZIP genes represent an important transporter family and may be involved in cadmium (Cd) accumulation and Cd resistance. In order to explore the function of SmZIP isolated from Salix matsudana, the roles of SmZIP in Cd tolerance, uptake, translocation, and distribution were determined in the present investigation. The transgenic SmZIP tobacco was found to respond to external Cd stress differently from WT tobacco by exhibiting a higher growth rate and more vigorous phenotype. The overexpression of SmZIP in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects. Compared to WT tobacco, the Cd content of the root, stem, and leaf in the transgenic tobacco increased, and the zinc, iron, copper, and manganese contents also increased. The assimilation factor, translocation factor and bioconcentration factor of Cd were improved. The scanning electron microscopy and energy dispersive X-ray analysis results of the root maturation zone exposed to Cd for 24 h showed that Cd was transferred through the root epidermis, cortex, and vascular cylinder and migrated to the aboveground parts via the vascular cylinder, resulting in the transgenic tobacco accumulating more Cd than the WT plants. Based on the transverse section of the leaf main vein and leaf blade, Cd was transported through the vascular tissues to the leaves and accumulated more greatly in the leaf epidermis, but less in the leaf mesophyll cells, following the overexpression of SmZIP to reduce the photosynthetic toxicity. The overexpression of SmZIP resulted in the redistribution of Cd at the subcellular level, a decrease in the percentage of Cd in the cell wall, and an increase of the Cd in the soluble fraction in both the roots and leaves. It also changed the percentage composition of different Cd chemical forms by elevating the proportion of Cd extracted using 2% HAc and 0.6 mol/L HCl, but lowering that of the Cd extracted using 1 mol/L NaCl in both the leaves and roots under 10 and 100 μmol/L Cd stress for 28 d. The results implied that SmZIP played important roles in advancing Cd uptake, accumulation, and translocation, as well as in enhancing Cd resistance by altering the Cd subcellular distribution and chemical forms in the transgenic tobacco. The study will be useful for future phytoremediation applications to clean up Cd-contaminated soil.
Collapse
Affiliation(s)
- Yi Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Jiahui Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Wenxiu Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Jiayue Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China; Tianjin Wutong Middle School, China
| | - Binghan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Liangjing Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, China.
| |
Collapse
|
34
|
Wang X, Zhang B, Wu D, Hu L, Huang T, Gao G, Huang S, Wu S. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111553. [PMID: 33254410 DOI: 10.1016/j.ecoenv.2020.111553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Duckweed (Landoltia punctata) is an ideal species to restore cadmium (Cd)-polluted waters due to its fast growth and easy harvesting. To understand its tolerance and detoxification mechanism, the Cd stress responses, subcellular Cd distribution and chemically bound Cd forms (especially protein-bound Cd) were surveyed in this study. L. punctata, a potential Cd bioremediation plant, was cultured hydroponically with Cd concentrations of 0.0, 0.5, 2.0, and 5.0 mg L-1 for 5 days. The results showed that the Cd content in L. punctata increased significantly as the Cd content increased. The majority of Cd was localized in the soluble fraction (23-55%) and the cell wall fraction (21-54%), and only 14-23% of Cd was located in cell organelles. Analysis of the Cd chemical forms demonstrated that the largest portion of Cd was found in 1 M NaCl extracts, followed by d-H2O and 2% HAc extracts, indicating that Cd was mainly bound to different proteins. Albumin- and globulin-bound Cd forms were predominant, together accounting for over 80% of the total protein-bound Cd in L. punctata. These results indicate that cell wall immobilization and vacuolar dissociation of Cd are possible primary strategies for Cd biosorption and detoxification in L. punctata, which occur mainly through chemical forms changes, especially the binding of Cd to proteins.
Collapse
Affiliation(s)
- Xianglian Wang
- School of Resource Environment and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resources Utilization Ministry of Education, Nanchang University, Nanchang 330031, China; School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Baojun Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China; School of Public Health, Nanchang University, Nanchang 330006, China.
| | - Daishe Wu
- School of Resource Environment and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resources Utilization Ministry of Education, Nanchang University, Nanchang 330031, China.
| | - Liang Hu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Ting Huang
- School of Resource Environment and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resources Utilization Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Guiqing Gao
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Shan Huang
- School of Resource Environment and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resources Utilization Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Shan Wu
- School of Resource Environment and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resources Utilization Ministry of Education, Nanchang University, Nanchang 330031, China
| |
Collapse
|
35
|
Uddin MM, Chen Z, Huang L. Cadmium accumulation, subcellular distribution and chemical fractionation in hydroponically grown Sesuvium portulacastrum [Aizoaceae]. PLoS One 2020; 15:e0244085. [PMID: 33370774 PMCID: PMC7769616 DOI: 10.1371/journal.pone.0244085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
Sesuvium portulacastrum is a well-known halophyte with considerable Cd accumulation and tolerance under high Cd stress. This species is also considered as a good candidate of Cd phytoremediation in the polluted soils. However, the mechanism of Cd accumulation, distribution and fractionation in different body parts still remain unknown. Seedlings of Sesuvium portulacastrum were studied hydroponically under exposure to a range of Cd concentrations (50 μM or μmol/L to 600 μM or μmol/L) for 28 days to investigate the potential accumulation capability and tolerance mechanisms of this species. Cd accumulation in roots showed that the bio-concentration factor was > 10, suggesting a strong ability to absorb and accumulate Cd. Cd fractionation in the aboveground parts showed the following order of distribution: soluble fraction > cell wall > organelle > cell membrane. In roots, soluble fraction was mostly predominant than other fractions. Cd speciation in leaves and stems was mainly contained of sodium chloride and deionised water extracted forms, suggesting a strong binding ability with pectin and protein as well as with organic acids. In the roots, inorganic form of Cd was dominant than other forms of Cd. It could be suggested that sodium chloride, deionised water and inorganic contained form of Cd are mainly responsible for the adaption of this plant in the Cd stress environment and alleviating Cd toxicity.
Collapse
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhenfang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
36
|
Guo X, Ji Q, Rizwan M, Li H, Li D, Chen G. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111184. [PMID: 32861009 DOI: 10.1016/j.ecoenv.2020.111184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.
Collapse
Affiliation(s)
- Xiongfei Guo
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Ji
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Rizwan
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongqin Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guikui Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
37
|
Jia H, Wang X, Shi C, Guo J, Ma P, Ren X, Wei T, Liu H, Li J. Hydrogen sulfide decreases Cd translocation from root to shoot through increasing Cd accumulation in cell wall and decreasing Cd 2+ influx in Isatis indigotica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:605-612. [PMID: 32846396 DOI: 10.1016/j.plaphy.2020.08.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 05/24/2023]
Abstract
Hydrogen sulfide (H2S), a small gaseous signalling molecule, plays a pivotal role in the plant response to heavy metal stress. Here, we revealed a novel mechanism of Isatis indigotica resistance to cadmium (Cd) stress, in which H2S promotes Cd accumulation in the root and decreases the long-distance transport of Cd from the root to shoot. Cd significantly inhibited Isatis indigotica growth and induced the endogenous H2S level. Application of NaHS (a H2S donor) alleviated the effects of Cd. NaHS restriction of the translocation factor of Cd, elevated the Cd content in roots and depressed the Cd content in shoots. Cd stress decreased the cellulose and pectin contents in the cell wall, but NaHS restored the effect of Cd on the cell wall components. The Cd2+ fluxes were detected by noninvasive microtest technology (NMT). The data showed that NaHS pretreatment decreased the Cd2+ influx and proportion of the Cd content in organelles. We analyzed the effect of NaHS on the metallothionein and phytochelatin (PC) contents in roots and found that the PC and metallothionein1A (MT1A) contents were induced by NaHS. Additionally, the chemical forms of Cd2+ were changed by NaHS. Thus, H2S alters the content of cell wall component, improves Cd accumulation in the cell wall, depresses Cd2+ transmembrane movement, induces the synthesis of metallothioneins and decreases the toxicity of intracellular Cd. Our finding has great value to reduce the loss of Isatis indigotica resulted by heavy metals stress.
Collapse
Affiliation(s)
- Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Cong Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Peiyun Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Huaxin Liu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
38
|
Li G, Li Q, Wang L, Zhang D. Cadmium tolerance and detoxification in Myriophyllum aquaticum: physiological responses, chemical forms, and subcellular distribution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37733-37744. [PMID: 32607997 DOI: 10.1007/s11356-020-09872-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophytes have been found to be promising in removing cadmium (Cd) from aquatic ecosystems; however, the mechanism of Cd detoxification in these plants is still poorly understood. In the present study, Cd chemical forms and subcellular distributing behaviors in Myriophyllum aquaticum and the physiological mechanism underlying M. aquaticum in response to Cd stress were explored. During the study, M. aquaticum was grown in a hydroponic system and was treated under different concentrations of Cd (0, 0.01, 0.05, 0.25, and 1.25 mg/L) for 14 days. The differential centrifugation suggested that most Cd was split in the soluble fraction (57.40-66.25%) and bound to the cell wall (24.92-38.57%). Furthermore, Cd in M. aquaticum was primarily present in NaCl-extractable Cd (51.76-91.15% in leaves and 58.71-84.76% in stems), followed by acetic acid-extractable Cd (5.17-22.42% in leaves and 9.54-16.56% in stems) and HCl-extractable Cd (0.80-12.23% in leaves and 3.56-18.87% in stems). The malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations in M. aquaticum were noticeably increased under each Cd concentration. The activities of catalase (CAT), guaiacol peroxidase (POD), and superoxide dismutase (SOD) in leaves were initially increased under relatively low concentrations of Cd but were decreased further with the increasing concentrations of Cd. The ascorbate (AsA), glutathione (GSH), and nitric oxide (NO) concentrations in stems increased with increasing Cd concentrations. Taken together, our results indicate that M. aquaticum can be used successfully for phytoremediation of Cd-contaminated water, and the detoxification mechanisms in M. aquaticum include enzymatic and non-enzymatic antioxidants, subcellular partitioning, and the formation of different chemical forms of Cd.
Collapse
Affiliation(s)
- Guoxin Li
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China.
| | - Qingsong Li
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
| | - Lei Wang
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
| | - Dandan Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
39
|
Xiao Z, Pan G, Li X, Kuang X, Wang W, Liu W. Effects of exogenous manganese on its plant growth, subcellular distribution, chemical forms, physiological and biochemical traits in Cleome viscosa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110696. [PMID: 32380306 DOI: 10.1016/j.ecoenv.2020.110696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Cleome viscosa L. is a promising species for the phytoremediation of Mn-contaminanted soil. To reveal the adaptive mechanisms of species to Mn stress, plant growth, Mn subcellular distribution, Mn chemical forms, and plant physiological and biochemical traits were characterized in plants grown under different concentrations of Mn2+ (0, 1000, 5000, 10000, 15000 and 20000 μM). The results showed that C. viscosa plant biomass initially increased and then decreased with rising Mn treatment concentration. C. viscosa plants can accumulate high levels of Mn in roots and leaves, and both the bioconcentration factor (BCF) and the translocation factor (TF) exhibited values higher than one. Mn was primarily retained in the cell wall and soluble fractions. Predominant chemical forms of Mn were pectate and protein, phosphates, and oxalates-integrated Mn. The activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and the contents of proline, soluble sugar, and soluble protein initially increased and then decreased with enhancing Mn treatment concentration, whereas the malondialdehyde (MDA) content simultaneously displayed a gradual increase. Combined, these results indicate that C. viscosa can tolerate Mn-stress conditions by increasing antioxidant enzyme activities and non-enzymatic metabolites contents. In addition, Mn immobilization in the cell wall and soluble fractions, alongside the storage of Mn in low-activity chemical forms are further important mechanisms to cope with high environmental Mn concentration. This study reveals the adaptive mechanisms of plants to Mn stress, and provides a theoretical basis for the use of C. viscosa as a candidate phytoremediation plant for Mn-contaminated soil.
Collapse
Affiliation(s)
- Zehua Xiao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xinhang Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xueshao Kuang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Wumin Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| |
Collapse
|
40
|
Functional Analysis of Organic Acids on Different Oilseed Rape Species in Phytoremediation of Cadmium Pollution. PLANTS 2020; 9:plants9070884. [PMID: 32668773 PMCID: PMC7412029 DOI: 10.3390/plants9070884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) pollution in soil is becoming increasingly serious due to anthropogenic activities, which not only poses a threat to the ecological environment, but also causes serious damage to human health via the biological chain. Consequently, special concerns should be paid to develop and combine multiple remediation strategies. In this study, different subspecies of oilseed rape, Brassica campestris, Brassica napus and Brassica juncea were applied, combined with three organic acids, acetic acid, oxalic acid and citric acid, in a simulated Cd-contaminated soil. Various physiological and biochemical indexes were monitored in both plant seedling, growth period and mature stage. The results showed that organic acids significantly promoted the growth of Brassica campestris and Brassica juncea under Cd stress. The photosynthesis and antioxidant enzyme activities in Brassica campestris and Brassica juncea were induced at seedling stage, while that in Brassica napus were suppressed and disturbed. The enrichment of Cd in oilseed rape was also obviously increased. Brassica juncea contained relatively high resistance and Cd content in plant but little Cd in seed. Among the three acids, oxalic acids exhibited the most efficient promoting effect on the accumulation of Cd by oilseed rape. Here, a comprehensive study on the combined effects of oilseed rape and organic acids on Cd contaminated soil showed that Brassica juncea and oxalic acid possessed the best effect on phytoremediation of Cd contaminated soil. Our study provides an optimal way of co-utilizing oilseed rape and organic acid in phytoremediation of Cd contaminated soil.
Collapse
|
41
|
Ju C, Dong S, Zhang H, Yao S, Wang F, Cao D, Xu S, Fang H, Yu Y. Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.). CHEMOSPHERE 2020; 248:126024. [PMID: 32004891 DOI: 10.1016/j.chemosphere.2020.126024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Root uptake, translocation, and subcellular distribution of six pesticides (dinotefuran, thiamethoxam, imidacloprid, imazethapyr, propiconazole, and chlorpyrifos) with Kow ranging from -0.549 to 4.7 were investigated in wheat to study transportation and accumulation of pesticides. The root bioconcentration factor (RCF) of pesticides decreased with water solubility (R2 = 0.6121) and increased with hydrophobicity (when the pH-adjusted log Kow > 2, R2 = 0.925), respectively. The translocation of neutral pesticides from roots to shoots increased positively with water solubility (R2 > 0.6484) but decreased with hydrophobicity (R2 > 0.8039). The subcellular fraction concentration factor (SFCF) increased linearly with hydrophobicity of the tested pesticides (R2 > 0.958). The log RCF was positively correlated with log SFCF in root cell walls (R2 = 0.9894) and organelles (R2 = 0.9786). Transportation of the pesticides from roots to stems and stems to leaves was adversely affected by the log SFCF of cell walls and organelles of roots (R2 > 0.7997) and stems (R2 > 0.6666), respectively. Hydrophobicity-dependent SFCF is a factor governing accumulation of pesticides in roots after uptake and their subsequent upward translocation.
Collapse
Affiliation(s)
- Chao Ju
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
42
|
Xiao YT, Du ZJ, Busso CA, Qi XB, Wu HQ, Guo W, Wu DF. Differences in root surface adsorption, root uptake, subcellular distribution, and chemical forms of Cd between low- and high-Cd-accumulating wheat cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1417-1427. [PMID: 31749002 DOI: 10.1007/s11356-019-06708-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The differences in the mechanism of cadmium (Cd) accumulation in the grains of different wheat (Triticum aestivum L.) cultivars remain unclear. Thus, we conducted a hydroponic experiment in a greenhouse to compare root surface adsorption, root uptake, subcellular distribution, and chemical forms of Cd between low- and high-Cd-accumulating wheat cultivars at seedling stage, to improve our understanding of the differences between cultivars. The results showed that Cd adsorbed on the root surface was mainly in a complexed form, and the total amount of Cd on the Yaomai16 (YM, high-Cd-accumulating genotypes) root surface was higher (p < 0.05) than that on Xinmai9817 (XM, low-Cd-accumulating genotypes). A large amount of Cd ions adsorbed on root surface would cause plant damage and inhibit growth. Comparing the root-to-shoot translocation factors of Cd, the transfer coefficients of YM were 1.017, 1.446, 1.464, and 1.030 times higher than those of XM under 5, 10, 50, and 100 μmol L-1 Cd treatments, respectively. The subcellular distribution of Cd under Cd exposure is mainly in the cell wall and soluble fraction. The proportions of Cd in YM shoot soluble fraction were higher than those in XM, which was the main detoxification mechanism limiting the activity of Cd and may be responsible for low Cd accumulation in grains, while the effects of the chemical forms of Cd on migration and detoxification were not found to be related to Cd accumulation in the kernels.
Collapse
Affiliation(s)
- Ya-Tao Xiao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453003, People's Republic of China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, Henan, 453003, People's Republic of China
- Graduate University of Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhen-Jie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453003, People's Republic of China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, Henan, 453003, People's Republic of China
| | - Carlos-A Busso
- Departamento de Agronomía-CERZOS (CONICET), Universidad Nacional del Sur, San Andrés 800, 8000, Bahía Blanca, Prov. Buenos Aires, Argentina
| | - Xue-Bin Qi
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453003, People's Republic of China.
| | - Hai-Qing Wu
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453003, People's Republic of China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, Henan, 453003, People's Republic of China
| | - Wei Guo
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, 453003, People's Republic of China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, Henan, 453003, People's Republic of China
| | - Da-Fu Wu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| |
Collapse
|
43
|
Pan G, Yan W, Zhang H, Xiao Z, Li X, Liu W, Zheng L. Subcellular distribution and chemical forms involved in manganese accumulation and detoxification for Xanthium strumarium L. CHEMOSPHERE 2019; 237:124531. [PMID: 31404737 DOI: 10.1016/j.chemosphere.2019.124531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 05/22/2023]
Abstract
Xanthium strumarium L. is a candidate species for manganese (Mn)-phyto-remediation. To reveal the mechanism of this species adaptive to Mn stress, the growth, Mn subcellular distribution, chemical forms, as well as micro-structure and ultra-structure responses of the mining ecotype (ME) of X. strumarium to Mn stress were studied with the non-mining ecotype (NME) as the reference by a hydroponic experiment. The results showed the ME demonstrated a higher tolerance to Mn stress with a superior growth and a higher tolerance index (TI) when compared with the NME. The concentrations of Mn in leaves, stems, and roots of the ME were 1.1-1.8, 1.2-1.9, and 1.3-1.9 times higher than those in the corresponding organs of the NME, respectively. The micro-structure and ultra-structure showed abnormal alterations, such as shrunken ducts and sieve canals, round-shaped chloroplasts, increased starch and osmiophilic granules, as well as expanded and non-compact granum thylakoids in the NME, compared to the ME. More than 83% of Mn was localized in cell wall and soluble fraction, while the Mn concentration in all fractions had a direct linear relationship with Mn treatment in the ME. The proportions of pectates and protein integrated-Mn, phosphate-Mn, and oxalate-Mn forms were dominant in leaves and stems of the ME, whereas, in the NME the relative proportions of inorganic Mn and water-soluble Mn forms in the roots was higher than the other forms. Altogether, the combination of preferential distribution of Mn in the cell wall and soluble fraction, and storage of Mn in low toxicity forms, such as phosphate-Mn, pectates and protein-bound Mn, and oxalate-Mn, might be responsible for alleviating Mn toxicity in the ME.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China
| | - Heping Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Zehua Xiao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xinhang Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Li Zheng
- Research Academy of Green Development, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
44
|
Pan G, Zhang H, Liu W, Liu P. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding manganese tolerance in the herb Macleaya cordata (papaveraceae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:455-462. [PMID: 31228821 DOI: 10.1016/j.ecoenv.2019.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Macleaya cordata is a perennial herb, a candidate phytoremediation plant with high biomass and manganese (Mn) tolerance. To study the mechanism underlying its Mn adaptability, Mn2+ at various concentrations (0, 1000, 5000, 10000, 15000, and 20000 μM) were applied to M. cordata to investigate the subcellular distribution and chemical forms of Mn, as well as the resulting physiological and biochemical changes by pot culture experiment under natural light in a greenhouse. According to our results, Mn level in M. cordata increased with exogenous Mn concentrations; and Mn contents in different tissues exhibited a leaf > root > stem pattern. Meanwhile, biomass and the level of photosynthetic pigments increased at lower Mn concentrations but declined as Mn concentration further ascended. Subcellular distribution analysis revealed that Mn was sequestered in cell wall and vacuole; in addition, it was incorporated into pectates and protein, phosphates, and oxalates. These findings revealed a possible effective strategy for M. cordata to reduce Mn mobility and toxicity. Moreover, a continuous boost in the level of malondialdehyde was observed with Mn gradient; whereas contents of soluble proteins and proline, and the activities of superoxide dismutase and peroxidase were initially increased and then dropped. Altogether, these results indicated that most Mn was trapped in the cell wall and soluble fractions in low toxicity forms such as pectates and protein, phosphates, and oxalates. These strategies, that is functioning cooperatively with the well-coordinated antioxidant defense systems and the non-enzymatic metabolites, confer strong resistance to Mn in M. cordata.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China.
| | - Heping Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Peng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China
| |
Collapse
|
45
|
Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T. New Biofortification Tool: Wheat TaCNR5 Enhances Zinc and Manganese Tolerance and Increases Zinc and Manganese Accumulation in Rice Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9877-9884. [PMID: 31398030 DOI: 10.1021/acs.jafc.9b04210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heavy metal contaminants and nutrient deficiencies in soil negatively affect crop growth and human health. The plant cadmium resistance (PCR) protein transports heavy metals. The abundance of PCR is correlated with that of cell number regulator (CNR) protein, and the two proteins have similar conserved domains. Hence, CNR might also participate in heavy metal transport. We isolated and analyzed TaCNR5 from wheat (Triticum aestivum). The expression level of TaCNR5 in the shoots of wheat increased under cadmium (Cd), zinc (Zn), or manganese (Mn) treatments. Transgenic plants expressing TaCNR5 showed enhanced tolerance to Zn and Mn. Overexpression of TaCNR5 in Arabidopsis increased Cd, Zn, and Mn translocation from roots to shoots. The concentrations of Zn and Mn in rice grains were increased in transgenic plants expressing TaCNR5. These roles of TaCNR5 in the translocation and distribution of heavy metals mean that it has potential as a genetic biofortification tool to fortify cereal grains with micronutrients.
Collapse
Affiliation(s)
- Kun Qiao
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography , Shenzhen University , Shenzhen , Guangdong 518060 , People's Republic of China
| | - Fanhong Wang
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Shuang Liang
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hong Wang
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography , Shenzhen University , Shenzhen , Guangdong 518060 , People's Republic of China
| | - Tuanyao Chai
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Southeast Asia Biodiversity Research Institute , Chinese Academy of Science , Yezin , Nay Pyi Taw 05282 , Myanmar
| |
Collapse
|
46
|
Chi K, Zou R, Wang L, Huo W, Fan H. Cellular distribution of cadmium in two amaranth (Amaranthus mangostanus L.) cultivars differing in cadmium accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22147-22158. [PMID: 31115806 DOI: 10.1007/s11356-019-05390-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Differences in cellular cadmium (Cd) distribution between Cd-tolerant and Cd-sensitive lines of amaranth (Amaranthus mangostanus L.) may reveal mechanisms involved in Cd tolerance and hyperaccumulation. We compared the cellular distribution and accumulation of Cd in roots, stems, and leaves between a low-Cd accumulating cultivar (Zibeixian, L-Cd) and a high-Cd accumulating cultivar (Tianxingmi, H-Cd) in a hydroponic experimental system. In all treatments, H-Cd grew better than L-Cd and accumulated more Cd. As the Cd concentration increased, the H-Cd plants grew normally and their biomass increased, except in the 60 μM Cd treatment. The biomass of L-Cd decreased with increasing Cd concentrations. The highest Cd concentration in the roots, stems, and leaves of H-Cd was 950 mg/kg, 305 mg/kg, and 205 mg/kg, respectively, compared with 269 mg/kg, 62.9 mg/kg, and 74.8 mg/kg, respectively, in L-Cd. The Cd distribution differed between the two cultivars. Scanning and transmission electron microscopy and energy-dispersive spectrometry analyses showed that Cd was distributed across the entire cross section of H-Cd roots but largely restricted to the epidermal cells and the exodermis of L-Cd roots. The main Cd storage sites were the root apoplast, cell walls, and intercellular spaces in H-Cd and the root epidermal cells and the exodermis in L-Cd. In H-Cd leaves, Cd accumulated mainly in vacuoles of epidermal cells and, at high external Cd concentrations, in the vacuoles of mesophyll cells.
Collapse
Affiliation(s)
- Keyu Chi
- Beijing Construction Engineering Group Environmental Remediation Co., Ltd., Beijing, 100015, People's Republic of China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Rong Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Li Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Wenmin Huo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, People's Republic of China
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Hongli Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, People's Republic of China.
| |
Collapse
|
47
|
Zhang JQ, Zhou MH, Tian W, Wu YX, Chen X, Wang SX. In situ fast analysis of cadmium in rice by diluted acid extraction-anodic stripping voltammetry. RSC Adv 2019; 9:19965-19972. [PMID: 35514682 PMCID: PMC9065540 DOI: 10.1039/c9ra03073e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 11/21/2022] Open
Abstract
In China, the production has not realized intensive cultivation and the problem of cadmium (Cd)-contaminated rice is salient, so it is important to classify rice with different degrees of Cd pollution by rapid detection method in situ. This paper established a method with a combination of dilute acid extraction pretreatment and electrochemical devices. Cd was extracted from rice using 3% HCl for 5 min. A standard curve was obtained based on a certified reference material in the rice matrix with different concentrations of Cd, which was fitted with the Cd concentration (μg kg-1) against the stripping peak current value (μA), and the linear correlation coefficient was 0.9997. To analyze the applicability of the method, three factors including substrate diluents, particle diameter of the sample, and stability towards the method were evaluated. The limit of detection (LOD) was 2.02 μg kg-1, and the repeatability and accuracy were satisfactory. Cd was determined in 142 samples collected from three major grain-producing provinces of China, and the results have good consistence with the microwave digestion-ICP-MS method. The developed method combined dilute acid extraction with a matrix matching standard curve in ASV for the first time, and it was significantly satisfactory for the detection requirements in China.
Collapse
Affiliation(s)
- Jie-Qiong Zhang
- Cereals and Oils Quality and Safety Research Institution, Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain) No. 23 Yongwang Str, DaXing District Beijing 102600 China
| | - Ming-Hui Zhou
- Cereals and Oils Quality and Safety Research Institution, Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain) No. 23 Yongwang Str, DaXing District Beijing 102600 China
| | - Wei Tian
- Cereals and Oils Quality and Safety Research Institution, Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain) No. 23 Yongwang Str, DaXing District Beijing 102600 China
| | - Yan-Xiang Wu
- Cereals and Oils Quality and Safety Research Institution, Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain) No. 23 Yongwang Str, DaXing District Beijing 102600 China
| | - Xi Chen
- Cereals and Oils Quality and Safety Research Institution, Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain) No. 23 Yongwang Str, DaXing District Beijing 102600 China
| | - Song-Xue Wang
- Cereals and Oils Quality and Safety Research Institution, Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain) No. 23 Yongwang Str, DaXing District Beijing 102600 China
| |
Collapse
|
48
|
Ju C, Zhang H, Yao S, Dong S, Cao D, Wang F, Fang H, Yu Y. Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6691-6699. [PMID: 31135152 DOI: 10.1021/acs.jafc.9b00361] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The uptake mechanism, translocation, and subcellular distribution of azoxystrobin (5 mg kg-1) in wheat plants was investigated under laboratory conditions. The wheat-water system reached equilibrium after 96 h. Azoxystrobin concentrations in roots were much higher than those in stems and leaves under different exposure times. Azoxystrobin uptake by roots was highly linear at different exposure concentrations, while the bioconcentration factors and translocation factors were independent of the exposed concentration at the equilibrium state. Dead roots adsorbed a larger amount of azoxystrobin than fresh roots, which was measured at different concentrations. Azoxystrobin preferentially accumulated in organelles, and the highest distribution proportion was detected in the soluble cell fractions. This study elucidated that the passive transport and apoplastic pathway dominated the uptake of azoxystrobin by wheat roots. Azoxystrobin primarily accumulated in roots and could be acropetally translocated, but its translocation capacity from roots to stems was limited. Additionally, the uptake and distribution of azoxystrobin by wheat plants could be predicted well by a partition-limited model.
Collapse
Affiliation(s)
- Chao Ju
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| |
Collapse
|
49
|
Liu N, Dai J, Tian H, He H, Zhu Y. Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10343-10353. [PMID: 30761486 DOI: 10.1007/s11356-019-04448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation combined with amendments and stabilization technologies are two crucial methods to deal with soil contaminated with heavy metals. Copper (Cu) contamination in soil near Cu mines poses a serious threat to ecosystems and human health. This study investigated the effect of ethylenediaminetetraacetic acid (EDTA) and biochar (BC) on the accumulation and subcellular distribution of Cu in Amaranthus retroflexus L. to demonstrate the remediation mechanism of EDTA and BC at the cellular level. The role of calcium (Ca) in response to Cu stress in A. retroflexus was also elucidated. We designed a pot experiment with a randomized block of four Cu levels (0, 100, 200, 400 mg kg-1) and three treatments (control, amendment with EDTA, and amendment with BC). The subcellular components were divided into three parts (cell walls, organelles, and soluble fraction) by differential centrifugation. The results showed that EDTA amendment significantly increased (p < 0.05) the concentrations of Cu in root cell walls and all subcellular components of stems and leaves (cell walls, organelles, and the soluble fraction). EDTA amendment significantly increased (p < 0.05) the proportion of exchangeable fraction and carbonate fraction in the soil. While BC amendment significantly decreased (p < 0.05) the concentrations of Cu in root cell walls and the root soluble fraction, it had no significant effects on Cu concentrations in the subcellular components of stems and leaves. The results revealed that EDTA mainly promoted the transfer of Cu to aboveground parts and accumulation in subcellular components of stems and leaves, while BC mainly limited Cu accumulation in root cell walls and the root soluble fraction. Ca concentrations in cell walls of roots, stems, and leaves increased as the Cu stress increased in all treatment groups, indicating that Ca plays an important role in relieving Cu toxicity in Amaranthus retroflexus L.
Collapse
Affiliation(s)
- Na Liu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Haoqi Tian
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China
| | - Huan He
- Department of Biology, Terrestrial Ecology Section, Copenhagen University, Universitsparken 15, 2100, Copenhagen, Denmark
| | - Yuen Zhu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China.
| |
Collapse
|
50
|
Li G, Li Q, Wang L, Chen G, Zhang D. Subcellular distribution, chemical forms, and physiological response to cadmium stress in Hydrilla verticillata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:230-239. [PMID: 30648426 DOI: 10.1080/15226514.2018.1524830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated the subcellular distribution and chemical forms of cadmium (Cd) in Hydrilla verticillata and the physiological mechanism underlying H. verticillata responses to Cd stress. Hydrilla verticillata was grown in a hydroponic system and was treated with various Cd concentrations (0, 10, 50, 100, 125, and 150 µM) for 7 days. Cadmium analysis of the leaves at the subcellular level showed that Cd was mainly stored in the soluble fraction (77.98-83.62%) and in smaller quantities in the cell wall fraction (11.99-17.30%) and the cell organelles (4.30-4.88%). The Cd taken up by H. verticillata was in different chemical forms. In the leaves and stems, the Cd was mostly extracted using 1 M NaCl and smaller amounts of Cd were extracted using 2% acetic acid. The malondialdehyde content significantly increased at all Cd concentrations, which indicated oxidative stress. The superoxide dismutase, guaiacol peroxidase, and catalase activities were enhanced. The proline, ascorbate, and glutathione contents increased at lower Cd concentrations, but decreased consistently as the Cd concentration rose. These results suggest that H. verticillata can be successfully used in the phytoremediation of Cd-contaminated water.
Collapse
Affiliation(s)
- Guoxin Li
- a College of Environmental Sciences and Engineering , Xiamen University of Technology , Xiamen , China
| | - Qingsong Li
- a College of Environmental Sciences and Engineering , Xiamen University of Technology , Xiamen , China
| | - Lei Wang
- a College of Environmental Sciences and Engineering , Xiamen University of Technology , Xiamen , China
| | - Guoyuan Chen
- a College of Environmental Sciences and Engineering , Xiamen University of Technology , Xiamen , China
| | - Dandan Zhang
- b Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , China
| |
Collapse
|