1
|
Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M, Chen T, Wang S, Wang J, Zhang H, Wang J, Zhang T, Zeng J, Liu X, Xie G, Liu P, Sun N, Bao T, Nie T, Lin J, Liu P, Zheng Y, Zheng X, Liu T, Jia W. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab 2024; 36:1000-1012.e6. [PMID: 38582087 DOI: 10.1016/j.cmet.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.
Collapse
Affiliation(s)
- Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yajun Tang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiheng Zhang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Jiahui Zeng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Tianhao Bao
- The Affiliated Mental Health Center of Kunming Medical University, Kunming 650224, China
| | - Tongtong Nie
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingchao Lin
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Ping Liu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuanyi Zheng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Ohue-Kitano R, Masujima Y, Nishikawa S, Iwasa M, Nishitani Y, Kawakami H, Kuwahara H, Kimura I. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid contributes to improved hepatic lipid metabolism via GPR41. Sci Rep 2023; 13:21246. [PMID: 38040866 PMCID: PMC10692101 DOI: 10.1038/s41598-023-48525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
3-(4-hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a metabolite produced by the gut microbiota through the conversion of 4-hydroxy-3-methoxycinnamic acid (HMCA), which is a widely distributed hydroxycinnamic acid-derived metabolite found abundantly in plants. Several beneficial effects of HMPA have been suggested, such as antidiabetic properties, anticancer activities, and cognitive function improvement, in animal models and human studies. However, the intricate molecular mechanisms underlying the bioaccessibility and bioavailability profile following HMPA intake and the substantial modulation of metabolic homeostasis by HMPA require further elucidation. In this study, we effectively identified and characterized HMPA-specific GPR41 receptor, with greater affinity than HMCA. The activation of this receptor plays a crucial role in the anti-obesity effects and improvement of hepatic steatosis by stimulating the lipid catabolism pathway. For the improvement of metabolic disorders, our results provide insights into the development of functional foods, including HMPA, and preventive pharmaceuticals targeting GPR41.
Collapse
Affiliation(s)
- Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shota Nishikawa
- Laboratory of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masayo Iwasa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yosuke Nishitani
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, 729-3102, Japan
| | - Hideaki Kawakami
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, 729-3102, Japan
| | - Hiroshige Kuwahara
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, 729-3102, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
3
|
Tang S, Luo N, Zeng Q, Dong L, Zhang R, He S, Nag A, Huang F, Su D. Lychee pulp phenolics fermented by mixed lactic acid bacteria strains promote the metabolism of human gut microbiota fermentation in vitro. Food Funct 2023; 14:7672-7681. [PMID: 37540108 DOI: 10.1039/d3fo01668d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Lychee pulp phenolics possess excellent biological activities, however, changes in phenolic substances after microbial treatments are unknown. Herein, lychee pulp was fermented by Lactobacillus plantarum, Lactobacillus rhamnosus, and a mixed strain of the two, followed by an investigation of the products' colonic fermentation. In comparison to single-strain fermentation, mixed-strain fermentation significantly increased catechin and quercetin. In addition, lychee phenolics fermented by mixed strains were more conducive to the growth of gut microbiota. The results of HPLC-DAD showed that colonic fermentation further promoted the release of lychee phenolics. There was a notable increase in the content of gallic acid and quercetin, while multiple phenolics were degraded. Quercetin-3-O-rutinose-7-O-α-L-rhamnoside (QRR) and rutin were catabolized into quercetin by gut microbiota, and 4-hydroxybenzoic acid was produced from the metabolism of QRR and procyanidin B2. Lychee phenolics fermented by mixed lactic acid bacteria were easily metabolized and transformed by gut microbiota. These findings indicate that lychee pulp fermented by mixed lactic acid bacteria possesses probiotic potential, which is of great significance for the development of functional probiotic products.
Collapse
Affiliation(s)
- Shuying Tang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.
| | - Nan Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.
- Flinders Institute for Nanoscale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universitat Dresden, 01062, Dresden, Germany
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.
| |
Collapse
|
4
|
Yang W, Xia W, Zheng B, Li T, Liu RH. DAF-16 is involved in colonic metabolites of ferulic acid-promoted longevity and stress resistance of Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7017-7029. [PMID: 35689482 DOI: 10.1002/jsfa.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ferulic acid (FA) is a dietary polyphenol widely found in plant tissues. It has long been considered to have health-promoting qualities. However, the biological properties of dietary polyphenols depend largely on their absorption during digestion, and the effects of their intestinal metabolites on human health have attracted the interest of researchers. This study evaluated the effects of three main colonic metabolites of FA - 3-(3,4-dihydroxyphenyl)propionic acid (3,4diOHPPA), 3-(3-hydroxyphenyl)propionic acid (3OHPPA) and 3-phenylpropionic acid (3PPA) - on longevity and stress resistance in Caenorhabditis elegans. RESULTS Our results showed that 3,4diOHPPA, 3OHPPA and 3PPA extended the lifespan under normal conditions in C. elegans whereas FA did not. High doses of 3,4diOHPPA (0.5 mmol L-1 ), 3OHPPA (2.5 mmol L-1 ) and 3PPA (2.5 mmol L-1 ) prolonged the mean lifespan by 11.2%, 13.0% and 10.6%, respectively. Moreover, 3,4diOHPPA, 3OHPPA and 3PPA treatments promoted stress tolerance against heat, UV irradiation and paraquat. Furthermore, three metabolites ameliorated physical functions, including reactive oxygen species and malondialdehyde levels, motility and pharyngeal pumping rate. The anti-aging activities mediated by 3,4diOHPPA, 3OHPPA and 3PPA depend on the HSF-1 and JNK-1 linked insulin/IGF-1 signaling pathway, which converge onto DAF-16. CONCLUSION The current findings suggest that colonic metabolites of FA have the potential for use as anti-aging bioactivate compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhan Yang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wen Xia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong ERA Food and Life Health Research Institute, Guangzhou, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Kasimir M, Behrens M, Humpf HU. Release of Small Phenolic Metabolites from Isotopically Labeled 13C Lignin in the Pig Cecum Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8317-8325. [PMID: 35770971 DOI: 10.1021/acs.jafc.2c02836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A diet with a high dietary fiber content is often recommended in today's nutrition due to several beneficial health effects related to its intake. Lignin as a part of dietary fiber is the second most abundant natural polymer and considered to be stable during digestion. However, some studies indicate a partial degradation during the intestinal metabolism. To further elucidate this hypothesis, the aim of this study was to investigate whether lignin is metabolized by the gut microbiota using the ex vivo pig cecum model. As potential lignin-derived metabolites might already naturally occur in the pig cecal matrix, an approach using isotopically labeled 13C lignin was chosen for this study. Ten small phenolic lignin degradation products and their time-dependent metabolism were identified via an untargeted HPLC-HRMS approach, and the quantity of the metabolites was estimated. From the results, we conclude that lignin is partially degraded releasing small phenolic metabolites.
Collapse
Affiliation(s)
- Matthias Kasimir
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Tian W, Zheng Y, Wang W, Wang D, Tilley M, Zhang G, He Z, Li Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr Rev Food Sci Food Saf 2022; 21:2274-2308. [PMID: 35438252 DOI: 10.1111/1541-4337.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
The health benefits of whole wheat consumption can be partially attributed to wheat's phytochemicals, including phenolic acids, flavonoids, alkylresorcinols, carotenoids, phytosterols, tocopherols, and tocotrienols. It is of increasing interest to produce whole wheat products that are rich in bioactive phytochemicals. This review provides the fundamentals of the chemistry, extraction, and occurrence of wheat phytochemicals and includes critical discussion of several long-lasting issues: (1) the commonly used nomenclature on distribution of wheat phenolic acids, namely, soluble-free, soluble-conjugated, and insoluble-bound phenolic acids; (2) different extraction protocols for wheat phytochemicals; and (3) the chemistry and application of in vitro antioxidant assays. This review further discusses recent advances on the effects of genotypes, environments, field management, and processing techniques including ultrafine grinding, germination, fermentation, enzymatic treatments, thermal treatments, and food processing. These results need to be interpreted with care due to varied sample preparation protocols and limitations of in vitro assays. The bioaccessibility, bioavailability, metabolism, and potential health benefits of wheat phytochemicals are also reviewed. This comprehensive and critical review will benefit scientific researchers in the field of bioactive compounds of cereal grains and also those in the cereal food industry to produce high-quality functional foods.
Collapse
Affiliation(s)
- Wenfei Tian
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Michael Tilley
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, USA
| | - Zhonghu He
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
7
|
Cárdenas-Castro AP, Rochín-Medina JJ, Ramírez K, Tovar J, Sáyago-Ayerdi SG. In Vitro Intestinal Bioaccessibility and Colonic Biotransformation of Polyphenols from Mini Bell Peppers (Capsicum annuum L.). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:77-82. [PMID: 35020097 DOI: 10.1007/s11130-022-00948-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
To the best of our knowledge, "sweet mini bell" peppers have not been extensively investigated. In this study, we evaluated the bioaccessible phenolic compounds released during intestinal digestion and identified and quantified the microbial metabolites derived from phenolic compounds bioconversion during the in vitro colonic fermentation. A total of 66 phenolic compounds were determined. The results obtained in this study indicate that hydroxycinnamic acids (22 to 32 mg/100 g dw) and flavonoids (99 to 102 mg/100 g dw) headed by quercetin, luteolin and kaempferol glycosidic derivatives were the main bioaccessible phenolic compounds during in vitro intestinal digestion of mini bell peppers. The yellow variety contained the highest concentration of bioaccessible flavonoids (80 mg/100 g dw). For the first time in mini bell peppers, dihydroferulic acid was detected, in the three varieties studied. 3-(4-hydroxyphenyl)propionic acid was the major metabolite found after 12-24 h fermentation of all samples (44 to 102 µM/L). Further cell culture or in vivo studies are needed to elucidate the biological activities of the phenolic compounds identified in mini bell peppers.
Collapse
Affiliation(s)
- Alicia P Cárdenas-Castro
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175, Tepic, Nayarit, México
| | - Jesús J Rochín-Medina
- Laboratorio de Microbiología Molecular Y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Juan de Dios Bátiz 310 pte, Colonia Guadalupe, CP 80220, Culiacán, Sinaloa, México
| | - Karina Ramírez
- Laboratorio de Microbiología Molecular Y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Juan de Dios Bátiz 310 pte, Colonia Guadalupe, CP 80220, Culiacán, Sinaloa, México
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 125, 221 00, Lund, Sweden
| | - Sonia G Sáyago-Ayerdi
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175, Tepic, Nayarit, México.
| |
Collapse
|
8
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Ravisankar S, Dizlek H, Awika JM. Changes in extractable phenolic profile during natural fermentation of wheat, sorghum and teff. Food Res Int 2021; 145:110426. [PMID: 34112428 DOI: 10.1016/j.foodres.2021.110426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/10/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Whole grain polyphenols are associated with structure-specific bioactive properties. However, the phenolic profile of grain ingredients can be significantly altered by processes like fermentation. This study investigated how polyphenol profiles in different cereal grains respond to microbial metabolism during sourdough fermentation. Whole grain wheat (white and red), sorghum (white and lemon-yellow), and teff (white and brown) flours were subjected to natural sourdough fermentation for 48-96 h, and phenolic profiles and their metabolites monitored using UPLC-tandem quadrupole MS. Flavonoid O-glycosides (dominant in sorghum) were rapidly metabolized (66% reduction in 48 h) to release aglycones (2.5 fold increase). O-Glycoside groups in mixed O/C-glycosides (dominant in teff) were selectively hydrolyzed, but more slowly (11-32% reduction in 48 h) than homo-O-glycosides, suggesting steric hindrance from the C-glycoside groups. Flavonoid C-glycosides (dominant in wheat) and aglycones (white sorghum) were generally stable to microbial degradation. Extractable phenolic acids and their esters (most abundant in white sorghum) were extensively degraded (80% reduction in 48 h) with few metabolites detected at the end of fermentation. Thus, extractable phenolics in sorghum were generally most extensively metabolized, whereas those in wheat were the least impacted by sourdough fermentation. New microbial metabolites, putatively identified as O-methylcatechol-vinyl-isoflavans, were detected in all fermented samples, with levels increasing with fermentation time. Based on structure, these compounds were likely derived from cell wall C-C linked diferulic acid metabolism. As expected, Folin reactive phenols and antioxidant capacity increased in fermented samples, but the extent was distinctly smaller in sorghums (1.3-1.9 fold) vs teff (2.4-3.2 fold) and wheat (2.0-6.1 fold), likely due to higher presence of easily metabolizable phenolics in sorghum. The phenolic profile of a cereal grain affects the products of microbial metabolism during fermentation, and may thus alter phenolic-dependent bioactive properties associated with a specific grain.
Collapse
Affiliation(s)
- Shreeya Ravisankar
- Texas A&M University, Food Science & Technology Department, College Station, TX 77843, USA.
| | - Halef Dizlek
- Texas A&M University, Food Science & Technology Department, College Station, TX 77843, USA.
| | - Joseph M Awika
- Texas A&M University, Food Science & Technology Department, College Station, TX 77843, USA; Texas A&M University, Soil & Crop Sciences Department, 2474 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Slavova-Kazakova A, Angelova S, Fabbri D, Antonietta Dettori M, Kancheva VD, Delogu G. Antioxidant properties of novel curcumin analogues: A combined experimental and computational study. J Food Biochem 2020; 45:e13584. [PMID: 33340138 DOI: 10.1111/jfbc.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The multi-target activity of curcumin makes it a promising pharmacological lead for structural modifications focused on the preparation of new better therapeutics with improved bioavailability. A possible modification is to "decompose" the parent curcumin structure into constituent units and to build up curcumin analogues with biphenyl structural moiety. The antioxidant properties of the so-called "monomers" (m1-m3) and "dimers" (d1-d3) are studied experimentally and computationally. Their protective effects as chain-breaking antioxidants are investigated for the individual compounds and in binary/ternary compositions with α-tocopherol (TOH) and ascorbyl palmitate (AscPH). All monomers manifest significant synergism up to 70% in mixtures with TOH. Synergistic effects are found for the ternary compositions of monomeric analogues upon addition to the binary mixture of standard antioxidants (TOH + AscPH). Dimers with biphenyl skeleton manifest a lower potential in compositions under lipid oxidation conditions. DFT computations provide a detailed insight into the structure and antiradical properties of the curcumin analogues and standard antioxidants. PRACTICAL APPLICATIONS: Bioactive compounds in the diet play a crucial role in the prevention of numerous diseases in whose pathogenesis oxidative stress is well known to be involved. Therefore, enhancement of the antioxidant status of the biological target is often helpful. Two of the monomers studied are considered leading agents in the treatment or prophylaxis of smooth muscle disorders and are useful in the maintenance of the normal gut function- as a calmative for the gut and to ease upset stomach. We hypothesized that the presence of a biphenyl scaffold in the parent molecular structure can enhance the biological activity. Equimolar mixtures of TOH with studied compounds have potential application in food chemistry and medicine. A composition comprising the active agent and additional components (strong conventional antioxidants) may be administered in foodstuffs, as a food supplement, beverage supplement, or as a pharmaceutical composition.
Collapse
Affiliation(s)
- Adriana Slavova-Kazakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Davide Fabbri
- CNR, Istituto di Chimica Biomolecolare, Sassari, Italy
| | | | - Vessela D Kancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
11
|
Papaemmanouil C, Chatziathanasiadou MV, Chatzigiannis C, Chontzopoulou E, Mavromoustakos T, Grdadolnik SG, Tzakos AG. Unveiling the interaction profile of rosmarinic acid and its bioactive substructures with serum albumin. J Enzyme Inhib Med Chem 2020; 35:786-804. [PMID: 32200650 PMCID: PMC7144280 DOI: 10.1080/14756366.2020.1740923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Rosmarinic acid, a phytochemical compound, bears diverse pharmaceutical profile. It is composed by two building blocks: caffeic acid and a salvianic acid unit. The interaction profile, responsible for the delivery of rosmarinic acid and its two substructure components by serum albumin remains unexplored. To unveil this, we established a novel low-cost and efficient method to produce salvianic acid from the parent compound. To probe the interaction profile of rosmarinic acid and its two substructure constituents with the different serum albumin binding sites we utilised fluorescence spectroscopy and competitive saturation transfer difference NMR experiments. These studies were complemented with transfer NOESY NMR experiments. The thermodynamics of the binding profile of rosmarinic acid and its substructures were addressed using isothermal titration calorimetry. In silico docking studies, driven by the experimental data, have been used to deliver further atomic details on the binding mode of rosmarinic acid and its structural components.
Collapse
Affiliation(s)
- Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Maria V. Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Christos Chatzigiannis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Simona Golic Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
12
|
Bento-Silva A, Koistinen VM, Mena P, Bronze MR, Hanhineva K, Sahlstrøm S, Kitrytė V, Moco S, Aura AM. Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? Eur J Nutr 2020; 59:1275-1293. [PMID: 31115680 PMCID: PMC7230068 DOI: 10.1007/s00394-019-01987-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organoleptic properties. FACTORS AFFCETING INDIVIDUAL VARIABILITY The bioavailability of these compounds depends on their free or conjugated presence in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabolite profiles and health responses of phenolics, show considerable individual variation, which is affected by absorption, metabolism and genetic variations of subjects. OPINION A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with some exceptions; however, it should be preferred that health responders and non-responders are studied in combination with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem in human research to an asset for research on personalized nutrition.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ville M Koistinen
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Maria R Bronze
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Instituto de Biologia Experimental Tecnológica (iBET), Oeiras, Portugal
| | - Kati Hanhineva
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Stefan Sahlstrøm
- Nofima Norwegian Institute of Food Fisheries and Aquaculture, Ås, Norway
| | | | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Tietotie 2, 02044 VTT, Espoo, Finland.
| |
Collapse
|
13
|
Cruz AG, Mtz-Enríquez AI, Díaz-Jiménez L, Ramos-González R, Valdés JAA, Flores MEC, Martínez JLH, Ilyina A. Production of fatty acid methyl esters and bioactive compounds from citrus wax. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:48-55. [PMID: 31669674 DOI: 10.1016/j.wasman.2019.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Citrus wax is a waste generated during the purification process of the citrus essential oil. A lot of citrus wax wastes are globally produced, despite this, its composition and properties are not well known. Here we present comprehensive results proving the chemical composition and the physical properties of citrus wax. Additionally, our study provides the basis for obtaining value-added products from citrus wax wastes. The qualitative/quantitative analysis revealed the presence of different compounds, which range from flavonoids, saponins, carbohydrates, unsaturated compounds, phenolic hydroxyls, and long-chain fatty acid esters. Given that citrus wax is a source of many bioactive compounds, they were preferably extracted with ethanol. The ethanolic extracts demonstrated the presence in citrus wax of different bioactives, such as 5-5'-dehydrodiferulic acid, 3,7-dimethylquercetin, 5,6-dihydroxy-7,8,3',4'-tetramethoxyflavone, tangeretin, and limonene. After the extraction of bioactives from citrus wax, a washed waxy material with high content of long-chain fatty acid esters was obtained. It was shown that this washed wax can be used for the production of biodiesel. The transesterification reactions in acid media was the preferred process because higher content of fatty acid methyl esters (such as hexadecanoic acid methyl ester and 9,12-octadecadienoic acid (Z,Z)-, methyl ester) were obtained. Currently, citrus wax does not have any industrial application, here we shown that under the concept of waste biorefinery, the citrus wax wastes are useful sources for producing value-added products such as bioactive compounds and biodiesel.
Collapse
Affiliation(s)
- Ariel García Cruz
- Research Group of NanoBioscience, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Arturo I Mtz-Enríquez
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-Saltillo, 25900 Ramos Arizpe, Coahuila, Mexico
| | - Lourdes Díaz-Jiménez
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-Saltillo, 25900 Ramos Arizpe, Coahuila, Mexico
| | | | - Juan Alberto Ascacio Valdés
- Research Group of Bioprocesses and Bioproducts, School of Chemistry. Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Martha E Castañeda Flores
- Research Group of Polymers, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - José Luis Hernández Martínez
- Research Group of NanoBioscience, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Anna Ilyina
- Research Group of NanoBioscience, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
14
|
Braune A, Blaut M. Catenibacillus scindens gen. nov., sp. nov., a C-deglycosylating human intestinal representative of the Lachnospiraceae. Int J Syst Evol Microbiol 2018; 68:3356-3361. [PMID: 30179152 DOI: 10.1099/ijsem.0.003001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An anaerobic Gram-stain-positive, non-spore-forming and non-motile bacterium isolated from the human gut, designated CG19-1T, capable of cleaving aromatic C-glucosides was characterized using a polyphasic taxonomic approach. Major fermentation products of this asaccharolytic organism were acetate and butyrate when grown on a complex medium. Growth of strain CG19-1T was stimulated by glucose or pyruvate. Growth inhibition was observed in the presence of several phenolic acids including ferulic acid, which nevertheless was reduced to dihydroferulic acid. Strain CG19-1T contained peptidoglycan type A4β l-Orn-d-Asp. The major cellular fatty acids were C16 : 0 and C18 : 1ω9c. The genomic DNA G+C content was 47.1 mol%. Based on its 16S rRNA gene sequence, strain CG19-1T is a member of the Lachnospiraceae. However, sequence identity to other Lachnospiraceae species with validly published names is approximately 93.0 % with Frisingicoccus caecimuris being the most closely related species according to phylogenetic analysis. Based on these findings, it is proposed to create a novel genus, Catenibacillus, and a novel species, Catenibacillus scindens, with the type strain CG19-1T (=DSM 106146T=CCUG 71490T).
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| |
Collapse
|
15
|
Boukid F, Dall’Asta M, Bresciani L, Mena P, Del Rio D, Calani L, Sayar R, Seo YW, Yacoubi I, Mejri M. Phenolic profile and antioxidant capacity of landraces, old and modern Tunisian durum wheat. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3141-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Metabolic profiling of sourdough fermented wheat and rye bread. Sci Rep 2018; 8:5684. [PMID: 29632321 PMCID: PMC5890289 DOI: 10.1038/s41598-018-24149-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/22/2018] [Indexed: 01/17/2023] Open
Abstract
Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker’s yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC–QTOF–MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.
Collapse
|
17
|
Wang P, Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018; 44:16-25. [PMID: 29315886 DOI: 10.1002/biof.1410] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Beneficial properties of resveratrol and pterostilbene, a dimethyl ether analog of resveratrol, have attracted increasing interest in recent years. Resveratrol and pterostilbene exhibit many pharmacological similarities and both of them are generally considered to be safe for human consumption. Beyond the structural and general bioactivity similarities between them, large amounts of data are now available to reveal the metabolic fate and pharmacological differences between them. Pterostilbene was found to be more metabolically stable and usually exhibited stronger pharmacological activities than that of resveratrol. As a contribution to clarify and compare aspects like metabolic stability and pharmacokinetics of resveratrol and pterostilbene, as well as explain the pharmacological similarities and differences between them, this review presents and compares recent data on the metabolism and pharmacokinetics of resveratrol and pterostilbene. © 2018 BioFactors, 44(1):16-25, 2018.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC
| |
Collapse
|
18
|
Maukonen J, Aura AM, Niemi P, Raza GS, Niemelä K, Walkowiak J, Mattila I, Poutanen K, Buchert J, Herzig KH. Interactions of Insoluble Residue from Enzymatic Hydrolysis of Brewer's Spent Grain with Intestinal Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3748-3756. [PMID: 28441866 DOI: 10.1021/acs.jafc.6b05552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brewer's spent grain (BSG) is the major side-stream from brewing. As BSG is rich in dietary fiber and protein, it could be used in more valuable applications, such as nutritional additives for foods. Our aim was to elucidate whether an insoluble lignin-rich fraction (INS) from BSG is metabolized by mice gut microbiota and how it affects the microbiota. Our results indicated that lignin was partially degraded by the gut microbiota, degradation products were absorbed, and finally excreted in urine. Therefore, they contribute to the phenolic pool circulating in the mammalian body, and may have systemic effects on health. In addition, the effects of the test diets on the microbiota were significant. Most interestingly, diversities of predominant cecal and fecal bacteria were higher after the intervention diet containing INS than after the intervention diet containing cellulose. Since low fecal bacterial diversity has been linked with numerous diseases and disorders, the diversity increasing ability opens very interesting perspectives for the future.
Collapse
Affiliation(s)
- Johanna Maukonen
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Piritta Niemi
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Gulam Shere Raza
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Centre Oulu, Oulu University Hospital , 90220 Oulu, Finland
| | - Klaus Niemelä
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences , 61-701 Poznan, Poland
| | - Ismo Mattila
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Johanna Buchert
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Centre Oulu, Oulu University Hospital , 90220 Oulu, Finland
| |
Collapse
|
19
|
Koistinen VM, Nordlund E, Katina K, Mattila I, Poutanen K, Hanhineva K, Aura AM. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1854-1864. [PMID: 28206756 DOI: 10.1021/acs.jafc.6b05110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.
Collapse
Affiliation(s)
- Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Post Office Box 1627, FI-70211 Kuopio, Finland
| | - Emilia Nordlund
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
| | - Kati Katina
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
- Department of Food and Environmental Sciences, University of Helsinki , Post Office Box 66, Agnes Sjöbergin Katu 2, FI-00014 Helsinki, Finland
| | - Ismo Mattila
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
- Steno Diabetes Center , Niels Steensens Vej 2, DK-2820 Gentofte, Denmark
| | - Kaisa Poutanen
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Post Office Box 1627, FI-70211 Kuopio, Finland
| | - Anna-Marja Aura
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
| |
Collapse
|
20
|
Koistinen VM, Hanhineva K. Microbial and endogenous metabolic conversions of rye phytochemicals. Mol Nutr Food Res 2017; 61. [PMID: 27958675 DOI: 10.1002/mnfr.201600627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Rye is one of the main cereals produced and consumed in the hemiboreal climate region. Due to its use primarily as wholegrain products, rye provides a rich source of dietary fibre as well as several classes of phytochemicals, bioactive compounds with potentially positive health implications. Here, we review the current knowledge of the metabolic pathways of phytochemical classes abundant in rye, starting from the microbial transformations occurring during the sourdough process and colonic fermentation and continuing with the endogenous metabolism. Additionally, we discuss the detection of specific metabolites by MS in different phases of their journey from the cereal to the target organs and excretion.
Collapse
Affiliation(s)
- Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, , University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, , University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Bresciani L, Scazzina F, Leonardi R, Dall'Aglio E, Newell M, Dall'Asta M, Melegari C, Ray S, Brighenti F, Del Rio D. Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleurone-rich wheat bread. Mol Nutr Food Res 2016; 60:2343-2354. [DOI: 10.1002/mnfr.201600238] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Letizia Bresciani
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
- LS9 Bioactives and Health; Interlab Group; Department of Food Science; University of Parma; Parma Italy
| | - Francesca Scazzina
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
| | - Roberto Leonardi
- Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
- Department of Nutritional Rehabilitation; Ponte San Pietro (Bergamo); Gruppo San Donato (GSD); Policlinico San Pietro; Italy
| | | | - Michael Newell
- The Need for Nutrition Education/Innovation Programme (NNEdPro); University of Cambridge
- Medical Research Council (MRC) Human Nutrition Research (HNR); Cambridge
| | - Margherita Dall'Asta
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
- LS9 Bioactives and Health; Interlab Group; Department of Food Science; University of Parma; Parma Italy
| | | | - Sumantra Ray
- The Need for Nutrition Education/Innovation Programme (NNEdPro); University of Cambridge
- Medical Research Council (MRC) Human Nutrition Research (HNR); Cambridge
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
- LS9 Bioactives and Health; Interlab Group; Department of Food Science; University of Parma; Parma Italy
- The Need for Nutrition Education/Innovation Programme (NNEdPro); University of Cambridge
| |
Collapse
|
22
|
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016; 8:78. [PMID: 26861391 PMCID: PMC4772042 DOI: 10.3390/nu8020078] [Citation(s) in RCA: 495] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol-gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health.
Collapse
Affiliation(s)
- Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Architecture, Okan Univesity, Tuzla, Istanbul TR-34959, Turkey.
| | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China.
| | - Dilek Boyacioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| |
Collapse
|
23
|
Lemke A, Burkhardt B, Bunzel D, Pfeiffer E, Metzler M, Huch M, Kulling SE, Franz C. Alternaria toxins of the alternariol type are not metabolised by human faecal microbiota. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The metabolism of the Alternaria toxins alternariol (AOH), alternariol-9-O-methyl ether (AME) and altenuene (ALT) by the microbiota present in faeces from three human volunteers was studied. Faecal cultures were prepared as a 5% faeces suspension in brain-heart infusion broth and incubated with 50 μM of the toxins under anaerobic conditions for 72 h at 37 °C. The metabolism of AOH was also studied in pure bacterial cultures with either Escherichia coli DH5α or Lactobacillus plantarum BFE 5092 for 72 h at 37 °C. The three parent toxins were stable in uninoculated, heat-treated medium over a 72 h incubation period with a recovery of more than 90%. As a control for the activity of the faecal microbiota, the isoflavone daidzein was incubated with the faecal cultures and was transformed to its expected metabolites. In contrast, no metabolites of AOH, AME and ALT could be detected in the faecal cultures from the same volunteers, indicating that the gut microbiota was not capable of metabolising these substances. The Alternaria toxins could be shown to be at least partially bound to bacterial cells in a non-covalent manner, which may serve as a mechanism for their removal from the gut.
Collapse
Affiliation(s)
- A. Lemke
- Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
| | - B. Burkhardt
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Food Science and Food Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - D. Bunzel
- Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
| | - E. Pfeiffer
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Food Science and Food Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - M. Metzler
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Food Science and Food Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - M. Huch
- Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
| | - S. E. Kulling
- Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
| | - C.M.A.P. Franz
- Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straβe 1, 24103 Kiel, Germany
| |
Collapse
|
24
|
Schendel RR, Karrer C, Bunzel D, Huch M, Hildebrand AA, Kulling SE, Bunzel M. Structural Transformation of 8-5-Coupled Dehydrodiferulates by Human Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7975-7985. [PMID: 26287944 DOI: 10.1021/acs.jafc.5b03234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ingested dehydrodiferulates (DFAs) are partially released from cereal dietary fiber by human colonic microbiota, but little research has explored the further microbial metabolism of 8-5-coupled DFAs. This study investigated the in vitro microbial metabolism and elucidated major metabolites of free 8-5-DFAs (benzofuran and open forms) and an esterified analogue, 8-5-DFA diethyl ester (benzofuran). Synthesized standard compounds were incubated with fresh human fecal suspensions. Metabolites were isolated and structurally elucidated using high-resolution-LC-time-of-flight-(ToF)-MS, GC-MS, and NMR. Nine metabolite structures were unambiguously characterized with NMR, and four additional metabolites were tentatively identified to reveal structural conversion motifs: propenyl side chain hydrogenation (all substrates), O-demethylation and reductive ring-opening (8-5-DFA diethyl ester and free 8-5-DFA [benzofuran]), and de-esterification (8-5-DFA diethyl ester). A pathway of microbial 8-5-DFA metabolism was proposed based on metabolite formation kinetics. Importantly, de-esterification of the 8-5-DFA diethyl ester occurred primarily after and/or concurrently with other metabolism steps. Cleavage to monomers was not observed.
Collapse
Affiliation(s)
- Rachel R Schendel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Cecile Karrer
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Diana Bunzel
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institute (MRI) , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institute (MRI) , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Andreas A Hildebrand
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institute (MRI) , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Ingerslev AK, Karaman I, Bağcıoğlu M, Kohler A, Theil PK, Bach Knudsen KE, Hedemann MS. Whole Grain Consumption Increases Gastrointestinal Content of Sulfate-Conjugated Oxylipins in Pigs − A Multicompartmental Metabolomics Study. J Proteome Res 2015; 14:3095-110. [DOI: 10.1021/acs.jproteome.5b00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anne Krog Ingerslev
- Department
of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box
50, DK-8830 Tjele, Denmark
| | - Ibrahim Karaman
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary’s Campus, Norfolk Place, W2 1PG London, United Kingdom
| | - Murat Bağcıoğlu
- Department
of Mathematical Sciences and Technology (IMT), Norwegian University of Life Sciences, Drøbakveien 31, 1432 Ås, Norway
| | - Achim Kohler
- Department
of Mathematical Sciences and Technology (IMT), Norwegian University of Life Sciences, Drøbakveien 31, 1432 Ås, Norway
- Nofima
AS, Osloveien 1, 1430 Ås, Norway
| | - Peter Kappel Theil
- Department
of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box
50, DK-8830 Tjele, Denmark
| | - Knud Erik Bach Knudsen
- Department
of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box
50, DK-8830 Tjele, Denmark
| | - Mette Skou Hedemann
- Department
of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box
50, DK-8830 Tjele, Denmark
| |
Collapse
|
26
|
Pilot dietary intervention with heat-stabilized rice bran modulates stool microbiota and metabolites in healthy adults. Nutrients 2015; 7:1282-300. [PMID: 25690418 PMCID: PMC4344588 DOI: 10.3390/nu7021282] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Heat-stabilized rice bran (SRB) has been shown to regulate blood lipids and glucose, modulate gut mucosal immunity and inhibit colorectal cancer in animal and human studies. However, SRB’s effects on gut microbial composition and metabolism and the resulting implications for health remain largely unknown. A pilot, randomized-controlled trial was developed to investigate the effects of eating 30 g/day SRB on the stool microbiome and metabolome. Seven healthy participants consumed a study meal and snack daily for 28 days. The microbiome and metabolome were characterized using 454 pyrosequencing and gas chromatography-mass spectrometry (GC-MS) at baseline, two and four weeks post-intervention. Increases in eight operational taxonomic units (OTUs), including three from Bifidobacterium and Ruminococcus genera, were observed after two and four weeks of SRB consumption (p < 0.01). Branched chain fatty acids, secondary bile acids and eleven other putative microbial metabolites were significantly elevated in the SRB group after four weeks. The largest metabolite change was a rice bran component, indole-2-carboxylic acid, which showed a mean 12% increase with SRB consumption. These data support the feasibility of dietary SRB intervention in adults and support that SRB consumption can affect gut microbial metabolism. These findings warrant future investigations of larger cohorts evaluating SRB’s effects on intestinal health.
Collapse
|
27
|
Abstract
The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.
Collapse
|
28
|
Alminger M, Aura AM, Bohn T, Dufour C, El S, Gomes A, Karakaya S, Martínez-Cuesta M, McDougall G, Requena T, Santos C. In VitroModels for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr Rev Food Sci Food Saf 2014; 13:413-436. [DOI: 10.1111/1541-4337.12081] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- M. Alminger
- Dept. of Chemical and Biological Engineering; Chalmers Univ. of Technology; SE 412 96 Gothenburg Sweden
| | - A.-M. Aura
- VTT Technical Research Centre of Finland; P.O.Box 1000 Tietotie 2 Espoo FI-02044 VTT Finland
| | - T. Bohn
- Environment and Agro-biotechnologies Dept; Centre de Recherche Public - Gabriel Lippmann; 4422 Belvaux Luxembourg
| | - C. Dufour
- INRA, UMR408 Safety and Quality of Plant Products F-84000 Avignon; France
- Univ. of Avignon; UMR408 Safety and Quality of Plant Products F-84000 Avignon; France
| | - S.N. El
- Engineering Faculty Dept. of Food Engineering; Ege Univ. 35100 Izmir Turkey
| | - A. Gomes
- Inst. de Biologia Experimental e Tecnológica; Apartado 12, 2781-901 Oeiras Portugal
- Inst. de Tecnologia Química e Biológica; Univ. Nova de Lisboa; Av. da República, EAN, 2781-901 Oeiras Portugal
| | - S. Karakaya
- Engineering Faculty Dept. of Food Engineering; Ege Univ. 35100 Izmir Turkey
| | - M.C. Martínez-Cuesta
- Inst. de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Nicolás Cabrera 9, 28049 Madrid Spain
| | - G.J. McDougall
- The James Hutton Inst., Invergowrie; DD2 5DA; Dundee United Kingdom
| | - T. Requena
- Inst. de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Nicolás Cabrera 9, 28049 Madrid Spain
| | - C.N. Santos
- Inst. de Biologia Experimental e Tecnológica; Apartado 12, 2781-901 Oeiras Portugal
- Inst. de Tecnologia Química e Biológica; Univ. Nova de Lisboa; Av. da República, EAN, 2781-901 Oeiras Portugal
| |
Collapse
|
29
|
Calani L, Ounnas F, Salen P, Demeilliers C, Bresciani L, Scazzina F, Brighenti F, Melegari C, Crozier A, de Lorgeril M, Del Rio D. Bioavailability and metabolism of hydroxycinnamates in rats fed with durum wheat aleurone fractions. Food Funct 2014; 5:1738-46. [DOI: 10.1039/c4fo00328d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A specific wheat aleurone fraction showed potentially interesting ferulic acid improved bioavailability and might be used for the formulation of new wheat based products.
Collapse
|
30
|
Aura AM, Niemi P, Mattila I, Niemelä K, Smeds A, Tamminen T, Faulds C, Buchert J, Poutanen K. Release of small phenolic compounds from brewer's spent grain and its lignin fractions by human intestinal microbiota in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9744-9753. [PMID: 24028071 DOI: 10.1021/jf4024195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Brewer's spent grain (BSG), the major side-stream from brewing, is rich in protein, lignin, and nonstarch polysaccharides. Lignin is a polyphenolic macromolecule considered resilient toward breakdown and utilization by colon microbiota, although some indications of release of small phenolic components from lignin in animals have been shown. The aim of this study was to investigate if the human intestinal microbiota can release lignans and small phenolic compounds from whole BSG, a lignin-enriched insoluble fraction from BSG and a deferuloylated fraction, in a metabolic in vitro colon model. The formation of short-chain fatty acid (SCFA) was also investigated. More lignin-related monomers and dilignols were detected from the lignin-enriched fraction than from BSG or deferuloylated BSG. SCFA formation was not suppressed by any of the fractions. It was shown that small lignin-like compounds were released from these samples in the in vitro colon model, originating most likely from lignin.
Collapse
Affiliation(s)
- Anna-Marja Aura
- VTT Technical Research Centre of Finland , P.O. Box 1000, Tietotie 2, Espoo, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev 2013; 26:118-29. [PMID: 23930641 DOI: 10.1017/s0954422413000097] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Current research on dietary antioxidants misses the so-called non-extractable polyphenols (NEPP), which are not significantly released from the food matrix either by mastication, acid pH in the stomach or action of digestive enzymes, reaching the colon nearly intact. NEPP, not detected by the usual analytical procedures, are made up of macromolecules and single phenolic compounds associated with macromolecules. Therefore, NEPP are not included in food and dietary intake data nor in bioavailability, intervention or observational studies. The present paper aims to provide an overview of dietary NEPP - nature, occurrence in diet, metabolic fate and possible health effects. NEPP are a relevant fraction of dietary polyphenols exerting their main biological action in the colon, where they are extensively fermented by the action of microbiota, giving place to absorbable metabolites. NEPP exhibit different potential health-related properties, in particular in relation to gastrointestinal health, such as increases in antioxidant and antiproliferative capacities, reduction of intestinal tumorigenesis and modification of gene expression, as observed in different animal models. Further research into NEPP may provide a better understanding of the health effects of dietary antioxidants.
Collapse
|
32
|
Niemi P, Aura AM, Maukonen J, Smeds AI, Mattila I, Niemelä K, Tamminen T, Faulds CB, Buchert J, Poutanen K. Interactions of a lignin-rich fraction from brewer's spent grain with gut microbiota in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6754-6762. [PMID: 23768078 DOI: 10.1021/jf401738x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lignin is a constituent of plant cell walls and thus is classified as part of dietary fiber. However, little is known about the role of lignin in gastrointestinal fermentation. In this work, a lignin-rich fraction was prepared from brewer's spent grain and subjected to an in vitro colon model to study its potential bioconversions and interactions with fecal microbiota. No suppression of microbial conversion by the fraction was observed in the colon model, as measured as short-chain fatty acid production. Furthermore, no inhibition on the growth was observed when the fraction was incubated with strains of lactobacilli and bifidobacteria. In fact, the lignin-rich fraction enabled bifidobacteria to survive longer than with glucose. Several transiently appearing phenolic compounds, very likely originating from lignin, were observed during the fermentation. This would indicate that the gut microbiota was able to partially degrade lignin and metabolize the released compounds.
Collapse
Affiliation(s)
- Piritta Niemi
- Bio and Process Technology, VTT Technical Research Centre of Finland , P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rosa NN, Aura AM, Saulnier L, Holopainen-Mantila U, Poutanen K, Micard V. Effects of disintegration on in vitro fermentation and conversion patterns of wheat aleurone in a metabolical colon model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5805-5816. [PMID: 23672412 DOI: 10.1021/jf4001814] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work aimed to elucidate the effect of wheat aleurone integrity on its fermentability, i.e., the formation of short-chain fatty acids (SCFA) and microbial phenolic metabolites, in an in vitro model using human faecal microbiota as an inoculum. The structure of aleurone was modified by mechanical (dry grinding) or enzymatic (xylanase with or without feruloyl esterase) treatments in order to increase its physical accessibility and degrade its complex cell-wall network. The ground aleurone (smaller particle size) produced slightly more SCFA than the native aleurone during the first 8 h but a similar amount at 24 h (102.5 and 101 mmol/L, respectively). Similar colonic metabolism of ferulic acid (FA) was observed for native and ground aleurone. The enzymatic treatments of aleurone allowed a high solubilization of arabinoxylan (up to 82%) and a high release of FA in its conjugated and free forms (up to 87%). The enzymatic disintegration of aleurone's structure led to a higher concentration and formation rate of the colonic metabolites of FA (especially phenylpropionic acids) but did not change significantly the formation of SCFA (81 mmol/L for enzyme treated versus 101 mmol/L for the native aleurone).
Collapse
Affiliation(s)
- Natalia N Rosa
- Montpellier SupAgro-INRA-UMII-CIRAD , JRU1208 Agropolymers Engineering and Emerging Technologies, 2 place Pierre Viala, F-34060 Montpellier, France
| | | | | | | | | | | |
Collapse
|
34
|
Lappi J, Aura AM, Katina K, Nordlund E, Kolehmainen M, Mykkänen H, Poutanen K. Comparison of postprandial phenolic acid excretions and glucose responses after ingestion of breads with bioprocessed or native rye bran. Food Funct 2013; 4:972-81. [PMID: 23674066 DOI: 10.1039/c3fo60078e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rye bran contains a high amount of phenolic acids with potential health promoting effects. However, due to binding to dietary fibre, the phenolic acids are poorly absorbed in human body. We used bioprocessing with enzymes and yeast to release phenolic acids from the fibre complex and studied the effect of bioprocessing on absorption of phenolic acids in healthy humans. White wheat breads fortified with bioprocessed or native rye bran, and wholegrain rye bread and white wheat bread as controls were served to 15 subjects in a randomized order in the cross-over design. Urine was collected at the basal state and over 24 hours in four-, eight-, and twelve-hour periods and analyzed for phenolic acids and their metabolites with gas chromatography. A total of six blood samples were taken over four hours to study the effect of the bread ingestion on postprandial glucose and insulin responses. Bioprocessing of rye bran increased the proportion of free ferulic acid (FA) and soluble arabinoxylan in the bread. Ingestion of the white wheat bread fortified with bioprocessed rye bran increased (p < 0.001) urinary excretion of FA particularly during the first four hours, indicating increased absorption of FA from the small intestine. The postprandial glucose and insulin responses were similar between these breads. Bioprocessing of rye bran did not affect excretion of benzoic, phenylpropionic, and phenylacetic acid metabolites. As a conclusion, bioprocessed rye bran as compared with native rye bran increased absorption of FA from the small intestine, but did not improve postprandial glucose and insulin responses.
Collapse
Affiliation(s)
- Jenni Lappi
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M, Bub A, Franz CMAP, Kulling SE. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr 2013; 97:295-309. [PMID: 23283496 DOI: 10.3945/ajcn.112.049379] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Strong interindividual differences in the microbial conversion of some dietary polyphenols have been reported. In-depth studies of trans-resveratrol metabolism by human gut microbiota, however, are lacking, and only one bacterial metabolite, namely dihydroresveratrol, has been described. OBJECTIVE The aim of this study was to elucidate interindividual differences in trans-resveratrol metabolism by human gut microbiota and to identify bacterial strains involved. DESIGN In the first part of the study, in vitro fermentation experiments were performed with feces samples from 7 healthy volunteers, and metabolite formation was measured by liquid chromatography-ultraviolet/visible (UV/Vis)-mass spectrometry (MS)/MS detection. Microbial diversities in 3 feces samples were analyzed by high-throughput pyrosequencing and quantitative real-time polymerase chain reaction. In addition, trans-resveratrol conversion experiments were conducted with selected fecal bacterial strains in pure culture. The second part of the study was a controlled intervention study with 12 healthy volunteers. After a washout period, all of the subjects received a one-time oral dose of 0.5 mg trans-resveratrol/kg body weight in the form of a grapevine-shoot supplement, and 24-h urine samples were analyzed by liquid chromatography-UV/Vis-MS/MS. RESULTS Besides dihydroresveratrol, 2 previously unknown bacterial trans-resveratrol metabolites were identified in vitro and in vivo: 3,4'-dihydroxy-trans-stilbene and 3,4'-dihydroxybibenzyl (lunularin). Their formation, however, varied among the volunteers. Two strains, Slackia equolifaciens and Adlercreutzia equolifaciens, were identified as dihydroresveratrol producers. Gut bacteria able to produce dehydroxylated metabolites could, however, not be identified. CONCLUSIONS trans-Resveratrol metabolism by human gut microbiota shows pronounced interindividual differences, which should be taken into account during investigation of health-related effects of this stilbene. This trial was registered at the German Clinical Trials Register as DRKS00004311, Universal Trial Number (WHO) UTN: U1111-1133-4621.
Collapse
Affiliation(s)
- Lisa M Bode
- Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vaidyanathan S, Bunzel M. Development and Application of a Methodology to Determine Free Ferulic Acid and Ferulic Acid Ester-Linked to Different Types of Carbohydrates in Cereal Products. Cereal Chem 2012. [DOI: 10.1094/cchem-02-12-0013-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Mirko Bunzel
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Corresponding author. Karlsruhe Institute of Technology, Institute of Applied Biosciences, Adenauerring 20A, 76131 Karlsruhe, Germany. Phone: +49-721-608-4-2936. Fax: +49-721-608-4-7255. E-mail:
| |
Collapse
|
37
|
Nordlund E, Aura AM, Mattila I, Kössö T, Rouau X, Poutanen K. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8134-8145. [PMID: 22731123 DOI: 10.1021/jf3008037] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.
Collapse
Affiliation(s)
- Emilia Nordlund
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Effects of rice bran oil on the intestinal microbiota and metabolism of isoflavones in adult mice. Int J Mol Sci 2012; 13:10336-10349. [PMID: 22949864 PMCID: PMC3431862 DOI: 10.3390/ijms130810336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2012] [Accepted: 08/03/2012] [Indexed: 11/20/2022] Open
Abstract
This study examined the effects of rice bran oil (RBO) on mouse intestinal microbiota and urinary isoflavonoids. Dietary RBO affects intestinal cholesterol absorption. Intestinal microbiota seem to play an important role in isoflavone metabolism. We hypothesized that dietary RBO changes the metabolism of isoflavonoids and intestinal microbiota in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 10% RBO diet (RO group) and those fed a 0.05% daidzein with 10% lard control diet (LO group) for 30 days. Urinary amounts of daidzein and dihydrodaidzein were significantly lower in the RO group than in the LO group. The ratio of equol/daidzein was significantly higher in the RO group (p < 0.01) than in the LO group. The amount of fecal bile acids was significantly greater in the RO group than in the LO group. The composition of cecal microbiota differed between the RO and LO groups. The occupation ratios of Lactobacillales were significantly higher in the RO group (p < 0.05). Significant positive correlation (r = 0.591) was observed between the occupation ratios of Lactobacillales and fecal bile acid content of two dietary groups. This study suggests that dietary rice bran oil has the potential to affect the metabolism of daidzein by altering the metabolic activity of intestinal microbiota.
Collapse
|
39
|
In vitro microbiotic fermentation causes an extensive metabolite turnover of rye bran phytochemicals. PLoS One 2012; 7:e39322. [PMID: 22745732 PMCID: PMC3380017 DOI: 10.1371/journal.pone.0039322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/18/2012] [Indexed: 12/16/2022] Open
Abstract
The human gut hosts a microbial community which actively contributes to the host metabolism and has thus remarkable effect on our health. Intestinal microbiota is known to interact remarkably with the dietary constituents entering the colon, causing major metabolic conversions prior to absorption. To investigate the effect of microbial metabolism on the phytochemical pool of rye bran, we applied an in vitro simulated colonic fermentation where samples were collected with intervals and analyzed by LC-MS based non-targeted metabolite profiling. The analyses revealed extensive metabolic turnover on the phytochemical composition of the bran samples, and showed effects on all the metabolite classes detected. Furthermore, the majority of the metabolites, both the precursors and the conversion products, remained unidentified indicating that there are numerous yet unknown phytochemicals, which can potentially affect on our health. This underlines the importance of comprehensive profiling assays and subsequent detailed molecular investigations in order to clarify the effect of microbiota on phytochemicals present in our everyday diet.
Collapse
|
40
|
Tyl CE, Bunzel M. Antioxidant activity-guided fractionation of blue wheat (UC66049 Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:731-739. [PMID: 22225003 DOI: 10.1021/jf203648x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Antioxidant activity-guided fractionation based on three in vitro antioxidant assays (Folin-Ciocalteu, TEAC, and leucomethylene blue assays) was used to identify major antioxidants in blue wheat (UC66049 Triticum aestivum L.). After consecutive extractions with solvents of various polarities and multiple chromatographic fractionations, several potent antioxidants were identified by NMR spectroscopy and mass spectrometry. Anthocyanins (delphinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside, and cyanidin-3-rutinoside), tryptophan, and a novel phenolic trisaccharide (β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-(1→6)-(4-hydroxy-3-methoxyphenyl)-β-D-glucopyranoside) were the most active water-extractable constituents. However, anthocyanins were found to be major contributors to the overall blue wheat antioxidant activity only when the extraction steps were performed under acidic conditions. Alkylresorcinols were among the most active antioxidants extractable with 80% ethanol in the TEAC assay. However, this may be due to a color change instead of a bleaching of the ABTS radical. Ferulic acid was found to be the major antioxidant in alkaline cell-wall hydrolysates. The contents of the most active antioxidants were determined.
Collapse
Affiliation(s)
- Catrin E Tyl
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | |
Collapse
|
41
|
Comparative study of colorectal health related compounds in different types of bread: Analysis of bread samples pre and post digestion in a batch fermentation model of the human intestine. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|