1
|
Zhou YP, Zhang LL, Sun Y, Brugarolas P. Imaging of Pain using Positron Emission Tomography. IRADIOLOGY 2024; 2:339-361. [PMID: 39440326 PMCID: PMC11493400 DOI: 10.1002/ird3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 10/25/2024]
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. As such, the information obtained using PET often combined with MRI or CT can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow to receptor-specific tracers such as ion channels and neurotransmitters. For tracer type, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Sacher J, Zsido RG, Barth C, Zientek F, Rullmann M, Luthardt J, Patt M, Becker GA, Rusjan P, Witte AV, Regenthal R, Koushik A, Kratzsch J, Decker B, Jogschies P, Villringer A, Hesse S, Sabri O. Increase in serotonin transporter binding in patients with premenstrual dysphoric disorder across the menstrual cycle: a case-control longitudinal neuroreceptor ligand PET imaging study. Biol Psychiatry 2023:S0006-3223(23)00005-7. [PMID: 36997451 DOI: 10.1016/j.biopsych.2022.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) disrupts the lives of millions of people each month. The timing of symptoms suggests that hormonal fluctuations play a role in the pathogenesis. Here, we tested whether a heightened sensitivity of the serotonin system to menstrual cycle phase underlies PMDD, assessing the relationship of serotonin transporter (5-HTT) changes with symptom severity across the menstrual cycle. METHODS In this longitudinal case-control study, we acquired 118 [11C]DASB positron emission tomography scans measuring 5-HTT nondisplaceable binding potential (BPND) in 30 patients with PMDD and 29 controls during 2 menstrual cycle phases (periovulatory, premenstrual). The primary outcome was midbrain and prefrontal cortex 5-HTT BPND. We tested whether BPND changes correlated with depressed mood. RESULTS Linear mixed effects modeling (significant group × time × region interaction) showed a mean increase of 18% in midbrain 5-HTT BPND (mean [SD] periovulatory = 1.64 [0.40], premenstrual = 1.93 [0.40], delta = 0.29 [0.47]: t29 = -3.43, p = .0002) in patients with PMDD, whereas controls displayed a mean 10% decrease in midbrain 5-HTT BPND (periovulatory = 1.65 [0.24] > premenstrual = 1.49 [0.41], delta = -0.17 [0.33]: t28 = -2.73, p = .01). In patients, increased midbrain 5-HTT BPND correlated with depressive symptom severity (R2 = 0.41, p < .0015) across the menstrual cycle. CONCLUSIONS These data suggest cycle-specific dynamics with increased central serotonergic uptake followed by extracellular serotonin loss underlying the premenstrual onset of depressed mood in patients with PMDD. These neurochemical findings argue for systematic testing of pre-symptom-onset dosing of selective serotonin reuptake inhibitors or nonpharmacological strategies to augment extracellular serotonin in people with PMDD.
Collapse
|
3
|
Griebsch NI, Kern J, Hansen J, Rullmann M, Luthardt J, Helfmeyer S, Dekorsy FJ, Soeder M, Hankir MK, Zientek F, Becker GA, Patt M, Meyer PM, Dietrich A, Blüher M, Ding YS, Hilbert A, Sabri O, Hesse S. Central Serotonin/Noradrenaline Transporter Availability and Treatment Success in Patients with Obesity. Brain Sci 2022; 12:brainsci12111437. [PMID: 36358364 PMCID: PMC9688491 DOI: 10.3390/brainsci12111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) as well as noradrenaline (NA) are key modulators of various fundamental brain functions including the control of appetite. While manipulations that alter brain serotoninergic signaling clearly affect body weight, studies implicating 5-HT transporters and NA transporters (5-HTT and NAT, respectively) as a main drug treatment target for human obesity have not been conclusive. The aim of this positron emission tomography (PET) study was to investigate how these central transporters are associated with changes of body weight after 6 months of dietary intervention or Roux-en-Y gastric bypass (RYGB) surgery in order to assess whether 5-HTT as well as NAT availability can predict weight loss and consequently treatment success. The study population consisted of two study cohorts using either the 5-HTT-selective radiotracer [11C]DASB to measure 5-HTT availability or the NAT-selective radiotracer [11C]MRB to assess NAT availability. Each group included non-obesity healthy participants, patients with severe obesity (body mass index, BMI, >35 kg/m2) following a conservative dietary program (diet) and patients undergoing RYGB surgery within a 6-month follow-up. Overall, changes in BMI were not associated with changes of both 5-HTT and NAT availability, while 5-HTT availability in the dorsal raphe nucleus (DRN) prior to intervention was associated with substantial BMI reduction after RYGB surgery and inversely related with modest BMI reduction after diet. Taken together, the data of our study indicate that 5-HTT and NAT are involved in the pathomechanism of obesity and have the potential to serve as predictors of treatment outcomes.
Collapse
Affiliation(s)
| | - Johanna Kern
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jonas Hansen
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Department of Pneumology, Jena University Hospital, University of Jena, 07747 Jena, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Stephanie Helfmeyer
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Franziska J. Dekorsy
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Marvin Soeder
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
| | - Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Franziska Zientek
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
| | | | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
| | - Arne Dietrich
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Department of Abdominal, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, 04103 Leipzig, Germany
| | - Yu-Shin Ding
- Departments of Radiology and Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
4
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
5
|
Serotonergic system in vivo with [ 11C]DASB PET scans in GTP-cyclohydrolase deficient dopa-responsive dystonia patients. Sci Rep 2022; 12:6292. [PMID: 35428769 PMCID: PMC9012759 DOI: 10.1038/s41598-022-10067-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
GTP-cyclohydrolase deficiency in dopa-responsive dystonia (DRD) patients impairs the biosynthesis of dopamine, but also of serotonin. The high prevalence of non-motor symptoms suggests involvement of the serotonergic pathway. Our study aimed to investigate the serotonergic system in vivo in the brain of`DRD patients and correlate this to (non-)motor symptoms. Dynamic [11C]DASB PET scans, a marker of serotonin transporter availability, were performed. Ten DRD, 14 cervical dystonia patients and 12 controls were included. Univariate- and network-analysis did not show differences in binding between DRD patients compared to controls. Sleep disturbances were correlated with binding in the dorsal raphe nucleus (all participants: rs = 0.45, p = 0.04; patients: rs = 0.64, p = 0.05) and participants with a psychiatric disorder had a lower binding in the hippocampus (all participants: p = 0.00; patients: p = 0.06). Post-hoc analysis with correction for psychiatric co-morbidity showed a significant difference in binding in the hippocampus between DRD patients and controls (p = 0.00). This suggests that psychiatric symptoms might mask the altered serotonergic metabolism in DRD patients, but definite conclusions are difficult as psychiatry is considered part of the phenotype. We hypothesize that an imbalance between different neurotransmitter systems is responsible for the non-motor symptoms, and further research investigating multiple neurotransmitters and psychiatry in DRD is necessary.
Collapse
|
6
|
Kim JH, Son YD, Kim HK, Kim JH. Association Between Lack of Insight and Prefrontal Serotonin Transporter Availability in Antipsychotic-Free Patients with Schizophrenia: A High-Resolution PET Study with [ 11C]DASB. Neuropsychiatr Dis Treat 2021; 17:3195-3203. [PMID: 34707358 PMCID: PMC8544267 DOI: 10.2147/ndt.s336126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Previous studies suggested a link between serotonergic neurotransmission and impaired insight in schizophrenia. In this study, we examined the relationship between serotonin transporter (SERT) availability in regions of the prefrontal cortex (dorsolateral, ventrolateral, ventromedial, and orbitofrontal cortices) and insight deficits in antipsychotic-free patients with schizophrenia using high-resolution positron emission tomography (PET) with [11C]DASB. METHODS Nineteen patients underwent [11C]DASB PET and 7-Tesla magnetic resonance imaging scans. To assess SERT availability, the binding potential with respect to non-displaceable compartment (BPND) was derived using the simplified reference tissue model. Patients' level of insight was assessed using the Insight and Treatment Attitude Questionnaire (ITAQ). The relationship between ITAQ scores and [11C]DASB BPND values was examined using the region-of-interest (ROI)- and voxel-based analyses with relevant variables as covariates. The prefrontal cortex and its four subregions were selected as a priori ROIs since the prefrontal cortex has been implicated as the critical neuroanatomical substrate of impaired insight in schizophrenia. RESULTS The ROI-based analysis revealed that the ITAQ illness insight dimension had significant negative correlations with the [11C]DASB BPND in the left dorsolateral, left orbitofrontal, and bilateral ventrolateral prefrontal cortices. The ITAQ treatment insight dimension had significant negative correlations with the [11C]DASB BPND in the bilateral dorsolateral, left orbitofrontal, and bilateral ventrolateral prefrontal cortices. The ITAQ total score showed significant negative correlations with the [11C]DASB BPND in the bilateral prefrontal cortex and three subregions (dorsolateral, ventrolateral, and orbitofrontal cortices). A supplementary voxel-based analysis corroborated a significant negative association between the ITAQ score and the [11C]DASB BPND in the prefrontal cortices. CONCLUSION Our study provides in vivo evidence of significant negative correlations between insight deficits and prefrontal SERT availability in patients with schizophrenia, suggesting significant involvement of prefrontal serotonergic signaling in impaired insight, one of the core symptoms of schizophrenia.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
7
|
Higher HbA1c levels associate with lower hippocampal serotonin transporter availability in non-diabetic adults with obesity. Sci Rep 2020; 10:21383. [PMID: 33288788 PMCID: PMC7721891 DOI: 10.1038/s41598-020-78227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
The current study aimed to investigate whether the in vivo availability of central serotonin reuptake transporters (5-HTT) is associated with plasma levels of glycosylated hemoglobin (HbA1c) in non-diabetic humans with obesity. 5-HTT availability was measured by using positron emission tomography (PET) imaging with the 5-HTT selective radiotracer [11C]DASB in 23 non-diabetic individuals with obesity and 14 healthy, non-obesity controls. Parametric images of binding potential BPND were generated from the PET data and analyzed together with HbA1c levels by using volume of interest analysis for brain areas relevant to appetite control. Voxel-based morphometry (VBM) of individual magnetic resonance imaging data was further performed to correlate grey matter density (GMD) maps with HbA1c. We found significant negative correlations between HbA1c levels and BPND in right and left hippocampus in obesity (r = − 0.717, p < 0.001, and r = − 0.557, p = 0.006, respectively). VBM analyses revealed that higher HbA1c levels were associated with GMD in the right para-hippocampal area. Our results indicate that chronically high blood glucose levels may evoke changes in hippocampal 5-HTT levels that are in part tied to local microstructure.
Collapse
|
8
|
Sex and the serotonergic underpinnings of depression and migraine. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:117-140. [PMID: 33008520 DOI: 10.1016/b978-0-444-64123-6.00009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most psychiatric disorders demonstrate sex differences in their prevalence and symptomatology, and in their response to treatment. These differences are particularly pronounced in mood disorders. Differences in sex hormone levels are among the most overt distinctions between males and females and are thus an intuitive underpinning for these clinical observations. In fact, treatment with estrogen and testosterone was shown to exert antidepressant effects, which underscores this link. Changes to monoaminergic signaling in general, and serotonergic transmission in particular, are understood as central components of depressive pathophysiology. Thus, modulation of the serotonin system may serve as a mechanism via which sex hormones exert their clinical effects in mental health disorders. Over the past 20 years, various experimental approaches have been applied to identify modes of influence of sex and sex hormones on the serotonin system. This chapter provides an overview of different molecular components of the serotonin system, followed by a review of studies performed in animals and in humans with the purpose of elucidating sex hormone effects. Particular emphasis will be placed on studies performed with positron emission tomography, a method that allows for human in vivo molecular imaging and, therefore, assessment of effects in a clinically representative context. The studies addressed in this chapter provide a wealth of information on the interaction between sex, sex hormones, and serotonin in the brain. In general, they offer evidence for the concept that the influence of sex hormones on various components of the serotonin system may serve as an underpinning for the clinical effects these hormones demonstrate.
Collapse
|
9
|
Increased pulmonary serotonin transporter in patients with chronic obstructive pulmonary disease who developed pulmonary hypertension. Eur J Nucl Med Mol Imaging 2020; 48:1081-1092. [PMID: 33009594 PMCID: PMC8041706 DOI: 10.1007/s00259-020-05056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022]
Abstract
Purpose Pulmonary hypertension (PH) is characterized by a progressive remodelling of the pulmonary vasculature resulting in right heart failure and eventually death. The serotonin transporter (SERT) may be involved in the pathogenesis of PH in patients with chronic-obstructive pulmonary disease (COPD). This study investigated for the first time the SERT in vivo availability in the lungs of patients with COPD and PH (COPD+PH). Methods SERT availability was assessed using SERT-selective [11C]DASB and positron emission tomography/computed tomography (PET/CT) with dynamic acquisition over 30 min in 4 groups of 5 participants each: COPD, COPD+PH, pulmonary arterial hypertension, and a healthy control (HC). Time activity curves were generated based on a volume of interest within the middle lobe. Tissue-to-blood concentration ratios after 25 to 30 min (TTBR25–30) served as receptor parameter for group comparison and were corrected for lung tissue attenuation. Participants underwent comprehensive pulmonary workup. Statistical analysis included group comparisons and correlation analysis. Results [11C]DASB uptake peak values did not differ among the cohorts after adjusting for lung tissue attenuation, suggesting equal radiotracer delivery. Both the COPD and COPD+PH cohort showed significantly lower TTBR25–30 values after correction for lung attenuation than HC. Attenuation corrected TTBR25–30 values were significantly higher in the COPD+PH cohort than those in the COPD cohort and higher in non-smokers than in smokers. They positively correlated with invasively measured severity of PH and inversely with airflow limitation and emphysema. Considering all COPD patients ± PH, they positively correlated with right heart strain (NT-proBNP). Conclusion By applying [11C]DASB and PET/CT, semiquantitative measures of SERT availability are demonstrated in the lung vasculature of patients with COPD and/or PH. COPD patients who developed PH show increased pulmonary [11C]DASB uptake compared to COPD patients without PH indicating an implication of pulmonary SERT in the development of PH in COPD patients. Electronic supplementary material The online version of this article (10.1007/s00259-020-05056-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Huang YY, Chang LT, Shen HY, Chen YH, Tzen KY, Shiue CY, Hsin LW. Synthesis and evaluation of 2-(2'-((dimethylamino)methyl)-4'-(2-fluoroethoxy-substituted)phenylthio)benzenamine derivatives as potential positron emission tomography imaging agents for serotonin transporters. Bioorg Chem 2020; 97:103654. [PMID: 32088418 DOI: 10.1016/j.bioorg.2020.103654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
A series of diphenylsulfide derivatives with various substitutions at the 4-position on phenyl ring A and different lengths of the 2-fluoroethoxy-substituted side-chain at the 4'-position on ring B were synthesized and evaluated as potential positron emission tomography (PET) imaging agents for serotonin transporters (SERT). These ligands exhibited high SERT binding affinities (Ki = 0.11-1.3 nM) and the 4-methyl-substituted (4-Me) compounds 7a and 8a displayed excellent selectivity for SERT versus norepinephrine transporters (NET) (392- and 700-fold, respectively). In the parallel artificial membrane permeability assay (PAMPA), these ligands demonstrated moderate to high brain penetration, and the 4-Me analogs showed higher BBB permeability than the corresponding 4-F analogs. The 2-fluoroethoxy-substituted ligands showed higher metabolic stability and lower lipophilicity than 4-F-ADAM. [18F]7a-c were readily prepared using an automatic synthesizer and exhibited significant uptake and slow washout in rat brains. At 120 min after iv injection, [18F]7a exhibited the highest uptake in the midbrain, whereas [18F]7b exhibited the highest uptake in the hypothalamus and midbrain. After treatment with citalopram, a SERT-selective ligand, the uptake of [18F]7a in the hypothalamus and striatum was significantly decreased. The potent and highly selective SERT binding and the selective and reversible accumulation in SERT-rich brain regions suggested that [18F]7a is a promising lead for the further development of novel [18F]-labeled PET imaging agents for SERT binding sites in the brain.
Collapse
Affiliation(s)
- Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung-Shan S. Road, Taipei, Taiwan
| | - Li-Te Chang
- School of Pharmacy, College of Medicine, National Taiwan University, 17, Xuzhou Road, Room 936, Taipei 10055, Taiwan
| | - Hsin-Yi Shen
- School of Pharmacy, College of Medicine, National Taiwan University, 17, Xuzhou Road, Room 936, Taipei 10055, Taiwan
| | - Ying-Heng Chen
- School of Pharmacy, College of Medicine, National Taiwan University, 17, Xuzhou Road, Room 936, Taipei 10055, Taiwan
| | - Kai-Yuan Tzen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung-Shan S. Road, Taipei, Taiwan
| | - Chyng-Yann Shiue
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung-Shan S. Road, Taipei, Taiwan.
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, 17, Xuzhou Road, Room 936, Taipei 10055, Taiwan; Center for Innovative Therapeutics Discovery, National Taiwan University, 17, Xuzhou Road, Room 936, Taipei 10055, Taiwan.
| |
Collapse
|
11
|
Differentially Expressed Genes of the Slc6a Family as Markers of Altered Brain Neurotransmitter System Function in Pathological States in Mice. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s11055-019-00888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Golub MS, Hogrefe CE, Campos LJ, Fox AS. Serotonin Transporter Binding Potentials in Brain of Juvenile Monkeys 1 Year After Discontinuation of a 2-Year Treatment With Fluoxetine. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:948-955. [PMID: 31471184 DOI: 10.1016/j.bpsc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The potential long-term effects of childhood fluoxetine therapy on brain serotonin systems were studied using a nonhuman primate model, the rhesus monkey. METHODS Juvenile male rhesus (1-4 years of age, corresponding to 4-11 years of age in children) were treated orally with fluoxetine (2 mg/kg) or vehicle daily for 2 years and removed from treatment during the third year. Each treatment group was assigned an equal number of subjects with low and high transcription polymorphisms of MAOA. One year after discontinuation of treatment, positron emission tomography scans were conducted (n = 8 treated monkeys, n = 8 control monkeys) using [11C]DASB to quantify serotonin transporter in 16 cortical and subcortical regions. RESULTS Fluoxetine-treated monkeys with MAOA low transcription polymorphism had significantly lower [11C]DASB binding potentials than control monkeys. This finding was seen throughout the brain but was strongest in prefrontal and cingulate cortices. The MAOA × fluoxetine interaction was enhanced by binding potentials that were nonsignificantly higher in monkeys with high transcription polymorphism. CONCLUSIONS Juvenile fluoxetine treatment has residual posttreatment effects on brain serotonin transporter that depend on MAOA genotype. MAOA genotype may be important to consider when treating children with fluoxetine.
Collapse
Affiliation(s)
- Mari S Golub
- California National Primate Research Center, University of California, Davis, California.
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California
| | - Lillian J Campos
- California National Primate Research Center, University of California, Davis, California
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
13
|
PET imaging of the mouse brain reveals a dynamic regulation of SERT density in a chronic stress model. Transl Psychiatry 2019; 9:80. [PMID: 30745564 PMCID: PMC6370816 DOI: 10.1038/s41398-019-0416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023] Open
Abstract
The serotonin transporter (SERT, Slc6a4) plays an important role in the regulation of serotonergic neurotransmission and its aberrant expression has been linked to several psychiatric conditions. While SERT density has been proven to be amenable to in vivo quantitative evaluation by positron emission tomography (PET) in humans, this approach is in its infancy for rodents. Here we set out to evaluate the feasibility of using small-animal PET employing [11C]DASB ([11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile) as a radiotracer to measure SERT density in designated areas of the mouse brain. Using Slc6a4+/+, Slc6a4+/-, and Slc6a4-/- mice as a genetic model of different SERT expression levels, we showed the feasibility of SERT imaging in the mouse brain with [11C]DASB-PET. The PET analysis was complemented by an evaluation of SERT protein expression using western blot, which revealed a highly significant correlation between in vivo and ex vivo measurements. [11C]DASB-PET was then applied to the examination of dynamic changes of SERT levels in different brain areas in the chronic corticosterone mouse model of chronic stress. The observed significant reduction in SERT density in corticosterone-treated mice was independently validated by and correlated with western blot analysis. This is the first demonstration of a quantitative in vivo evaluation of SERT density in subregions of the mouse brain using [11C]DASB-PET. The evidenced decrease in SERT density in response to chronic corticosterone treatment adds a new dimension to the complex involvement of SERT in the pathophysiology of stress-induced mental illnesses.
Collapse
|
14
|
Nørgaard M, Ganz M, Svarer C, Feng L, Ichise M, Lanzenberger R, Lubberink M, Parsey RV, Politis M, Rabiner EA, Slifstein M, Sossi V, Suhara T, Talbot PS, Turkheimer F, Strother SC, Knudsen GM. Cerebral serotonin transporter measurements with [ 11C]DASB: A review on acquisition and preprocessing across 21 PET centres. J Cereb Blood Flow Metab 2019; 39:210-222. [PMID: 29651896 PMCID: PMC6365604 DOI: 10.1177/0271678x18770107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Positron Emission Tomography (PET) imaging has become a prominent tool to capture the spatiotemporal distribution of neurotransmitters and receptors in the brain. The outcome of a PET study can, however, potentially be obscured by suboptimal and/or inconsistent choices made in complex processing pipelines required to reach a quantitative estimate of radioligand binding. Variations in subject selection, experimental design, data acquisition, preprocessing, and statistical analysis may lead to different outcomes and neurobiological interpretations. We here review the approaches used in 105 original research articles published by 21 different PET centres, using the tracer [11C]DASB for quantification of cerebral serotonin transporter binding, as an exemplary case. We highlight and quantify the impact of the remarkable variety of ways in which researchers are currently conducting their studies, while implicitly expecting generalizable results across research groups. Our review provides evidence that the foundation for a given choice of a preprocessing pipeline seems to be an overlooked aspect in modern PET neuroscience. Furthermore, we believe that a thorough testing of pipeline performance is necessary to produce reproducible research outcomes, avoiding biased results and allowing for better understanding of human brain function.
Collapse
Affiliation(s)
- Martin Nørgaard
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,2 Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,3 Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ling Feng
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Masanori Ichise
- 4 Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Rupert Lanzenberger
- 5 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Mark Lubberink
- 6 Department of Nuclear Medicine and Positron Emission Tomography, Uppsala University, Uppsala, Sweden
| | - Ramin V Parsey
- 7 Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Marios Politis
- 8 Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Eugenii A Rabiner
- 9 Imanova Limited, London, UK.,10 Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark Slifstein
- 7 Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vesna Sossi
- 11 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Tetsuya Suhara
- 4 Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Peter S Talbot
- 12 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Stephen C Strother
- 14 Rotman Research Institute at Baycrest, University of Toronto, Toronto, Canada
| | - Gitte M Knudsen
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,2 Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
van Galen KA, Ter Horst KW, Booij J, la Fleur SE, Serlie MJ. The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies. Metabolism 2018; 85:325-339. [PMID: 28970033 DOI: 10.1016/j.metabol.2017.09.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Obesity results from an imbalance between energy intake and expenditure, and many studies have aimed to determine why obese individuals continue to (over)consume food under conditions of caloric excess. The two major "neurotransmitter hypotheses" of obesity state that increased food intake is partially driven by decreased dopamine-mediated reward and decreased serotonin-mediated homeostatic feedback in response to food intake. Using molecular neuroimaging studies to visualize and quantify aspects of the central dopamine and serotonin systems in vivo, recent PET and SPECT studies have also implicated alterations in these systems in human obesity. The interpretation of these data, however, is more complex than it may appear. Here, we discuss important characteristics and limitations of current radiotracer methods and use this framework to comprehensively review the available human data on central dopamine and serotonin in obesity. On the basis of the available evidence, we conclude that obesity is associated with decreased central dopaminergic and serotonergic signaling and that future research, especially in long-term follow-up and interventional settings, is needed to advance our understanding of the neuronal pathophysiology of obesity in humans.
Collapse
Affiliation(s)
- Katy A van Galen
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands; Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
16
|
Zhang Y, Liu F, Xiao H, Yao X, Li G, Choi SR, Ploessl K, Zha Z, Zhu L, Kung HF. Fluorine-18 labeled diphenyl sulfide derivatives for imaging serotonin transporter (SERT) in the brain. Nucl Med Biol 2018; 66:1-9. [PMID: 30096380 DOI: 10.1016/j.nucmedbio.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Serotonin transporters (SERT) play an important role in controlling serotonin concentration in the synaptic cleft and in managing postsynaptic signal transduction. Inhibitors of SERT binding are well known as selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine, sertraline, paroxetine, and escitalopram, that are commonly prescribed antidepressants. Positron emission tomography (PET) and single photon emission tomography (SPECT) imaging agents targeting SERT may be useful for studying its function and providing a tool for monitoring drug treatment. METHODS A series of novel 18F-labeled diphenyl sulfide derivatives were prepared and tested for their binding affinity. Among them, 2-((2-((dimethylamino)-methyl)-4-(2-(2-fluoroethoxy)ethoxy)phenyl)thio)aniline, 1, which showed excellent binding toward serotonin transporter (SERT) in the brain (Ki = 0.09 nM), was selected for further evaluation. An active OTs intermediate, 7, was treated with [18F]F-/K222 to provide [18F]1 in one step and in high radiochemical yields. This new SERT targeting agent was evaluated in rats by biodistribution studies and animal PET imaging studies. RESULTS The radiolabeling reaction led to the desired [18F]1. After HPLC purification no-carrier-added [18F]1 was obtained (radiochemical yield, 23-47% (n = 10,); radiochemical purity >99%; molar activity, 15-28 GBq/μmol). Biodistribution studies with [18F]1 showed good brain uptake (1.04% dose/g at 2 min post-injection), high uptake into the hypothalamus (1.55% dose/g at 30 min), and a high target-to-non-target (hypothalamus to cerebellum) ratio of 6.1 at 120 min post-injection. A PET imaging study in normal rats showed excellent uptake in the midbrain and thalamus regions known to be rich in SERT binding sites at 60 min after iv injection. Chasing experiment with escitalopram (iv, 2 mg/kg) in a rat at 60 min after iv injection caused a noticeable reduction in the regional radioactivity and the target-to-non-target ratio, suggesting binding by [18F]1 was highly specific and reversible for SERT binding sites in the brain. CONCLUSIONS A novel diphenyl sulfide derivative, [18F]1 for SERT imaging was successfully prepared and evaluated. Results suggest that this new chemical entity is targeting SERT binding sites in the brain, and it is a suitable candidate for future commercial development.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Futao Liu
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Xiao
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Xinyue Yao
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Genxun Li
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Seok Rye Choi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhihao Zha
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Hank F Kung
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Liu F, Zhu L, Choi SR, Plössl K, Zha Z, Kung HF. Deuterium-substituted 2-(2′-((dimethylamino)methyl)-4′-[18
F](fluoropropoxy)phenylthio)benzenamine as a serotonin transporter imaging agent. J Labelled Comp Radiopharm 2018; 61:576-585. [DOI: 10.1002/jlcr.3626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Futao Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; Beijing Normal University; Beijing P. R. China
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; Beijing Normal University; Beijing P. R. China
| | - Seok Rye Choi
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Karl Plössl
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Zhihao Zha
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Hank F. Kung
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
- Five Eleven Pharma Inc; Philadelphia Pennsylvania USA
| |
Collapse
|
18
|
Smit M, Vállez García D, de Jong BM, Zoons E, Booij J, Dierckx RA, Willemsen AT, de Vries EF, Bartels AL, Tijssen MA. Relationships between Serotonin Transporter Binding in the Raphe Nuclei, Basal Ganglia, and Hippocampus with Clinical Symptoms in Cervical Dystonia: A [ 11C]DASB Positron Emission Tomography Study. Front Neurol 2018. [PMID: 29541052 PMCID: PMC5835525 DOI: 10.3389/fneur.2018.00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Alterations of the central serotonergic system have been implicated in the pathophysiology of dystonia. In this molecular imaging study, we assessed whether altered presynaptic serotonin transporter (SERT) binding contributes to the pathophysiology of cervical dystonia (CD), concerning both motor and non-motor symptoms (NMS). Methods We assessed the non-displaceable binding potential (BPND) using the selective SERT tracer [11C]DASB and positron emission tomography (PET) in 14 CD patients and 12 age- and gender-matched controls. Severity of motor symptoms was scored using the Toronto Western Spasmodic Torticollis Rating Scale and Clinical Global Impression jerks/tremor scale. NMS for depressive symptoms, anxiety, fatigue, and sleep disturbances were assessed with quantitative rating scales. The relationship between SERT binding and clinical patient characteristics was analyzed with the Spearman’s rho test and multiple regression. Results When comparing the CD patients with controls, no significant differences in BPND were found. Higher BPND in the dorsal raphe nucleus was statistically significantly correlated (p < 0.001) with motor symptom severity (rs = 0.65), pain (rs = 0.73), and sleep disturbances (rs = 0.73), with motor symptom severity being the most important predictor of SERT binding. Furthermore, fatigue was negatively associated with the BPND in the medial raphe nucleus (rs = −0.61, p = 0.045), and sleep disorders were positively associated with the BPND in the caudate nucleus (rs = 0.58, p = 0.03) and the hippocampus (rs = 0.56, p = 0.02). Conclusion Motor symptoms, as well as pain, sleep disturbances, and fatigue in CD showed a significant relationship with SERT binding in the raphe nuclei. Moreover, fatigue showed a significant relationship with the medial raphe nucleus and sleep disorders with the caudate nucleus and hippocampus. These findings suggest that an altered serotonergic signaling in different brain areas in CD is related to different motor as well as NMS, which will further stimulate research on the role of serotonin in the pathogenesis of dystonia.
Collapse
Affiliation(s)
- Marenka Smit
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Evelien Zoons
- Department of Neurology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Jan Booij
- Department of Nuclear Medicine and Molecular Imaging, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Rudi A Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Antoon T Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Erik F de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Anna L Bartels
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands.,Department of Neurology, Ommelander Hospital Group, Groningen, Netherlands
| | - Marina A Tijssen
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Molecular Imaging of the Serotonergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:173-210. [DOI: 10.1016/bs.irn.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Frankle WG, Robertson B, Maier G, Paris J, Asmonga D, May M, Himes ML, Mason NS, Mathis CA, Narendran R. An open-label positron emission tomography study to evaluate serotonin transporter occupancy following escalating dosing regimens of (R
)-(-)-O
-desmethylvenlafaxine and racemic O
-desmethylvenlafaxine. Synapse 2017; 72. [DOI: 10.1002/syn.22021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022]
Affiliation(s)
- W. Gordon Frankle
- Department of Psychiatry; NYU Langone Medical Center; New York New York
| | | | - Gary Maier
- MaierMetrics and Associates, LLC; Boston Massachusetts
| | - Jennifer Paris
- Department of Psychiatry; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Deanna Asmonga
- Department of Psychiatry; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Maureen May
- Department of Psychiatry; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Michael L. Himes
- Department of Psychiatry; University of Pittsburgh; Pittsburgh Pennsylvania
| | - N. Scott Mason
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Chester A. Mathis
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Rajesh Narendran
- Department of Psychiatry; University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
21
|
Fukai M, Hirosawa T, Kikuchi M, Ouchi Y, Takahashi T, Yoshimura Y, Miyagishi Y, Kosaka H, Yokokura M, Yoshikawa E, Bunai T, Minabe Y. Oxytocin effects on emotional response to others' faces via serotonin system in autism: A pilot study. Psychiatry Res Neuroimaging 2017; 267:45-50. [PMID: 28738293 DOI: 10.1016/j.pscychresns.2017.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
The oxytocin (OT)-related serotonergic system is thought to play an important role in the etiology and social symptoms of autism spectrum disorder (ASD). However, no evidence exists for the relation between the prosocial effect of chronic OT administration and the brain serotonergic system. Ten male subjects with ASD were administered OT for 8-10 weeks in an open-label, single-arm, non-randomized, uncontrolled manner. Before and during the OT treatment, positron emission tomography was used with the (11C)-3-amino-4-(2-[(demethylamino)methyl]phenylthio)benzonitrile(11C-DASB) radiotracer. Then binding of serotonin transporter (11C-DASB BPND) was estimated. The main outcome measures were changes in 11C-DASB BPND and changes in the emotional response to others' faces. No significant change was found in the emotional response to others' faces after the 8-10 week OT treatment. However, the increased serotonin transporter (SERT) level in the striatum after treatment was correlated significantly with increased negative emotional response to human faces. This study revealed a relation between changes in the serotonergic system and in prosociality after chronic OT administration. Additional studies must be conducted to verify the chronic OT effects on social behavior via the serotonergic system.
Collapse
Affiliation(s)
- Mina Fukai
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan; Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Japan
| | - Masamichi Yokokura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Tomoyasu Bunai
- Department of Biofunctional Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan; Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
22
|
Vraka C, Nics L, Wagner KH, Hacker M, Wadsak W, Mitterhauser M. LogP, a yesterday's value? Nucl Med Biol 2017; 50:1-10. [PMID: 28364662 DOI: 10.1016/j.nucmedbio.2017.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION There is an increasing demand for high throughput methods at early stages of preclinical radioligand development, in order to predict pharmacokinetic properties (e.g., biodistribution) and blood brain barrier (BBB) penetration. One of the most important physicochemical properties is the lipophilicity, measured by means of shake-flask (logP) or HPLC methods. Yet, a plethora of experimental methods are described in the literature for the determination of logP values. These varying methods often lead to different results for one identical compound, which complicates any comparison or prediction for subsequent preclinical studies. However, a standardized and internationally applied and accepted database with logP values for a reliable comparison of the lipophilic character of radiotracers is still missing. METHOD Lipophilicity measurements were performed with 121 molecules using a high throughput HPLC method and ClogP values were calculated using ChemBioDraw®. Furthermore, logP measurements for six representative radiotracers were performed with the conventional shake-flask method and the results were statistically compared to the ClogP and HPLC logP results. Different logP thresholds, suggesting optimal BBB penetration according to literature, were selected and put into relation with the acquired HPLC logP and ClogP values of cerebral tracers. RESULTS The results of the tested compounds ranged from -2.1 to 5.4 with the applied HPLC method. The acquired database comprises ClogP values of the whole set of compounds ranging from -4.11 to 6.12. LogP data from different methods were not comparable. The correlation of the obtained logP data to thresholds suggesting an optimal brain uptake resulted in a high number of false positive classifications. CONCLUSION The logP determination for prediction of BBB penetration is obsolete. The extensive database, including clinical relevant radiotracers, can be used as comparative set of values for preclinical studies, and serves as a basis for further critical discussions concerning the eligibility of logP.
Collapse
Affiliation(s)
- Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department for Nutritional Science, University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department for Nutritional Science, University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Department for Nutritional Science, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department of Inorganic Chemistry, University of Vienna, Vienna, Austria; CBmed, Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department of (PTB) Pharmaceutical Technology and Biopharmaceuticals, University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
23
|
Kanazawa M, Ohba H, Nishiyama S, Kakiuchi T, Tsukada H. Effect of MPTP on Serotonergic Neuronal Systems and Mitochondrial Complex I Activity in the Living Brain: A PET Study on Conscious Rhesus Monkeys. J Nucl Med 2017; 58:1111-1116. [PMID: 28280215 DOI: 10.2967/jnumed.116.189159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The objective of the present PET study was to compare the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on serotonergic neuronal systems and mitochondrial complex I (MC-I) activity with that of dopamine in conscious rhesus monkeys (Macaca mulatta). Methods: A Parkinson disease monkey model was prepared by repeated administration of MPTP. For the PET measurements, normal and MPTP-treated conscious monkeys received an intravenous injection of 11C-DASB for serotonin transporter, 18F-MPPF for serotonin 1A receptor, 11C-PE2I for dopamine transporter, 11C-6MemTyr for dopamine synthesis, 11C-raclopride for dopamine D2 receptor, or 18F-BCPP-EF for MC-I. Serotonin and dopamine parameters were calculated using time-activity curves in the cerebellum as the input function. The total distribution volume of 18F-BCPP-EF was assessed using Logan plot graphical analysis with metabolite-corrected plasma as the input function. Results: MPTP-induced diffuse reductions in MC-I activity were observed throughout the brain, except the cerebellum. Significant reductions in the presynaptic dopamine parameters-dopamine transporter and dopamine synthesis-were detected in the striatum and substantia nigra pars compacta of MPTP-treated monkeys, whereas no significant differences in postsynaptic dopamine D2 receptor binding were observed. Serotonin transporter binding was reduced by MPTP not only in striatal regions but also in extrastriatal regions. In contrast, serotonin 1A receptor binding was unaffected by MPTP anywhere in the brain. In the cortex, the reduction of serotonin transporter binding correlated with that of MC-I. Conclusion: The results obtained by multiparametric PET measurements in a Parkinson disease monkey model demonstrated that chronic MPTP treatment induced reductions not only in the dopaminergic system in the nigrostriatal pathway but also in serotonin transporter in the cortical and subcortical regions. These results suggest that the neurotoxicity of MPTP is not exclusive to the nigrostriatal pathway, as predicted from MC-I damage in the extrastriatal regions of the brain.
Collapse
Affiliation(s)
- Masakatsu Kanazawa
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| |
Collapse
|
24
|
Hirosawa T, Kikuchi M, Ouchi Y, Takahashi T, Yoshimura Y, Kosaka H, Furutani N, Hiraishi H, Fukai M, Yokokura M, Yoshikawa E, Bunai T, Minabe Y. A pilot study of serotonergic modulation after long‐term administration of oxytocin in autism spectrum disorder. Autism Res 2017; 10:821-828. [DOI: 10.1002/aur.1761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsu Hirosawa
- Department of Psychiatry and NeurobiologyGraduate School of Medical Science, Kanazawa UniversityKanazawa Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and NeurobiologyGraduate School of Medical Science, Kanazawa UniversityKanazawa Japan
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawa Japan
| | - Yasuomi Ouchi
- Department of Biofunctional ImagingMedical Photonics Research Center, Hamamatsu University School of MedicineHamamatsu Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawa Japan
| | - Yuko Yoshimura
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawa Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui Japan
| | - Naoki Furutani
- Department of Psychiatry and NeurobiologyGraduate School of Medical Science, Kanazawa UniversityKanazawa Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawa Japan
| | - Mina Fukai
- Department of Psychiatry and NeurobiologyGraduate School of Medical Science, Kanazawa UniversityKanazawa Japan
| | - Masamichi Yokokura
- Department of Psychiatry and NeurologyHamamatsu University School of MedicineHamamatsu Japan
| | - Etsuji Yoshikawa
- Central Research LaboratoryHamamatsu Photonics KKHamamatsu Japan
| | - Tomoyasu Bunai
- Department of Biofunctional ImagingMedical Photonics Research Center, Hamamatsu University School of MedicineHamamatsu Japan
| | - Yoshio Minabe
- Department of Psychiatry and NeurobiologyGraduate School of Medical Science, Kanazawa UniversityKanazawa Japan
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawa Japan
| |
Collapse
|
25
|
Simple and rapid quantification of serotonin transporter binding using [ 11C]DASB bolus plus constant infusion. Neuroimage 2017; 149:23-32. [PMID: 28119137 DOI: 10.1016/j.neuroimage.2017.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/13/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In-vivo quantification of serotonin transporters (SERT) in human brain has been a mainstay of molecular imaging in the field of neuropsychiatric disorders and helped to explore the underpinnings of several medical conditions, therapeutic and environmental influences. The emergence of PET/MR hybrid systems and the heterogeneity of SERT binding call for the development of efficient methods making the investigation of larger or vulnerable populations with limited scanner time and simultaneous changes in molecular and functional measures possible. We propose [11C]DASB bolus plus constant infusion for these applications and validate it against standard analyses of dynamic PET data. METHODS [11C]DASB bolus/infusion optimization was performed on data acquired after [11C]DASB bolus in 8 healthy subjects. Subsequently, 16 subjects underwent one scan using [11C]DASB bolus plus constant infusion with Kbol 160-179min and one scan after [11C]DASB bolus for inter-method reliability analysis. Arterial blood sampling and metabolite analysis were performed for all scans. Distribution volumes (VT) were obtained using Logan plots for bolus scans and ratios between tissue and plasma parent activity for bolus plus infusion scans for different time spans of the scan (VT-70 for 60-70min after start of tracer infusion, VT-90 for 75-90min, VT-120 for 100-120min) in 9 subjects. Omitting blood data, binding potentials (BPND) obtained using multilinear reference tissue modeling (MRTM2) and cerebellar gray matter as reference region were compared in 11 subjects. RESULTS A Kbol of 160min was observed to be optimal for rapid equilibration in thalamus and striatum. VT-70 showed good intraclass correlation coefficients (ICCs) of 0.61-0.70 for thalamus, striatal regions and olfactory cortex with bias ≤5.1% compared to bolus scans. ICCs increased to 0.72-0.78 for VT-90 and 0.77-0.93 for VT-120 in these regions. BPND-90 had negligible bias ≤2.5%, low variability ≤7.9% and ICCs of 0.74-0.87; BPND-120 had ICCs of 0.73-0.90. Low-binding cortical regions and cerebellar gray matter showed a positive bias of ~8% and ICCs 0.57-0.68 at VT-90. Cortical BPND suffered from high variability and bias, best results were obtained for olfactory cortex and anterior cingulate cortex with ICC=0.74-0.75 for BPND-90. High-density regions amygdala and midbrain had a negative bias of -5.5% and -22.5% at VT-90 with ICC 0.70 and 0.63, respectively. CONCLUSIONS We have optimized the equilibrium method with [11C]DASB bolus plus constant infusion and demonstrated good inter-method reliability with accepted standard methods and for SERT quantification using both VT and BPND in a range of different brain regions. With as little as 10-15min of scanning valid estimates of SERT VT and BPND in thalamus, amygdala, striatal and high-binding cortical regions could be obtained. Blood sampling seems vital for valid quantification of SERT in low-binding cortical regions. These methods allow the investigation of up to three subjects with a single radiosynthesis.
Collapse
|
26
|
Politis M, Pagano G, Niccolini F. Imaging in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:233-274. [DOI: 10.1016/bs.irn.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Tyrer AE, Levitan RD, Houle S, Wilson AA, Nobrega JN, Rusjan PM, Meyer JH. Serotonin transporter binding is reduced in seasonal affective disorder following light therapy. Acta Psychiatr Scand 2016; 134:410-419. [PMID: 27553523 DOI: 10.1111/acps.12632] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects of light therapy on serotonin transporter binding (5-HTT BPND ), an index of 5-HTT levels, in the anterior cingulate and prefrontal cortices (ACC and PFC) during winter in seasonal affective disorder (SAD). 5-HTT BPND fluctuates seasonally to a greater extent in SAD relative to health. We hypothesized that in SAD, 5-HTT BPND would be reduced in the ACC and PFC following light therapy. METHODS Eleven SAD participants underwent [11 C] DASB positron emission tomography (PET) scans to measure 5-HTT BPND before and after 2 weeks of daily morning light therapy. RESULTS The primary finding was a main effect of treatment on 5-HTT BPND in the ACC and PFC (repeated-measures manova, F(2,9) = 6.82, P = 0.016). This effect was significant in the ACC (F(1,10) = 15.11 and P = 0.003, magnitude of decrease, 11.94%) and PFC (F(1,10) = 8.33, P = 0.016, magnitude of decrease, 9.13%). 5-HTT BPND also decreased in other regions assayed following light therapy (repeated-measures manova, F(4,7) = 8.54, P = 0.028) including the hippocampus, ventral striatum, dorsal putamen, thalamus and midbrain (F(1,10) = 8.02-36.94, P < 0.0001-0.018; magnitude -8.83% to -16.74%). CONCLUSIONS These results demonstrate that light therapy reaches an important therapeutic target in the treatment of SAD and provide a basis for improvement of this treatment via application of [11 C]DASB PET.
Collapse
Affiliation(s)
- A E Tyrer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - R D Levitan
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - S Houle
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - A A Wilson
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J N Nobrega
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Behavioural Neurobiology Laboratory and Campbell Family Mental Health Research Institute, Departments of Psychiatry, Pharmacology and Toxicology, and Psychology, University of Toronto, Toronto, ON, Canada
| | - P M Rusjan
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J H Meyer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Abstract
PET has deep roots in neuroscience stemming from its first application in brain tumor and brain metabolism imaging. PET emerged over the past few decades and continues to play a prominent role in the study of neurochemistry in the living human brain. Over time, neurochemical imaging with PET has been expanded to address a host of research questions related to, among many others, protein density, drug occupancy, and endogenous neurochemical release. Each of these imaging modes has distinct design and analysis considerations that are critical for enabling quantitative measurements. The number of considerations required for a neurochemical PET study can make it unapproachable. This article aims to orient those interested in neurochemical PET imaging to three of the common imaging modes and to provide some perspective on needs that exist for expansion of neurochemical PET imaging.
Collapse
Affiliation(s)
- Michael S Placzek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Department of Psychiatry, McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA
| | - Wenjun Zhao
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | | | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.
| |
Collapse
|
29
|
Tyrer AE, Levitan RD, Houle S, Wilson AA, Nobrega JN, Meyer JH. Increased Seasonal Variation in Serotonin Transporter Binding in Seasonal Affective Disorder. Neuropsychopharmacology 2016; 41:2447-54. [PMID: 27087270 PMCID: PMC4987850 DOI: 10.1038/npp.2016.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 11/09/2022]
Abstract
Seasonal affective disorder (SAD) is highly prevalent with rates of 1-6% and greater prevalence at more extreme latitudes; however, there are almost no direct brain investigations of this disorder. In health, serotonin transporter binding potential (5-HTT BPND), an index of 5-HTT levels, is greater throughout the brain in fall-winter compared with spring-summer. We hypothesized that in SAD, this seasonal variation would be greater in brain regions containing structures that regulate affect such as the prefrontal and anterior cingulate cortices (PFC and ACC). Furthermore, given the dimensional nature of SAD symptoms, it was hypothesized that seasonal fluctuation of 5-HTT BPND in the PFC and ACC would be greatest in severe SAD. Twenty SAD and twenty healthy participants underwent [(11)C]DASB positron emission tomography scans in summer and winter to measure seasonal variation in [(11)C]DASB 5-HTT BPND. Seasonal increases in [(11)C]DASB 5-HTT BPND were greater in SAD compared with healthy in the PFC and ACC, primarily due to differences between severe SAD and healthy (severe SAD vs healthy; Mann-Whitney U, U=42.5 and 37.0, p=0.005 and 0.003, respectively; greater magnitude in severe SAD of 35.10 and 14.23%, respectively), with similar findings observed in other regions (U=40.0-62.0, p=0.004-0.048; greater magnitude in severe SAD of 13.16-17.49%). To our knowledge, this is the first brain biomarker identified in SAD. This creates a new opportunity for phase 0 studies to target this phenotype and optimize novel prevention/treatment strategies for SAD.
Collapse
Affiliation(s)
- Andrea E Tyrer
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Robert D Levitan
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Behavioural Neurobiology Laboratory, Departments of Psychiatry, Pharmacology and Toxicology, and Psychology, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,CAMH Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T1R8, Canada, Tel: +1 416 535 8501 x 34007, Fax: +1 416 979 4656, E-mail:
| |
Collapse
|
30
|
Stehouwer JS, Goodman MM. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine. PET Clin 2016; 4:101-28. [PMID: 20216936 DOI: 10.1016/j.cpet.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary.
Collapse
|
31
|
Bresch A, Rullmann M, Luthardt J, Arelin K, Becker GA, Patt M, Lobsien D, Baldofski S, Drabe M, Zeisig V, Regenthal R, Blüher M, Hilbert A, Sabri O, Hesse S. In-vivo serotonin transporter availability and somatization in healthy subjects. PERSONALITY AND INDIVIDUAL DIFFERENCES 2016. [DOI: 10.1016/j.paid.2016.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Hinderberger P, Rullmann M, Drabe M, Luthardt J, Becker GA, Blüher M, Regenthal R, Sabri O, Hesse S. The effect of serum BDNF levels on central serotonin transporter availability in obese versus non-obese adults: A [(11)C]DASB positron emission tomography study. Neuropharmacology 2016; 110:530-536. [PMID: 27108933 DOI: 10.1016/j.neuropharm.2016.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/26/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Serotonin (5-HT) and its neurotrophic support system, specifically brain-derived neurotrophic factor (BDNF), are thought to modulate energy homeostasis and susceptibility to obesity. Moreover, a polymorphism (5-HTTLPR) in the serotonin reuptake transporter (5-HTT) gene impairs its transcription, thereby altering serotonergic tone and potentially contributing to such susceptibility. This study aims to investigate the effect of BDNF, biallelic 5-HTTLPR, and central in-vivo 5-HTT availability in highly obese versus non-obese subjects using positron emission tomography (PET) and 5-HTT selective [(11)C]DASB. METHODS Thirty-eight subjects, 24 obese, otherwise mentally and physically healthy, and 14 non-obese healthy controls were included in this study. Parametric images of binding potential were generated from PET data. Central 5-HTT availability, 5-HTTLPR genotype, and serum BDNF concentrations were analyzed, first in a volume of interest, then in a voxel-wise manner. RESULTS Overall, our results showed an absence of a linear correlation between BDNF, in-vivo central 5-HTT availability, and body mass index (BMI). 5-HTTLPR genotyping revealed BDNF and hippocampal 5-HTT availability to be negatively correlated (r = -0.57, p = 0.007) in long allelic homozygotes. However, obese subjects exhibited opposing effects of BDNF levels on 5-HTT availability in the nucleus accumbens (NAcc) relative to our non-obese controls. CONCLUSIONS Our data did not confirm an overall correlation between serum BDNF, in-vivo central 5-HTT availability, 5-HTTLPR, and BMI. However, there is evidence that serotonergic tone linked to BDNF, specifically in the NAcc, is involved in the pathophysiology of obesity, although this needs further exploration over a wide range of reward-related eating behaviors.
Collapse
Affiliation(s)
- Philipp Hinderberger
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Mandy Drabe
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
33
|
Qiao H, Zhang Y, Wu Z, Zhu L, Choi SR, Ploessl K, Kung HF. One-step preparation of [(18)F]FPBM for PET imaging of serotonin transporter (SERT) in the brain. Nucl Med Biol 2016; 43:470-7. [PMID: 27236282 DOI: 10.1016/j.nucmedbio.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 01/27/2023]
Abstract
Serotonin transporters (SERT) in the brain play an important role in normal brain function. Selective serotonin reuptake inhibitors such as fluoxetine, sertraline, paroxetine, escitalopram, etc., specifically target SERT binding in the brain. Development of SERT imaging agents may be useful for studying the function of SERT by in vivo imaging. A one-step preparation of [(18)F]FPBM, 2-(2'-(dimethylamino)methyl)-4'-(3-([(18)F]fluoropropoxy)phenylthio)benzenamine, for positron emission tomography (PET) imaging of SERT binding in the brain was achieved. An active OTs intermediate, 9, was reacted with [(18)F]F(-)/K222 to produce [(18)F]FPBM in one step and in high radiochemical yield. This labeling reaction was evaluated and optimized under different temperatures, bases, solvents, and varying amounts of precursor 9. The radiolabeling reaction led to the desired [(18)F]FPBM in one step and the crude product was purified by HPLC purification to give no-carrier-added [(18)F]FPBM (radiochemical yield, 24-33%, decay corrected; radiochemical purity >99%). PET imaging studies in normal monkeys (n=4) showed fast, pronounced uptakes in the midbrain and thalamus, regions known to be rich in SERT binding sites. A displacement experiment with escitalopram (5mg/kg iv injection at 30min after [(18)F]FPBM injection) showed a rapid and complete reversal of SERT binding, suggesting that binding by [(18)F]FPBM was highly specific and reversible. A one-step radiolabeling method coupled with HPLC purification for preparation of [(18)F]FPBM was developed. Imaging studies suggest that it is feasible to use this method to prepare [(18)F]FPBM for in vivo PET imaging of SERT binding in the brain.
Collapse
Affiliation(s)
- Hongwen Qiao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Zehui Wu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Seok Rye Choi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hank F Kung
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Van Laeken N, Taylor O, Polis I, Neyt S, Kersemans K, Dobbeleir A, Saunders J, Goethals I, Peremans K, De Vos F. In Vivo Evaluation of Blood Based and Reference Tissue Based PET Quantifications of [11C]DASB in the Canine Brain. PLoS One 2016; 11:e0148943. [PMID: 26859850 PMCID: PMC4747581 DOI: 10.1371/journal.pone.0148943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 11/19/2022] Open
Abstract
This first-in-dog study evaluates the use of the PET-radioligand [11C]DASB to image the density and availability of the serotonin transporter (SERT) in the canine brain. Imaging the serotonergic system could improve diagnosis and therapy of multiple canine behavioural disorders. Furthermore, as many similarities are reported between several human neuropsychiatric conditions and naturally occurring canine behavioural disorders, making this tracer available for use in dogs also provide researchers an interesting non-primate animal model to investigate human disorders. Five adult beagles underwent a 90 minutes dynamic PET scan and arterial whole blood was sampled throughout the scan. For each ROI, the distribution volume (VT), obtained via the one- and two- tissue compartment model (1-TC, 2-TC) and the Logan Plot, was calculated and the goodness-of-fit was evaluated by the Akaike Information Criterion (AIC). For the preferred compartmental model BPND values were estimated and compared with those derived by four reference tissue models: 4-parameter RTM, SRTM2, MRTM2 and the Logan reference tissue model. The 2-TC model indicated in 61% of the ROIs a better fit compared to the 1-TC model. The Logan plot produced almost identical VT values and can be used as an alternative. Compared with the 2-TC model, all investigated reference tissue models showed high correlations but small underestimations of the BPND-parameter. The highest correlation was achieved with the Logan reference tissue model (Y = 0.9266 x + 0.0257; R2 = 0.9722). Therefore, this model can be put forward as a non-invasive standard model for future PET-experiments with [11C]DASB in dogs.
Collapse
Affiliation(s)
- Nick Van Laeken
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
- * E-mail:
| | - Olivia Taylor
- Department of Medical Imaging and Small Animal Orthopedics, Ghent University, Ghent, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Ghent University, Ghent, Belgium
| | - Sara Neyt
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jimmy Saunders
- Department of Medical Imaging and Small Animal Orthopedics, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopedics, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Taylor O, Van Laeken N, De Vos F, Polis I, Bosmans T, Goethals I, Achten R, Dobbeleir A, Vandermeulen E, Baeken C, Saunders J, Peremans K. In vivo quantification of the [(11)C]DASB binding in the normal canine brain using positron emission tomography. BMC Vet Res 2015; 11:308. [PMID: 26704517 PMCID: PMC4690221 DOI: 10.1186/s12917-015-0622-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
Background [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([11C]DASB) is currently the mostly used radiotracer for positron emission tomography (PET) quantitative studies of the serotonin transporter (SERT) in the human brain but has never been validated in dogs. The first objective was therefore to evaluate normal [11C]DASB distribution in different brain regions of healthy dogs using PET. The second objective was to provide less invasive and more convenient alternative methods to the arterial sampling-based kinetic analysis. Results A dynamic acquisition of the brain was performed during 90 min. The PET images were coregistered with the magnetic resonance images taken prior to the study in order to manually drawn 20 regions of interest (ROIs). The highest radioactivity concentration of [11C]DASB was observed in the hypothalamus, raphe nuclei and thalamus and lowest levels in the parietal cortex, occipital cortex and cerebellum. The regional radioactivity in those 20 ROIs was quantified using the multilinear reference tissue model 2 (MRTM2) and a semi-quantitative method. The values showed least variability between 40 and 60 min and this time interval was set as the optimal time interval for [11C]DASB quantification in the canine brain. The correlation (R2) between the MRTM2 and the semi-quantitative method using the data between 40 and 60 min was 99.3 % (two-tailed p-value < 0.01). Conclusions The reference tissue models and semi-quantitative method provide a more convenient alternative to invasive arterial sampling models in the evaluation of the SERT of the normal canine brain. The optimal time interval for static scanning is set at 40 to 60 min after tracer injection.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nick Van Laeken
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Filip De Vos
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Tim Bosmans
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Rik Achten
- Department of Radiology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Andre Dobbeleir
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Department of Nuclear Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Eva Vandermeulen
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Jimmy Saunders
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
36
|
Hesse S, Rullmann M, Luthardt J, Winter K, Hankir MK, Becker GA, Zientek F, Reissig G, Regenthal R, Drabe M, Schinke C, Bresch A, Arelin K, Lobsien D, Patt M, Meyer PM, Fasshauer M, Fenske WK, Blüher M, Stumvoll M, Sabri O. Central serotonin transporter availability in highly obese individuals compared with non-obese controls: A [(11)C] DASB positron emission tomography study. Eur J Nucl Med Mol Imaging 2015; 43:1096-104. [PMID: 26577939 DOI: 10.1007/s00259-015-3243-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE The role of the central serotonin (5-hydroxytryptamine, 5-HT) system in feeding has been extensively studied in animals with the 5-HT family of transporters (5-HTT) being identified as key molecules in the regulation of satiety and body weight. Aberrant 5-HT transmission has been implicated in the pathogenesis of human obesity by in vivo positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques. However, results obtained thus far from studies of central 5-HTT availability have been inconsistent, which is thought to be brought about mainly by the low number of individuals with a high body mass index (BMI) previously used. The aim of this study was therefore to assess 5-HTT availability in the brains of highly obese otherwise healthy individuals compared with non-obese healthy controls. METHODS We performed PET using the 5-HTT selective radiotracer [(11)C] DASB on 30 highly obese (BMI range between 35 and 55 kg/m(2)) and 15 age- and sex-matched non-obese volunteers (BMI range between 19 and 27 kg/m(2)) in a cross-sectional study design. The 5-HTT binding potential (BPND) was used as the outcome parameter. RESULTS On a group level, there was no significant difference in 5-HTT BPND in various cortical and subcortical regions in individuals with the highest BMI compared with non-obese controls, while statistical models showed minor effects of age, sex, and the degree of depression on 5-HTT BPND. CONCLUSION The overall finding of a lack of significantly altered 5-HTT availability together with its high variance in obese individuals justifies the investigation of individual behavioral responses to external and internal cues which may further define distinct phenotypes and subgroups in human obesity.
Collapse
Affiliation(s)
- Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany.
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany.
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Karsten Winter
- Centre for Translational Regenerative Medicine, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Mohammed K Hankir
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Franziska Zientek
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
| | - Georg Reissig
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Mandy Drabe
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
| | | | - Anke Bresch
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Katrin Arelin
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Mathias Fasshauer
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
- Medical Department III, University of Leipzig, Leipzig, Germany
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
- Medical Department III, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III, University of Leipzig, Leipzig, Germany
- Collaborative Research Centre 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
- Medical Department III, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
- Integrated Research and Treatment Centre Adiposity Diseases Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Walker M, Ehrlichmann W, Stahlschmidt A, Pichler BJ, Fischer K. In Vivo Evaluation of 11C-DASB for Quantitative SERT Imaging in Rats and Mice. J Nucl Med 2015; 57:115-21. [PMID: 26514178 DOI: 10.2967/jnumed.115.163683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Serotonin, or 5-hydroxytryptamine (5-HT), plays a key role in the central nervous system and is involved in many essential neurologic processes such as mood, social behavior, and sleep. The serotonin transporter ligand (11)C-3-amino-4(2-dimethylaminomethyl-phenylsufanyl)-benzonitrile ((11)C-DASB) has been used to determine nondisplaceable binding potential (BPND), which is defined as the quotient of the available receptor density (Bavail) and the apparent equilibrium dissociation rate constant (1/appKD) under in vivo conditions. Because of the increasing number of animal models of human diseases, there is a pressing need to evaluate the applicability of (11)C-DASB to rats and mice. Here, we assessed the feasibility of using (11)C-DASB for quantification of serotonin transporter (SERT) density and affinity in vivo in rats and mice. METHODS Rats and mice underwent 4 PET scans with increasing doses of the unlabeled ligand to calculate Bavail and appKD using the multiple-ligand concentration transporter assay. An additional PET scan was performed to calculate test-retest reproducibility and reliability. BPND was calculated using the simplified reference tissue model, and the results for different reference regions were compared. RESULTS Displaceable binding of (11)C-DASB was found in all brain regions of both rats and mice, with the highest binding being in the thalamus and the lowest in the cerebellum. In rats, displaceable binding was largely reduced in the cerebellar cortex, which in mice was spatially indistinguishable from cerebellar white matter. Use of the cerebellum with fully saturated binding sites as the reference region did not lead to reliable results. Test-retest reproducibility in the thalamus was more than 90% in both mice and rats. In rats, Bavail, appKD, and ED50 were 3.9 ± 0.4 pmol/mL, 2.2 ± 0.4 nM, and 12.0 ± 2.6 nmol/kg, respectively, whereas analysis of the mouse measurements resulted in inaccurate fits due to the high injected tracer mass. CONCLUSION Our data showed that in rats, (11)C-DASB can be used to quantify SERT density with good reproducibility. BPND agreed with the distribution of SERT in the rat brain. It remains difficult to estimate quantitative parameters accurately from mouse measurements because of the high injected tracer mass and underestimation of the binding parameters due to high displaceable binding in the reference region.
Collapse
Affiliation(s)
- Michael Walker
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Walter Ehrlichmann
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anke Stahlschmidt
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kristina Fischer
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Spies M, Knudsen GM, Lanzenberger R, Kasper S. The serotonin transporter in psychiatric disorders: insights from PET imaging. Lancet Psychiatry 2015; 2:743-755. [PMID: 26249305 DOI: 10.1016/s2215-0366(15)00232-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder and might therefore be relevant for stratification of patients into clinical subsets. PET has enabled the elucidation of mechanisms of response to selective serotonin reuptake inhibitors (SSRIs) and hence provides a basis for rational pharmacological treatment of major depressive disorder. Such imaging studies have also suggested that the pattern of serotonin transporter binding before treatment might predict response to antidepressant treatment, which could potentially be clinically useful in the future. Additionally, this Review discusses PET studies investigating the serotonin transporter in anxiety, obsessive-compulsive disorder, and eating disorders. Few studies have shown changes in serotonin transporter activity in schizophrenia and attention deficit hyperactivity disorder. By showing the scarcity of data in these psychiatric disorders, we highlight the potential for further investigation in this field.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Huang YY, Cheng CY, Huang WS, Ma KH, Tseng TW, Chou TK, Huang Y, Shiue CY. Toxicity and radiation dosimetry studies of the serotonin transporter radioligand [(18) F]AFM in rats and monkeys. EJNMMI Res 2015; 4:71. [PMID: 26116128 PMCID: PMC4452647 DOI: 10.1186/s13550-014-0071-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/27/2014] [Indexed: 11/12/2022] Open
Abstract
Background [18 F]AFM is a potent and promising PET imaging agent for the serotonin transporter. We carried out an acute toxicity study in rats and radiation dosimetry in monkeys before the translation of the tracer to humans. Methods Single- and multiple-dose toxicity studies were conducted in Sprague–Dawley rats. Male and female rats were injected intravenously with AFM tartrate as a single dose of 98.7 or 987 μg/kg (592 or 5,920 μg/m2, 100× or 1,000× the proposed human dose of 8 μg, respectively) on day 1 or as five consecutive daily doses of 98.7 μg/kg/day (592 μg /m2/day, 100× human dose, total dose 493.5 μg/kg). PET/CT scans were performed in four Formosan rock monkeys (two males and two females, each monkey scanned twice) using a Siemens BIOGRAPH scanner. After injection of [18 F]AFM (88.5 ± 20.3 MBq), a low-dose CT scan and a series of eight whole-body PET scans in 3-D mode were performed. Time-activity data of source organs were used to calculate the residence times and estimate the absorbed radiation dose using the OLINDA/EXM software. Results In the rats, neither the single dose nor the five daily doses of AFM tartrate produced overt adverse effects clinically. In the monkeys, the radiation doses received by most organs ranged between 8.3 and 39.1 μGy/MBq. The osteogenic cells, red marrow, and lungs received the highest doses of 39.1, 35.4, and 35.1 μGy/MBq, respectively. The effective doses extrapolated to male and female adult humans were 18.0 and 18.3 μSv/MBq, respectively. Conclusions Toxicity studies in Sprague–Dawley rats and radiation dosimetry studies in Formosa rock monkeys suggest that [18 F]AFM is safe for use in human PET imaging studies. Trial registration IACUC-12-200.
Collapse
Affiliation(s)
- Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, 325 Sec. 2, Cheng-Kung Road, Taipei, 114, Taiwan,
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Murai N, Fushiki H, Honda S, Murakami Y, Iwashita A, Irie M, Tamura S, Nagakura Y, Aoki T. Relationship between serotonin transporter occupancies and analgesic effects of AS1069562, the (+)-isomer of indeloxazine, and duloxetine in reserpine-induced myalgia rats. Neuroscience 2015; 289:262-9. [DOI: 10.1016/j.neuroscience.2014.12.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/26/2022]
|
41
|
Politis M, Niccolini F. Serotonin in Parkinson's disease. Behav Brain Res 2015; 277:136-45. [DOI: 10.1016/j.bbr.2014.07.037] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 02/04/2023]
|
42
|
Todd Ogden R, Zanderigo F, Parsey RV. Estimation of in vivo nonspecific binding in positron emission tomography studies without requiring a reference region. Neuroimage 2014; 108:234-42. [PMID: 25542534 DOI: 10.1016/j.neuroimage.2014.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/14/2014] [Indexed: 11/25/2022] Open
Abstract
Estimation of outcome measures in in vivo neuroreceptor mapping with positron emission tomography (PET) commonly depends on an assumption of uniform nondisplaceable binding throughout the brain. In many cases, this can be estimated based on data from a "reference region," an area of the brain devoid of the receptor of interest. However, often such a region does not exist, as there are some receptors everywhere throughout the brain. Erroneously designating a region as a "reference" can lead to biased estimation, and furthermore, if the level of specific binding in the purported reference region differs between comparison groups, the validity of resulting conclusions may be called into question. We present a method for estimation of all common PET outcome measures that can provide good estimates even when no reference region exists. Our aim is to use information from several regions simultaneously to estimate the information common to all regions. By not requiring specification (or validation) of a reference region, such an approach can provide an automated, objective approach for kinetic modeling of PET data. We illustrate the performance of these methods on simulated data, human [(11)C]WAY-100635 data, and [(11)C]CUMI-101 blocking data in baboons. We show close agreement between estimates obtained by using the proposed method (which does not require a reference region) and estimates based on either a reference region or a blocking study.
Collapse
Affiliation(s)
- R Todd Ogden
- Department of Biostatistics, Columbia University, 10032, New York, NY, USA; Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 10032, New York, NY, USA.
| | - Francesca Zanderigo
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 10032, New York, NY, USA
| | - Ramin V Parsey
- Departments of Psychiatry and Radiology, Stony Brook University, Stony Brook, 11794, NY, USA
| |
Collapse
|
43
|
Shapiro PA, Sloan RP, Deochand C, Franceschi AM, Delorenzo C, Mann JJ, Parsey RV. Quantifying serotonin transporters by PET with [11C]-DASB before and after interferon-α treatment. Synapse 2014; 68:548-55. [PMID: 25043294 DOI: 10.1002/syn.21766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/30/2014] [Accepted: 06/14/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND Interferon-α (IFN-α) therapy is frequently associated with disabling depression, fatigue, and related neuropsychiatric effects. Although depression in major depressive disorder is associated with low serotonin transporter binding, animal models suggest that IFN-associated mood effects are linked to increased presynaptic serotonin transporter binding. This study tested the hypotheses that IFN administration to human subjects increases presynaptic serotonin binding activity, and that this effect correlates with incident depression symptoms. METHODS Positron emission tomography (PET) scans using [11C]-DASB were obtained for nine hepatitis C patients before and after IFN-α treatment for 8 weeks. Serotonin transporter binding was estimated using the likelihood estimation in graphical analysis (LEGA) model and measured as the volume of distribution (VT) divided by the free fraction of ligand (fP). Depression was measured with the Structured Clinical Interview for DSM-IV Diagnosis (SCID) and the Hamilton Rating Scale for Depression (HAM-D). RESULTS Compared to pre-IFN treatment values, changes in serotonin transporter binding and depression symptoms were not significant. There was no correlation between changes in serotonin transporter binding and depression symptoms. LIMITATIONS The study is limited by small sample size, minimal effect on observed mood symptoms within the sample, and brief duration of follow-up. CONCLUSION These findings do not support the hypothesis of an IFN-induced change in serotonin transporter function as the cause of incident depressive symptoms in patients treated with IFN-α. Additional study of these possible relationships should be of longer duration and include more subjects with more pronounced changes in mood.
Collapse
Affiliation(s)
- Peter A Shapiro
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York
| | | | | | | | | | | | | |
Collapse
|
44
|
Park JS, Lee J, Meyer J, Ilankumaran P, Han S, Yim DS. Serotonin transporter occupancy of SKL10406 in humans: comparison of pharmacokinetic-pharmacodynamic modeling methods for estimation of occupancy parameters. Transl Clin Pharmacol 2014. [DOI: 10.12793/tcp.2014.22.2.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Jongtae Lee
- Department of Pharmacology, PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jeffrey Meyer
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | - Seunghoon Han
- Department of Pharmacology, PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Dong-Seok Yim
- Department of Pharmacology, PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
45
|
Yamanaka H, Yokoyama C, Mizuma H, Kurai S, Finnema SJ, Halldin C, Doi H, Onoe H. A possible mechanism of the nucleus accumbens and ventral pallidum 5-HT1B receptors underlying the antidepressant action of ketamine: a PET study with macaques. Transl Psychiatry 2014; 4:e342. [PMID: 24399045 PMCID: PMC3905222 DOI: 10.1038/tp.2013.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 12/19/2022] Open
Abstract
Ketamine is a unique anesthetic reagent known to produce various psychotic symptoms. Ketamine has recently been reported to elicit a long-lasting antidepressant effect in patients with major depression. Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism has not been fully elucidated. To understand the involvement of the brain serotonergic system in the actions of ketamine, we performed a positron emission tomography (PET) study on non-human primates. Four rhesus monkeys underwent PET studies with two serotonin (5-HT)-related PET radioligands, [(11)C]AZ10419369 and [(11)C]DASB, which are highly selective for the 5-HT1B receptor and serotonin transporter (SERT), respectively. Voxel-based analysis using standardized brain images revealed that ketamine administration significantly increased 5-HT1B receptor binding in the nucleus accumbens and ventral pallidum, whereas it significantly reduced SERT binding in these brain regions. Fenfluramine, a 5-HT releaser, significantly decreased 5-HT1B receptor binding, but no additional effect was observed when it was administered with ketamine. Furthermore, pretreatment with 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), a potent antagonist of the glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, blocked the action of ketamine on the 5-HT1B receptor but not SERT binding. This indicates the involvement of AMPA receptor activation in ketamine-induced alterations of 5-HT1B receptor binding. Because NBQX is known to block the antidepressant effect of ketamine in rodents, alterations in the serotonergic neurotransmission, particularly upregulation of postsynaptic 5-HT1B receptors in the nucleus accumbens and ventral pallidum may be critically involved in the antidepressant action of ketamine.
Collapse
Affiliation(s)
- H Yamanaka
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - C Yokoyama
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - H Mizuma
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - S Kurai
- Labelling Chemistry Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - S J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Stockholm, Sweden
| | - C Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Stockholm, Sweden
| | - H Doi
- Labelling Chemistry Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - H Onoe
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan,Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan. E-mail:
| |
Collapse
|
46
|
Yamamoto S, Ohba H, Nishiyama S, Harada N, Kakiuchi T, Tsukada H, Domino EF. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys. Neuropsychopharmacology 2013; 38:2666-74. [PMID: 23880871 PMCID: PMC3828538 DOI: 10.1038/npp.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 01/10/2023]
Abstract
Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys underwent four positron emission tomography measurements with [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzonitrile ([(11)C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [(11)C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [(11)C]DASB. No significant changes were observed in either 5-HT1A-R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased serotonin levels in the extracellular fluid of the prefrontal cortex. The present study demonstrates that subanesthetic ketamine selectively enhanced serotonergic transmission by inhibition of SERT activity. This action coexists with the rapid antidepressant effect of subanesthetic doses of ketamine. Further studies are needed to investigate whether the transient combination of SERT and NMDA reception inhibition enhances each other's antidepressant actions.
Collapse
Affiliation(s)
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-05632, USA, Tel: +1 734 764 9115, Fax: +1 734 763 4450, E-mail:
| |
Collapse
|
47
|
Naganawa M, Nabulsi N, Planeta B, Gallezot JD, Lin SF, Najafzadeh S, Williams W, Ropchan J, Labaree D, Neumeister A, Huang Y, Carson RE. Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter. J Cereb Blood Flow Metab 2013; 33:1886-96. [PMID: 23921898 PMCID: PMC3851894 DOI: 10.1038/jcbfm.2013.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/09/2022]
Abstract
[(11)C]AFM, or [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [(11)C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time-activity curves were well described by MA1. The rank order of [(11)C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [(11)C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b') for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [(11)C]AFM is a suitable PET radioligand to image and quantify SERT in humans.
Collapse
Affiliation(s)
- Mika Naganawa
- Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dreyfus N, Myers JK, Badescu VO, de Frutos O, de la Puente ML, Ding C, Filla SA, Fynboe K, Gernert DL, Heinz BA, Hemrick-Luecke SK, Johnson KW, Johnson MP, López P, Love PL, Martin LJ, Masquelin T, McCoy MJ, Mendiola J, Morrow D, Muhlhauser M, Pascual G, Perun TJ, Pfeifer LA, Phebus LA, Richards SJ, Rincón JA, Seest EP, Shah J, Shaojuan J, Simmons RMA, Stephenson GA, Tromiczak EG, Thompson LK, Walter MW, Weber WW, Zarrinmayeh H, Thomas CE, Joshi E, Iyengar S, Johansson AM. Discovery of a potent, dual serotonin and norepinephrine reuptake inhibitor. ACS Med Chem Lett 2013; 4:560-4. [PMID: 24900709 DOI: 10.1021/ml400049p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022] Open
Abstract
The objective of the described research effort was to identify a novel serotonin and norepinephrine reuptake inhibitor (SNRI) with improved norepinephrine transporter activity and acceptable metabolic stability and exhibiting minimal drug-drug interaction. We describe herein the discovery of a series of 3-substituted pyrrolidines, exemplified by compound 1. Compound 1 is a selective SNRI in vitro and in vivo, has favorable ADME properties, and retains inhibitory activity in the formalin model of pain behavior. Compound 1 thus represents a potential new probe to explore utility of SNRIs in central nervous system disorders, including chronic pain conditions.
Collapse
Affiliation(s)
- Nicolas Dreyfus
- Research and Development, Eli Lilly and Company Ltd., Sunninghill Road, Windlesham,
Surrey GU20 6PH, United Kingdom
| | - Jason K. Myers
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Valentina O. Badescu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Oscar de Frutos
- Lilly S.A., Centro de Investigación,
Avda. de la Industria, 30, Alcobendas-Madrid
28108, Spain
| | - Maria Luz de la Puente
- Lilly S.A., Centro de Investigación,
Avda. de la Industria, 30, Alcobendas-Madrid
28108, Spain
| | - Chunjin Ding
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Sandra A. Filla
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | | | - Douglas L. Gernert
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Beverly A. Heinz
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Susan K. Hemrick-Luecke
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Kirk W. Johnson
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Michael P. Johnson
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Pilar López
- Lilly S.A., Centro de Investigación,
Avda. de la Industria, 30, Alcobendas-Madrid
28108, Spain
| | | | - Laura J. Martin
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Thierry Masquelin
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Michael J. McCoy
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Javier Mendiola
- Lilly S.A., Centro de Investigación,
Avda. de la Industria, 30, Alcobendas-Madrid
28108, Spain
| | - Denise Morrow
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Mark Muhlhauser
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Gustavo Pascual
- Lilly S.A., Centro de Investigación,
Avda. de la Industria, 30, Alcobendas-Madrid
28108, Spain
| | - Thomas J. Perun
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Lance A. Pfeifer
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Lee A. Phebus
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Simon J. Richards
- Research and Development, Eli Lilly and Company Ltd., Sunninghill Road, Windlesham,
Surrey GU20 6PH, United Kingdom
| | - Juan Antonio Rincón
- Lilly S.A., Centro de Investigación,
Avda. de la Industria, 30, Alcobendas-Madrid
28108, Spain
| | - Eric P. Seest
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Jikesh Shah
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Jia Shaojuan
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Rosa Maria A. Simmons
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Gregory A. Stephenson
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Eric G. Tromiczak
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Linda K. Thompson
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Magnus W. Walter
- Research and Development, Eli Lilly and Company Ltd., Sunninghill Road, Windlesham,
Surrey GU20 6PH, United Kingdom
| | - Wayne W. Weber
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Hamideh Zarrinmayeh
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Craig E. Thomas
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Elizabeth Joshi
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Smriti Iyengar
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| | - Anette M. Johansson
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana 46285, United States
| |
Collapse
|
49
|
Occupancy of serotonin and norepinephrine transporter by milnacipran in patients with major depressive disorder: a positron emission tomography study with [(11)C]DASB and (S,S)-[(18)F]FMeNER-D(2). Int J Neuropsychopharmacol 2013; 16:937-43. [PMID: 23067569 DOI: 10.1017/s1461145712001009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antidepressants used for treatment of depression exert their efficacy by blocking reuptake at serotonin transporters (5-HTT) and/or norepinephrine transporters (NET). Recent studies suggest that serotonin and norepinephrine reuptake inhibitors that block both 5-HTT and NET have better tolerability than tricyclic antidepressants and may have higher efficacy compared to selective serotonin reuptake inhibitors. Previous positron emission tomography (PET) studies have reported >80% 5-HTT occupancy with clinical doses of antidepressants, but there has been no report of NET occupancy in patients treated with antidepressants. In the present study, we investigated both 5-HTT and NET occupancies by PET using radioligands [(11)C]DASB and (S,S)-[(18)F]FMeNER-D(2), in six patients, each with major depressive disorder (MDD), using various doses of milnacipran. Our data show that mean 5-HTT occupancy in the thalamus was 33.0% at 50 mg, 38.6% at 100 mg, 60.0% at 150 mg and 61.5% at 200 mg. Mean NET occupancy in the thalamus was 25.3% at 25 mg, 40.0% at 100 mg, 47.3% at 125 mg and 49.9% at 200 mg. Estimated ED(50) was 122.5 mg with the dose for 5-HTT and 149.9 mg for NET. Both 5-HTT and NET occupancies were observed in a dose-dependent manner. Both 5-HTT and NET occupancies were about 40% by milnacipran at 100 mg, the dose most commonly administered to MDD patients.
Collapse
|
50
|
Abstract
The central serotonergic system has been implicated in the pathophysiology of panic disorder (PD) by evidence of abnormally elevated serotonin-turnover, reduced pre- and post-synaptic 5-HT(1A)-receptor sensitivity and binding and clinical improvement during administration of agents that enhance serotonergic transmission. Polymorphisms in genes that putatively influence serotonergic neurotransmission increase the vulnerability for developing PD specifically in males. We tested the hypotheses that serotonin transporter (5-HTT) binding is elevated in PD subjects vs. healthy controls in regions where in vivo evidence exists for both elevated 5-HTT and 5-HT(1A) receptor levels in PD and investigated whether the extent of this difference depends upon gender. Volunteers were out-patients with current PD (n=24) and healthy controls (n=24). The non-displaceable component of 5-HTT binding-potential (BP(ND)) was measured using positron emission tomography and the 5-HTT selective radioligand, [(11)C]DASB. PD severity was assessed using the PD Severity Scale. The 5-HTT-BP(ND) was increased in males with PD relative to male controls in the anterior cingulate cortex (F=8.96, p(FDR)=0.01) and midbrain (F=5.09, p(FDR)=0.03). In contrast, BP(ND) did not differ between females with PD and female controls in any region examined. The finding that 5-HTT-binding is elevated in males but not in females with PD converges with other evidence suggesting that dysfunction within the central serotonergic system exists in PD, and also indicates that such abnormalities are influenced by gender. These findings conceivably may reflect a sexual dimorphism that underlies the greater efficacy of serotonin reuptake inhibitor treatment in females vs. males with PD.
Collapse
|