1
|
Abatematteo FS, Delre P, Mercurio I, Rezelj VV, Siliqi D, Beaucourt S, Lattanzi G, Colabufo NA, Leopoldo M, Saviano M, Vignuzzi M, Mangiatordi GF, Abate C. A conformational rearrangement of the SARS-CoV-2 host protein sigma-1 is required for antiviral activity: insights from a combined in-silico/in-vitro approach. Sci Rep 2023; 13:12798. [PMID: 37550340 PMCID: PMC10406941 DOI: 10.1038/s41598-023-39662-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The development of effective drugs to treat coronavirus infections remains a significant challenge for the scientific community. Recent evidence reports on the sigma-1 receptor (S1R) as a key druggable host protein in the SARS-CoV-1 and SARS-CoV-2 interactomes and shows a potent antiviral activity against SARS-CoV-2 for the S1R antagonist PB28. To improve PB28 activity, we designed and tested a series of its analogues and identified a compound that is fourfold more potent against SARS-CoV-2 than PB28 itself. Interestingly, we found no direct correlation between S1R affinity and SARS-CoV-2 antiviral activity. Building on this, we employed comparative induced fit docking and molecular dynamics simulations to gain insights into the possible mechanism that occurs when specific ligand-protein interactions take place and that may be responsible for the observed antiviral activity. Our findings offer a possible explanation for the experimental observations, provide insights into the S1R conformational changes upon ligand binding and lay the foundation for the rational design of new S1R ligands with potent antiviral activity against SARS-CoV-2 and likely other viruses.
Collapse
Affiliation(s)
- Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pietro Delre
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy
| | - Ivan Mercurio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Antonio Vivaldi 43, 81100, Caserta, Italy
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, Paris, France
| | - Dritan Siliqi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy
| | - Stephanie Beaucourt
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, Paris, France
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 9, 38123, Povo-Trento, Italy
- TIFPA Trento Institute for Fundamental Physics and Applications, Via Sommarive 9, 38123, Povo-Trento, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Michele Saviano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Vivaldi 43, 81100, Caserta, Italy
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, Paris, France
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Singapore
| | - Giuseppe Felice Mangiatordi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy.
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
2
|
Peters BBC, Andersson PG. The Implications of the Brønsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins. J Am Chem Soc 2022; 144:16252-16261. [PMID: 36044252 PMCID: PMC9479089 DOI: 10.1021/jacs.2c07023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral iridium complexes derived from Crabtree's catalyst are highly useful in modern hydrogenations of olefins attributed to high reactivity, stereoselectivity, and stability. Despite that these precatalysts are pH neutral, the reaction mixtures turn acidic under hydrogenation conditions. This Perspective is devoted to the implications of the intrinsic Brønsted acidity of catalytic intermediates in asymmetric hydrogenation of olefins. Despite that the acidity has often been used only as a rationale for side-product formation, more recent methodologies have started to use this property advantageously. We hope that this Perspective serves as a stimulant for the development of such compelling and new asymmetric hydrogenations. The inherent scientific opportunities in utilizing or annihilating the generated Brønsted acid are enormous, and potential new innovations are outlined toward the end.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
3
|
Hill J, Crich D. The N,N,O-Trisubstituted Hydroxylamine Isostere and Its Influence on Lipophilicity and Related Parameters. ACS Med Chem Lett 2022; 13:799-806. [PMID: 35586423 PMCID: PMC9109164 DOI: 10.1021/acsmedchemlett.1c00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The influence of substitution of an N,N,O-trisubstituted hydroxylamine (-NR-OR'-) unit for a hydrocarbon (-CHR-CH2-), ether (-CHR-OR'-), or amine (-NR-CHR'-) moiety on lipophilicity and other ADME parameters is described. A matched molecular pair analysis was conducted across five series of compounds, which showed that the replacement of carbon-carbon bonds by N,N,O-trisubstituted hydroxylamines typically leads to a reduction in logP comparable to that achieved with a tertiary amine group. In contrast, the weakly basic N,N,O-trisubstituted hydroxylamines have greater logD 7.4 values than tertiary amines. It is also demonstrated that the N,N,O-trisubstituted hydroxylamine moiety can improve metabolic stability and reduce human plasma protein binding relative to the corresponding hydrocarbon and ether units. Coupled with recent synthetic methods for hydroxylamine assembly by N-O bond formation, these results provide support for the re-evaluation of the N,N,O-trisubstituted hydroxylamine moiety in small-molecule optimization schemes in medicinal chemistry.
Collapse
Affiliation(s)
- Jarvis Hill
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United
States
- Department
of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United
States
- Department
of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. Eur J Med Chem 2021; 227:113964. [PMID: 34743062 DOI: 10.1016/j.ejmech.2021.113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
The tetralone and tetralone derivatives, as crucial structural scaffolds of potential novel drugs targeted at multiple biological end-points, are normally found in several natural compounds and also, it can be used as parental scaffold and/or intermediate for the synthesis of a series of pharmacologically active compounds with a broad-spectrum of bioactivities including antibacterial, antitumor, CNS effect and so on. Meanwhile, SAR information of its analogues has drawn attentions among medicinal chemists, which could contribute to the further research related to tetralone derivatives aimed at multiple targets. This review encompasses pharmacological activities, SAR analysis and docking study of tetralone and its derivatives, expecting to provide a general retrospect and prospect on tetralone derivatives.
Collapse
|
5
|
QSAR-Based Computational Approaches to Accelerate the Discovery of Sigma-2 Receptor (S2R) Ligands as Therapeutic Drugs. Molecules 2021; 26:molecules26175270. [PMID: 34500703 PMCID: PMC8434483 DOI: 10.3390/molecules26175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
S2R overexpression is associated with various forms of cancer as well as both neuropsychiatric disorders (e.g., schizophrenia) and neurodegenerative diseases (Alzheimer’s disease: AD). In the present study, three ligand-based methods (QSAR modeling, pharmacophore mapping, and shape-based screening) were implemented to select putative S2R ligands from the DrugBank library comprising 2000+ entries. Four separate optimization algorithms (i.e., stepwise regression, Lasso, genetic algorithm (GA), and a customized extension of GA called GreedGene) were adapted to select descriptors for the QSAR models. The subsequent biological evaluation of selected compounds revealed that three FDA-approved drugs for unrelated therapeutic indications exhibited sub-1 uM binding affinity for S2R. In particular, the antidepressant drug nefazodone elicited a S2R binding affinity Ki = 140 nM. A total of 159 unique S2R ligands were retrieved from 16 publications for model building, validation, and testing. To our best knowledge, the present report represents the first case to develop comprehensive QSAR models sourced by pooling and curating a large assemblage of structurally diverse S2R ligands, which should prove useful for identifying new drug leads and predicting their S2R binding affinity prior to the resource-demanding tasks of chemical synthesis and biological evaluation.
Collapse
|
6
|
Current development of sigma-2 receptor radioligands as potential tumor imaging agents. Bioorg Chem 2021; 115:105163. [PMID: 34289426 DOI: 10.1016/j.bioorg.2021.105163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
Sigma receptors are transmembrane proteins with two different subtypes: σ1 and σ2. Because of its overexpression in tumors, the σ2 receptor (σ2R) is a well-known biomarker for cancer cells. A large number of small-molecule ligands for the σ2Rs have been identified and tested for imaging the proliferative status of tumors using single photon emission computed tomography (SPECT) and positron emission tomography (PET). These small molecules include derivatives of bicyclic amines, indoles, cyclohexylpiperazines and tetrahydroisoquinolines. This review discusses various aspects of small molecule ligands, such as chemical composition, labeling strategy, affinity for σ2Rs, and in vitro/in vivo investigations. The recent studies described here could be useful for the development of σ2R radioligands as potential tumor imaging agents.
Collapse
|
7
|
Abatematteo FS, Niso M, Contino M, Leopoldo M, Abate C. Multi-Target Directed Ligands (MTDLs) Binding the σ 1 Receptor as Promising Therapeutics: State of the Art and Perspectives. Int J Mol Sci 2021; 22:6359. [PMID: 34198620 PMCID: PMC8232171 DOI: 10.3390/ijms22126359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The sigma-1 (σ1) receptor is a 'pluripotent chaperone' protein mainly expressed at the mitochondria-endoplasmic reticulum membrane interfaces where it interacts with several client proteins. This feature renders the σ1 receptor an ideal target for the development of multifunctional ligands, whose benefits are now recognized because several pathologies are multifactorial. Indeed, the current therapeutic regimens are based on the administration of different classes of drugs in order to counteract the diverse unbalanced physiological pathways associated with the pathology. Thus, the multi-targeted directed ligand (MTDL) approach, with one molecule that exerts poly-pharmacological actions, may be a winning strategy that overcomes the pharmacokinetic issues linked to the administration of diverse drugs. This review aims to point out the progress in the development of MTDLs directed toward σ1 receptors for the treatment of central nervous system (CNS) and cancer diseases, with a focus on the perspectives that are proper for this strategy. The evidence that some drugs in clinical use unintentionally bind the σ1 protein (as off-target) provides a proof of concept of the potential of this strategy, and it strongly supports the promise that the σ1 receptor holds as a target to be hit in the context of MTDLs for the therapy of multifactorial pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy; (F.S.A.); (M.N.); (M.C.); (M.L.)
| |
Collapse
|
8
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
9
|
Lengacher R, Alberto R. Bioorganometallics: 99mTc cytectrenes, syntheses and applications in nuclear medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Abate C, Niso M, Abatematteo FS, Contino M, Colabufo NA, Berardi F. PB28, the Sigma-1 and Sigma-2 Receptors Modulator With Potent Anti-SARS-CoV-2 Activity: A Review About Its Pharmacological Properties and Structure Affinity Relationships. Front Pharmacol 2020; 11:589810. [PMID: 33364961 PMCID: PMC7750835 DOI: 10.3389/fphar.2020.589810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
These unprecedented times have forced the scientific community to gather to face the COVID-19 pandemic. Efforts in diverse directions have been made. A multi-university team has focused on the identification of the host (human) proteins interacting with SARS-CoV-2 viral proteins, with the aim of hampering these interactions that may cause severe COVID-19 symptoms. Sigma-1 and sigma-2 receptors surprisingly belong to the “druggable” host proteins found, with the pan-sigma receptor modulator PB28 displaying the most potent anti–SARS-CoV-2 activity in in vitro assays. Being 20-fold more active than hydroxychloroquine, without cardiac side effects, PB28 is a promising antiviral candidate worthy of further investigation. Our research group developed PB28 in 1996 and have thoroughly characterized its biological properties since then. Structure–affinity relationship (SAfiR) studies at the sigma receptor subtypes were also undertaken with PB28 as the lead compound. We herein report our knowledge of PB28 to share information that may help to gain insight into the antiviral action of this compound and sigma receptors, while providing structural hints that may speed up the translation into therapeutics of this class of ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | | | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| |
Collapse
|
11
|
Colabufo NA, Leopoldo M, Ferorelli S, Abate C, Contino M, Perrone MG, Niso M, Perrone R, Berardi F. Why PB28 Could Be a Covid 2019 Game Changer? ACS Med Chem Lett 2020; 11:2048-2050. [PMID: 33052254 PMCID: PMC7437449 DOI: 10.1021/acsmedchemlett.0c00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022] Open
Abstract
![]()
PB28,
a cyclohexylpiperazine derivative, could be a potential strategy
for Covid 19 because in a recent study it has been found more active
than hydroxychloroquine without interaction with cardiac proteins.
PB28 has been designed, developed, and biologically evaluated in the
past decade in our research group. A possible mechanism to explain
its surprising anti-COVID-19 activity is suggested..
Collapse
Affiliation(s)
- Nicola Antonio Colabufo
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Carmen Abate
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Maria Grazia Perrone
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Mauro Niso
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Roberto Perrone
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Francesco Berardi
- Dipartimento Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Zheng J, Jongcharoenkamol J, Peters BBC, Guhl J, Ponra S, Ahlquist MSG, Andersson PG. Iridium-catalysed enantioselective formal deoxygenation of racemic alcohols via asymmetric hydrogenation. Nat Catal 2019. [DOI: 10.1038/s41929-019-0375-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Iyamu ID, Lv W, Malik N, Mishra RK, Schiltz GE. Development of Tetrahydroindazole-Based Potent and Selective Sigma-2 Receptor Ligands. ChemMedChem 2019; 14:1248-1256. [PMID: 31071238 PMCID: PMC6613831 DOI: 10.1002/cmdc.201900203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Indexed: 11/08/2022]
Abstract
The sigma-2 receptor has been shown to play important roles in a number of important diseases, including central nervous system (CNS) disorders and cancer. However, mechanisms by which sigma-2 contributes to these diseases remain unclear. The development of new sigma-2 ligands that can be used to probe the function of this protein and potentially as drug discovery leads is therefore of great importance. Herein we report the development of a series of tetrahydroindazole compounds that are highly potent and selective for sigma-2. Structure-activity relationship data were used to generate a pharmacophore model that summarizes the common features present in the potent ligands. Assays for solubility and microsomal stability showed that several members of this compound series possess promising characteristics for further development of useful chemical probes or drug discovery leads.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Lv
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
| | - Neha Malik
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Sigma-2 receptor: past, present and perspectives on multiple therapeutic exploitations. Future Med Chem 2018; 10:1997-2018. [DOI: 10.4155/fmc-2018-0072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identification of sigma-2 receptor (sig-2R) has been controversial. Nevertheless, interest in sig-2R is high for its overexpression in tumors and potentials in oncology. Additionally, sig-2R antagonists inhibit Aβ binding at neurons, blocking the cognitive impairments of Alzheimer's disease. The most representative classes of sig-2R ligands are herein treated with focus on compounds that served to study sig-2R biology and to produce sig-2R: fluorescent ligands; multifunctional anticancer agents; and targeting nanoparticles. Although fluorescent ligands serve as ‘green’ pharmacological tools, sig-2R-multifunctional conjugates and sig-2R-targeted nanoparticles show how sig-2R targeting increases the activity of anticancer drugs in tumors with reduced toxicity. Altogether, this review draws a picture of the multiple approaches of sig-2R ligands in cancer therapy and as Alzheimer's disease modifying disease agents.
Collapse
|
15
|
Fanter L, Schepmann D, Wünsch B. Solid-phase organic synthesis of chiral, non-racemic 1,2,4-trisubstituted 1,4-diazepanes with high σ 1 receptor affinity. Arch Pharm (Weinheim) 2018; 351. [PMID: 29226992 DOI: 10.1002/ardp.201700334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022]
Abstract
The aim of this work was to transfer the established chiral-pool synthesis of 1,2,4-trisubstituted 1,4-diazepanes in solution on the solid phase. For this purpose, (S)-configured amino acids, (S)-alanine, and (S)-leucine, with a small methyl and a larger isobutyl moiety were attached to the solid support 9 by reductive amination. After five reaction steps on the solid support, the 1,4-diazepanes (S)-19a,b were cleaved off and reductively alkylated to afford the 1,2,4-trisubstituted 1,4-diazepanes (S)-20a and (S)-21b, respectively. Both compounds show high σ1 affinity and selectivity over the σ2 subtype.
Collapse
Affiliation(s)
- Lena Fanter
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
16
|
Pati ML, Fanizza E, Hager S, Groza D, Heffeter P, Laurenza AG, Laquintana V, Curri ML, Depalo N, Abate C, Denora N. Quantum Dot Based Luminescent Nanoprobes for Sigma-2 Receptor Imaging. Mol Pharm 2017; 15:458-471. [PMID: 29226684 DOI: 10.1021/acs.molpharmaceut.7b00825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increasing importance of sigma-2 receptor as target for the diagnosis and therapy of tumors paves the way for the development of innovative optically traceable fluorescent probes as tumor cell contrast and therapeutic agents. Here, a novel hybrid organic-inorganic nanostructure is developed by combining the superior fluorescent properties of inorganic quantum dots (QDs), coated with a hydrophilic silica shell (QD@SiO2 NPs), the versatility of the silica shell, and the high selectivity for sigma-2 receptor of the two synthetic ligands, namely, the 6-[(6-aminohexyl)oxy]-2-(3-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)propyl)-3,4-dihydroisoquinolin-1(2H)-one (MLP66) and 6-[1-[3-(4-cyclohexylpiperazin-1-yl)propyl]-1,2,3,4-tetrahydronaphthalen-5-yloxy]hexylamine (TA6). The proposed nanostructures represent a challenging alternative to all previously studied organic small fluorescent molecules, based on the same sigma-2 receptor affinity moieties. Flow cytometry and confocal fluorescence microscopy experiments, respectively, on fixed and living cancerous MCF7 cells, which overexpress the sigma-2 receptor, prove the ability of functionalized (QD@SiO2-TA6 and QD@SiO2-MLP66) NPs to be internalized and demonstrate their affinity to the sigma-2 receptor, ultimately validating the targeting properties conveyed to the NPs by sigma-2 ligand conjugation. The presented QD-based nanoprobes possess a great potential as in vitro selective sigma-2 receptor imaging agent and, consequently, could provide a significant impact to future theranostic applications.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Elisabetta Fanizza
- Istituto per i Processi Chimico-Fisici-IPCF-SS Bari, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125 Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Sonja Hager
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Borschkegasse 8a, A-1090 Wien, Austria
| | - Diana Groza
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Borschkegasse 8a, A-1090 Wien, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Borschkegasse 8a, A-1090 Wien, Austria
| | - Amelita Grazia Laurenza
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Maria Lucia Curri
- Istituto per i Processi Chimico-Fisici-IPCF-SS Bari, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- Istituto per i Processi Chimico-Fisici-IPCF-SS Bari, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
17
|
Fanter L, Müller C, Schepmann D, Bracher F, Wünsch B. Chiral-pool synthesis of 1,2,4-trisubstituted 1,4-diazepanes as novel σ1 receptor ligands. Bioorg Med Chem 2017; 25:4778-4799. [DOI: 10.1016/j.bmc.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
|
18
|
Pati ML, Hornick JR, Niso M, Berardi F, Spitzer D, Abate C, Hawkins W. Sigma-2 receptor agonist derivatives of 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) induce cell death via mitochondrial superoxide production and caspase activation in pancreatic cancer. BMC Cancer 2017; 17:51. [PMID: 28086830 PMCID: PMC5237291 DOI: 10.1186/s12885-016-3040-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022] Open
Abstract
Background Despite considerable efforts by scientific research, pancreatic cancer is the fourth leading cause of cancer related mortalities. Sigma-2 receptors, which are overexpressed in several tumors, represent promising targets for triggering selective pancreatic cancer cells death. Methods We selected five differently structured high-affinity sigma-2 ligands (PB28, PB183, PB221, F281 and PB282) to study how they affect the viability of diverse pancreatic cancer cells (human cell lines BxPC3, AsPC1, Mia PaCa-2, and Panc1 and mouse Panc-02, KCKO and KP-02) and how this is reflected in vivo in a tumor model. Results Important cytotoxicity was shown by the compounds in the aggressive Panc02 cells, where cytotoxic activity was caspase-3 independent for four of the five compounds. However, both cytotoxicity and caspase-3 activation involved generation of Reactive Oxygen Species (ROS), which could be partially reverted by the lipid antioxidant α-tocopherol, but not by the hydrophilic N-acetylcysteine (NAC) indicating crucial differences in the intracellular sites exposed to oxidative stress induced by sigma-2 receptor ligands. Importantly, all the compounds strongly increased the production of mitochondrial superoxide radicals except for PB282. Despite a poor match between in vitro and the in vivo efficacy, daily treatment of C57BL/6 mice bearing Panc02 tumors resulted in promising effects with PB28 and PB282 which were similar compared to the current standard-of-care chemotherapeutic gemcitabine without showing signs of systemic toxicities. Conclusions Overall, this study identified differential sensitivities of pancreatic cancer cells to structurally diverse sigma-2 receptor ligands. Of note, we identified the mitochondrial superoxide pathway as a previously unrecognized sigma-2 receptor-activated process, which encourages further studies on sigma-2 ligand-mediated cancer cell death for the targeted treatment of pancreatic tumors.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - John R Hornick
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Dirk Spitzer
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy.
| | - William Hawkins
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
The Evolution of the Sigma-2 (σ 2) Receptor from Obscure Binding Site to Bona Fide Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:49-61. [PMID: 28315264 DOI: 10.1007/978-3-319-50174-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sigma-2 (σ2) receptor represents one of the most poorly understood proteins in cell biology. Although this receptor was identified through in vitro binding studies over 25 years ago, the molecular identity of this protein is currently not unambiguously known, and the results from recent attempts to identify the σ2 receptor through protein purification and mass spectral analysis have been the subject of debate in the literature. However, there is overwhelming data demonstrating that the σ2 receptor is an important biomarker of tumor cell proliferation . The observation that σ2 receptor agonists are potent anticancer agents whereas σ2 antagonists block Aβ1-42 oligomer synaptic dysfunction in transgenic mouse models of Alzheimer's disease have clearly identified this protein as an important therapeutic target for the treatment of a variety of pathological conditions.
Collapse
|
20
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
21
|
Pati ML, Groza D, Riganti C, Kopecka J, Niso M, Berardi F, Hager S, Heffeter P, Hirai M, Tsugawa H, Kabe Y, Suematsu M, Abate C. Sigma-2 receptor and progesterone receptor membrane component 1 (PGRMC1) are two different proteins: Proofs by fluorescent labeling and binding of sigma-2 receptor ligands to PGRMC1. Pharmacol Res 2016; 117:67-74. [PMID: 28007569 DOI: 10.1016/j.phrs.2016.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/05/2016] [Accepted: 12/16/2016] [Indexed: 01/20/2023]
Abstract
A controversial relationship between sigma-2 and progesterone receptor membrane component 1 (PGRMC1) proteins, both representing promising targets for the therapy and diagnosis of tumors, exists since 2011, when the sigma-2 receptor was reported to be identical to PGRMC1. Because a misidentification of these proteins will lead to biased future research hampering the possible diagnostic and therapeutic exploitation of the two targets, there is the need to solve the debate on their identity. With this aim, we have herein investigated uptake and distribution of structurally different fluorescent sigma-2 receptor ligands by flow cytometry and confocal microscopy in MCF7 cells, where together with intrinsic sigma-2 receptors, PGRMC1 was constitutively present or alternatively silenced or overexpressed. HCT116 cells, with constitutive or silenced PGRMC1, were also studied. These experiments showed that the fluorescent sigma-2 ligands bind to their receptor irrespective of PGRMC1 expression. Furthermore, isothermal titration calorimetry was conducted to examine if DTG and PB28, two structurally distinct nanomolar affinity sigma-2 ligands, bind to purified PGRMC1 proteins that have recently been revealed to form both apo-monomeric and heme-mediated dimeric forms. While no binding to apo-PGRMC1 monomer was detected, a micromolar affinity to heme-mediated dimerized PGRMC1 was demonstrated in DTG but not in PB28. The current data provide evidence that sigma-2 receptor and PGRMC1 are not identical, paving the pathway for future unbiased research in which these two attractive targets are treated as different proteins while the identification of the true sigma-2 protein further needs to be pursued.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Diana Groza
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Sonja Hager
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
22
|
Hampton KK, Craven RJ. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience 2014; 1:504-12. [PMID: 25594057 PMCID: PMC4278327 DOI: 10.18632/oncoscience.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is activated through changes in expression or mutations in a number of tumors and is a driving force in cancer progression. EGFR is targeted by numerous inhibitors, including chimeric antibodies targeting the extracellular domain and small molecule kinase domain inhibitors. The kinase domain inhibitors are particularly active against mutant forms of the receptor, and subsequent mutations drive resistance to the inhibitors. Here, we review recent developments on the trafficking of wild-type and mutant EGFR, focusing on the roles of MIG6, SPRY2, ITSN, SHP2, S2RPGRMC1 and RAK. Some classes of EGFR regulators affect wild-type and mutant EGFR equally, while others are specific for either the wild-type or mutant form of the receptor. Below we summarize multiple signaling-associated pathways that are important in trafficking wild-type and mutant EGFR with the goal being stimulation of new approaches for targeting the distinct forms of the receptor.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
23
|
Abate C, Niso M, Marottoli R, Riganti C, Ghigo D, Ferorelli S, Ossato G, Perrone R, Lacivita E, Lamb DC, Berardi F. Novel derivatives of 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) with improved fluorescent and σ receptors binding properties. J Med Chem 2014; 57:3314-23. [PMID: 24697311 DOI: 10.1021/jm401874n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the promising potentials of σ2 receptors in cancer therapy and diagnosis, there are still ambiguities related to the nature and physiological role of the σ2 protein. With the aim of providing potent and reliable tools to be used in σ2 receptor research, we developed a novel series of fluorescent σ2 ligands on the basis of our previous work, where high-affinity σ2 ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (1, PB28) was used as the pharmacophore. Compared to the previous compounds, these novel ligands displayed improved fluorescence and σ2 binding properties, were σ2-specifically taken up by breast tumor cells, and were successfully employed in confocal microscopy. Compound 14, which was the best compromise between pharmacological and fluorescent properties, was successfully employed in flow cytometry, demonstrating its potential to be used as a tool in nonradioactive binding assays for studying the affinity of putative σ2 receptor ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO , Via Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abate C, Selivanova SV, Müller A, Krämer SD, Schibli R, Marottoli R, Perrone R, Berardi F, Niso M, Ametamey SM. Development of 3,4-dihydroisoquinolin-1(2H)-one derivatives for the Positron Emission Tomography (PET) imaging of σ₂ receptors. Eur J Med Chem 2013; 69:920-30. [PMID: 24161678 DOI: 10.1016/j.ejmech.2013.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
σ₂ Receptors are promising biomarkers for cancer diagnosis given the relationship between the proliferative status of tumors and their density. With the aim of contributing to the research of σ₂ receptor Positron Emission Tomography (PET) probes, we developed 2-[3-[6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl]propyl]-3,4-dihydroisoquinolin-1(2H)-one (3), with optimal σ₂ pharmacological properties and appropriate lipophilicity. Hence, 3 served as the lead compound for the development of a series of dihydroisoquinolinones amenable to radiolabeling. Radiosynthesis for compound 26, which displayed the most appropriate σ₂ profile, was developed and σ₂ specific binding for the corresponding [(18)F]-26 was confirmed by in vitro autoradiography on rat brain slices. Despite the excellent in vitro properties, [(18)F]-26 could not successfully image σ₂ receptors in the rat brain in vivo, maybe because of its interaction with P-gp. Nevertheless, [(18)F]-26 may still be worthy of further investigation for the imaging of σ₂ receptors in peripheral tumors devoid of P-gp overexpression.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Niso M, Abate C, Contino M, Ferorelli S, Azzariti A, Perrone R, Colabufo NA, Berardi F. Sigma-2 receptor agonists as possible antitumor agents in resistant tumors: hints for collateral sensitivity. ChemMedChem 2013; 8:2026-35. [PMID: 24106081 DOI: 10.1002/cmdc.201300291] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/06/2013] [Indexed: 11/12/2022]
Abstract
With the aim of contributing to the development of novel antitumor agents, high-affinity σ2 receptor agonists were developed, with 6,7-dimethoxy-2-[4-[1-(4-fluorophenyl)-1H-indol-3-yl]butyl]-1,2,3,4-tetrahydroisoquinoline (15) and 9-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-9H-carbazole (25) showing exceptional selectivity for the σ2 subtype. Most of the compounds displayed notable antiproliferative activity in human MCF7 breast adenocarcinoma cells, with similar activity in the corresponding doxorubicin-resistant MCF7adr cell line. Surprisingly, a few compounds, including 25, displayed enhanced activity in MCF7adr cells over parent cells, recalling the phenomenon of collateral sensitivity, which is under study for the treatment of drug-resistant tumors. All of the compounds showed interaction with P-glycoprotein (P-gp), and 15 and 25, with the greatest activity, were able to revert P-gp-mediated resistance and reestablish the antitumor effect of doxorubicin in MCF7adr cells. We therefore identified a series of σ2 receptor agonists endowed with intriguing antitumor properties; these compounds deserve further investigation for the development of alternate strategies against multidrug- resistant cancers.
Collapse
Affiliation(s)
- Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang YS, Lu HL, Zhang LJ, Wu Z. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev 2013; 34:532-66. [PMID: 23922215 DOI: 10.1002/med.21297] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sigma-2 receptor is highly expressed in various rapidly proliferating cancer cells and regarded as a cancer cell biomarker. Selective sigma-2 ligands have been shown to specifically label the tumor sites, induce cancer cells to undergo apoptosis, and inhibit tumor growth. Sigma-2 ligands are potentially useful as cancer diagnostics, anticancer therapeutics, or adjuvant anticancer treatment agents. However, both the cloning of this receptor and the identification of its endogenous ligand have not been successful, and the lack of structural information has severely hindered the understanding of its physiological roles, its signaling pathways, and the development of more selective sigma-2 ligands. Recent data have implicated that sigma-2 binding sites are within the lipid rafts and that PGRMC1 (progesterone receptor membrane component 1) complex and sigma-2 receptor may be coupled with EGFR (epidermal growth factor receptor), mTOR (mammalian target of rapamycin), caspases, and ion channels. Due to its promising applications in cancer management, there are rapidly increasing research efforts that are being directed into this field. This review article updates the current understanding of sigma-2 receptor and its potential physiological roles, applications, interaction with other effectors, with special focuses on the development of sigma-2 ligands, their chemical structures, pharmacological profiles, applications in imaging and anticancer therapy.
Collapse
Affiliation(s)
- Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical College, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong, 523808, China
| | | | | | | |
Collapse
|
27
|
Mach RH, Zeng C, Hawkins WG. The σ2 receptor: a novel protein for the imaging and treatment of cancer. J Med Chem 2013; 56:7137-60. [PMID: 23734634 DOI: 10.1021/jm301545c] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The σ2 receptor is an important target for the development of molecular probes in oncology because of its 10-fold higher density in proliferating tumor cells compared with that in quiescent tumor cells and because of the observation that σ2 receptor agonists are able to kill tumor cells via apoptotic and nonapoptotic mechanisms. Although recent evidence indicates that the σ2 receptor binding site is localized within the progesterone receptor membrane component 1 (PGRMC1), most information regarding this protein has been obtained using either radiolabeled or fluorescent receptor-based probes and from biochemical analysis of the effect of σ2 selective ligands on cells grown in culture. This article reviews the development of σ2 receptor ligands and presents an overview of how they have been used in vitro and in vivo to increase our understanding of the role of the σ2 receptor in cancer and proliferation.
Collapse
Affiliation(s)
- Robert H Mach
- Mallinckrodt Institute of Radiology and ‡Department of Surgery, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | |
Collapse
|
28
|
Iñiguez MA, Punzón C, Nieto R, Burgueño J, Vela JM, Fresno M. Inhibitory effects of sigma-2 receptor agonists on T lymphocyte activation. Front Pharmacol 2013; 4:23. [PMID: 23494519 PMCID: PMC3595506 DOI: 10.3389/fphar.2013.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/18/2013] [Indexed: 12/02/2022] Open
Abstract
Sigma (σ) receptor ligands are essentially known for their effects on the nervous system although recent studies have shown their potential effects modulating some other pathophysiological processes as cell proliferation, cancer, and the immune response. Here, we have analyzed the actions of σ-1 and σ-2 receptors ligands on T cell activation. Our results show that treatment of Jurkat T cells with σ-2 agonists decreased the induction of the expression of Interleukin (IL)-2, Tumor necrosis factor (TNF)-α, and Cyclooxygenase (COX)-2 by activated T cells in a dose-dependent manner. These effects take place at the transcriptional level since σ-2 agonists BD-737 and CB-184 diminished the activity of the promoters of those genes. Those immunosuppressive effects could be attributable to interference with transcription factor activation. Induced transcription mediated by Nuclear factor (NF)-κB or Nuclear Factor of Activated T cells (NFAT) was inhibited by σ-2 agonists. These effects seem to be specific for σ-2 agonists as no significant effects on T cell activation by σ-1 ligands PRE-084 and BD-1063 were found. Our results provide new insights into the immunomodulatory actions of σ ligands and describe a new property of σ-2 agonists, through inhibition of activation of transcription factors as NFAT by which these compounds are regulating gene expression. This may have important consequences on the possible therapeutic use of those compounds.
Collapse
Affiliation(s)
- Miguel A Iñiguez
- Departamento de Biología Molecular and Instituto de Investigación Sanitaria Princesa, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid Nicolás Cabrera, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Guo LW, Hajipour AR, Karaoglu K, Mavlyutov TA, Ruoho AE. Development of benzophenone-alkyne bifunctional sigma receptor ligands. Chembiochem 2012; 13:2277-89. [PMID: 23001760 DOI: 10.1002/cbic.201200427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Indexed: 12/12/2022]
Abstract
Sigma (σ) receptors are unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been shown to have σ2 receptor-like binding properties, thus highlighting the need to understand the biological function of an 18 kDa protein that exhibits σ2-like photoaffinity labeling (denoted here as σ2-18k) but the amino acid sequence of which is not known. In order to provide new tools for the study of the σ2-18k protein, we have developed bifunctional σ receptor ligands each bearing a benzophenone photo-crosslinking moiety and an alkyne group to which an azide-containing biotin affinity tag can be covalently attached through click chemistry after photo-crosslinking. Although several compounds showed favorable σ2 binding properties, the highest affinity (2 nM) and the greatest potency in blocking photolabeling of σ2-18k by a radioactive photoaffinity ligand was shown by compound 22. These benzophenone-alkyne σ receptor ligands might therefore be amenable for studying the σ2-18k protein through chemical biology approaches. To the best of our knowledge, these compounds represent the first reported benzophenone-containing clickable σ receptor ligands, which might potentially have broad applications based on the "plugging in" of various tags.
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Abate C, Ferorelli S, Niso M, Lovicario C, Infantino V, Convertini P, Perrone R, Berardi F. 2-Aminopyridine Derivatives as Potential σ2Receptor Antagonists. ChemMedChem 2012; 7:1847-57. [DOI: 10.1002/cmdc.201200246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/20/2012] [Indexed: 11/06/2022]
|
31
|
Arylamides hybrids of two high-affinity σ2 receptor ligands as tools for the development of PET radiotracers. Eur J Med Chem 2011; 46:4733-41. [DOI: 10.1016/j.ejmech.2011.05.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022]
|
32
|
Abate C, Hornick JR, Spitzer D, Hawkins WG, Niso M, Perrone R, Berardi F. Fluorescent derivatives of σ receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) as a tool for uptake and cellular localization studies in pancreatic tumor cells. J Med Chem 2011; 54:5858-67. [PMID: 21744858 DOI: 10.1021/jm200591t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescent derivatives of σ(2) high affinity ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) were synthesized. NBD or dansyl fluorescent tags were connected through a 5- or 6-atom linker in two diverse positions of 1 structure. Good σ(2) affinities were obtained when the fluorescent tag was linked to 5-methoxytetralin nucleus replacing the methyl function. NBD-bearing compound 16 displayed high σ(2) affinity (K(i) = 10.8 nM) and optimal fluorescent properties. Its uptake in pancreatic tumor cells was evaluated by flow cytometry, showing that it partially occurs through endocytosis. In proliferating cells, the uptake was higher supporting that σ(2) receptors are markers of cell proliferation and that the higher the proliferation is, the stronger the antiproliferative effect of σ(2) agonists is. Colocalization of 16 with subcellular organelles was studied by confocal microscopy: the greatest was in endoplasmic reticulum and lysosomes. Fluorescent σ(2) ligands show their potential in clarifying the mechanisms of action of σ(2) receptors.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abate C, Niso M, Contino M, Colabufo NA, Ferorelli S, Perrone R, Berardi F. 1-Cyclohexyl-4-(4-arylcyclohexyl)piperazines: Mixed σ and human Δ(8)-Δ(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. ChemMedChem 2011; 6:73-80. [PMID: 21069657 DOI: 10.1002/cmdc.201000371] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many new chemotherapeutic agents are under preclinical investigation and, despite efforts to more selectively target cancer cells, limitations such as toxicity and inherent resistance are often encountered. Therefore, alternative strategies are needed to treat cancer and overcome such limitations. We describe novel cyclohexylpiperazine derivatives, designed as mixed affinity ligands for sigma (σ) receptors and human Δ₈-Δ₇ sterol isomerase (HSI) ligands, which also exhibit P-glycoprotein (P-gp) inhibitory activity, with the aim of exploiting the antiproliferative effects mediated by σ and HSI sites while overcoming P-gp-mediated resistance. All of the compounds displayed high affinities for σ receptors and HSI sites, P-gp inhibitory activity, and σ₂ receptor agonist antiproliferative activity. Antiproliferative activity was also tested in PC-3 cells to establish σ₁ and HSI contribution. Compound cis-11, which displayed the best antiproliferative and P-gp inhibitory activities, was co-administered with 0.1 μM doxorubicin in MDCK-MDR1 cells. Compound cis-11 caused 70 % and 90 % cell death when co-administered at 30 μM and 50 μm, respectively. When administered alone, cis-11 resulted in 50 % cell death, demonstrating its single agent antitumor properties in a tumor cell line overexpressing P-gp.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari ALDO MORO, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Johannessen M, Fontanilla D, Mavlyutov T, Ruoho AE, Jackson MB. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels. Am J Physiol Cell Physiol 2011; 300:C328-37. [PMID: 21084640 PMCID: PMC3043630 DOI: 10.1152/ajpcell.00383.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/17/2010] [Indexed: 01/23/2023]
Abstract
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.
Collapse
Affiliation(s)
- Molly Johannessen
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
35
|
Abate C, Niso M, Lacivita E, Mosier PD, Toscano A, Perrone R. Analogues of σ receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) with added polar functionality and reduced lipophilicity for potential use as positron emission tomography radiotracers. J Med Chem 2011; 54:1022-32. [PMID: 21229979 DOI: 10.1021/jm1013133] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) represents an excellent lead candidate for therapeutic and/or diagnostic applications in oncology. However, because its utility is limited by its relatively high degree of lipophilicity, novel analogues of 1 with reduced lipophilic character were designed by substituting methylene groups with more polar functional groups in the propylene linker and at the tetralin C4 position. For the chiral analogues, separate enantiomers exhibited substantial and roughly equal affinities within a given receptor subtype, with the greatest difference observed for compound 9 at σ(1) (7.5-fold; (-)-(S)-9 K(i) = 94.6 nM, (+)-(R)-9 K(i) = 12.6 nM). Compound (-)-(S)-9 was also found to be the most σ(2)-selective agent (σ(2) K(i) = 5.92 nM), to possess a lipophilicity consistent with entry into tumor cells (log D(7.4) = 2.38), and to show minimal antiproliferative activity. However, (-)-(S)-9 exhibited moderate activity (EC(50) = 8.1 μM) at the P-gp efflux pump.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Sigma receptors (σ-1 and σ-2) are non-opioid proteins implicated in the pathophysiology of various neurological disorders and cancer. The σ-1 subtype is a chaperon protein widely distributed in the CNS and peripheral tissues. These receptors are involved in the modulation of K+- and Ca2+-dependent signaling cascades at the endoplasmic reticulum and modulation of neurotransmitter release. σ-1 receptors are emerging targets for the treatment of neurophychiatric diseases (schizophrenia and depression) and cocaine addiction. σ-2 receptors are lipid raft proteins. They are highly expressed on many tumor cells and hence considered potential targets for anticancer drugs. σ receptors bind to a diverse class of pharmacological compounds like cocaine, methamphetamine, benzomorphans like (±)-pentazocine, (±)-SKF-10,047 and endogenous neurosteroids and sphingolipids. In this review we focus on the early development of σ receptor-specific ligands and radiolabeling agents.
Collapse
|
37
|
Hajipour AR, Fontanilla D, Chu UB, Arbabian M, Ruoho AE. Synthesis and characterization of N,N-dialkyl and N-alkyl-N-aralkyl fenpropimorph-derived compounds as high affinity ligands for sigma receptors. Bioorg Med Chem 2010; 18:4397-404. [PMID: 20493718 PMCID: PMC3565575 DOI: 10.1016/j.bmc.2010.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 11/20/2022]
Abstract
The sigma-1 receptor is a unique non-opioid, non-PCP binding site that has been implicated in many different pathophysiological conditions including psychosis, drug addiction, retinal degeneration and cancer. Based on the structure of fenpropimorph, a high affinity (K(i)=0.005 nM)(1) sigma-1 receptor ligand and strong inhibitor of the yeast sterol isomerase (ERG2), we previously deduced a basic sigma-1 receptor pharmacophore or chemical backbone composed of a phenyl ring attached to a di-substituted nitrogen atom via an alkyl chain.(2) Here, we report the design and synthesis of various N,N-dialkyl or N-alkyl-N-aralkyl derivatives based on this pharmacophore as well as their binding affinities to the sigma-1 receptor. We introduce three high affinity sigma-1 receptor compounds, N,N-dibutyl-3-(4-fluorophenyl)propylamine (9), N,N-dibutyl-3-(4-nitrophenyl)propylamine (3), and N-propyl-N'-4-aminophenylethyl-3-(4-nitrophenyl)propylamine (20) with K(i) values of 17.7 nM, 0.36 nM, and 6 nM, respectively. In addition to sigma receptor affinity, we show through cytotoxicity assays that growth inhibition of various tumor cell lines occurs with our high affinity N,N-dialkyl or N-alkyl-N-aralkyl derivatives.
Collapse
Affiliation(s)
- Abdol R. Hajipour
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
- Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156, IR Iran
| | - Dominique Fontanilla
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Uyen B. Chu
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Marty Arbabian
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Arnold E. Ruoho
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
38
|
Abate C, Elenewski J, Niso M, Berardi F, Colabufo NA, Azzariti A, Perrone R, Glennon RA. Interaction of the sigma(2) receptor ligand PB28 with the human nucleosome: computational and experimental probes of interaction with the H2A/H2B dimer. ChemMedChem 2010; 5:268-73. [PMID: 20077462 DOI: 10.1002/cmdc.200900402] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sigma-2 (sigma(2)) binding sites are an emerging target for anti-neoplastic agents due to the strong apoptotic effect exhibited by sigma(2) agonists in vitro and the overexpression of these sites in tumor cells. Nonetheless, no sigma(2) receptor protein has been identified. Affinity chromatography using the high-affinity sigma(2) ligand PB28 and human SK-N-SH neuroblastoma cells was previously utilized to identify sigma(2) ligand binding proteins, specifically histones H1, H2A, H2B, and H3.3a. To rationalize this finding, homology modeling and automated docking studies were employed to probe intermolecular interactions between PB28 and human nucleosomal proteins. These studies predicted interaction of PB28 with the H2A/H2B dimer at a series of sites previously found to be implicated in chromatin compaction and nucleosomal assembly. To experimentally verify this prediction, a competitive binding assay was performed on the reconstituted H2A/H2B dimer using [(3)H]PB28 as radioligand, and an IC(50) value of 0.50 nM was determined for PB28 binding. In addition, [(3)H]PB28 was found to accumulate with up to a fivefold excess in nuclear fractions over cytosolic fractions of SK-N-SH and MCF7 cells, indicating that PB28 is capable of entering the nucleus to interact with histone proteins. In conjunction with computational results, these data suggest that PB28 may exert its cytotoxic effect through direct interaction with nuclear material.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Synthesis of carbon-11-labeled piperidine ring of N-[omega-(6-methoxynaphthalen-1-yl)alkyl] derivatives as new selective PET sigma1 receptor probes. Appl Radiat Isot 2009; 68:459-65. [PMID: 20060731 DOI: 10.1016/j.apradiso.2009.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/26/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Carbon-11-labeled piperidine ring of N-[omega-(6-methoxynaphthalen-1-yl)alkyl] derivatives were first designed and synthesized as new selective PET sigma(1) receptor probes. The target tracers were prepared by O-[(11)C]methylation of their corresponding phenolic hydroxyl precursors using [(11)C]CH(3)OTf under basic conditions and isolated by a simplified SPE method in 40-50% radiochemical yields based on [(11)C]CO(2) and decay corrected to EOB. The overall synthesis time from EOB was 15-20 min, the radiochemical purity was >99%, and the specific activity at EOS was 111-185 GBq/micromol.
Collapse
|
40
|
Berardi F, Abate C, Ferorelli S, Uricchio V, Colabufo NA, Niso M, Perrone R. Exploring the Importance of Piperazine N-Atoms for σ2 Receptor Affinity and Activity in a Series of Analogs of 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28). J Med Chem 2009; 52:7817-28. [DOI: 10.1021/jm9007505] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesco Berardi
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| | - Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| | - Savina Ferorelli
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| | - Vincenzo Uricchio
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| | - Nicola A. Colabufo
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| | - Mauro Niso
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| | - Roberto Perrone
- Dipartimento Farmacochimico, Università degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy
| |
Collapse
|
41
|
Berardi F, Abate C, Ferorelli S, de Robertis AF, Leopoldo M, Colabufo NA, Niso M, Perrone R. Novel 4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines as Delta(8)-Delta(7) sterol isomerase (emopamil binding protein) selective ligands with antiproliferative activity. J Med Chem 2009; 51:7523-31. [PMID: 19053780 DOI: 10.1021/jm800965b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To find Delta(8)-Delta(7) sterol isomerase (EBP) selective ligands, various arylpiperazines previously studied and structurally related to some sigma receptors ligands were preliminarily screened. Consequently, a novel series of 2- or 2,6-disubstituted (CH(3), CH(3)O, Cl, F) cis- and trans-4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines was developed. Radioreceptor binding assays evidenced cis-19, cis-30 and cis-33 as new ligands with nanomolar affinity toward EBP site and a good selectivity relative to EBP-related sigma receptors. The most selective 2,6-dimethoxy derivative (cis-33) demonstrated the highest potency (EC(50) = 12.9 microM) and efficacy (70%) in inhibiting proliferation of human prostate cancer PC-3 cell line. Among the reference compounds, sigma(2) agonist 36 (PB28) reached the maximum efficacy (100%), suggesting the contribution of the sigma(2) receptor to the antiproliferative activity. This novel class of EBP inhibitors represents a valuable tool for investigating the last steps of cholesterol biosynthesis and related pathologies, as well as a starting point for developing new anticancer drugs.
Collapse
Affiliation(s)
- Francesco Berardi
- Dipartimento Farmacochimico, Universita degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chu W, Xu J, Zhou D, Zhang F, Jones LA, Wheeler KT, Mach RH. New N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl phenylcarbamate analogs as sigma2 receptor ligands: synthesis, in vitro characterization, and evaluation as PET imaging and chemosensitization agents. Bioorg Med Chem 2008; 17:1222-31. [PMID: 19119012 DOI: 10.1016/j.bmc.2008.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 11/16/2022]
Abstract
A series of N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl phenylcarbamate analogs were synthesized. Among them, WC-26 and WC-59 were identified as the most potent sigma(2) receptor ligands (K(i)=2.58 and 0.82 nM, respectively) with high selectivity against sigma(1) (K(i) of sigma(1)/sigma(2) ratio=557 and 2087, respectively). [(18)F]WC-59 was radiolabeled via a nucleophilic substitution of a mesylate precursor by [(18)F]fluoride, and in vitro direct binding studies of [(18)F]WC-59 were conducted using membrane preparations from murine EMT-6 solid breast tumors. The results indicate that [(18)F]WC-59 binds specifically to sigma(2) receptors in vitro (K(d)= approximately 2 nM). Biodistribution studies of [(18)F]WC-59 in EMT-6 tumor-bearing mice indicated that the tracer was a less suitable candidate for clinical imaging studies than existing F-18 labeled sigma(2) receptor ligands. The ability of WC-26 to enhance the cytotoxic effects of the chemotherapy drug, doxorubicin, was evaluated in cell culture using the mouse breast tumor EMT-6 and the human tumor MDA-MB435. WC-26 greatly increased the ability of doxorubicin to kill these two tumor cell lines in vitro. These results indicate that WC-26 is potentially a useful chemosensitizer for the treatment of cancer when combined with conventional chemotherapeutics.
Collapse
Affiliation(s)
- Wenhua Chu
- Department of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Synthesis and evaluation of the bioactivity of simplified analogs of the seco-pseudopterosins; progress toward determining a pharmacophore. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Colabufo NA, Abate C, Contino M, Inglese C, Niso M, Berardi F, Perrone R. PB183, a sigma receptor ligand, as a potential PET probe for the imaging of prostate adenocarcinoma. Bioorg Med Chem Lett 2008; 18:1990-3. [PMID: 18276137 DOI: 10.1016/j.bmcl.2008.01.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 11/21/2022]
Abstract
PB183, a non-selective sigma receptor ligand displaying high sigma-1 and sigma-2 receptor affinity, was evaluated in prostate tumour cell lines for its suitability as PET radiotracer. The pharmacodynamic and pharmacokinetic properties suggested PB183 as a potential PET radiotracer to visualize prostate adenocarcinoma.
Collapse
Affiliation(s)
- Nicola Antonio Colabufo
- Dipartimento Farmacochimico, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Mésangeau C, Narayanan S, Green AM, Shaikh J, Kaushal N, Viard E, Xu YT, Fishback JA, Poupaert JH, Matsumoto RR, McCurdy CR. Conversion of a highly selective sigma-1 receptor-ligand to sigma-2 receptor preferring ligands with anticocaine activity. J Med Chem 2008; 51:1482-6. [PMID: 18278854 DOI: 10.1021/jm701357m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine's toxicity can be mitigated by blocking its interaction with sigma-1 receptors. The involvement of sigma-2 receptors remains unclear. To investigate their potential role, we have designed compounds through a convergent synthesis utilizing a highly selective sigma-1 ligand and elements of a selective sigma-2 ligand. Among the synthesized compounds was produced a subnanomolar sigma-2 ligand with an 11-fold preference over sigma-1 receptors. These compounds may be useful in developing effective pharmacotherapies for cocaine toxicity.
Collapse
Affiliation(s)
- Christophe Mésangeau
- Department of Medicinal Chemistry, The University of Mississippi, Mississippi 38677, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Colabufo NA, Abate C, Contino M, Inglese C, Ferorelli S, Berardi F, Perrone R. Tritium radiolabelling of PB28, a potent sigma-2 receptor ligand: pharmacokinetic and pharmacodynamic characterization. Bioorg Med Chem Lett 2008; 18:2183-7. [DOI: 10.1016/j.bmcl.2007.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/26/2022]
|
47
|
Abstract
The aberrant expression and function of certain receptors in tumours and other diseased tissues make them preferable targets for molecular imaging. PET and SPECT radionuclides can be used to label specific ligands with high affinity for the target receptors. The functional information obtained from imaging these receptors can be used to better understand the systems under investigation and for diagnostic and therapeutic applications. This review discusses some of the aspects of receptor imaging with small molecule tracers by PET and SPECT and reviews some of the tracers for the receptor imaging of tumours and brain, heart and lung disorders.
Collapse
Affiliation(s)
- Aviv Hagooly
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8225, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
48
|
Mamolo MG, Zampieri D, Zanette C, Florio C, Collina S, Urbano M, Azzolina O, Vio L. Substituted benzylaminoalkylindoles with preference for the sigma2 binding site. Eur J Med Chem 2007; 43:2073-81. [PMID: 18069094 DOI: 10.1016/j.ejmech.2007.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 06/25/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022]
Abstract
In the attempt to develop new sigma ligands we synthesized a series of N-benzyl-3-[1-(4-fluorophenyl)-1H-indol-3-yl]-N-methylpropan-1-amines and N-benzyl-4-[1-(4-fluorophenyl)-1H-indol-3-yl]-N-methylbutan-1-amines variously substituted on the phenyl ring. The displacement percentages of [3H]-DTG and [3H]-(+)-pentazocine determined in rat liver homogenates by these compounds at the fixed 100 nM concentration have been determined as a preliminary evaluation of their sigma1 and sigma2 affinity, respectively. The results suggested that the phenyl substituents may positively modulate, in comparison with the unsubstituted compound, the ability to displace [3H]-DTG from sigma2 sites, whereas the same phenyl substituents reduced the displacement percentages of [3H]-(+)-pentazocine from sigma1 sites. Some of these compounds were selected for radioligand binding assays. Compounds with a butylene intermediate chain displayed the greatest binding affinity for sigma2 over sigma1 receptors. The butylene derivative with 2,4-dimethyl substitution on the phenyl ring showed the greatest sigma2 affinity (sigma2Ki=5.9 nM) and an appreciable sigma2 over sigma1 selectivity (sigma1Ki/sigma2Ki=22). The obtained results suggest that a butylene chain separating the indole moiety from variously substituted benzylamino groups may be required to their interaction with a hypothetical secondary sigma2 binding site.
Collapse
Affiliation(s)
- Maria Grazia Mamolo
- Department of Pharmaceutical Sciences, University of Trieste, P.ale Europa 1, 34127 Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferorelli S, Abate C, Colabufo NA, Niso M, Inglese C, Berardi F, Perrone R. Design and Evaluation of Naphthol- and Carbazole-Containing Fluorescent σ Ligands as Potential Probes for Receptor Binding Studies. J Med Chem 2007; 50:4648-55. [PMID: 17713896 DOI: 10.1021/jm070373b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some 3,3-dimethyl-1-(3-naphthylpropyl)piperidine and 1-cyclohexyl-4-(3-naphthylpropyl)piperazine derivatives, structurally containing naphthol as a fluorescent moiety, were prepared for being potentially used as fluorescent sigma ligands. Structurally related analogs were also prepared, where the naphthalene nucleus was replaced by the fluorescent carbazole moiety and chain length was varied. For all compounds the in vitro affinities toward sigma receptors and Delta8-Delta7 sterol isomerase site were measured, and the fluorescent properties were determined. Compound 19 gave the best results both for sigma receptor affinities (sigma1, Ki = 6.78 nM and sigma2, Ki = 26.4 nM) and fluorescence features; thus, it was chosen for in vitro saturation binding analysis at sigma receptors. The good results obtained in such assay suggested that the fluorescent compound 19 could be used instead of a radioligand in "green" binding assays.
Collapse
Affiliation(s)
- Savina Ferorelli
- Dipartimento Farmacochimico, Università di Bari, via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Tu Z, Xu J, Jones LA, Li S, Dumstorff C, Vangveravong S, Chen DL, Wheeler KT, Welch MJ, Mach RH. Fluorine-18-labeled benzamide analogues for imaging the sigma2 receptor status of solid tumors with positron emission tomography. J Med Chem 2007; 50:3194-204. [PMID: 17579383 DOI: 10.1021/jm0614883] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of fluorine-containing benzamide analogs was synthesized and evaluated as candidate ligands for positron emission tomography (PET) imaging of the sigma-2 (sigma2) receptor status of solid tumors. Four compounds having a moderate to high affinity for sigma2 receptors and a moderate to low affinity for sigma-1 (sigma1) receptors were radiolabeled with fluorine-18 via displacement of the corresponding mesylate precursor with [18F]fluoride. Biodistribution studies in female Balb/c mice bearing EMT-6 tumor allografts demonstrated that all four F-18-labeled compounds had a high tumor uptake (2.5-3.7% ID/g) and acceptable tumor/normal tissue ratios at 1 and 2 h post-i.v. injection. An analysis of the chemistry and biodistribution data suggested that N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2-(2-[18F]-fluoroethoxy)-5-methylbenzamide ([18F]3c) and N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2-(2-[18F]-fluoroethoxy)-5-iodo-3-methoxybenzamide ([18F]3f) are acceptable compounds for imaging the sigma2 receptor status of solid tumors.
Collapse
Affiliation(s)
- Zhude Tu
- Division of Radiological Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|